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Abstract

Reinforcement learning with human feedback001
(RLHF) fine-tunes a pretrained large language002
model (LLM) using preference datasets, en-003
abling the LLM to generate outputs that align004
with human preferences. Given the sensitive005
nature of these preference datasets held by006
various clients, there is a need to implement007
RLHF within a federated learning (FL) frame-008
work, where clients are reluctant to share their009
data due to privacy concerns. To address this,010
we introduce a feasible framework in which011
clients collaboratively train a binary selector012
with their preference datasets using our pro-013
posed FedBis. With a well-trained selector,014
we can further enhance the LLM that gener-015
ates human-preferred completions. Meanwhile,016
we propose a novel algorithm, FedBiscuit, that017
trains multiple selectors by organizing clients018
into balanced and disjoint clusters based on019
their preferences. Compared to the FedBis,020
FedBiscuit demonstrates superior performance021
in simulating human preferences for pairwise022
completions. Our extensive experiments on023
federated human preference datasets – marking024
the first benchmark to address heterogeneous025
data partitioning among clients – demonstrate026
that FedBiscuit outperforms FedBis and even027
surpasses traditional centralized training.028

1 Introduction029

Large language models (LLMs) have demonstrated030

remarkable capacities in responding to a wide031

range of open-ended instructions as professionally032

as human beings. This achievement is attributed033

to reinforcement learning with human feedback034

(RLHF) (Ziegler et al., 2019; Christiano et al.,035

2017; Ouyang et al., 2022), a method that aligns036

an LLM with human preferences. Specifically, it037

trains a reward model (a.k.a. preference model)038

with the help of a preference dataset, which in-039

cludes the comparisons among various completions040

of given instructions. Then, it fine-tunes the LLM041

towards generating completions that closely match 042

human preference, evaluated by the reward model. 043

While empirical studies have validated the effec- 044

tiveness of RLHF in enhancing LLM performance, 045

RLHF faces a challenge regarding preference data 046

collection. There are two approaches for construct- 047

ing preference datasets, namely, human efforts 048

(Bai et al., 2022; Ganguli et al., 2022; Stiennon 049

et al., 2020) and ChatGPT generation (Dubois et al., 050

2024). The former gathers the preference data from 051

a team of labelers, who rank the completions of 052

each instruction from best to worst. In contrast, the 053

latter entails a set of instructions together with pair- 054

wise completions, with ChatGPT (Achiam et al., 055

2023) tasked with selecting the superior comple- 056

tion for each instruction. As LLMs are deployed to 057

serve diverse clients, a preference gap may occur 058

between clients and labelers/ChatGPT, impeding 059

the LLM’s ability to generate responses that satisfy 060

real clients’ tastes. Therefore, there is a demand for 061

a preference dataset that accurately mirrors clients’ 062

preferences in order to facilitate LLM performance. 063

One approach to meeting the demand is to collect 064

client preference data and build a huge preference 065

dataset, with which an LLM can be fine-tuned on a 066

central entity (a.k.a. server). It is noticed that this 067

approach has been applied to a recent open project 068

named OASST (Köpf et al., 2024). However, this 069

approach may be infeasible because most clients 070

refuse the disclosure of their preference data out of 071

privacy concerns. To this end, we adopt FedAvg, 072

a conventional federated learning (FL) algorithm 073

(Konečnỳ et al., 2016; McMahan et al., 2017) that 074

avoids the collection of clients’ raw data. Specifi- 075

cally, each client trains a reward model with their 076

preference data, and the server aggregates the re- 077

ward models into a global model. While the pro- 078

cess seems effective, we observe the following two 079

limitations during training: 080
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Figure 1: An outline of RLHF in federated learning.

