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Abstract
In recent years, One-shot Federated Learning
(OSFL) methods based on Diffusion Models
(DMs) have garnered increasing attention due to
their remarkable performance. However, most of
these methods require the deployment of foun-
dation models on client devices, which signifi-
cantly raises the computational requirements and
reduces their adaptability to heterogeneous client
models. In this paper, we propose FedLMG, a het-
erogeneous one-shot Federated learning method
with Local Model-Guided diffusion models. In
our method, clients do not need access to any foun-
dation models but only train and upload their local
models, which is consistent with traditional FL
methods. On the clients, we employ classification
loss and batch normalization loss to capture the
broad category features and detailed contextual
features of the client distributions. On the server,
based on the uploaded client models, we utilize
backpropagation to guide the server’s DM in gen-
erating synthetic datasets that comply with the
client distributions, which are then used to train
the aggregated model. By using the local mod-
els as a medium to transfer client knowledge, our
method significantly reduces the computational
requirements on client devices and effectively
adapts to scenarios with heterogeneous clients.
Extensive quantitation and visualization exper-
iments on three large-scale real-world datasets,
along with theoretical analysis, demonstrate that
the synthetic datasets generated by FedLMG ex-
hibit comparable quality and diversity to the client
datasets, which leads to an aggregated model that
outperforms all compared methods and even the
performance ceiling, further elucidating the sig-
nificant potential of utilizing DMs in FL.
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1. Introduction
Federated learning (FL) (Mammen, 2021) has gained in-
creasing attention recently. Standard FL relies on frequent
communication between the server and clients. With the
growing adoption of AI models by individual users, the
application scenarios of FL have expanded significantly, in-
cluding mobile photo album categorization and autonomous
driving (Nguyen et al., 2022; Fantauzzo et al., 2022). How-
ever, in these scenarios, the substantial communication cost
associated with FL is often impractical for individual users.
As a result, one-shot FL (OSFL) has emerged as a solu-
tion (Li et al., 2021; Zhou et al., 2020). OSFL aims to
establish the aggregated model within a single communi-
cation round. Currently, mainstream OSFL methods can
be categorized into four types: 1) Methods using the auxil-
iary dataset (Guha et al., 2019; Li et al., 2020a; Lin et al.,
2020). 2) Methods training generators (Zhang et al., 2022;
Heinbaugh et al., 2022). 3) Methods transferring auxiliary
information (Zhou et al., 2020; Su et al., 2023). 4) Methods
based on DMs (Yang et al., 2024a;b; Zhang et al., 2023a).

However, existing methods are hard to apply in real-world
scenarios due to the following reasons: 1) Collecting public
datasets that comply with all client distribution is imprac-
tical, owing to privacy concerns and data diversity issues.
2) Due to the limited computational power and data of the
clients, training generators on realistic client images is chal-
lenging. So most OSFL methods can only be applied to
small-scale toy datasets, such as MNIST and CIFAR10. 3)
The transmission of auxiliary information incurs communi-
cation cost, and extracting the auxiliary information on the
clients also incurs additional computation cost, further re-
stricting the practicality of OSFL. 4) Current OSFL methods
that leverage DMs necessitate the deployment of founda-
tion models on the clients (Yang et al., 2024a; Zhang et al.,
2023a), such as CLIP (Radford et al., 2021) and BLIP (Li
et al., 2023), or directly involve client training of diffusion
models (Yang et al., 2024b), leading to significant commu-
nication and computational costs. In comparison to widely
used traditional FL methods, which only require local train-
ing of client models, these additional burdens imposed by
OSFL methods significantly increase the strain on client
resources, thereby limiting their practical applicability.
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To reduce the computational requirements on client devices
and alleviate the burden on clients, we propose FedLMG,
a heterogeneous one-shot Federated learning method with
Local Model-Guided diffusion models. Our method in-
volves using the locally trained client models to guide the
DMs in generating the synthetic dataset that complies with
different client distributions. Specifically, FedLMG consists
of three steps: Local Training, Image Generation, and Model
Aggregation. Firstly, based on the theoretical analyses of
the client’s local distribution and the server’s conditional
distribution, the clients independently train the client models
on their private data and upload them to the server. Subse-
quently, assisted by the received client models, the server
generates realistic images that comply with different client
distributions based on DMs. After obtaining the synthetic
dataset, we introduce three strategies to obtain the aggre-
gated model: fine-tuning, multi-teacher distillation, and
specific-teacher distillation. Through these strategies, we
achieve the model aggregation in a single round of commu-
nication, without accessing any client data or any additional
information transferring compared with traditional FL.

