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ABSTRACT

Neural population responses in sensory systems are driven by external physical
stimuli. This stimulus-response relationship is typically characterized by recep-
tive fields, which have been estimated by neural system identification approaches.
Such models usually requires a large amount of training data, yet, the recording
time for animal experiments is limited, giving rise to epistemic uncertainty for the
learned neural transfer functions. While deep neural network models have demon-
strated excellent power on neural prediction, they usually do not provide the un-
certainty of the resulting neural representations and derived statistics, such as the
stimuli driving neurons optimally, from in silico experiments. Here, we present
a Bayesian system identification approach to predict neural responses to visual
stimuli, and explore whether explicitly modeling network weight variability can
be beneficial for identifying neural response properties. To this end, we use varia-
tional inference to estimate the posterior distribution of each model weight given
the training data. Tests with different neural datasets demonstrate that this method
can achieve higher or comparable performance on neural prediction, with a much
higher data efficiency compared to Monte Carlo dropout methods and traditional
models using point estimates of the model parameters. At the same time, our vari-
ational method allows to estimate the uncertainty of stimulus-response function,
which we have found to be negatively correlated with the predictive performance
and may serve to evaluate models. Furthermore, our approach enables to iden-
tify response properties with credible intervals and perform statistical test for the
learned neural features, which avoid the idiosyncrasy of a single model. Finally,
in silico experiments show that our model generates stimuli driving neuronal ac-
tivity significantly better than traditional models, particularly in the limited-data
regime.

1 INTRODUCTION

Current neural interfaces allow to simultaneously record large populations of neural activity. In
sensory neuroscience, such ensemble responses are driven by external physical stimuli (e.g., natural
images), and their relation has been characterized by tuning curves or receptive fields (RFs; Hubel &
Wiesel (1959)). Such stimulus-response functions have been estimated by neural system identifica-
tion methods (reviewed in Wu et al., 2006). Classically, they used a linear-nonlinear-Poisson (LNP)
model or variants of it (Chichilnisky, 2001; Pillow et al., 2008; Huang et al., 2021; Karamanlis &
Gollisch, 2021) to predict responses to unseen stimuli such as white noise and natural images (Rust
& Movshon, 2005; Qiu et al., 2021). More recently, deep neural networks (DNNs) with multiple
layers of non-linear processing have shown great success for learning neural transfer functions along
the ventral visual stages from retina (McIntosh et al., 2016; Batty et al., 2016; Qiu et al., 2023) and
primary visual cortex (Antolı́k et al., 2016; Klindt et al., 2017; Ecker et al., 2018; Lurz et al., 2021)
to higher visual areas (Yamins et al., 2014; Güçlü & van Gerven, 2015). Moreover, through in silico
experiments, these models are able to generate specific stimulus to control neural activity and iden-
tify novel neuronal properties from a high-dimensional space (Bashivan et al., 2019; Ponce et al.,
2019; Walker et al., 2019; Franke et al., 2021; Hoefling et al., 2022). For example, closed-loop
paradigms show that performing gradient ascent on a deep model can yield most exciting inputs
(MEIs) to drive a neuron’s activity optimally (Walker et al., 2019).
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Figure 1: Schematic of neural system identification for predicting responses. Biological neurons
(top row; second column) respond to visual stimuli (first column) distinctly (third column), with an
unknown MEI (fourth column) driving a cell with optimal activation (sixth column). Traditional
system identification methods (center row) learn stimulus-response function and yield a MEI with
unknown statistics (fitth column). Bayesian approaches (bottom row) learn distributions of model
parameters to predict neuronal responses, yielding an infinite MEIs, whose significance map can be
computed by sampling from posterior, to drive a neuron with credible intervals.