• Excessive Computation Overhead: Convention-081

ally, the reward model is designed to output a082

scalar value for a given prompt and completion083

(Stiennon et al., 2020). Its optimization is based084

on reward differences between preferred and dis-085

preferred completions, i.e., the preferred comple-086

tions should earn greater rewards than the dispre-087

ferred ones. As a result, when the optimization088

involves a data sample in training the model, it089

should simultaneously retain two computation090

graphs in the forward and backward pass, leading091

to significant computation overhead and intensive092

GPU requirements.093

• Degraded Performance: Preference data are het-094

erogeneous among the clients in view that the095

preferences vary among the clients. Consequently,096

each client trains a reward model towards a local097

minima, deviating from the global optima and098

resulting in a longer training time to converge099

when compared to the centralized training. More-100

over, the method is likely to suffer from reward101

hacking, a phenomenon where the reward model102

heads to a poor performance after several training103

rounds (Askell et al., 2021; Michaud et al., 2020;104

Tien et al., 2022; Skalse et al., 2022).105

In this paper, we propose to address these two limi-106

tations and propose effective and computationally107

efficient methods for preference collection and sub-108

sequent fine-tuning. We start with a solution that109

addresses the first limitation. The key idea is to110

train a binary selector, which chooses a superior111

response between two completions under a given112

instruction. Compared with preference ranking,113

the binary selector requires much less computation114

during training. Casting binary selector training115

into a federated learning setting, we thus propose116

the federated binary selector training (FedBis), as117

depicted in the first stage of Figure 1. Each client118

independently trains the selector with local prefer-119

ence dataset, and the server aggregates the selectors 120

into a global one and broadcasts it to the clients. Af- 121

terwards, we utilize the binary selector to enhance 122

the performance of LLM. Specifically, we assume 123

the server holds a set of instructions, together with 124

pairwise responses generated by an LLM. Then, 125

we build a preference dataset with the help of the 126

binary selector and boost the LLM by means of di- 127

rect preference optimization (DPO) (Rafailov et al., 128

2023). 129

To further address the performance deteriora- 130

tion due to preference heterogeneity and reward 131

hacking, we propose a method named FedBis 132

with cluster-wise aggregation (FedBiscuit). This 133

method ensembles multiple binary selectors, each 134

trained by the clients possessing similar prefer- 135

ences. In light of privacy concerns, which prevent 136

explicit sharing of clients’ data, the server intermit- 137

tently collects client losses on all binary selectors. 138

Subsequently, clients are organized into disjoint 139

clusters, and when comparing two completions, 140

the one selected by the majority of binary selec- 141

tors is deemed better. The proposed method has 142

two main advantages. Firstly, clients with similar 143

preferences jointly train a binary selector, moderat- 144

ing data heterogeneity and mitigating performance 145

deterioration. Secondly, the method alleviates re- 146

ward hacking by having numerous binary selectors 147

jointly decide on optimal completions. 148

Contributions. In this paper, our contributions 149

are highlighted as follows: 150

• To the best of our knowledge, this is the first 151

feasible framework to achieve RLHF in FL. In de- 152

tail, the framework trains binary selector(s) with 153

clients’ local datasets, distills the selector(s) to- 154

ward an LLM, and boosts LLM performance in 155

the meantime. Under this framework, we intro- 156

duce two methods, i.e., FedBis and FedBiscuit. 157
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• Previous works offer a number of human prefer-158

ence datasets, but none of them address the FL159

setting. This is the first work to discuss the pos-160

sible data partition approaches to build a hetero-161

geneous human preference dataset. To this end,162

we introduce a benchmark that includes several163

human preference datasets suitable for FL.164

• We conduct extensive experiments to demon-165

strate the performance of the proposed FedBis166

and FedBiscuit. As expected, FedBiscuit demon-167

strates superior performance over FedBis and168

even surpasses traditional centralized training.169

Meanwhile, we present some insights from the170

empirical studies.171

2 Related Work172

LLM Fine-tuning in FL. Recent studies have173

increasingly focused on fine-tuning large language174

models (LLMs) using federated datasets (Sun et al.,175

2024; Ye et al., 2024; Zhang et al., 2023a; Yi et al.,176

2023; Zhang et al., 2023b). However, these ap-177

proaches often suffer from high computation and178

communication costs due to the necessity of train-179

ing and synchronizing the model with clients. To180

mitigate these issues, lightweight methods such181

as black-box fine-tuning (Sun et al., 2023; Lin182

et al., 2023) and offsite-tuning (Wu et al., 2023b;183

Kuang et al., 2023) have emerged. Despite their184

advancements, these methods primarily focus on185

fine-tuning LLMs for specific downstream tasks,186

neglecting user preferences in the generated re-187

sponses. To address this gap, our work aims to188

align LLMs with human preferences and introduces189

a feasible training framework in federated learning.190

Reinforcement Learning with Human Feed-191

back (RLHF). RLHF typically involves super-192

vised fine-tuning, reward modeling, and reward193

optimization, initially popularized by Christiano194

et al. (2017). Proximal Policy Optimization (PPO)195

(Schulman et al., 2017) is a common RLHF algo-196

rithm, yet it struggles with instability, inefficiency,197

and high resource demands (Choshen et al., 2019;198

Engstrom et al., 2020). These challenges have led199

to the development of alternative methods, such as200

Direct Preference Optimization (DPO) (Rafailov201

et al., 2023) and others (Dong et al., 2023; Zhao202

et al., 2023; Azar et al., 2024; Ethayarajh et al.,203

2024; Gulcehre et al., 2023), which offer more204

stable and efficient solutions. However, these meth-205

ods typically operate within a centralized training206

framework, where the LLM owner retains control 207

over the preference data. In contrast, our work 208

seeks to expand data sources and incorporate real 209

user preferences during the fine-tuning of the LLM. 210

3 FedBis: A Feasible Framework for 211

Achieving RLHF in FL 212

The objective of RLHF is to align a pretrained 213

language model with human preferences. RLHF 214

comprises two phases: (i) preference modeling and 215

(ii) reinforcement-learning fine-tuning. The first 216

phase aims to develop a model that simulates hu- 217

man preferences to select the superior options from 218

numerous pairwise completions. Subsequently, the 219

second phase enhances the language model’s per- 220

formance by creating a preference dataset, enabling 221

the model to generate responses preferred by hu- 222

mans. In the following, We describe the proposed 223

FedBis that achieves RLHF in FL in the first two 224

subsections, followed by a brief discussion of its 225

limitations that motivate the proposed FedBiscuit 226

presented in Section 4. 227

3.1 Preference Modeling 228

3.1.1 Problem Formulation. 229

In preference modeling, our objective is to train 230

a binary selector using data from multiple clients. 231

Consider an FL system with M clients, coordinated 232

by a central server. Denote the weight of client m 233

as pm such that
∑

m∈[M ] pm = 1, and we aim to 234

optimize the following objectives: 235

min
ϕ∈Rd

F (ϕ)
△
=
∑

m∈[M ]

pmFm(ϕ) (1) 236

where Fm(ϕ) is the expected loss on client m 237

given the binary selector ϕ. Suppose client 238

m ∈ [M ] holds a set of pairwise data with the size 239

of nm, i.e., D̂m = {(xi, yi,w, yi,l)}i∈[nm], where 240

xi is the prompt, yi,w is the preferred completion 241

out of the pair of yi,w and yi,l. We reorganize 242

these data and build a preference dataset Dm to be 243

{(xi, yi,w, yi,l, 0), (xi, yi,l, yi,w, 1)|(xi, yi,w, yi,l) ∈ 244

D̂m} for training, in which each contains the 245

prompt, a pair of completions and preference 246

selection. Apparently, this dataset eliminates the 247

position effects, and we can train the selector 248

as a classification task. Therefore, we utilize 249

cross-entropy (CE) loss ℓCE to optimize the 250

selector and formulate the expected loss as 251

Fm(ϕ) = E(x,y0,y1,i)∼Dm
[ℓCE(i|ϕ;x, y0, y1)] .