To validate the performance of our method, we conduct
extensive quantitation and visualization experiments on
three large-scale real image datasets: DomainNet (Peng
et al., 2019), OpenImage (Kuznetsova et al., 2020) and
NICO++ (Zhang et al., 2023c). Sufficient quantitation ex-
periments under various client scenarios demonstrate that
our method outperforms all compared methods in a single
communication round, and in some cases even surpasses
the ceiling performance of centralized training, strongly un-
derscoring the potential of DMs and providing convincing
evidence for our aforementioned ideas. Visualization exper-
iments also illustrate that our method generates synthetic
datasets that comply with both the specific categories and
the personalized client distributions, with comparable qual-
ity and diversity to the original client dataset. Moreover,
we conduct thorough discussions on communication cost,
computational cost, and privacy concerns, further enhancing
the practicality of the proposed method.

In summary, this paper makes the following contributions:

• We propose FedLMG, a novel OSFL method, to
achieve real-world OSFL without utilizing any foun-
dation models on the clients, ensuring no additional
communicational or computational burden compared
to traditional FL methods, thereby significantly expand-
ing the practicality of OSFL.

• We propose using the locally trained client models as
a medium to transfer client knowledge to the server,
guiding the diffusion model through classification loss
and BN loss to capture the client’s category and contex-
tual features, thereby generating high-quality synthetic
datasets that comply with client distributions.

• We conduct thorough theoretical analyses, demonstrat-
ing that under the assistance of client models, the KL
divergence between the data distribution of the DM on
the server and the local data distribution is bounded.

• We conduct sufficient quantitation and visualization
experiments to demonstrate that the proposed method
outperforms other compared methods and can even sur-
pass the performance ceiling of centralized training in
some cases, further evidencing the enormous potential
of utilizing DM in OSFL.

2. Related Work
2.1. One-shot Federated Learning

In the standard FL (McMahan et al., 2017), there are multi-
ple rounds of communication between the server and clients.
To reduce the high communication cost, OSFL entails
clients training their local models to convergence first, fol-
lowed by aggregation on the server. Existing OSFL methods
can be broadly categorized into three main types. 1) Meth-
ods based on public auxiliary dataset. (Guha et al., 2019)
utilizes unlabeled public data on the server for model distil-
lation. Similarly, FedKT (Li et al., 2020a) and FedDF (Lin
et al., 2020) employ an auxiliary dataset for knowledge
transfer on the server. 2) Methods based on generators.
DENSE (Zhang et al., 2022) employs an ensemble of client
models as a discriminator to train a generator for generat-
ing pseudo samples, which is used to train the aggregated
model. To address very high statistical heterogeneity, FedC-
VAE (Heinbaugh et al., 2022) trains a conditional variational
autoencoder (CVAE) on the client side and sends the de-
coders to the server to generate data. 3) Methods based on
sharing auxiliary information. DOSFL (Zhou et al., 2020)
performs data distillation on the client, and the distilled
pseudo samples are uploaded to the server for global model
training. MAEcho (Su et al., 2023) shares the orthogonal
projection matrices of client features to the server to opti-
mize global model parameters. 4) Methods based on DMs.
We provide a detailed introduction to such methods in the
next section. Although a large number of OSFL methods
have been proposed, their practicality is significantly limited
due to the reasons mentioned in the Introduction.