Yet, these system identification approaches demand significant amounts of stimulus-response pair
data for the model training, given the high dimensional stimulus space and the non-linear neural
transformations (Lurz et al., 2021; Cotton et al., 2020; Qiu et al., 2023). Due to limited recording
time for each experiment, the amount of data for fitting these models is restricted introducing epis-
temic uncertainty about the learned stimulus-response function. To estimate this uncertainty, tradi-
tional LNP methods obtain full posterior distribution of model parameters by leveraging a Bayesian
framework to provide confidence intervals for the estimated RFs (Gerwinn et al., 2007; 2010; Park
& Pillow, 2011; Huang et al., 2021). However, DNN models rarely consider the uncertainty of the
neuronal properties that are recovered from in silico experiments.

Here, we propose a Bayesian system identification approach to estimate response features of neu-
rons with uncertainties (Figure 1). We test whether incorporating uncertainties by learning the full
distribution of model parameters is beneficial for learning neural representations. To this end, we
build a DNN model to predict responses to unseen visual stimuli by using variational inference to
estimate the distribution of network weights, i.e., Bayes by Backprop (Hinton & Van Camp, 1993;
Neal & Hinton, 1998; Jaakkola & Jordan, 2000; Blundell et al., 2015).

Our contributions are: (1) We incorporate weight variability in deep neural networks for identifying
neural response functions with uncertainty and extend the Bayes by Backprop with a hyperparam-
eter which effectively adjusts sparsity of model parameters. (2) We apply our Bayesian models on
different experimental datasets and find that our method can achieve higher or comparable perfor-
mance on neural prediction, with a much better data efficiency, compared to Monte Carlo dropout
methods and traditional models using point estimates of the model parameters. (3) Our Bayesian
approach with full posterior allows to estimate neural features with credible intervals and run statis-
tical test for the derived MEIs, bypassing the idiosyncrasy of a single model. (4) Finally, in silico
experiments demonstrate that our variational model yields stimuli that drive neuronal activation bet-
ter than the traditional models, especially in the condition of limited training data. This supports that
weight uncertainty, as implemented in our model, may contribute to a more efficient identification
of non-linear neuronal response functions.

2 METHODS

2.1 MODELS

Variational model DNN for system identification can be seen as a probabilistic model: given
the training data D = (xi, yi)i where xi is an input (such as natural images) and yi is the output
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(such as neural responses), we aim to learn the weights w of a network which can predict the out-
put for the unseen stimuli (Figure 1). Compared to a traditional method using point estimates of
the weights, Bayesian approaches learn full distributions of these w. Estimating the full posterior
distribution of the weights P (w|D) given the training data is usually not feasible. An alternative is
to approximate P (w|D) by a new distribution q(w|θ) whose parameters θ are trained to minimize
the distance between the proxy and the true posterior, which is called variational inference (Hinton
& Van Camp, 1993; Neal & Hinton, 1998; Jaakkola & Jordan, 2000; Blundell et al., 2015). Usually
we use Kullback-Leibler (KL) divergence as a measure of distance between two distributions:

θ∗ = argmin
θ

KL[q(w|θ)||P (w|D)] (1)

= argmin
θ

KL[q(w|θ)||P (w)]− Eq(w|θ)[logP (D|w)] (2)

The optimization function can be viewed as a trade-off between the distance between the variational
posterior and the selected prior and the likelihood cost. We can view it as a constrained optimization
problem as (Higgins et al., 2016):

argmax
θ

Eq(w|θ)[logP (D|w)] subject to KL[q(w|θ)||P (w)] < ϵ (3)

Here ϵ represents the specific distance between the variational posterior and the prior. According to
KKT conditions (Kuhn & Tucker, 1951) and non-negative properties of KL divergence, we get:

F = Eq(w|θ)[logP (D|w)]− βv(KL[q(w|θ)||P (w)]− ϵ) (4)

≥ Eq(w|θ)[logP (D|w)]− βvKL[q(w|θ)||P (w)] (5)

where βv is non-negative and represents a Lagrangian multiplier. So the final loss function for the
model is:

L = βvKL[q(w|θ)||P (w)]− Eq(w|θ)[logP (D|w)] (6)

≈
n∑

i=1

βv(log q(w(i)|θ)− logP (w(i)))− logP (D|w(i)) (7)

Eq. (7) is a result of Monte Carlo sampling n instances w(i) from q(w|θ) because we can not
calculate (6) directly.

