On the Client Preference of LLLM Fine-tuning in Federated Learning

Anonymous ACL submission

Abstract

Reinforcement learning with human feedback
(RLHF) fine-tunes a pretrained large language
model (LLM) using preference datasets, en-
abling the LLM to generate outputs that align
with human preferences. Given the sensitive
nature of these preference datasets held by
various clients, there is a need to implement
RLHF within a federated learning (FL) frame-
work, where clients are reluctant to share their
data due to privacy concerns. To address this,
we introduce a feasible framework in which
clients collaboratively train a binary selector
with their preference datasets using our pro-
posed FedBis. With a well-trained selector,
we can further enhance the LLM that gener-
ates human-preferred completions. Meanwhile,
we propose a novel algorithm, FedBiscuit, that
trains multiple selectors by organizing clients
into balanced and disjoint clusters based on
their preferences. Compared to the FedBis,
FedBiscuit demonstrates superior performance
in simulating human preferences for pairwise
completions. Our extensive experiments on
federated human preference datasets — marking
the first benchmark to address heterogeneous
data partitioning among clients — demonstrate
that FedBiscuit outperforms FedBis and even
surpasses traditional centralized training.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capacities in responding to a wide
range of open-ended instructions as professionally
as human beings. This achievement is attributed
to reinforcement learning with human feedback
(RLHF) (Ziegler et al., 2019; Christiano et al.,
2017; Ouyang et al., 2022), a method that aligns
an LLLM with human preferences. Specifically, it
trains a reward model (a.k.a. preference model)
with the help of a preference dataset, which in-
cludes the comparisons among various completions
of given instructions. Then, it fine-tunes the LLM

towards generating completions that closely match
human preference, evaluated by the reward model.

While empirical studies have validated the effec-
tiveness of RLHF in enhancing LL.M performance,
RLHF faces a challenge regarding preference data
collection. There are two approaches for construct-
ing preference datasets, namely, human efforts
(Bai et al., 2022; Ganguli et al., 2022; Stiennon
et al., 2020) and ChatGPT generation (Dubois et al.,
2024). The former gathers the preference data from
a team of labelers, who rank the completions of
each instruction from best to worst. In contrast, the
latter entails a set of instructions together with pair-
wise completions, with ChatGPT (Achiam et al.,
2023) tasked with selecting the superior comple-
tion for each instruction. As LLMs are deployed to
serve diverse clients, a preference gap may occur
between clients and labelers/ChatGPT, impeding
the LLM’s ability to generate responses that satisfy
real clients’ tastes. Therefore, there is a demand for
a preference dataset that accurately mirrors clients’
preferences in order to facilitate LLM performance.

One approach to meeting the demand is to collect
client preference data and build a huge preference
dataset, with which an LLM can be fine-tuned on a
central entity (a.k.a. server). It is noticed that this
approach has been applied to a recent open project
named OASST (Kopf et al., 2024). However, this
approach may be infeasible because most clients
refuse the disclosure of their preference data out of
privacy concerns. To this end, we adopt FedAvg,
a conventional federated learning (FL) algorithm
(Konecny et al., 2016; McMabhan et al., 2017) that
avoids the collection of clients’ raw data. Specifi-
cally, each client trains a reward model with their
preference data, and the server aggregates the re-
ward models into a global model. While the pro-
cess seems effective, we observe the following two
limitations during training:

Unlabeled

/! g‘ Server
=)
|
friendly
Pretrained
M

g
Response1 &
[] 5 .
& £|
Response2 3
User1 Pretrained O Preference
\Prompts LM dataset Binary Selector g ;
O X Rrounds
> %
Response1 &
[4 g
- : %X
h Response2 Q
UserM Pretrained Preference
\Prompts LM dataset Binary Selecto

1

i UserM Selector-generated DPO
Binary Selector Preference dataset

Stage 1: Binary Selector Training in Federated Learning

Stage 2: LLM evolution

Figure 1: An outline of RLHF in federated learning.

* Excessive Computation Overhead: Convention-
ally, the reward model is designed to output a
scalar value for a given prompt and completion
(Stiennon et al., 2020). Its optimization is based
on reward differences between preferred and dis-
preferred completions, i.e., the preferred comple-
tions should earn greater rewards than the dispre-
ferred ones. As a result, when the optimization
involves a data sample in training the model, it
should simultaneously retain two computation
graphs in the forward and backward pass, leading
to significant computation overhead and intensive
GPU requirements.

* Degraded Performance: Preference data are het-
erogeneous among the clients in view that the
preferences vary among the clients. Consequently,
each client trains a reward model towards a local
minima, deviating from the global optima and
resulting in a longer training time to converge
when compared to the centralized training. More-
over, the method is likely to suffer from reward
hacking, a phenomenon where the reward model
heads to a poor performance after several training
rounds (Askell et al., 2021; Michaud et al., 2020;
Tien et al., 2022; Skalse et al., 2022).

In this paper, we propose to address these two limi-
tations and propose effective and computationally
efficient methods for preference collection and sub-
sequent fine-tuning. We start with a solution that
addresses the first limitation. The key idea is to
train a binary selector, which chooses a superior
response between two completions under a given
instruction. Compared with preference ranking,
the binary selector requires much less computation
during training. Casting binary selector training
into a federated learning setting, we thus propose
the federated binary selector training (FedBis), as
depicted in the first stage of Figure 1. Each client
independently trains the selector with local prefer-

ence dataset, and the server aggregates the selectors
into a global one and broadcasts it to the clients. Af-
terwards, we utilize the binary selector to enhance
the performance of LLM. Specifically, we assume
the server holds a set of instructions, together with
pairwise responses generated by an LLM. Then,
we build a preference dataset with the help of the
binary selector and boost the LLM by means of di-
rect preference optimization (DPO) (Rafailov et al.,
2023).

To further address the performance deteriora-
tion due to preference heterogeneity and reward
hacking, we propose a method named FedBis
with cluster-wise aggregation (FedBiscuit). This
method ensembles multiple binary selectors, each
trained by the clients possessing similar prefer-
ences. In light of privacy concerns, which prevent
explicit sharing of clients’ data, the server intermit-
tently collects client losses on all binary selectors.
Subsequently, clients are organized into disjoint
clusters, and when comparing two completions,
the one selected by the majority of binary selec-
tors is deemed better. The proposed method has
two main advantages. Firstly, clients with similar
preferences jointly train a binary selector, moderat-
ing data heterogeneity and mitigating performance
deterioration. Secondly, the method alleviates re-
ward hacking by having numerous binary selectors
jointly decide on optimal completions.