2.2. FL with Diffusion Models

The DM is introduced by (Sohl-Dickstein et al., 2015). (Ho
et al., 2020) proposes the fundamental framework of the
DM. Following this, a series of sampling techniques emerge
(Song et al., 2020a; Liu et al., 2022; Song et al., 2020b), lead-
ing to the success of DMs in generation (Kingma et al., 2021;
Wang et al., 2018). Subsequently, Stable Diffusion (Rom-
bach et al., 2022) provides a series of powerful DM capable
of generating images complying with the most common
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Figure 1. Overview of FedLMG. Our method consists of three steps: Local Training, Image Generation, and Model Aggregation.
Firstly, each client independently trains their models using its private data and uploads them to the server. Assisted by these client models,
our method leverages the powerful DM to obtain the synthetic dataset that complies with different client distributions. Based on the
synthetic dataset, three strategies are provided to obtain the aggregated model.

real-world distributions. One major advantage of DMs lies
in their powerful conditional generation capability. By using
images (Saharia et al., 2022a; Wang et al., 2022; Zhang et al.,
2023b), text (Nichol et al., 2022; Saharia et al., 2022b; Kim
et al., 2022; Preechakul et al., 2022), other models (Dhari-
wal & Nichol, 2021), or initial noise (Mao et al., 2023) as
condition, DMs can accordingly generate high-quality im-
ages, inspiring the development of DM-based FL methods.

Currently, only a small number of studies have focused on
the significant potential of DMs in FL. Most DM-based
FL methods (Yang et al., 2024a;b) are based on the idea
of uploading distribution information of the client data to
the server, which can be traced back to (Li et al., 2007).
In FedDISC (Yang et al., 2024a), Stable Diffusion is intro-
duced into semi-supervised FL for the first time, achiev-
ing remarkable results within just a single communication
round. However, it requires using the CLIP image branch as
the backbone for classification, which limits its flexibility.
FGL (Zhang et al., 2023a) employ BLIPv2 (Li et al., 2023)
on the clients to extract text prompts of client images, which
are then sent to the server for image generation using DMs.
FedDEO (Yang et al., 2024b) trains a description of the
local distribution using DMs on the clients. Phoenix (Stan-
ley Jothiraj & Mashhadi, 2024) introduced FL into DMs,
proposing a distributed method for training DMs. All the
aforementioned methods involve substantial computation
and communication costs on the clients. Unlike these meth-
ods, we do not require deploying any foundational models
on the clients, which significantly reduces communication
and computational costs on the clients, further enhancing

the practicality of our method and enabling our method to
address the scenario of heterogeneous client models.

3. Method
In this section, we introduce the proposed method in detail.
Firstly, we provide essential preliminaries regarding the
diffusion process and our problem setting. Then, as stated
in Figure 1, we detail the three steps of the proposed method:
Local Training, Image Generation, and Model Aggregation.

3.1. Preliminaries

Problem Setting and Notations. Consider that we have
K clients. Taking client k as an example, this client has a
private dataset Dk = {(xi, yi)}Nk

i=1 and a client model Fθk
.

The server needs to aggregate the client models {Fθk
}Kk=1

to obtain an aggregated model Fθg that adapts various client
distributions. The overall objective of our method is:

min
w∈Rd

1

K

K∑
k=1

Ex∼Dk

[
ℓk(Fθg

;x)
]

(1)

where ℓk is the local objective function for the k-th client,
Fθg

is the parameters of the aggregated model. From this
objective function, it is evident that our goal is to train
an aggregated model that adapts to all client distributions
and exhibits excellent classification performance on the
data from each client. We evaluate the performance in the
subsequent experimental section according to this objective.