(2)
252
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Next, we will discuss how to optimize the selector253

ϕ under the FL scenario.254

3.1.2 Algorithm Design255

We consider a practical and efficient FL scenario256

where not all clients but only a sampled subsets of257

clients participate in each communication round258

(Yang et al., 2020). Before the commencement of259

FL training, we initialize the binary selector with a260

pretrained LLM such as LLaMA-2 (Touvron et al.,261

2023), and set the hyperparameters.262

An FL algorithm requires multiple communication263

rounds and consists of three phases in each round,264

i.e., model broadcast, local training, and global265

aggregation. Following this paradigm, we design266

FedBis and optimize the selector ϕ, i.e., in the com-267

munication round r ∈ [R], as discussed as follows.268

Step 1: Model Broadcast. The server uniformly269

samples A clients without replacement, denoted by270

A. Let the selector be ϕr in the r-th communication271

round, and the server broadcasts it to the sampled272

clients.273

Step 2: Local Training. At this step, client m ∈274

A optimizes the selector based on local preference275

data. First, the client initializes the local selector276

ϕm
r,0 with the global selector ϕr received from the277

server. Subsequently, the client trains the selector278

for K iterations, where the update rule between279

consecutive iterations follows:280

ϕm
r,k+1 = ϕm

r,k − η∇Fm(ϕm
r,k), k ∈ [K] (3)281

where the gradient ∇Fm(ϕm
r,k) is approximated us-282

ing a data batch sampled from the local preference283

dataset Dmand can incorporate optimizers such as284

AdamW (Loshchilov and Hutter, 2017). Finally,285

the client m transmits the updated local selector286

ϕm
r,K back to the server.287

Step 3: Global Aggregation. After receiving288

the local selectors from the sampled clients A, the289

server updates the global selector:290

ϕr+1 =
M

A

∑
m∈A

pmϕm
r,K . (4)291

This aggregation method, based on Li et al. (2019)292

where the clients are uniformly sampled to train a293

global model, ensures consistency with Problem294

(1) in mathematical expectation.295

After R communication rounds of training, FedBis296

outputs a binary selector ϕR that reflects the overall297

preferences of all clients. The selector can then be 298

used to enhance the performance of the LLM, as 299

discussed in the next section. 300

3.2 Reinforcement-learning Fine-tuning 301

3.2.1 Problem Formulation. 302

Traditionally, reinforcement-learning fine-tuning 303

adopts PPO algorithm (Schulman et al., 2017) to 304

enhance the performance of an LLM using a reward 305

model that can rate a completion (Stiennon et al., 306

2020; Ouyang et al., 2022; Dai et al., 2023), which 307

does not fit the proposed framework with a binary 308

selector. 309

One practical approach to aligning the LLM with 310

clients’ preferences is to create a preference dataset 311

with the help of the binary selector. Suppose 312

the server holds a set of instructions D̂, and we 313

can expand it to a preference dataset Dgen = 314

{(x, y0, y1, i)|x ∈ D̂}, where y0 and y1 are two 315

completions generated by the LLM θ, and i ∈ 316

{0, 1} indicates the preferred completion as cho- 317

sen by the binary selector ϕ. With this generated 318

dataset, we apply the Direct Preference Optimiza- 319

tion (DPO) algorithm (Rafailov et al., 2023) to opti- 320

mize the LLM consistent with clients’ preferences, 321

which is formulated as 322

min
θ

E(x,y0,y1,i)∼Dgen
LDPO (θ|x, y0, y1, i) (5) 323

where the DPO loss is LDPO (θ|x, y0, y1, i) = 324

− log σ
(
β log πθ(yi|x)

πθ0
(yi|x) − β log πθ(y1−i|x)

πθ0
(y1−i|x)

)
. 325

Next we discuss the specifics of the preference 326

data generation and LLM optimization. 327

3.2.2 Algorithm Design 328

The reinforcement-learning fine-tuning takes place 329

on the server and includes two phases: 1) a pref- 330

erence dataset is created with a pretrained LLM 331

θ0 and a well-trained selector ϕR from FedBis. 2) 332

LLM is optimized according to the objective de- 333

fined in Equation (5) with the generated dataset. 334

Step 1: Preference Dataset Generation. Sup- 335

pose the server holds a set of instructions D̂. With 336

the LLM θ0, we can generate multiple completions 337

for an instruction x ∈ D̂, resulting in a set of n 338

completions (y0, . . . , yn−1) ∼ πθ0(y|x). For each 339

instruction, we can form a total of
(
n
2

)
pairs of 340

completions. We then use the binary selector ϕR to 341

choose the optimal completion for each pair (yj , yl) 342

where 0 ≤ j < l ≤ n− 1. The pair is labeled with 343

i = 0 if the first logit output is greater than the 344
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second, i.e., πϕR
(0|x, yj , yl) > πϕR