Contributions. In this paper, our contributions
are highlighted as follows:

* To the best of our knowledge, this is the first

feasible framework to achieve RLHF in FL. In de-
tail, the framework trains binary selector(s) with
clients’ local datasets, distills the selector(s) to-
ward an LLM, and boosts LLM performance in
the meantime. Under this framework, we intro-
duce two methods, i.e., FedBis and FedBiscuit.

* Previous works offer a number of human prefer-
ence datasets, but none of them address the FL
setting. This is the first work to discuss the pos-
sible data partition approaches to build a hetero-
geneous human preference dataset. To this end,
we introduce a benchmark that includes several
human preference datasets suitable for FL.

* We conduct extensive experiments to demon-
strate the performance of the proposed FedBis
and FedBiscuit. As expected, FedBiscuit demon-
strates superior performance over FedBis and
even surpasses traditional centralized training.
Meanwhile, we present some insights from the
empirical studies.

2 Related Work

LLM Fine-tuning in FL. Recent studies have
increasingly focused on fine-tuning large language
models (LLMs) using federated datasets (Sun et al.,
2024; Ye et al., 2024; Zhang et al., 2023a; Yi et al.,
2023; Zhang et al., 2023b). However, these ap-
proaches often suffer from high computation and
communication costs due to the necessity of train-
ing and synchronizing the model with clients. To
mitigate these issues, lightweight methods such
as black-box fine-tuning (Sun et al., 2023; Lin
et al., 2023) and offsite-tuning (Wu et al., 2023b;
Kuang et al., 2023) have emerged. Despite their
advancements, these methods primarily focus on
fine-tuning LLMs for specific downstream tasks,
neglecting user preferences in the generated re-
sponses. To address this gap, our work aims to
align LLMs with human preferences and introduces
a feasible training framework in federated learning.

Reinforcement Learning with Human Feed-
back (RLHF). RLHF typically involves super-
vised fine-tuning, reward modeling, and reward
optimization, initially popularized by Christiano
et al. (2017). Proximal Policy Optimization (PPO)
(Schulman et al., 2017) is a common RLHF algo-
rithm, yet it struggles with instability, inefficiency,
and high resource demands (Choshen et al., 2019;
Engstrom et al., 2020). These challenges have led
to the development of alternative methods, such as
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) and others (Dong et al., 2023; Zhao
et al., 2023; Azar et al., 2024; Ethayarajh et al.,
2024; Gulcehre et al., 2023), which offer more
stable and efficient solutions. However, these meth-
ods typically operate within a centralized training

framework, where the LLM owner retains control
over the preference data. In contrast, our work
seeks to expand data sources and incorporate real
user preferences during the fine-tuning of the LLM.

3 FedBis: A Feasible Framework for
Achieving RLHF in FL

The objective of RLHF is to align a pretrained
language model with human preferences. RLHF
comprises two phases: (i) preference modeling and
(i1) reinforcement-learning fine-tuning. The first
phase aims to develop a model that simulates hu-
man preferences to select the superior options from
numerous pairwise completions. Subsequently, the
second phase enhances the language model’s per-
formance by creating a preference dataset, enabling
the model to generate responses preferred by hu-
mans. In the following, We describe the proposed
FedBis that achieves RLHF in FL in the first two
subsections, followed by a brief discussion of its
limitations that motivate the proposed FedBiscuit
presented in Section 4.

3.1 Preference Modeling

3.1.1 Problem Formulation.

In preference modeling, our objective is to train
a binary selector using data from multiple clients.
Consider an FL system with M clients, coordinated
by a central server. Denote the weight of client m
as p,, such that Zme[M} pm = 1, and we aim to
optimize the following objectives:

FO)2 S puFuld) ()

me[M]

min

PRI
where F,(¢) is the expected loss on client m
given the binary selector ¢. Suppose client
m € [M] holds a set of pairwise data with the size
of Ny, i€, Doy = {(T4, Yisws Yil) bicn,a]» Where
x; is the prompt, y; ., is the preferred completion
out of the pair of y;,, and y;;. We reorganize
these data and build a preference dataset D,,, to be

{(@is Yiws Y15 0), (T4, Yists Yisws DI (@i, Yiws Yig) €
D,,} for training, in which each contains the
prompt, a pair of completions and preference
selection. Apparently, this dataset eliminates the
position effects, and we can train the selector
as a classification task. Therefore, we utilize
cross-entropy (CE) loss {op to optimize the

selector and formulate the expected loss as

Fm(¢) = E(w,yo,yl,i)NDm [EC’E(7’|¢; Z, Yo, yl)] .
(2)

Next, we will discuss how to optimize the selector
¢ under the FL scenario.

3.1.2 Algorithm Design

We consider a practical and efficient FL scenario
where not all clients but only a sampled subsets of
clients participate in each communication round
(Yang et al., 2020). Before the commencement of
FL training, we initialize the binary selector with a
pretrained LLM such as LLaMA-2 (Touvron et al.,
2023), and set the hyperparameters.

An FL algorithm requires multiple communication
rounds and consists of three phases in each round,
i.e., model broadcast, local training, and global
aggregation. Following this paradigm, we design
FedBis and optimize the selector ¢, i.e., in the com-
munication round r € [R], as discussed as follows.

Step 1: Model Broadcast. The server uniformly
samples A clients without replacement, denoted by
A. Let the selector be ¢,. in the r-th communication
round, and the server broadcasts it to the sampled
clients.

Step 2: Local Training. At this step, client m €
A optimizes the selector based on local preference
data. First, the client initializes the local selector
¢ro with the global selector ¢, received from the
server. Subsequently, the client trains the selector
for K iterations, where the update rule between
consecutive iterations follows:

Pres1 = Pre — MV Em(d7%), k € [K] (3)

where the gradient V F,,,(¢!",) is approximated us-
ing a data batch sampled from the local preference
dataset D,,and can incorporate optimizers such as
AdamW (Loshchilov and Hutter, 2017). Finally,
the client m transmits the updated local selector
¢, back to the server.