Here, we implemented convolutional neural networks (CNNs) for all experiments. For a CNN
using variational inference on model weights (variational model), we picked independent Gaussian
distributions for the variational posterior and a scale mixture of two Gaussians for the prior (Blundell
et al., 2015). The log posterior was defined as log q(w|θ) =

∑
k=1 logN (wk|µ, σ2) where wk

denotes kth weight of the neural network and (µ, σ) are the posterior parameters θ. To keep σ non-
negative, we parameterised it using σ = log(1 + exp (ρ)). We selected the log prior logP (w) =∑

k=1 log(πN (wk|0, σ2
1)+(1−π)N (wk|0, σ2

2)) where π is a mixture component weight (0 ≤ π ≤
1) (Blundell et al., 2015; Fortuin et al., 2021). This prior, compared to a single Gaussian distribution,
encourages sparseness in learned kernels, reminiscent of neural representations in visual systems
(Field, 1994; Olshausen & Field, 1996; David et al., 2007; Stevenson et al., 2008). The likelihood
loss depends on the specific task of the network. For neural system identification, we use Poisson
loss − logP (D|w) =

∑
l r̂l−rl log r̂l, where l, r̂l and rl denote neuronal index, prediction responses

and true responses, respectively.

Baseline and control models We used a CNN without any regularization as a baseline model
(Appendix A.1) and used a CNN with L2 regularization in each convolutional layer and L1 regu-
larization in fully connected layer (L2+L1) as a control model. We adopted an ensemble of L2+L1
models with different initialization seeds as a second control model, whose predicted responses are
the average of five model outputs. To examine the contribution from weight uncertainties, we built
a maximum a posteriori (MAP) model which contains prior and likelihood terms in Eq. (7) as loss
functions. Additionally, as a fourth control, we adopted a CNN with Monte Carlo dropout for prob-
abilistic prediction; it used the same dropout rate for each model layer and in both training and test
stages (Srivastava et al., 2014; Gal & Ghahramani, 2016).

3



Under review as a conference paper at ICLR 2024

2.2 DATASET

We tested our method on two publicly available datasets.

The first dataset contains calcium signals driven by static natural gray-scale images for neurons
in primary visual cortex (V1) of mice (Antolı́k et al., 2016). We used 103 neurons from the first
scan field, whose single-trial responses to 1,600 images for training models and 200 for tuning
hyperparameters. Then we used the mean of response repeats to 50 test images for evaluating
models.

The second dataset comprises Ca2+ responses to natural green/UV images (36x64 pixels) for neurons
in mouse V1 (Franke et al., 2021). We selected the natural stimuli that were presented in both UV
and green channels and used the neurons whose quality index (QI = Var[E[C]r]t/E[Var[C]t]r,
time samples t and repetitions r, a response matrix C with a shape of t × r, E[X]d and Var[X]d
denoting the mean and variance along the dimension d of X , respectively) of 10-repeat test responses
were larger than 0.3. In this way, we had 161 neurons from one scan field, whose single-trial
responses to 4,000 images for training and 400 for validation. Then we used mean of response
repeats to 79 test images for evaluation.

2.3 TRAINING AND EVALUATION

We trained all models with a learning rate of 0.0003 for a maximum of 200 epochs using the
Adam optimizer (Kingma & Welling, 2013). We computed linear correlation between predicted
and recorded responses, which was used to evaluate models on validation or test data. We tuned
model hyperparameters and selected the ones as well as the respective epoch number with the best
predictive performance on validation data. To keep the comparison fair, the test models shared
similar network architecture for each dataset, except that the dropout model featured dropout layers.

For each trained model, we estimated MEIs of all neurons by running gradient ascent on a random
input image for 100 steps with a learning rate of 10 and we picked the stimulus with the highest
activity (Erhan et al., 2009; Walker et al., 2019). All generated MEIs had the same mean and standard
deviations as the training images. For the two probabilistic (variational and dropout) models, we ran
the estimation for 100 times with Monte Carlo sampling, hence, we got 100 MEIs (matrix C) for
each recorded neuron. We defined MEI variance of one neuron as MEI variance = E[Var[C]s]hw
(sampling times s, stimulus height h, stimulus width w, and C with a shape of s × h × w). The
overall MEI variance for a model was an average of MEI variances for the recorded neurons.