(1|x, yj , yl),345

or i = 1 otherwise. This process builds the prefer-346

ence dataset Dgen.347

Step 2: LLM Fine-tuning. With the constructed348

preference dataset Dgen, we evolve the LLM to349

align with clients’ preferences. Specifically, in350

the t-th training round, where t ∈ {0, 1, . . . }, we351

sample a data batch (x, y0, y1, i) from Dgen, and352

update the LLM using the following rule:353

θt+1 = θt − η∇LDPO (θt|x, y0, y1, i) , (6)354

where η is the learning rate. The gradient computa-355

tion ∇LDPO is given by Rafailov et al. (2023). In a356

nutshell, we distill the binary selector’s preferences357

into the LLM, allowing it to function as a binary358

selector itself implicitly.359

3.3 Discussion360

We discuss the limitations of FedBis which moti-361

vate us to propose FedBiscuit.362

Preference Heterogeneity. A performance gap363

between FedBis and centralized training could364

arise from data heterogeneity among clients, a com-365

mon issue in FL. Different from centralized train-366

ing that aggregates all the clients’ data and samples367

an i.i.d. batch in each training round, FedBis sam-368

ples a subset of clients in each round, with each369

client independently optimizing the model based370

on their local data. This could result in a global371

aggregation that diverges from the global optimum372

(Karimireddy et al., 2020; Wu et al., 2023a).373

Reward Hacking. As demonstrated in experi-374

ments, FedBis’s performance improves first but375

may later decline with the increase of training376

rounds. This phenomenon, known as reward hack-377

ing, is discussed by Skalse et al. (2022) as an in-378

evitable issue in training a reward proxy model,379

which is used to enhance the performance of a380

policy model (e.g., LLM). However, we can mit-381

igate this impact by delaying the inflection point,382

allowing the reward proxy model to continue im-383

proving performance for more training rounds and384

ultimately achieve a higher rating.385

4 FedBiscuit: FedBis with Cluster-wise386

Aggregation387

In this section, we aim to address the aforemen-388

tioned limitations of FedBis. To tackle reward389

hacking, Eisenstein et al. (2023) and Coste et al.390

(2024) introduce a promising approach that trains 391

multiple reward models at the same time because 392

aggregation over multiple reward model outputs 393

can provide a more robust reward estimate. Fur- 394

thermore, recognizing that some clients may share 395

similar preferences, we employ clustered FL (Sat- 396

tler et al., 2020; Ghosh et al., 2020; Ma et al., 2023) 397

to group clients with similar preferences for joint 398

model training. Notably, these two approaches 399

complement each other, inspiring us to combine 400

them into a novel algorithm FedBiscuit that simul- 401

taneously combats reward hacking and preference 402

heterogeneity. 403

Problem Formulation. In this work, we consider 404

training multiple binary selectors of U . To ensure 405

that all selectors are trained without bias towards 406

a small specific group, we mandate that these se- 407

lectors be trained using evenly disjoint clusters of 408

clients. Additionally, a client’s preference should 409

align more closely with those within the same clus- 410

ter than with those in different clusters. To this end, 411

we can formulate the following objective: 412

min
ϕ[U ]∈RU×d

F (ϕ[U ])
△
=
∑

m∈[M ]

pm

(
min
u∈[U ]

Fm(ϕu)

)
413

s.t. max{|Mu|}u∈[U ] −min{|Mu|}u∈[U ] ≤ 1

(7)
414

where the function Fm follows the same definition 415

of Equation (2).ϕu indicates the u-th binary selec- 416

tor, and Mu means a set of clients using the u-th 417

selector. By definition, ∪u∈[U ]Mu = [M ], and 418

∩u∈[U ]Mu = ∅. 419

Next we explore how the proposed FedBiscuit op- 420

timizes Equation (7). 421

4.1 Algorithm Design 422

Section 3.1 mentions that a client m ∈ [M ] holds a 423

preference dataset Dm. Before the model training, 424

client m splits her dataset into two disjoint sets, 425

namely, a training set Dm,train and a validation set 426

Dm,val, where |Dm,train| >> |Dm,val|. 427

The proposed FedBiscuit consists of two phases: 428

1) We train each selector for a couple of rounds 429

so that all U selectors have fundamental capacities 430

in selecting the preferred completion, and 2) we 431

divide the clients into disjoint clusters of size U and 432

train each binary selector with a specific cluster. 433

Phase 1: Warm-up. In the beginning, we ini- 434

tialize each binary selector ϕu(u ∈ [U ]) with an 435
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identical pretrained LLM. Subsequently, starting436