Step 3: Global Aggregation. After receiving
the local selectors from the sampled clients A, the
server updates the global selector:

¢r+1 =

Y e)
meA

This aggregation method, based on Li et al. (2019)

where the clients are uniformly sampled to train a

global model, ensures consistency with Problem

(1) in mathematical expectation.

After R communication rounds of training, FedBis
outputs a binary selector ¢ that reflects the overall

preferences of all clients. The selector can then be
used to enhance the performance of the LLM, as
discussed in the next section.

3.2 Reinforcement-learning Fine-tuning
3.2.1 Problem Formulation.

Traditionally, reinforcement-learning fine-tuning
adopts PPO algorithm (Schulman et al., 2017) to
enhance the performance of an LLM using a reward
model that can rate a completion (Stiennon et al.,
2020; Ouyang et al., 2022; Dai et al., 2023), which
does not fit the proposed framework with a binary
selector.

One practical approach to aligning the LLM with
clients’ preferences is to create a preference dataset
with the help of the binary selector. Suppose
the server holds a set of instructions f), and we
can expand it to a preference dataset Dy, =
{(x,y0,y1,7)|z € D}, where yo and y; are two
completions generated by the LLM 6, and i €
{0,1} indicates the preferred completion as cho-
sen by the binary selector ¢. With this generated
dataset, we apply the Direct Preference Optimiza-
tion (DPO) algorithm (Rafailov et al., 2023) to opti-
mize the LLM consistent with clients’ preferences,
which is formulated as

meln E($7y07y17i)wpgen ﬁDPO (9‘:1:7 y07 yl’ Z) (5)

where the DPO loss is Lppo (0|x,y0,y1,1) =
Uyl yz‘x 7r9(y1 Z|m)
~logr (Blog Z4) — Blog Zolule)).

o, (yilz) 7o, (Y1—ilT
Next we dlscuss the specifics of the preference

data generation and LLLM optimization.

3.2.2 Algorithm Design

The reinforcement-learning fine-tuning takes place
on the server and includes two phases: 1) a pref-
erence dataset is created with a pretrained LLM
0y and a well-trained selector ¢ from FedBis. 2)
LLM is optimized according to the objective de-
fined in Equation (5) with the generated dataset.

Step 1: Preference Dataset Generation. Sup-
pose the server holds a set of instructions D. With
the LLM 6, we can generate multiple completions
for an instruction x € 75, resulting in a set of n
completions (yo, . .., Yn—1) ~ g, (y|z). For each
instruction, we can form a total of (%) pairs of
completions. We then use the binary selector ¢ to
choose the optimal completion for each pair (y;, ;)
where 0 < j <! < n — 1. The pair is labeled with
1 = 0 if the first logit output is greater than the

second, i.e., mg, (0|2, Y, y1) > 7op(L|x, yj, ur),
or ¢ = 1 otherwise. This process builds the prefer-
ence dataset Dgey,.

Step 2: LLM Fine-tuning. With the constructed
preference dataset Dy.p,, we evolve the LLM to
align with clients’ preferences. Specifically, in
the ¢-th training round, where ¢ € {0,1,...}, we
sample a data batch (xz, Yo, y1,7) from Dye,, and
update the LLM using the following rule:

0111 = 0; — nVLppo (Qt’% Yo, Y1, i) , (6)

where 7 is the learning rate. The gradient computa-
tion VL ppo is given by Rafailov et al. (2023). Ina
nutshell, we distill the binary selector’s preferences
into the LLM, allowing it to function as a binary
selector itself implicitly.

3.3 Discussion

We discuss the limitations of FedBis which moti-
vate us to propose FedBiscuit.

Preference Heterogeneity. A performance gap
between FedBis and centralized training could
arise from data heterogeneity among clients, a com-
mon issue in FL. Different from centralized train-
ing that aggregates all the clients’ data and samples
an i.i.d. batch in each training round, FedBis sam-
ples a subset of clients in each round, with each
client independently optimizing the model based
on their local data. This could result in a global
aggregation that diverges from the global optimum
(Karimireddy et al., 2020; Wu et al., 2023a).

Reward Hacking. As demonstrated in experi-
ments, FedBis’s performance improves first but
may later decline with the increase of training
rounds. This phenomenon, known as reward hack-
ing, is discussed by Skalse et al. (2022) as an in-
evitable issue in training a reward proxy model,
which is used to enhance the performance of a
policy model (e.g., LLM). However, we can mit-
igate this impact by delaying the inflection point,
allowing the reward proxy model to continue im-
proving performance for more training rounds and
ultimately achieve a higher rating.

4 FedBiscuit: FedBis with Cluster-wise
Aggregation

In this section, we aim to address the aforemen-
tioned limitations of FedBis. To tackle reward
hacking, Eisenstein et al. (2023) and Coste et al.

(2024) introduce a promising approach that trains
multiple reward models at the same time because
aggregation over multiple reward model outputs
can provide a more robust reward estimate. Fur-
thermore, recognizing that some clients may share
similar preferences, we employ clustered FL (Sat-
tler et al., 2020; Ghosh et al., 2020; Ma et al., 2023)
to group clients with similar preferences for joint
model training. Notably, these two approaches
complement each other, inspiring us to combine
them into a novel algorithm FedBiscuit that simul-
taneously combats reward hacking and preference
heterogeneity.

Problem Formulation. In this work, we consider
training multiple binary selectors of U. To ensure
that all selectors are trained without bias towards
a small specific group, we mandate that these se-
lectors be trained using evenly disjoint clusters of
clients. Additionally, a client’s preference should
align more closely with those within the same clus-
ter than with those in different clusters. To this end,
we can formulate the following objective:

Fow) 2 Y pn (min Fulo))

min
¢[U] €RUxd me[M] ue|U]
s.t. max{|My|}uejp) — min{|Myl}uep) <1

(N

where the function F},, follows the same definition
of Equation (2).¢,, indicates the u-th binary selec-
tor, and M, means a set of clients using the u-th
selector. By definition, UM, = [M], and
Nuelv) M, = 0.

Next we explore how the proposed FedBiscuit op-
timizes Equation (7).

4.1 Algorithm Design

Section 3.1 mentions that a client m € [M] holds a
preference dataset D,,,. Before the model training,
client m splits her dataset into two disjoint sets,
namely, a training set D,,, tr4in, and a validation set
Dm,vale where |Dm,t7"ain| >> ‘Dm,val|-

The proposed FedBiscuit consists of two phases:
1) We train each selector for a couple of rounds
so that all U selectors have fundamental capacities
in selecting the preferred completion, and 2) we
divide the clients into disjoint clusters of size U and
train each binary selector with a specific cluster.