In in silico experiments, to measure the activation distribution of MEIs yielded from variational
models for a neuron, we estimated 100 MEIs by sampling and one mean MEI by using the weight
mean µ from each seed. So we had 505 MEIs for five random seeds with one additional MEI which
was the mean of the five mean MEIs, in total 506 MEIs. For L2+L1 models, we estimated five MEIs
from different random seeds and also got one by averaging across these MEIs, in total 6 MEIs.

3 RESULTS

3.1 βv BALANCES MODEL CAPACITY AND DATA LIKELIHOOD

We first analyzed the possible roles of βv in the loss function of variatonal models. Eq. (7) has a
similar form with the objective functions in deep variational information bottleneck (Alemi et al.,
2016; Tishby et al., 2000) and β-VAE (Higgins et al., 2016; Burgess et al., 2018), inspiring us to
investigate it from the perspective of information theory.

The training objective jointly minimizes the KL divergence between the posterior q(w|θ) and the
prior P (w) and maximizes the data likelihood under the distribution q(w|θ). The distribution dis-
tance becomes zero when q(w|θ) = P (w). In the case of Gaussian posterior and heavy-tailed prior
with mean zero, the divergence decreases with the posterior mean moving close to zero and the
posterior variance decreasing, which induces many zeros for weights w and increases the sparsity
of model parameters. In the extreme case, all weights are equal to zeros and the model does not
have any expressive power. In such case, the log likelihood Eq(w|θ)[logP (D|w)] vanishes, indicat-
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Figure 2: Hyperparameter βv for regulating weight sparseness. (a) Distribution of the means (µ)
of model weights for different βv values. Dotted lines indicate distribution means. (b) Mean and
standard deviation for the distributions in (a).

Figure 3: Neural prediction with weight uncertainty. (a) Mean recorded responses (gray) and
predictive responses to natural stimuli(black, baseline; red, L2+L1; green, variational one with βv =
0.1; blue, MC dropout with dropout rate 70%; shaded green and blue representing standard deviation
for the variational and the dropout methods, respectively), estimated MEIs, as well as standard
deviation of MEI (MEI std; only for two probabilistic models), for two exemplary neurons. MEI
and MEI std use different color scales with red and blue indicating positive and negative values,
respectively. Note that MEI has much larger absolute values than MEI std. (b) Predictive
performance (correlation coefficient, CC) based on test data with different amounts of training data
(left, 50% of training data; right, 100% of data) for 6 models (purple, ensemble; cyan, MAP; 10 seeds
per model), and the one used by (Klindt et al., 2017) (orange). (c) Predictive model performance for
different βv values. Error bars in (b) and (c) represent standard deviation of n=10 random seeds for
each model.

ing that the posterior q(w|θ) is a bottleneck for maximizing the data likelihood. Therefore, βv can
be interpreted as a coefficient to adjust model expressive power for fitting the data.

Empirically, we examined the distribution of weight means (µ) for different βv values on the dataset
1 shared by by Antolik and colleagues (Antolı́k et al., 2016). Indeed, we found that with the increase
of βv , the mean of the distribution got close to zeros and the std decreased, indicating an increase
of sparsity of model weights (Fig. 2). Therefore, the hyperparameter βv served to tune the model
capacity via weight sparseness for data prediction.