Diffusion Process. The DM ϵθ samples initial noise xT
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from a standard Gaussian Distribution N (0, I) and itera-
tively denoises it, resulting in a realistic image x0, where
T denotes the maximum timestep. (Dhariwal & Nichol,
2021) proposes the classifier-guidance, wherein the gradi-
ents backpropagated through the classifier Fθk

are used
to modify the predicted noise of the DM ϵθ(xt, t) at each
timestep. The loss function utilized for generating gradi-
ents typically involves the cross-entropy loss LCE between
the given class label y and the output of classifier Fθk

(xt).
Under the guidance of the classifier Fθk

, the sampling pro-
cess at each timestep has two steps: Firstly, for any given
timestep t ∈ {0, . . . , T}, the predicted noise is modified by
the gradients of Fθk

according to the following equation:

ϵ̂ (xt, t|y) := ϵθ (xt, t|y)−
√
1− ᾱt∇xt log pθk

(y|xt)
(2)

where ∇xt
log pθk

(y|xt) is the gradient of the classifier
Fθk

with respect to the input (xt, y). Afterwards, utilizing
the modified ϵ̂ (xt, t|y), the sample for the next time step
xt−1 is obtained:

xt−1 =
√
αt−1

(xt −
√
1− αtϵ̂(xt, t|y)√

αt

)
+
√
1− αt−1 − σ2

t · ϵ̂(xt, t|y) + σtεt (3)

where αt, αt−1 and σt are pre-defined parameters, εt is the
Gaussian noise randomly sampled at each timestep. Ac-
cording to the diffusion process described above, for the
randomly sampled initial noise xT ∼ N (0, I), after T iter-
ations, the diffusion model can denoise the initial noise into
high-quality realistic images x0 under the guidance of the
classifier Fθk

.

3.2. Local Training

The first step of our method is local training. To generate
data on the server that complies with the client distribution,
we need to transmit client information to the server. In fed-
erated learning, it’s common to send locally trained client
models to the server. Therefore, for the local data distribu-
tion pk(x) of the private datasetDk for client k, we leverage
the information from the locally trained client modelFθk

on
the server and obtain the conditional distribution pϵθ (x|θk)
based on the data distribution of the diffusion model pϵθ (x).
We aim for the synthetic dataset sampled from the condi-
tional distribution pϵθ (x|θk) to closely comply with the
client local data distribution pk(x). Therefore, considering
the relationship between pk(x) and pϵθ (x|θk) is essential.
We conduct comprehensive theoretical analyses regarding
the relationship between these two distributions.

Firstly, we need to analyze the relationship between the
unconditional data distribution of diffusion model pϵθ (x)
and the client local data distribution pk(x). As stated in
the Introduction, our motivation for utilizing the diffusion

model lies in its ability to generate data that comply with al-
most any data distribution with proper guidance. Therefore,
regarding the data distribution pk(x) of the client’s local
dataset Dk and the data distribution pϵθ (x) that the DMs ϵθ
can generate, we can make the following assumption:

Assumption 1 There exists λ > 0 such that the Kullback-
Leibler divergence from pk(x) to pϵθ (x) is bounded above
by λ:

KL(pϵθ (x)∥pk(x)) < λ (4)

In this assumption, we assume that there is some overlap
between pk(x) and pϵθ (x), which is considered reasonable.
We don’t rigidly demand that pϵθ (x) fully encompasses
pk(x). Even if the clients specialize in certain professional
domains such as medical images, given the widespread ap-
plication of DMs across various domains (Kazerouni et al.,
2023; Wang et al., 2024), the assumption can be satisfied by
replacing the DM being used. Based on Assumption 1, we
have the following theorem regarding the relationship be-
tween the conditional distribution pϵθ (x|θk) and the client
local data distribution pk(x):

Theorem 1 There exists λ > 0, for the local data distri-
bution pk(x) and the conditional distribution pϵθ (x|θk) of
the DM ϵθ conditioned on the client model Fθk

trained on
client k, we have:

KL(pk(x)∥pϵθ (x|θk)) < λ+ E(log pϵθ (θk))

−
∫

pk(x) log pϵθ (θk|x)dx (5)

For a detailed proof, please refer to the appendix. From
Eq. 5, we can observe that the KL divergence between
the conditional distribution pϵθ (x|θk), which is also the
distribution of the synthetic data, and the distribution of
client’s local data pk(x) is bounded above. This upper
bound consists of three components: λ, E(log pϵθ (θk)),
and −

∫
pk(x) log pϵθ (θk|x)dx. λ is the same as in Eq. 4.