Phase 1: Warm-up. In the beginning, we ini-
tialize each binary selector ¢, (v € [U]) with an

identical pretrained LLM. Subsequently, starting
from u = 0, we train a selector ¢,, for .. consec-
utive communication rounds following the steps of
FedBis: In each communication round, the server
samples a subset of client .A and broadcasts the se-
lector ¢,, to them. Each client m € A then locally
trains the selector for K iterations using the dataset
D train- At the end of the communication round,
the server aggregates and updates the selector ¢,,
via Equation (4). After completing the training of
¢u, the server initiates the training of the next se-
lector ¢,41 by repeating the above steps until all
selectors are trained.

The selectors are trained with different data distri-
butions because the clients participating in each
training round are randomly selected. Conse-
quently, all the selectors ¢ have distinct model
parameters, leading to varied performance in terms
of final logit output when given an instruction and
a pair of completions.

Phase 2: Clustered FL Training. After the first
phase, we obtain U different selectors, denoted as
{#u,0}ue[y)- Unlike FedBis, this phase includes
an additional step called client grouping, which
partitions the clients into multiple disjoint clusters
based on their preferences. In each communication
round 7 € [R), the proposed FedBiscuit optimizes
all the selectors ¢} using the following four steps:

Step 2.1: Client Grouping. This step is executed
every 7 communication rounds, i.e., when 7 can be
divided by 7, or 7|r. During this step, the server
broadcasts all selectors ¢y, to all clients [M].
Then, a client m calculates the averaged loss for
each selector ¢, , using local validation set via

Dol 201 ,)~ Do war LLCE(EPus T, 50, y1)].

The server thereby collects all these losses and
adopts a greedy clustering approach (Sattler et al.,
2020; Ma et al., 2023) to assign each client to the
selector where they achieve the minimum loss.
However, an obvious deficiency is an imbalance
where some selectors are chosen by many clients
and others by few. It is noted that the selectors
trained with more clients achieve remarkable
performance, while some may be overfitted to a
specific group of clients. Therefore, the greedy
clustering approach negatively impacts the overall
performance when building a global preference
dataset. To tackle the limitation, we propose to
balance the clusters using the following steps
repeatedly until the clients are evenly distributed:

* Choose the cluster selected by the most clients.

* If the cluster can accommodate n clients, cap the
cluster at n clients and reassign the rest to other
clusters where they achieve suboptimal loss.

Finally, we obtain balanced and disjoint clusters.
Let a client m train with the U,,,-th selector ¢y, for
the next 7 rounds. After client grouping step, the
proposed method proceeds to the following three
steps as outlined in FedBis.

Step 2.2: Model Broadcast. Similar to FedBis,
the server samples A clients from all clients [M],
denoted by A. For each selected client m € A, the
server transmits the selector ¢y, . This process
can be characterized by defining A, as the group of
clients chosen to train the selector ¢,,. This ensures
that Uueu A, = Aand mue[U]-Au = 0.

Step 2.3: Local Training. The client m € A re-
ceives a binary selector ¢,, , from the server and
trains the selector for K iterations following the
update rule of Equation (3). Finally, let the updated
local selector be gbglmm x» and the client pushes it
to the server.

Step 2.4: Global Aggregation. The server collects
updated selectors from all participants A. Since
there are several binary selectors, the server up-
dates each one with a designated group of clients
intended to train on that specific selector. For in-
stance, the aggregation rule for the selector u € [U]
follows

¢u,r+1 = (1 - Z pm> ¢u,r + Z pm¢um,r,K

mEAu meAu
(®)

It is noted that performance degradation occurs
when a model is trained by clients with time-
varying sizes in FedAvg (Gu et al., 2021; Wang
and Ji, 2023). In other words, Equation (4) is no
longer suitable for multi-selector aggregation due
to the fluctuation in the number of clients training
a selector in each communication round. There-
fore, FedBiscuit adopts a new aggregation rule as
formulated in Equation (8).

FedBiscuit finally produces a set of well-trained
selectors ¢y} g and he subsequent objective is to
enhance LLM performance with the help of these
selectors, as explored below.

Reinforcement-learning Fine-tuning with Multi-
ple Selectors. We can leverage the methodology

mentioned in Section 3.2, and one of the key steps
involves constructing a preference dataset incor-
porating multiple selectors. For this, we employ
a strategy of majority voting. Given an instruc-
tion 2z € D and a pair of generated completions
(Yo, y1), we assume a selector u € [U] prefers y;,,,
where i, € {0, 1}. Therefore, the pair is assigned
a label i = arg max{iy},e[y), meaning that the
completion y; is favored by the most clients.

4.2 Discussion: Integration with LoRA

As all binary selectors are LLM, training them may
consume significant communication and compu-
tation overheads. Besides, multiple LLMs lead
to considerable storage burdens shouldered by the
server. To reduce the costs, we adopt a parameter-
efficient fine-tuning approach LoRA (Hu et al.,
2021), where all binary selectors share the same
base model while using different adapters.

In comparison with FedBis, FedBiscuit requires
extra costs, i.e., O(MU|R/T] - C), where C' is
the communication cost of a selector. This is be-
cause FedBiscuit involves client grouping period-
ically, unilaterally transferring all selectors from
the server to the clients. Despite the extra costs,
extensive experiments demonstrate non-trivial im-
provement by comparing FedBiscuit with FedBis.

5 Federated Human Preference
Benchmark

This section mainly focuses on how we prepare fed-
erated human preference datasets, while the next
section introduces the experimental setup and ana-
lyzes numerical results. Specifically, we cover two
of the most common NLP tasks, i.e., summariza-
tion and question-answering. All two datasets are
partitioned based on the public datasets, and the
following subsections will include the details. We
will release these datasets on HuggingFace soon.