3.2 SYSTEM IDENTIFICATION INCORPORATES MODEL UNCERTAINTY TO PREDICT NEURAL
RESPONSES

We trained the six models on the dataset 1 (Fig. 3a) and tuned their respective hyperparameters
using validation data. For the variational model, we found the one with βv = 0.1 had best predictive
performance with a sharp decrease when increasing βv till 1.0 or 3.0 (Appendix A.2.1). We also

5



Under review as a conference paper at ICLR 2024

Figure 4: Neural transfer functions with variability. (a) Overall MEI variance for different βv

values (10 seeds per model). (b) Scatter plot of overall response CC and overall MEI variance for
6 βv values and 10 seeds (each dot representing one model at each βv and each seed). (c) Scatter
plot of response CC and MEI variance for two probabilistic models at one random seed (each dot
representing one neuron). Error bars in (a) represent standard deviation of n=10 random seeds for
each model.

observed that at training stage, the variational model presented a more stable performance on vali-
dation data compared to the baseline CNN, confirming the regularization effect of prior to prevent
overfitting.

Next, we selected the hyperparameters achieving the best performance on validation data for each
model. To examine the feature properties learned by these models, we estimated the MEIs of
recorded neurons and found that these models yielded antagonistic center-surround and Gabor filters
in a local region, reminiscent of neural representations in early visual processing ((Hubel & Wiesel,
1959; Chichilnisky, 2001); Fig. 3a). To compare the performance of neural prediction, we then eval-
uated all models using test data. Interestingly, when we used the full training data, the variational
and MC dropout models had similar predictive performance with a slightly higher value for the vari-
ation one (p = 0.6159, two-sided permutation test with n = 10,000 repeats). The variational one also
outperformed the baseline, the L2+L1, the ensemble, the MAP (p = 0.0001) and the model with
shared feature space between neurons((Klindt et al., 2017); Fig. 3b). With half of training data, the
variational method yielded a correlation higher compared to the MC dropout method (p = 0.082),
but slightly better than the MAP one (p = 0.2526). The performance difference between variational
and traditional methods using point estimates of parameters indicates the benefit of weight uncer-
tainty for neural prediction. We then reanalyzed the influence of βv on prediction for the variational
model using test data. Similar to the case with validation data, we noticed a rather steady predic-
tive performance with increasing βv until a sudden drop at βv = 1.0 or 3.0, implying that a large
Lagrangian multiplier imposing excessive sparsity on weights yields model underfitting.

Together, the superior/equivalent performance of our variational approach suggests that incorporat-
ing weight uncertainty is beneficial for predicting neural responses.

3.3 PROBABILISTIC MODELS LEARN VARIANCE OF NEURAL TRANSFER FUNCTIONS

The variational and the MC dropout approaches enable us to learn stimulus-response functions with
credible intervals. We next asked whether the variability of the learned transfer function was related
to the predictive performance for the two probabilistic (variational and dropout) models. To this end,
we measured the MEI variance for each neuron and the overall MEI variance for each model and
relate them to the performance on predicting responses.

We first investigated the influence of βv on the variability of the learned transfer functions for our
variational model. Interestingly, we found a sudden increase of overall MEI variance at βv = 1.0
or 3.0 (Fig. 4a), where an abrupt drop of model performance was present (cf. Fig. 3c). This
opposite change between MEI variability and predictive performance was confirmed by the negative
correlations between overall MEI variance and overall response CC (r = −0.95, p < 0.0001; Fig.
4b). Additionally, this negative correlation was also reflected at neuronal level. Both the variational
and the MC dropout models had a negative correlation between response CC and MEI variance for
the recorded neurons (r = −0.37, p = 0.0001 and r = −0.23, p = 0.02 for the variational and the
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Figure 5: Variational models on the second dataset. (a) Model performance based on test data of
the second dataset with different amounts of training data for five models (n=10 random seeds per
model). (b) Overall MEI variance for different amounts of training data for variational models (10
seeds per model). (c) Scatter plot for overall response CC and overall MEI variance for different
amounts of training data and at 10 seeds. Each dot representing one model. (d) Performance dif-
ference between the variational and the L2+L1 models. (e) Scatter plot of model predictions for the
variational model and the L2+L1 model at one random seed when using 40% training data. Each
dot representing one neuron. (f) Like (e) but using 100% training data. Error bars in (a), (b) and (d)
represent standard deviation of n=10 random seeds for each model.