from u = 0, we train a selector ϕu for Rpre consec-437

utive communication rounds following the steps of438

FedBis: In each communication round, the server439

samples a subset of client A and broadcasts the se-440

lector ϕu to them. Each client m ∈ A then locally441

trains the selector for K iterations using the dataset442

Dm,train. At the end of the communication round,443

the server aggregates and updates the selector ϕu444

via Equation (4). After completing the training of445

ϕu, the server initiates the training of the next se-446

lector ϕu+1 by repeating the above steps until all447

selectors are trained.448

The selectors are trained with different data distri-449

butions because the clients participating in each450

training round are randomly selected. Conse-451

quently, all the selectors ϕ[U ] have distinct model452

parameters, leading to varied performance in terms453

of final logit output when given an instruction and454

a pair of completions.455

Phase 2: Clustered FL Training. After the first456

phase, we obtain U different selectors, denoted as457

{ϕu,0}u∈[U ]. Unlike FedBis, this phase includes458

an additional step called client grouping, which459

partitions the clients into multiple disjoint clusters460

based on their preferences. In each communication461

round r ∈ [R], the proposed FedBiscuit optimizes462

all the selectors ϕ[U ] using the following four steps:463

Step 2.1: Client Grouping. This step is executed464

every τ communication rounds, i.e., when r can be465

divided by τ , or τ |r. During this step, the server466

broadcasts all selectors ϕ[U ],r to all clients [M ].467

Then, a client m calculates the averaged loss for468

each selector ϕu,r using local validation set via469
1

|Dm,val|
∑

(x,y0,y1,i)∼Dm,val
[ℓCE(i|ϕu,r;x, y0, y1)].470

The server thereby collects all these losses and471

adopts a greedy clustering approach (Sattler et al.,472

2020; Ma et al., 2023) to assign each client to the473

selector where they achieve the minimum loss.474

However, an obvious deficiency is an imbalance475

where some selectors are chosen by many clients476

and others by few. It is noted that the selectors477

trained with more clients achieve remarkable478

performance, while some may be overfitted to a479

specific group of clients. Therefore, the greedy480

clustering approach negatively impacts the overall481

performance when building a global preference482

dataset. To tackle the limitation, we propose to483

balance the clusters using the following steps484

repeatedly until the clients are evenly distributed:485

• Choose the cluster selected by the most clients. 486

• If the cluster can accommodate n clients, cap the 487

cluster at n clients and reassign the rest to other 488

clusters where they achieve suboptimal loss. 489

Finally, we obtain balanced and disjoint clusters. 490

Let a client m train with the Um-th selector ϕUm for 491

the next τ rounds. After client grouping step, the 492

proposed method proceeds to the following three 493

steps as outlined in FedBis. 494

Step 2.2: Model Broadcast. Similar to FedBis, 495

the server samples A clients from all clients [M ], 496

denoted by A. For each selected client m ∈ A, the 497

server transmits the selector ϕUm,r. This process 498

can be characterized by defining Au as the group of 499

clients chosen to train the selector ϕu. This ensures 500

that ∪u∈[U ]Au = A and ∩u∈[U ]Au = ∅. 501

Step 2.3: Local Training. The client m ∈ A re- 502

ceives a binary selector ϕUm,r from the server and 503

trains the selector for K iterations following the 504

update rule of Equation (3). Finally, let the updated 505

local selector be ϕm
Um,r,K , and the client pushes it 506

to the server. 507

Step 2.4: Global Aggregation. The server collects 508

updated selectors from all participants A. Since 509

there are several binary selectors, the server up- 510

dates each one with a designated group of clients 511

intended to train on that specific selector. For in- 512

stance, the aggregation rule for the selector u ∈ [U ] 513

follows 514

ϕu,r+1 =

(
1−

∑
m∈Au

pm

)
ϕu,r +

∑
m∈Au

pmϕm
u,r,K

(8)

515

It is noted that performance degradation occurs 516

when a model is trained by clients with time- 517

varying sizes in FedAvg (Gu et al., 2021; Wang 518

and Ji, 2023). In other words, Equation (4) is no 519

longer suitable for multi-selector aggregation due 520

to the fluctuation in the number of clients training 521

a selector in each communication round. There- 522

fore, FedBiscuit adopts a new aggregation rule as 523

formulated in Equation (8). 524

FedBiscuit finally produces a set of well-trained 525

selectors ϕ[U ],R and he subsequent objective is to 526

enhance LLM performance with the help of these 527

selectors, as explored below. 528

Reinforcement-learning Fine-tuning with Multi- 529

ple Selectors. We can leverage the methodology 530
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mentioned in Section 3.2, and one of the key steps531

involves constructing a preference dataset incor-532

porating multiple selectors. For this, we employ533

a strategy of majority voting. Given an instruc-534

tion x ∈ D̂ and a pair of generated completions535

(y0, y1), we assume a selector u ∈ [U ] prefers yiu ,536

where iu ∈ {0, 1}. Therefore, the pair is assigned537

a label i = argmax{iu}u∈[U ], meaning that the538

completion yi is favored by the most clients.539

4.2 Discussion: Integration with LoRA540

As all binary selectors are LLM, training them may541

consume significant communication and compu-542

tation overheads. Besides, multiple LLMs lead543

to considerable storage burdens shouldered by the544

server. To reduce the costs, we adopt a parameter-545

efficient fine-tuning approach LoRA (Hu et al.,546

2021), where all binary selectors share the same547

base model while using different adapters.548

In comparison with FedBis, FedBiscuit requires549

extra costs, i.e., O(MU⌊R/τ⌋ · C), where C is550

the communication cost of a selector. This is be-551

cause FedBiscuit involves client grouping period-552

ically, unilaterally transferring all selectors from553

the server to the clients. Despite the extra costs,554

extensive experiments demonstrate non-trivial im-555

provement by comparing FedBiscuit with FedBis.556

5 Federated Human Preference557

Benchmark558

This section mainly focuses on how we prepare fed-559

erated human preference datasets, while the next560

section introduces the experimental setup and ana-561

lyzes numerical results. Specifically, we cover two562

of the most common NLP tasks, i.e., summariza-563

tion and question-answering. All two datasets are564

partitioned based on the public datasets, and the565

following subsections will include the details. We566

will release these datasets on HuggingFace soon.567

Summarization. Stiennon et al. (2020) intro-568

duces a summarization dataset that consists of Red-569

dit posts with human-written tl;dr (Völske et al.,570

2017). This dataset consists of two parts, one is a571

pretrained dataset, while the other is a dataset with572

human preference. As suggested by Ouyang et al.573

(2022), we ensure a post does not appear in both574

datasets. We assume the pretrained dataset is stored575

on the server side, and 60% of data are served for576

model pertaining such that the model can perform577

well on summarization. The remaining 40% are578
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Figure 2: Data distribution across different question
domains on the selected clients.
used for the RLHF process to improve the LLM 579