Summarization. Stiennon et al. (2020) intro-
duces a summarization dataset that consists of Red-
dit posts with human-written tl;dr (Volske et al.,
2017). This dataset consists of two parts, one is a
pretrained dataset, while the other is a dataset with
human preference. As suggested by Ouyang et al.
(2022), we ensure a post does not appear in both
datasets. We assume the pretrained dataset is stored
on the server side, and 60% of data are served for
model pertaining such that the model can perform
well on summarization. The remaining 40% are

Figure 2: Data distribution across different question
domains on the selected clients.

used for the RLHF process to improve the LLM
performance and generate human-preferred con-
tent. Since the human-preference dataset contains
the worker ID, we partition the dataset based on
the worker ID so that the dataset can be partitioned
into 53 workers.

Question-Answering (QA). We reconstruct the
public dataset SHP, which comprises numerous
questions from Reddit posts and their correspond-
ing user answers (Ethayarajh et al., 2022). The
preference indicator is based on the number of
likes an answer receives. Given that the dataset
spans 18 domains, we partition the dataset using a
Dirichlet distribution with a parameter of 0.3, en-
suring that no questions overlap between clients. In
our experiment, we prepare 300 clients, and Figure
2 visualizes the data distribution on the selected
clients. For the RLHF process, we use a set of 2.6K
Reddit questions.

6 Experiments
6.1 Experimental Setup

Model and computation environment. We ini-
tialize the binary selector(s) using the pretrained
LLaMA-2-7B (Touvron et al., 2023), configuring
the final layer to produce binary outputs "A" and
"B" only. The LLM chosen for content generation
depends on the tasks: (i) For the summarization
task, we start with LLaMA-2-7B and fine-tune it
using a pretrained dataset; (ii) For the QA task, we
initialize the LLLM with Alpaca-7B (Taori et al.,
2023). To reduce computation efforts, we employ
LoRA to fine-tune the models. Our implementation,
built upon FederatedScope (Xie et al., 2023; Kuang
et al., 2023), will soon be available on GitHub. The
experiments are conducted on machines equipped
with two Nvidia A100 GPU cards, Intel Xeon Plat-
inum 8369B CPUs, and 256GB RAM.

Evaluation. We evaluate two models produced
by our proposed FedBis and FedBiscuit: a binary
selector and an LLM. We employ different strate-
gies to assess each model:

Selector LLM
Agreement Best-of-n Rating Win Rate
SFT - - 5.028 29.71%
Centralized | 73.10% 5.302 5.688 78.89%
FedBis 70.44% 5.274 5.661 71.35%
FedBiscuit 70.52% 5.305 5703 80.65%

Table 1: Performce under summarization task. All val-
ues here indicate their best performance within 500
communication rounds of training.

* Binary selector: The evaluation includes two
metrics: agreement and best-of-n. Agreement
measures the hit rate of a selector against a pref-
erence dataset annotated by humans or ChatGPT.
Additionally, we use the best-of-n approach by
selecting the best completion from n generated by
a task-specific LLM. We then evaluate the aver-
age rating for the selector’s choices using Auto-J
(Li et al., 2023a).

* LLM: After reinforcement-learning fine-tuning,
the LLM is evaluated on its ability to generate
human-preferred content. This means we can as-
sess the quality of the generated texts. For exam-
ple, given an instruction set, the LLM produces
one completion per instruction, and Auto-J evalu-
ates the average rating of these completions. Fur-
thermore, we compare the generated completions
with a reference set of responses, annotated by hu-
mans or ChatGPT, and calculate a win rate based
on how often the generated response is superior
to the reference one.

Due to the space limit, the hyperparameter settings
are presented in Appendix A. Moreover, Appendix
B provides real cases to demonstrate the perfor-
mance of the proposed FedBis and FedBiscuit. In
particular, Appendix B.1 discusses the results un-
der the QA task.

6.2 Numerical Results on Summarization

In this section, the evaluation data originates from
the TL;DR dataset, as mentioned in Section 5. The
dataset comprises two disjoint parts: one ranked by
a group of labelers for model-generated responses,
and the other written by users to summarize the
key content of a post. We use the former to com-
pute the consistency between the selector and the
human annotator. For the latter, we apply various
metrics, including best-of-n, rating, and win rate.
The results are presented in Table 4 and Figure 3.

The table shows that conventional centralized train-
ing outperforms the proposed FedBiscuit in terms
of agreement. This is because the agreement evalu-
ation data have a similar distribution to the training

5.30
o
£5.29
® --+- centralized
« 528 FedBis
5‘3 5.27 —=— FedBiscuit
25261y

5.25

100 200 300 400 500
Communication rounds

Figure 3: Auto-J rating of best-of-n against communi-
cation rounds under summarization tasks.

dataset, as their outputs are generated from the
same language models and labeled by the same
group of labelers (Stiennon et al., 2020). Conse-
quently, centralized training performs better than
the proposed FedBis and FedBiscuit, which are af-
fected by data heterogeneity.

However, when evaluating the selectors with
datasets generated by a supervised fine-tuning
model, the proposed FedBiscuit slightly outper-
forms centralized training. These results suggest
that a centrally trained selector performs poorly
in terms of generalization and is prone to overfit-
ting to a specific dataset distribution. In contrast,
comparing FedBiscuit with FedBis, we find that
FedBiscuit mitigates data heterogeneity and pro-
duces a more robust selection of completion pairs.

Figure 3 illustrates the performance trend across
communication rounds. As discussed in Section
3.3, training a binary selector can lead to reward
hacking. For both centralized training and FedBis,
which train a single selector, we observe an in-
flection point where the selector’s performance
begins to decline. However, this inflection point
has not yet appeared in FedBiscuit, allowing it
to continuously improve and eventually surpass
the best performance of centralized training. It
is important to note that the warmup rounds are
included in the communication rounds, which ex-
plains FedBiscuit’s initial poor performance.

7 Conclusion

In this work, we explore a feasible framework to
achieve RLHF in FL. Specifically, we train a bi-
nary selector across different clients using their
local preference datasets, and then use the well-
trained selector to align an LLM with human prefer-
ences. We propose two approaches to enable selec-
tor training: FedBis and FedBiscuit. FedBis pro-
vides a framework to train a single selector, while
FedBiscuit ensembles multiple selectors to more
robustly simulate human preferences. With the
proposed federated human preference datasets, we
conduct empirical studies to validate our statements
and demonstrate the superiority of FedBiscuit.