E(log pϵθ (θk)) is a constant independent of the sample x.
−
∫
pk(x) log pϵθ (θk|x)dx is the negative log-likelihood

between the client model Fθk
and the client distribution

pk(x). Minimizing this negative log-likelihood is equiva-
lent to minimizing the cross-entropy loss LCE . This implies
that during the local training, we need to train client models
using the cross-entropy loss to minimize this upper bound of
the KL divergence. Consequently, the conditional distribu-
tion of the synthetic dataset pϵθ (x|θk) can closely approx-
imate the client’s local data distribution pk(x). Therefore,
for client k, we utilize its privacy dataset Dk and train the
client model Fθk

using the following cross-entropy loss
function:

ℓk(Fθg ;x) = LCE(Fθk
(xk

i ), y
k
i ) (6)
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After multiple rounds of training, the client models are sent
to the server to guide the generation process on the server.
It’s worth noting that in FedLMG, there are no requirements
for the used model structures, which further enhances the
practicality of our method.

3.3. Image Generation

After receiving the locally trained client models Fθk
, k =

1, . . . ,K uploaded by the clients, these client models serve
as cues for the DM, generating the synthetic dataset com-
plies with different client distributions. Firstly, we elaborate
on how the client models assist DM in generation. In our
problem setting, generated images must possess accurate
categories and comply with specified client distributions,
introducing novel demands to sampling, and necessitating
consideration of additional image attributes such as style,
color, background, etc. Relying solely on classification re-
sults falls significantly short of achieving these demands
since the classification results mainly provide information
on categories.

To provide detailed context information about the client dis-
tributions, we utilize the statistics of each batch normaliza-
tion (BN) layer of client models Fθk

: mean µ and variance
σ. In other words, we need to consider the conditional gen-
eration process p(xt−1|xt, y, {µk,l}

Lk

l=1, {σk,l}Lk

l=1), where
µk,l and σk,l respectively denote the means and the vari-
ances of all BN layers within Fθk

, and Lk represents the
number of BN layers within Fθk

. Therefore, during modi-
fying the predicted noise of the DM ϵθ(xt, t|y) at each time
step t, we compute gradients by summing the cross-entropy
loss LCE and the BN Loss LBN to incorporate the addi-
tional distribution details embedded within the statistics of
the BN layers into the diffusion process. The computation
of LBN is as follows:

LBN =

L∑
l=1

(
∥∥µl(x,θk)− µk,l

∥∥+
∥∥σ2

l (x,θk)− σ2
k,l

∥∥)
(7)

where µl(x,θk) and σ2
l (x,θk) denote the mean and vari-

ance of the output feature from the l-th BN layer after feed-
ing the sample x into the client model Fθk

.

Furthermore, since local models Fθk
are simply trained on

the client and are not accustomed to the noised input xt,
traditional classifier-guidance struggles to provide accurate
guidance through the computed gradient∇xt

log pθk
(y|xt).

To address this challenge, at any time step t, we utilize the
predicted noise ϵθ(xt, t|y) to predict x0 according to the
following equation:

x̂0,t =
xt −

√
1− αtϵ̂(xt, t|y)√

αt
(8)

Subsequently, based on x̂0,t, we compute the loss function
and gradient to modify ϵθ(xt, t|y). Although in the ini-
tial time steps, x̂0,t may appear blurry, the noise level in
comparison to xt is noticeably reduced. This decreases the
demand for the client models’ robustness of noise, mitigat-
ing the need for clients to specifically train for classifying
noised samples and further enhancing the practicality of our
method.