performance and generate human-preferred con- 580

tent. Since the human-preference dataset contains 581

the worker ID, we partition the dataset based on 582

the worker ID so that the dataset can be partitioned 583

into 53 workers. 584

Question-Answering (QA). We reconstruct the 585

public dataset SHP, which comprises numerous 586

questions from Reddit posts and their correspond- 587

ing user answers (Ethayarajh et al., 2022). The 588

preference indicator is based on the number of 589

likes an answer receives. Given that the dataset 590

spans 18 domains, we partition the dataset using a 591

Dirichlet distribution with a parameter of 0.3, en- 592

suring that no questions overlap between clients. In 593

our experiment, we prepare 300 clients, and Figure 594

2 visualizes the data distribution on the selected 595

clients. For the RLHF process, we use a set of 2.6K 596

Reddit questions. 597

6 Experiments 598

6.1 Experimental Setup 599

Model and computation environment. We ini- 600

tialize the binary selector(s) using the pretrained 601

LLaMA-2-7B (Touvron et al., 2023), configuring 602

the final layer to produce binary outputs "A" and 603

"B" only. The LLM chosen for content generation 604

depends on the tasks: (i) For the summarization 605

task, we start with LLaMA-2-7B and fine-tune it 606

using a pretrained dataset; (ii) For the QA task, we 607

initialize the LLM with Alpaca-7B (Taori et al., 608

2023). To reduce computation efforts, we employ 609

LoRA to fine-tune the models. Our implementation, 610

built upon FederatedScope (Xie et al., 2023; Kuang 611

et al., 2023), will soon be available on GitHub. The 612

experiments are conducted on machines equipped 613

with two Nvidia A100 GPU cards, Intel Xeon Plat- 614

inum 8369B CPUs, and 256GB RAM. 615

Evaluation. We evaluate two models produced 616

by our proposed FedBis and FedBiscuit: a binary 617

selector and an LLM. We employ different strate- 618

gies to assess each model: 619

7



Selector LLM
Agreement Best-of-n Rating Win Rate

SFT - - 5.028 29.71%
Centralized 73.10% 5.302 5.688 78.89%

FedBis 70.44% 5.274 5.661 71.35%
FedBiscuit 70.52% 5.305 5.703 80.65%

Table 1: Performce under summarization task. All val-
ues here indicate their best performance within 500
communication rounds of training.

• Binary selector: The evaluation includes two620

metrics: agreement and best-of-n. Agreement621

measures the hit rate of a selector against a pref-622

erence dataset annotated by humans or ChatGPT.623

Additionally, we use the best-of-n approach by624

selecting the best completion from n generated by625

a task-specific LLM. We then evaluate the aver-626

age rating for the selector’s choices using Auto-J627

(Li et al., 2023a).628

• LLM: After reinforcement-learning fine-tuning,629

the LLM is evaluated on its ability to generate630

human-preferred content. This means we can as-631

sess the quality of the generated texts. For exam-632

ple, given an instruction set, the LLM produces633

one completion per instruction, and Auto-J evalu-634

ates the average rating of these completions. Fur-635

thermore, we compare the generated completions636

with a reference set of responses, annotated by hu-637

mans or ChatGPT, and calculate a win rate based638

on how often the generated response is superior639

to the reference one.640

Due to the space limit, the hyperparameter settings641

are presented in Appendix A. Moreover, Appendix642

B provides real cases to demonstrate the perfor-643

mance of the proposed FedBis and FedBiscuit. In644

particular, Appendix B.1 discusses the results un-645

der the QA task.646

6.2 Numerical Results on Summarization647

In this section, the evaluation data originates from648

the TL;DR dataset, as mentioned in Section 5. The649

dataset comprises two disjoint parts: one ranked by650

a group of labelers for model-generated responses,651

and the other written by users to summarize the652

key content of a post. We use the former to com-653

pute the consistency between the selector and the654

human annotator. For the latter, we apply various655

metrics, including best-of-n, rating, and win rate.656

The results are presented in Table 4 and Figure 3.657

The table shows that conventional centralized train-658

ing outperforms the proposed FedBiscuit in terms659

of agreement. This is because the agreement evalu-660

ation data have a similar distribution to the training661
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Figure 3: Auto-J rating of best-of-n against communi-
cation rounds under summarization tasks.

dataset, as their outputs are generated from the 662

same language models and labeled by the same 663

group of labelers (Stiennon et al., 2020). Conse- 664

quently, centralized training performs better than 665

the proposed FedBis and FedBiscuit, which are af- 666

fected by data heterogeneity. 667

However, when evaluating the selectors with 668

datasets generated by a supervised fine-tuning 669

model, the proposed FedBiscuit slightly outper- 670

forms centralized training. These results suggest 671

that a centrally trained selector performs poorly 672

in terms of generalization and is prone to overfit- 673

ting to a specific dataset distribution. In contrast, 674

comparing FedBiscuit with FedBis, we find that 675

FedBiscuit mitigates data heterogeneity and pro- 676

duces a more robust selection of completion pairs. 677

Figure 3 illustrates the performance trend across 678

communication rounds. As discussed in Section 679

3.3, training a binary selector can lead to reward 680

hacking. For both centralized training and FedBis, 681

which train a single selector, we observe an in- 682

flection point where the selector’s performance 683

begins to decline. However, this inflection point 684

has not yet appeared in FedBiscuit, allowing it 685

to continuously improve and eventually surpass 686

the best performance of centralized training. It 687

is important to note that the warmup rounds are 688

included in the communication rounds, which ex- 689

plains FedBiscuit’s initial poor performance. 690

7 Conclusion 691

In this work, we explore a feasible framework to 692

achieve RLHF in FL. Specifically, we train a bi- 693

nary selector across different clients using their 694

local preference datasets, and then use the well- 695

trained selector to align an LLM with human prefer- 696

ences. We propose two approaches to enable selec- 697

tor training: FedBis and FedBiscuit. FedBis pro- 698

vides a framework to train a single selector, while 699

FedBiscuit ensembles multiple selectors to more 700

robustly simulate human preferences. With the 701

proposed federated human preference datasets, we 702

conduct empirical studies to validate our statements 703

and demonstrate the superiority of FedBiscuit. 704
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Ethics Statement705