Ethics Statement

This paper investigates clients’ preferences using
a publicly available dataset, ensuring that all data
sources are appropriately cited to maintain aca-
demic integrity and transparency. By leveraging
this public dataset, we avoid using private or sen-
sitive client data, thus upholding ethical standards
in data usage and research practices. Furthermore,
this work prioritizes the protection of clients’ pri-
vacy and strictly avoids any disclosure of local data.
When clients utilize their own data to fine-tune the
model, robust privacy measures are in place to en-
sure that no other clients can access or infer any
information related to their data. This approach not
only safeguards individual privacy but also fosters
trust and security in the application of the model.

Limitations

One notable limitation of our work lies in the con-
struction of the preference dataset, which relies
solely on publicly available data rather than gather-
ing information directly from real clients. By doing
so, we miss out on the nuances and intricacies of
individual preferences that can only be captured
through firsthand data collection. As a result, our
dataset may lack the depth and breadth necessary
to fully comprehend the true heterogeneity of pref-
erences among clients. Without access to authentic
client data, we may inadvertently overlook impor-
tant variations in preferences, potentially limiting
the applicability and robustness of our findings.

Another limitation pertains to the use of a task-
specific dataset rather than a more generalized one
encompassing a broader spectrum of tasks. While
task-specific datasets offer advantages such as fo-
cused analysis and tailored insights, they may also
restrict the scope of our research and hinder its
generalizability. By incorporating a more diverse
range of tasks into our dataset, we could gain a
more comprehensive understanding of clients’ pref-
erences across various domains, thereby enhancing
the versatility and validity of our findings.

Additionally, our work employs a binary selector
that implicitly assumes one response is superior
to another, overlooking scenarios where responses
may exhibit similar levels of quality. This over-
simplified approach fails to leverage valuable data
that could provide valuable insights into subtle dif-
ferences and nuances in preferences. By adopting
a more nuanced and inclusive framework that ac-

knowledges and incorporates variations in response
quality, we could extract richer insights and make
more informed decisions regarding client prefer-
ences. Addressing these limitations could bolster
the robustness and validity of our research, ulti-
mately enhancing its relevance and impact in real-
world applications.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for alignment.
arXiv preprint arXiv:2112.00861.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoretical
paradigm to understand learning from human prefer-

ences. In International Conference on Artificial Intelli-
gence and Statistics, pages 4447-4455. PMLR.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri
Abend. 2019. On the weaknesses of reinforcement
learning for neural machine translation. arXiv preprint
arXiv:1907.01752.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep rein-
forcement learning from human preferences. Advances
in neural information processing systems, 30.

Thomas Coste, Usman Anwar, Robert Kirk, and David
Krueger. 2024. Reward model ensembles help mitigate
overoptimization. In The Twelfth International Confer-
ence on Learning Representations.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang. 2023.
Safe rlhf: Safe reinforcement learning from human feed-
back. arXiv preprint arXiv:2310.12773.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan
Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
Zhang, Kashun Shum, and Tong Zhang. 2023. Raft: Re-
ward ranked finetuning for generative foundation model
alignment. arXiv preprint arXiv:2304.06767.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,

https://openreview.net/forum?id=dcjtMYkpXx
https://openreview.net/forum?id=dcjtMYkpXx
https://openreview.net/forum?id=dcjtMYkpXx

Percy S Liang, and Tatsunori B Hashimoto. 2024. Al-
pacafarm: A simulation framework for methods that
learn from human feedback. Advances in Neural Infor-
mation Processing Systems, 36.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ah-
mad Beirami, Alex D’ Amour, DJ Dvijotham, Adam
Fisch, Katherine Heller, Stephen Pfohl, Deepak Ra-
machandran, et al. 2023. Helping or herding? reward
model ensembles mitigate but do not eliminate reward
hacking. arXiv preprint arXiv:2312.09244.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar,
Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and
Aleksander Madry. 2020. Implementation matters in
deep policy gradients: A case study on ppo and trpo.
arXiv preprint arXiv:2005.12729.

Kawin Ethayarajh, Yejin Choi, and Swabha
Swayamdipta. 2022. Understanding dataset diffi-
culty with V-usable information. In International
Conference on Machine Learning, pages 5988—-6008.
PMLR.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann, Ethan
Perez, Nicholas Schiefer, Kamal Ndousse, et al. 2022.
Red teaming language models to reduce harms: Meth-
ods, scaling behaviors, and lessons learned. arXiv
preprint arXiv:2209.07858.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kan-
nan Ramchandran. 2020. An efficient framework for
clustered federated learning. Advances in Neural Infor-
mation Processing Systems, 33:19586—19597.

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and
Longbo Huang. 2021. Fast federated learning in the
presence of arbitrary device unavailability. Advances
in Neural Information Processing Systems, 34:12052—
12064.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan,
Ksenia Konyushkova, Lotte Weerts, Abhishek Sharma,
Aditya Siddhant, Alex Ahern, Miaosen Wang, Chen-
jie Gu, et al. 2023. Reinforced self-training (rest) for
language modeling. arXiv preprint arXiv:2308.08998.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. 2020. Scaffold: Stochastic controlled averaging
for federated learning. In International Conference on
Machine Learning, pages 5132-5143. PMLR.

Jakub Konec¢ny, H Brendan McMahan, Felix X Yu,
Peter Richtarik, Ananda Theertha Suresh, and Dave
Bacon. 2016. Federated learning: Strategies for im-

10

proving communication efficiency.
arXiv:1610.05492.

arXiv preprint

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens, Ab-
dullah Barhoum, Duc Nguyen, Oliver Stanley, Richard
Nagyfi, et al. 2024. Openassistant conversations-
democratizing large language model alignment. Ad-
vances in Neural Information Processing Systems, 36.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen,
Dawei Gao, Xuchen Pan, Yuexiang Xie, Yaliang Li,
Bolin Ding, and Jingren Zhou. 2023. Federatedscope-
Ilm: A comprehensive package for fine-tuning large
language models in federated learning. arXiv preprint
arXiv:2309.00363.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan,
Hai Zhao, and Pengfei Liu. 2023a. Generative judge for
evaluating alignment. arXiv preprint arXiv:2310.05470.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang,
and Zhihua Zhang. 2019. On the convergence of fedavg
on non-iid data. arXiv preprint arXiv:1907.02189.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An auto-
matic evaluator of instruction-following models. https:
//github.com/tatsu-lab/alpaca_eval.