MC dropout, respectively; Fig. 4c), indicating that, for a trained probabilistic model, neurons with
higher predictive performance have higher confidence on its estimated MEI.

In summary, these results demonstrate that a probabilistic model with smaller uncertainty on the
learned stimulus-response function yields higher predictive performance.

3.4 VARIATIONAL MODEL FEATURES HIGH DATA EFFICIENCY ON NEURAL PREDICTION

Here we applied our method on the second dataset shared by Franke and colleagues ((Franke et al.,
2021)). After hyperparameter tuning, we selected βv = 0.3 for the variational network and evaluated
the five models on test data.

We first examined the relationship between the uncertainty of the learned stimulus-response function
and the performance on predicting responses. We expect that, with more data used for training, the
model yields better prediction along with smaller variance for the learned MEIs. We focused on the
variational method. Indeed, when more training data was used, the predictive model performance
increased (Fig. 5a) while the overall MEI variance decreased Fig. 5b, with a negative correlation
between them (r = −0.73, p < 0.0001; Fig. 5c). Note that we did not observe a steady decrease of
the overall response variance (Appendix A.2.2).

Next, we investigated whether the performance difference between the variation and the L2+L1
model was sensitive to the training data size (Fig. 5d). We observed that the variational method
had higher correlations except for the case of extremely little data (20%). The difference peaked
at 40% with an increase of 9% (p < 0.0001, two-sided permutation test with n = 10,000 repeats)
and gradually decreased with more training data, indicating the benefit of variational inference for
system identification. We also compared the predictive performance on individual neurons at one
random seed, the Bayesian model outperformed the L2+L1 one for the conditions of 40% (p <
0.0001) and 100% (p = 0.0927) training data.

7



Under review as a conference paper at ICLR 2024

Figure 6: In silico experiments of neuronal activity with derived MEIs. (a) Estimated MEIs for
L2+L1 (first row) and variational (second row) models, MEI std (third row), as well as significance
map (fourth row; white, p < 0.01, one-sample two-sided permutation test against zero for 10,000
repeats), for three exemplary neurons when using 40% of training data. MEI and MEI std in the
UV channel, with different color scales. Note that MEI has much larger absolute values than
MEI std. (b) 1D histogram of neuronal activity driven by the generated MEIs from the variational
model for Neuron 1 when using 40% of training data. Insets: example MEIs with corresponding
activation indicated by dotted lines (red, maximum of L2+L1; green, variational). (c) Scatter plot of
activation driven by MEIs yielded from variational (using the weight mean µ) and L2+L1 models
at one random seed when using 40% of training data. Each dot representing one cell. (d,e,f) Same
with (a), (b) and (c), but using 100% of training data.

Together, compared to a traditional method, our Bayesian approach with weight uncertainty yielded
higher predictive performance with a higher data efficiency.

3.5 VARIATIONAL MODEL YIELDS STIMULI DRIVING HIGH NEURONAL ACTIVATION

Bayesian methods with full posterior provide an infinite ensemble of models for computing MEIs
and allow to perform statistical tests for the derived features. We focused on the model using vari-
ational inference and the one using L2 and L1 regularization with 40% and 100% of training data.
We found that these learned filters resembled neural features in the early visual system (Hubel &
Wiesel, 1959; Chichilnisky, 2001) and localized more in the visual field with more training data
(Fig. 6a,d). Like for the first dataset (Fig. 3a), MEI std was not uniform across visual space, e.g.,
some presented Gaussian or bar shapes. Additionally, we examined whether the posterior of each
pixel differs significantly from zero for the 100 sampled MEIs and found that the significance map
may indicate zero-crossings in visual representations.

To further assess which method generates the more exciting stimuli for each cell, we conducted
in silico experiments using a held-out L2+L1 model trained by full data as a digital testbed. For
an example neuron, we measured the responses for all the 506 MEIs yielded from five variational
models, and observed that these stimuli drove this neuron with quite different activity, with the
maximum response larger than the maximum one yielded (from 6 MEIs) by the traditional models
(Fig. 6b,e). With more training data, the activation distribution shifted towards higher mean with
smaller variance. Additionally, we compared the activation on individual neurons for two methods
(Fig. 6c,f), and observed that the Bayesian approach yielded higher responses for both conditions
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using 40% (p = 0.0473, two-sided permutation test with n = 10,000 repeats) and 100% (p = 0.2114)
of training data.