This paper investigates clients’ preferences using706

a publicly available dataset, ensuring that all data707

sources are appropriately cited to maintain aca-708

demic integrity and transparency. By leveraging709

this public dataset, we avoid using private or sen-710

sitive client data, thus upholding ethical standards711

in data usage and research practices. Furthermore,712

this work prioritizes the protection of clients’ pri-713

vacy and strictly avoids any disclosure of local data.714

When clients utilize their own data to fine-tune the715

model, robust privacy measures are in place to en-716

sure that no other clients can access or infer any717

information related to their data. This approach not718

only safeguards individual privacy but also fosters719

trust and security in the application of the model.720

Limitations721

One notable limitation of our work lies in the con-722

struction of the preference dataset, which relies723

solely on publicly available data rather than gather-724

ing information directly from real clients. By doing725

so, we miss out on the nuances and intricacies of726

individual preferences that can only be captured727

through firsthand data collection. As a result, our728

dataset may lack the depth and breadth necessary729

to fully comprehend the true heterogeneity of pref-730

erences among clients. Without access to authentic731

client data, we may inadvertently overlook impor-732

tant variations in preferences, potentially limiting733

the applicability and robustness of our findings.734

Another limitation pertains to the use of a task-735

specific dataset rather than a more generalized one736

encompassing a broader spectrum of tasks. While737

task-specific datasets offer advantages such as fo-738

cused analysis and tailored insights, they may also739

restrict the scope of our research and hinder its740

generalizability. By incorporating a more diverse741

range of tasks into our dataset, we could gain a742

more comprehensive understanding of clients’ pref-743

erences across various domains, thereby enhancing744

the versatility and validity of our findings.745

Additionally, our work employs a binary selector746

that implicitly assumes one response is superior747

to another, overlooking scenarios where responses748

may exhibit similar levels of quality. This over-749

simplified approach fails to leverage valuable data750

that could provide valuable insights into subtle dif-751

ferences and nuances in preferences. By adopting752

a more nuanced and inclusive framework that ac-753

knowledges and incorporates variations in response 754

quality, we could extract richer insights and make 755

more informed decisions regarding client prefer- 756

ences. Addressing these limitations could bolster 757

the robustness and validity of our research, ulti- 758

mately enhancing its relevance and impact in real- 759

world applications. 760
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A More Implementation Details1012

In this section, we include various settings, such as1013

the prompt and the hyperparameters.1014

A.1 Hyperparameter Settings1015

In our work, we fine-tune all models using LoRA,1016

which is consistently set to rank 8, α = 16, and the1017

dropout rate 0.0. For the generation, we apply with1018

these parameters:1019

• If it is required to generate multiple completions,1020

then we set the temperature to 1.0.1021

• If it is required to generate a single completion,1022

then we adopt greedy search by setting the tem-1023

perature to 0.0.1024

In the following part, we show the hyperparameter1025

setting for different tasks:1026

SFT Selector Training RLFT
Participation Rate - 5/53 -
Local Iterations 30 30 30
Batch Size 32 16 32
Rounds 1000 500 500
Optimizer AdamW AdamW RMSprop
Hyperparameters (0.9, 0.95) (0.9, 0.95) –
Learning rate 1e− 4 1e− 5 1e− 6

Table 2: Hyperparameter Settings for the Summariza-
tion Task

Selector Training RLFT
Participation Rate 10/300 -
Local Iterations 10 10
Batch Size 16 16
Rounds 200 200
Optimizer AdamW RMSprop
Hyperparameters (0.9, 0.95) –
Learning rate 1e− 5 1e− 6

Table 3: Hyperparameter Settings for the QA Task

Special Setting for FedBiscuit For the above1027

two tasks, we ensemble three binary selectors (i.e.,1028

LoRAs). In the warmup round, we train the selector1029

for 50 rounds under an FL framework. FedBiscuit1030

performs regrouping every 50 rounds in the sum-1031

marization task, while regrouping every 100 rounds1032

in the QA task.1033

A.2 Instruction Tuning Prompt1034

In this section, we highlight the prompts used to1035

fine-tune the summarization tasks and the QA task:1036

Summarization. For pertaining (SFT) and the 1037

later reinforcement-learning fine-tuning (RLFT), it 1038

follows the prompt below 1039

Below is a forum post. Write a precise and
concise summary that includes the most
important points of the post.

### SUBREDDIT: r/{subreddit}
### TITLE: {title}
### POST: {post}
### TL;DR:

For comparison:

Below is a forum post followed by two
summaries. Pick a more precise and concise
one that summarizes the most important points
in the given forum post, without including
unimportant or irrelevant details. State your
choice with a single capital letter, i.e., Äïf
SUMMARY A is better, B̈ïf SUMMARY B is
better.