Zihao Lin, Yan Sun, Yifan Shi, Xueqian Wang, Lifu
Huang, Li Shen, and Dacheng Tao. 2023. Efficient
federated prompt tuning for black-box large pre-trained
models. arXiv preprint arXiv:2310.03123.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Jie Ma, Tianyi Zhou, Guodong Long, Jing Jiang, and
Chengqi Zhang. 2023. Structured federated learning
through clustered additive modeling. Advances in Neu-
ral Information Processing Systems, 36.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273-1282. PMLR.

Eric J Michaud, Adam Gleave, and Stuart Russell. 2020.
Understanding learned reward functions. arXiv preprint
arXiv:2012.05862.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730-27744.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in Neu-

ral Information Processing Systems, volume 36, pages
53728-53741. Curran Associates, Inc.

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf

Felix Sattler, Klaus-Robert Miiller, and Wojciech
Samek. 2020. Clustered federated learning: Model-
agnostic distributed multitask optimization under pri-
vacy constraints. IEEE transactions on neural networks
and learning systems, 32(8):3710-3722.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov,
and David Krueger. 2022. Defining and characteriz-
ing reward gaming. Advances in Neural Information
Processing Systems, 35:9460-9471.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario
Amodei, and Paul Christiano. 2020. Learning to sum-
marize from human feedback. In NeurIPS.

Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang,
Daguang Xu, Yiran Chen, and Holger R Roth. 2023.
Fedbpt: Efficient federated black-box prompt tun-
ing for large language models. arXiv preprint
arXiv:2310.01467.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding.
2024. Improving lora in privacy-preserving federated
learning. arXiv preprint arXiv:2403.12313.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Stanford alpaca: An
instruction-following llama model. https://github.
com/tatsu-lab/stanford_alpaca.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson,
Anca D Dragan, and Daniel S Brown. 2022. Causal con-
fusion and reward misidentification in preference-based
reward learning. arXiv preprint arXiv:2204.06601.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
2023. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288.

Michael Volske, Martin Potthast, Shahbaz Syed, and
Benno Stein. 2017. TI; dr: Mining reddit to learn auto-
matic summarization. In Proceedings of the Workshop
on New Frontiers in Summarization, pages 59-63.

Shigiang Wang and Mingyue Ji. 2023. A lightweight
method for tackling unknown participation prob-
abilities in federated averaging. arXiv preprint
arXiv:2306.03401.

Feijie Wu, Song Guo, Zhihao Qu, Shiqi He, Ziming
Liu, and Jing Gao. 2023a. Anchor sampling for fed-
erated learning with partial client participation. In In-

ternational Conference on Machine Learning, pages
37379-37416. PMLR.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing
Gao. 2023b. Fedbiot: a solution for federated large
language model fine-tuning with intellectual property
protection.

11

Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen,
Liuyi Yao, Weirui Kuang, Yaliang Li, Bolin Ding, and
Jingren Zhou. 2023. Federatedscope: A flexible feder-
ated learning platform for heterogeneity. Proceedings
of the VLDB Endowment, 16(5):1059-1072.

Haibo Yang, Minghong Fang, and Jia Liu. 2020.
Achieving linear speedup with partial worker partici-
pation in non-iid federated learning. In International
Conference on Learning Representations.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li,
Yinda Xu, Yaxin Du, Yanfeng Wang, and Siheng Chen.
2024. Openfedllm: Training large language models on
decentralized private data via federated learning. arXiv
preprint arXiv:2402.06954.

Liping Yi, Han Yu, Gang Wang, and Xiaoguang Liu.
2023. Fedlora: Model-heterogeneous personalized
federated learning with lora tuning. arXiv preprint
arXiv:2310.13283.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Guoyin Wang, and Yiran Chen. 2023a.
Towards building the federated gpt: Federated instruc-
tion tuning. arXiv preprint arXiv:2305.05644.

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang,
Yue Yu, Lizhen Qu, and Zenglin Xu. 2023b. Fed-
petuning: When federated learning meets the parameter-
efficient tuning methods of pre-trained language models.
In Annual Meeting of the Association of Computational
Linguistics 2023, pages 9963-9977. Association for
Computational Linguistics (ACL).

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf:
Sequence likelihood calibration with human feedback.
arXiv preprint arXiv:2305.10425.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv preprint
arXiv:1909.08593.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

A More Implementation Details

In this section, we include various settings, such as
the prompt and the hyperparameters.

A.1 Hyperparameter Settings

In our work, we fine-tune all models using LoRA,
which is consistently set to rank 8, o = 16, and the
dropout rate 0.0. For the generation, we apply with
these parameters:

* Ifitis required to generate multiple completions,
then we set the temperature to 1.0.

* If it is required to generate a single completion,
then we adopt greedy search by setting the tem-
perature to 0.0.

In the following part, we show the hyperparameter
setting for different tasks:

SFT Selector Training RLFT

Participation Rate - 5/53 -
Local Iterations 30 30 30
Batch Size 32 16 32
Rounds 1000 500 500
Optimizer AdamW AdamW RMSprop
Hyperparameters (0.9, 0.95) (0.9, 0.95) -
Learning rate le—4 le—5 le—6

Table 2: Hyperparameter Settings for the Summariza-
tion Task

Selector Training RLFT

Participation Rate 10/300 -
Local Iterations 10 10
Batch Size 16 16
Rounds 200 200
Optimizer AdamW RMSprop
Hyperparameters (0.9, 0.95) -
Learning rate le—5 le—6

Table 3: Hyperparameter Settings for the QA Task

Special Setting for FedBiscuit For the above
two tasks, we ensemble three binary selectors (i.e.,
LoRAs). In the warmup round, we train the selector
for 50 rounds under an FL framework. FedBiscuit
performs regrouping every 50 rounds in the sum-
marization task, while regrouping every 100 rounds
in the QA task.

A.2 Instruction Tuning Prompt

In this section, we highlight the prompts used to
fine-tune the summarization tasks and the QA task:

Summarization. For pertaining (SFT) and the
later reinforcement-learning fine-tuning (RLFT), it
follows the prompt below

Below is a forum post. Write a precise and
concise summary that includes the most
important points of the post.

SUBREDDIT: r/{subreddit}
TITLE: {title}

POST: {post}

TL;DR:

For comparison:

Below is a forum post followed by two
summaries. Pick a more precise and concise
one that summarizes the most important points
in the given forum post, without including
unimportant or irrelevant details. State your
choice with a single capital letter, i.e., Aif
SUMMARY A is better, Bif SUMMARY B is
better.