Finally, the overall loss function L employed in the condi-
tional generation is as follows:

L(xt, y,θk) = LCE(Fθk
(x̂0,t), y) + wBNLBN (x̂0,t,θk)

(9)
where wBN is the weight of BN Loss. After performing
gradient backpropagation according to this loss function,
we use Eqs. 2 and 3 to guide the generation process through
the client model Fθk

and its accompanying BN statistics,
enabling conditional generation.

For any given time step t ∈ {0, . . . , T}, we modify the
predicted noise of the DM based on Eq. 9:

ϵ̂ (xt, t|y) := ϵθ (xt, t|y)−
√
1− ᾱt∇xt

L(xt, y,θk) (10)

Subsequently, based on Eq. 3, we compute xt−1 using the
modified ϵ̂ (xt, t|y), leading to the realistic image x0 after
T iterations. During the generation, since we specify the
category y and the classifier Fθk

, the generated image x0

is automatically labeled. We define x0 as x̂k
i and include

along with its label yki in the synthetic dataset X̂. After
undergoing multiple iterations of generation, we obtain the
synthetic dataset X̂ = {(x̂k

i , y
k
i )}Ni=1.

3.4. Model Aggregation

Based on the synthetic dataset X̂, we proceed to obtain the
aggregated model. We employ the idea of distillation to
achieve model aggregation and introduce three strategies
to obtain the aggregated model: Fine-tuning, Multi-teacher
Distillation, and Specific-teacher Distillation.

Fine-tuning. As all samples x̂k
i , i = 1, . . . , N, k =

1, . . . ,K in the synthetic dataset X̂ have their labels yki ,
this strategy refers to directly training an aggregated model
using the cross-entropy loss LCE . The specific loss function
used during the aggregation process is as follows:

Lagg(x̂
k
i , y

k
i ) =LCE(Fθg (x̂

k
i ), y

k
i ) (11)

Although this strategy is relatively simple, since the perfor-
mance ceiling of centralized training also involves training
the aggregated model on the client data, we want to empha-
size that this strategy is closest to the centralized training,
directly reflecting the quality and diversity difference be-
tween the synthetic dataset and the original client dataset.

Multi-teacher Distillation. The second strategy is multi-
teacher distillation. The synthetic dataset X̂ serves as a
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Table 1. Performance of different methods on OpenImage, DomainNet, Unique NICO++, and Common NICO++ under feature distribution
skew, where italicized text represents the ceiling performance used solely as a reference, and bold text signifies the optimal performance
excluding the ceiling performance.

OpenImage DomainNet
client0 client1 client2 client3 client4 client5 Avg clipart infograph painting quickdraw real sketch Avg

Ceiling 49.88 50.56 57.89 59.96 66.53 51.38 56.03 47.48 19.64 45.24 12.31 59.79 42.35 36.89
FedAvg 41.46 50.36 52.61 50.36 62.10 50.17 51.18 37.96 12.55 34.41 5.93 51.33 32.37 29.09
FedDF 44.96 46.15 59.69 58.69 63.45 46.63 53.26 38.09 13.68 35.48 7.32 53.83 34.69 30.52

FedProx 44.99 48.83 49.25 56.68 61.23 46.07 51.18 38.24 12.46 37.29 6.26 54.88 35.76 30.82
FedDyn 46.93 46.08 52.44 54.67 62.84 47.73 51.78 40.12 14.77 36.59 7.73 54.85 34.81 31.48

Prompts Only 30.41 30.23 42.92 43.48 50.75 33.43 38.54 31.8 11.61 31.14 4.13 61.53 31.44 28.61
FedDISC 47.42 49.65 54.73 53.41 60.74 52.81 53.13 43.89 14.84 38.38 8.35 56.19 36.82 33.08