### SUBREDDIT: r/{subreddit}
### TITLE: {title}
### POST: {post}
### SUMMARY A: {output_A}
### SUMMARY B: {output_B}
### YOUR CHOICE:

1040

QA. As the QA utilizes a pretrained model 1041

named Alpaca-7B, we follow its pretrained format

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

1042

For comparison between the two responses: 1043
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Below is a query followed by two responses.
Pick a helpful response that is precise, concise,
and casual. State your choice with a single
capital letter, i.e., Äïf RESPONSE A is better,
B̈ïf RESPONSE B is better.

### QUERY: {instruction}
### RESPONSE A: {output_A}
### RESPONSE B: {output_B}
### YOUR CHOICE:

B More Numerical Results and Analysis1044

B.1 Numerical Results on QA1045

In this section, the test dataset comes from Alpaca-1046

Farm (Dubois et al., 2024; Li et al., 2023b). The1047

results are as follows:1048

2-completion 4-completion
Rating Rating

Alpaca-7B 3.752 -
FedBis 4.140 4.113

FedBiscuit 4.094 3.830

Table 4: Performce under QA.

As presented in Section 4, the LLM owner will1049

generate a set of responses to a given instruction1050

before building a preference dataset. Therefore,1051

the column "2-completion" means the owner pre-1052

pares 2 completions for each instruction, while1053

"4-completion" means 4 completions for each in-1054

struction and forms 6 pairs. The row "Alpaca-7B"1055

acts as a baseline to help us understand the per-1056

formance of the proposed FedBiscuit and FedBis.1057

All the rating comes from Auto-J (Li et al., 2023a),1058

which would be different from the ratings reported1059

by (Li et al., 2023b) because it evaluates with GPT-1060

4 (Achiam et al., 2023).1061

The table above may lead to conclusions different1062

from those drawn from the summarization task.1063

First, FedBis achieves better performance than1064

FedBiscuit. This is within our expectations. First,1065

these selectors are trained for a total of 200 rounds.1066

As presented in Figure 3, FedBiscuit surpasses1067

FedBis after 300 communication rounds. This is1068

because the selectors of FedBiscuit are trained for1069

100 rounds only, while the selector of FedBis has1070

been fully trained for 200 rounds. When the inflec-1071

tion point appears in FedBis, we can hypothesize1072

that the dominance of FedBiscuit still exists.1073

Another comparison arises between different num- 1074

bers of generations to a given prompt. From the 1075

table, we notice that "2-completion" can achieve 1076

better performance than "4-completion," meaning 1077

that the performance may not be relevant to the 1078

size of the RLFT training set. Instead, it may rely 1079

on the quality of the training data. As we can see, 1080

Alpaca-7B hardly generates high-quality data, lead- 1081

ing to limited improvement with training with these 1082

generated data. In other words, if we generate more 1083

low-quality completions, the improvement of the 1084

model would be more limited. At the same time, 1085

we can hypothesize that if the generated data are 1086

of high quality, "4-completion" may outperform 1087

"2-completion" in terms of the final rating. 1088

B.2 Examples on the Final RLHF Results 1089

In this section, we prepare two examples to illus- 1090

trate the performance of our proposed FedBis and 1091

FedBiscuit and compare them with other baselines. 1092

Refer to Table 5 and Table 6 for the demonstration 1093

of the examples. 1094
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Subreddit: r/relationships
Title: Me [25F] with my SO [27 M] of 3.5 years, I went through his texts and can’t stop thinking about
something I saw.
Post: I admit that going through his text messages was wrong and I do feel incredibly guilty about
it now but the bigger issue for me is that I found something that I can’t stop thinking about. He was
talking to his good female friend and I saw a text that said "am I being an idiot for leaving [my name]"?
. I stopped reading after that because I started having a panic attack. The idea of breaking up was not
even on my radar and I thought he was more than happy. Again, I know I shouldn’t have looked but
whats done is done and now I can’t stop worrying about when it’s going to happen. And now i’m being
clingy just because of my worry which i’m sure doesn’t help. I love him and don’t want to lose him.
Human Summary:
I saw a text from my SO to his friend about leaving me, can’t stop freaking out. Need serious advice.
SFT:
I went through my SO’s texts and found something I wasn’t supposed to. Now I’m being clingy and I
don’t want to lose him.
Centralized:
went through my boyfriends texts and found something that i’m now worrying about when/if he’s going
to break up with me. I love him and don’t want to lose him. Help.
FedBis:
went through SO’s texts and found a text that said "am I being an idot for leaving [my name]"? and
now I’m worried he’s going to break up with me and can’t stop thinking about it.
FedBiscuit:
went through SO’s texts, found something that i’m now worrying about when the inevitable breakup is
going to happen. Now being clingy and can’t stop thinking about it. Help!

Table 5: An example for summarization task. Caution: The example data that may be offensive or harmful.

List the layers of the TCP/IP model and for each layer identify one protocol.
Alpaca-7B:
The TCP/IP model consists of four layers: the application layer, transport layer, internet layer and
network access layer.
Application Layer: HTTP
Transport Layer: TCP
Internet Layer: IP
Network Access Layer: Ethernet

FedBis:
The TCP/IP model has four layers: the application layer, transport layer, internet layer and network
access layer. At the application layer, the protocol is TCP. At the transport layer, the protocol is UDP.
At the internet layer, the protocol is IP. At the network access layer, the protocol is Ethernet.
1. Application layer: TCP
2. Transport layer: UDP
3. Internet layer: IP
4. Network access layer: Ethernet
FedBiscuit:
The TCP/IP model has four layers: the application layer, transport layer, internet layer and network
access layer. At the application layer, the HTTP protocol is used. The transport layer uses the TCP
protocol. At the internet layer, the IP protocol is used. Finally, the network access layer uses the
Ethernet protocol.

Table 6: An example for QA task. Caution: The example data that may be offensive or harmful.
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