SUBREDDIT: r/{subreddit}
TITLE: {title}

POST: {post}

SUMMARY A: {output_A}
SUMMARY B: {output_B}
YOUR CHOICE:

QA. As the QA utilizes a pretrained model
named Alpaca-7B, we follow its pretrained format

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.

Instruction:
{instruction}

Input:
{input}

Response:

For comparison between the two responses:

Below is a query followed by two responses.
Pick a helpful response that is precise, concise,
and casual. State your choice with a single
capital letter, i.e., Aif RESPONSE A is better,
Bif RESPONSE B is better.

QUERY: {instruction}

RESPONSE A: {output_A}
RESPONSE B: {output_B}
YOUR CHOICE:

B More Numerical Results and Analysis

B.1 Numerical Results on QA

In this section, the test dataset comes from Alpaca-
Farm (Dubois et al., 2024; Li et al., 2023b). The
results are as follows:

2-completion 4-completion

Rating Rating

Alpaca-7B 3.752 -
FedBis 4.140 4.113
FedBiscuit 4.094 3.830

Table 4: Performce under QA.

As presented in Section 4, the LLM owner will
generate a set of responses to a given instruction
before building a preference dataset. Therefore,
the column "2-completion" means the owner pre-
pares 2 completions for each instruction, while
"4-completion" means 4 completions for each in-
struction and forms 6 pairs. The row "Alpaca-7B"
acts as a baseline to help us understand the per-
formance of the proposed FedBiscuit and FedBis.
All the rating comes from Auto-J (Li et al., 2023a),
which would be different from the ratings reported
by (Li et al., 2023b) because it evaluates with GPT-
4 (Achiam et al., 2023).

The table above may lead to conclusions different
from those drawn from the summarization task.
First, FedBis achieves better performance than
FedBiscuit. This is within our expectations. First,
these selectors are trained for a total of 200 rounds.
As presented in Figure 3, FedBiscuit surpasses
FedBis after 300 communication rounds. This is
because the selectors of FedBiscuit are trained for
100 rounds only, while the selector of FedBis has
been fully trained for 200 rounds. When the inflec-
tion point appears in FedBis, we can hypothesize
that the dominance of FedBiscuit still exists.

13

Another comparison arises between different num-
bers of generations to a given prompt. From the
table, we notice that "2-completion" can achieve
better performance than "4-completion," meaning
that the performance may not be relevant to the
size of the RLFT training set. Instead, it may rely
on the quality of the training data. As we can see,
Alpaca-7B hardly generates high-quality data, lead-
ing to limited improvement with training with these
generated data. In other words, if we generate more
low-quality completions, the improvement of the
model would be more limited. At the same time,
we can hypothesize that if the generated data are
of high quality, "4-completion” may outperform
"2-completion” in terms of the final rating.

B.2 Examples on the Final RLHF Results

In this section, we prepare two examples to illus-
trate the performance of our proposed FedBis and
FedBiscuit and compare them with other baselines.
Refer to Table 5 and Table 6 for the demonstration
of the examples.

Subreddit: r/relationships

Title: Me [25F] with my SO [27 M] of 3.5 years, I went through his texts and can’t stop thinking about
something I saw.

Post: I admit that going through his text messages was wrong and I do feel incredibly guilty about
it now but the bigger issue for me is that I found something that I can’t stop thinking about. He was
talking to his good female friend and I saw a text that said "am I being an idiot for leaving [my name]"?
. I stopped reading after that because I started having a panic attack. The idea of breaking up was not
even on my radar and I thought he was more than happy. Again, I know I shouldn’t have looked but
whats done is done and now I can’t stop worrying about when it’s going to happen. And now i’'m being
clingy just because of my worry which i’m sure doesn’t help. I love him and don’t want to lose him.

Human Summary:
I saw a text from my SO to his friend about leaving me, can’t stop freaking out. Need serious advice.

SFT:
I went through my SO’s texts and found something I wasn’t supposed to. Now I’m being clingy and I
don’t want to lose him.

Centralized:
went through my boyfriends texts and found something that i’m now worrying about when/if he’s going
to break up with me. I love him and don’t want to lose him. Help.

FedBis:
went through SO’s texts and found a text that said "am I being an idot for leaving [my name]"? and
now I’'m worried he’s going to break up with me and can’t stop thinking about it.

FedBiscuit:
went through SO’s texts, found something that i’m now worrying about when the inevitable breakup is
going to happen. Now being clingy and can’t stop thinking about it. Help!

Table 5: An example for summarization task. Caution: The example data that may be offensive or harmful.

List the layers of the TCP/IP model and for each layer identify one protocol.

Alpaca-7B:

The TCP/IP model consists of four layers: the application layer, transport layer, internet layer and
network access layer.

Application Layer: HTTP

Transport Layer: TCP

Internet Layer: IP

Network Access Layer: Ethernet

FedBis:

The TCP/IP model has four layers: the application layer, transport layer, internet layer and network
access layer. At the application layer, the protocol is TCP. At the transport layer, the protocol is UDP.
At the internet layer, the protocol is IP. At the network access layer, the protocol is Ethernet.

1. Application layer: TCP

2. Transport layer: UDP

3. Internet layer: IP

4. Network access layer: Ethernet

FedBiscuit:

The TCP/IP model has four layers: the application layer, transport layer, internet layer and network
access layer. At the application layer, the HTTP protocol is used. The transport layer uses the TCP
protocol. At the internet layer, the IP protocol is used. Finally, the network access layer uses the
Ethernet protocol.

Table 6: An example for QA task. Caution: The example data that may be offensive or harmful.

14

	Introduction
	Related Work
	FedBis: A Feasible Framework for Achieving RLHF in FL
	Preference Modeling
	Problem Formulation.
	Algorithm Design

	Reinforcement-learning Fine-tuning
	Problem Formulation.
	Algorithm Design

	Discussion

	FedBiscuit: FedBis with Cluster-wise Aggregation
	Algorithm Design
	Discussion: Integration with LoRA

	Federated Human Preference Benchmark
	Experiments
	Experimental Setup
	Numerical Results on Summarization

	Conclusion
	More Implementation Details
	Hyperparameter Settings
	Instruction Tuning Prompt

	More Numerical Results and Analysis
	Numerical Results on QA
	Examples on the Final RLHF Results