In summary, our variational model allowed statistical test for the derived response functions and
yielded the stimuli driving neurons better than traditional methods, suggesting that weight uncer-
tainty benefits the learning of neural representations.

4 DISCUSSION

We presented a Bayesian approach for identification of neural properties by incorporating model
uncertainty through learning the distribution of model weights, aiming to estimate neural features
with credible intervals. Our empirical results on different datasets show that the variational method
had higher or comparable predictive performance, especially in the limited data regime, compared to
methods using dropout or traditional methods learning point estimates of model parameters. More-
over, by sampling from posterior distribution of model weights, our approach enabled to provide
credible intervals and test statistics for the learned MEIs, avoiding the idiosyncrasy of a single
model. Finally, in silico experiments show that the variational model yielded the MEIs driving neu-
rons with higher activity compared to the traditional model, in particular when limited data were
used for training. This suggests that model uncertainty contributes to learning neural transfer func-
tions with a high data efficiency.

Relation to noise correlation Neural information process is probabilistic, i.e., neurons respond
with trial-to-trial fluctuations to a repeated presentation of a stimulus (Perkel et al., 1967; Stein,
1967). Response variability is found across neural systems, originating from diverse factors, such
as synapse variation, channel noise, brain state, and attention (Faisal et al., 2008; Mitchell et al.,
2009; Cohen & Newsome, 2008; Cohen & Maunsell, 2009; Ecker et al., 2010; 2014). Additionally,
the variability between populations of neurons are correlated. In a simplified case, a pair of neurons
may present correlations for the single-trial responses, i.e., pairwise noise correlation, which also
contributes to neural coding ((Abbott & Dayan, 1999); reviewed in (Averbeck et al., 2006; Kohn
et al., 2016; Doiron et al., 2016; Da Silveira & Rieke, 2021)). Such response variability is inherent
in neural data itself and is a kind of aleatoric, but not the epistemic uncertainty. We note that the
standard deviations of the estimated MEIs from our models decreased with the increasing amounts of
training data, suggesting that the variability of the sampled predicted responses may not be related to
the response uncertainty in biological neurons or our models may predict a mix of both uncertainties
(Appendix A.2.3).

Future work & general impact While capturing the mean response, our variational approach in-
corporating model uncertainty did not predict the trial-to-trial variability. Such response fluctuation
depends on many conditions, including biochemical process, internal brain states and engaged be-
havioral tasks (Faisal et al., 2008; Mitchell et al., 2009; Ecker et al., 2014; Goris et al., 2014). These
factors have been described by a low-dimensional latent state models (Yu et al., 2008; Ecker et al.,
2014; Bashiri et al., 2021). Therefore, a potential extension of our method could be a variational
network incorporated with latent state variables.

Our in silico experiments indicate that the stimuli generated by the variation model driving higher
neuronal activation than the CNN with regularization, which requires future animal experiments to
test. Additionally, we noticed that the MEI std was not uniform in the visual field for each neuron
and its location was not overlaid with the central MEI, for example, it seems to sit on the surround
of the corresponding MEI. It would be interesting to examine and quantify the MEI uncertainty in
regard of visual space, which might be related to contextual sensory processing (Hock et al., 1974;
Chiao & Masland, 2003; Fu et al., 2023).

More generally, why do we care about the uncertainty of the estimated neural representations? Even
with closed-loop experiments, it is impossible for us to test all potential (exciting) inputs for the
recorded neurons (Walker et al., 2019; Franke et al., 2021). Therefore, we always expect to have
a confidence interval for the test statistics. Besides, a Bayesian model offers a manner to generate
many stimulus candidates by sampling for stimulating neural systems, which may offer new insights
for understanding the biological computation.
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