FGL 48.21 49.16 54.98 55.47 63.14 49.32 53.38 41.81 15.30 40.67 8.79 57.58 39.54 33.95
FedLMG FT 48.99 51.66 55.59 52.80 62.41 58.86 55.05 44.25 17.51 38.74 9.43 57.31 38.44 34.28
FedLMG SD 47.60 55.20 61.54 61.83 67.07 59.90 58.86 46.23 18.42 42.85 10.24 58.52 39.13 35.90
FedLMG MD 44.70 53.08 58.67 60.13 64.06 58.06 56.45 47.21 18.49 40.37 10.02 59.67 40.19 35.99

Unique NICO++ Common NICO++
client0 client1 client2 client3 client4 client5 Avg autumn dim grass outdoor rock water Avg

Ceiling 79.16 81.51 76.04 72.91 79.16 79.29 78.01 62.66 54.07 64.89 63.04 61.08 54.63 60.06
FedAvg 67.31 74.73 69.01 64.37 73.07 67.87 69.39 52.51 40.45 57.21 51.59 49.31 43.56 49.11
FedDF 69.79 78.90 69.53 66.01 74.86 70.80 71.65 50.44 39.62 57.42 52.91 51.61 44.76 49.46

FedProx 70.46 75.3 70.87 67.67 72.84 71.51 71.44 53.49 42.41 58.84 53.08 53.67 45.42 51.15
FedDyn 71.23 74.98 69.68 68.13 73.63 70.61 71.37 54.38 43.20 57.56 52.63 52.86 46.76 51.23

Prompts Only 69.79 69.14 69.32 59.89 67.70 66.60 67.07 50.51 38.10 54.53 49.39 49.12 41.58 47.21
FedDISC 74.32 73.47 71.25 66.79 75.28 70.06 71.86 56.82 51.43 59.45 56.17 52.32 45.64 53.64

FGL 74.62 79.43 71.26 68.65 76.37 74.31 74.11 57.25 49.35 61.81 58.42 54.29 47.62 54.79
FedLMG FT 75.13 73.30 70.31 68.88 73.60 72.51 72.29 54.63 49.21 58.13 54.75 54.64 47.03 53.07
FedLMG SD 77.34 79.94 75.01 71.87 76.69 74.92 75.96 61.49 51.47 65.28 60.03 59.57 51.14 58.16
FedLMG MD 74.66 75.78 71.05 69.58 74.34 72.11 72.92 54.42 47.83 59.85 53.94 52.96 45.15 52.36

medium of knowledge distillation, utilizing all client clas-
sifiers Fθk

as teachers to distill their knowledge into the
aggregated model. The loss function is as follows:

Lagg(x̂
k
i , y

k
i ) = LCE(Fθg (x̂

k
i ), y

k
i )

+ wMDKL(Fθg
(x̂k

i )||
∑K

k′=1 Fθ
k
′ (x̂

k
i )

K
)

(12)

whereFθg
andFθh

are the aggregated model and client clas-
sifiers, wMD is the weight of distillation loss. This strategy
maximally leverages the knowledge from all client clas-
sifiers. However, in cases of substantial variations among
clients or under the label distribution skew, the teachers from
different clients may provide wrong guidance, impacting
the performance of the aggregated model.

Specific-teacher Distillation. The third strategy is specific-
teacher distillation. Given that x̂k

i with its client ID k, we
can use the specific teacher model Fθk

to achieve model
aggregation. The loss function is as follows:

Lagg(x̂
k
i , y

k
i ) = LCE(Fθg

(x̂k
i ), y

k
i )

+ wSDKL(Fθg
(x̂k

i )||Fθk
(x̂k

i )) (13)

The meanings of each parameter are the same as mentioned
earlier. When there are significant differences between
clients or under the label distribution skew, this strategy
ensures accurate guidance and the stable performance of the
aggregated model.

4. Experiments
4.1. Experimental Settings

Datasets. We conduct experiments on three large-scale
real-world image datasets: OpenImage (Kuznetsova et al.,
2020), DomainNet (Peng et al., 2019) and NICO++ (Zhang
et al., 2023c). DomainNet comprises six domains: clipart,
infograph, painting, quickdraw, real, and sketch. Each do-
main has 345 categories. Following the partition in (Yang
et al., 2024a;b), according to the hierarchy of categories
provided by OpenImage, OpenImage is partitioned into 20
supercategories, with each supercategory comprising 6 fine-
grained subclasses, serving as the six data domains for each
category. NICO++ involves 60 categories, with each cate-
gory having six common domains shared across categories
and six unique domains specific to each category. These
two scenarios are respectively referred to as the Unique
NICO++ and Common NICO++ datasets. For instance,
in Common NICO++, both the Cat and Dog categories en-
compass 6 data domains: autumn, dim, grass, outdoor, rock,
and water. In Unique NICO++, the Cat class comprises 6
unique data domains: Eating, In Cave, In Mud, Jumping,
Maine Cat, and Walking, while the Dog class comprises 6
distinct data domains: Lying, Pug Dog, Running, Sticking
Out Tongue, Teddy Dog, and Wearing Clothes.

Compared Methods. We primarily compare 3 strategies of
FedLMG: Fine-Tuning (FedLMG FT), Multi-teacher Dis-
tillation (FedLMG MD), and Specific-teacher Distillation
(FedLMG SD) against 3 kinds of methods: 1) Ceiling. The
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OpenImage Furniture

Bed Chair ShelfCouch WardrobeDesk

Common NICO++ Bus

Autumn Dim RockGrass WaterOutdoor

Unique NICO++ Dog

Lying Pug Dog Teddy DogRunning ClothesTongue

DomainNet Apple

Clipart Infograph RealPainting SketchQuickdraw

DomainNet Backpack

Clipart Infograph RealPainting SketchQuickdraw

Figure 2. Visualization of generated samples on different datasets.

Table 2. Impact of different losses.

BN Loss CLS Loss clipart infograph painting quickdraw real sketch average

31.8 11.61 31.14 4.13 61.53 31.44 28.60
✓ 40.55 15.89 36.84 7.64 58.87 36.05 32.64

✓ 38.92 14.82 33.57 4.61 58.69 36.07 31.11
✓ ✓ 44.25 17.51 38.74 9.43 57.31 38.44 34.28

performance ceiling of traditional FL methods is central-
ized training, involving the uploading of all client local data
for the training of the aggregated model. 2) Traditional
FL methods with multiple rounds of communications: Fe-
dAvg (McMahan et al., 2017), FedDF (Lin et al., 2020),
FedProx (Li et al., 2020b), FedDyn (Acar et al., 2021).
All of them have 20 rounds of communications. Follow-
ing standard experimental settings, each round involves one
epoch of training on each client. And we use ImageNet
as the additional public data for distillation in FedDF. 3)
Diffusion-based OSFL methods: FedDISC (Yang et al.,
2024a), FGL (Zhang et al., 2023a) and Prompts Only.
Although FedDISC is designed for semi-supervised FL sce-
narios, we remove the pseudo-labeling process of FedDISC
and directly utilize the true labels of client images. An-
other point to notice is the Prompts Only, where the server
does not use the client models uploaded from clients at all
but only uses the text prompts of category names in the
server image generation. It is important to note that, we
also compare our method with DENSE (Zhang et al., 2022)
and FedCVAE (Heinbaugh et al., 2022). However, due
to the reasons highlighted in the Introduction, these meth-

Table 3. Impact of the number of generated images.

clipart infograph painting quickdraw real sketch average

N = 3450 40.77 15.95 35.66 8.51 55.81 37.1 32.3
N = 10350 44.25 17.51 38.74 9.43 57.31 38.44 34.28
N = 17250 46.03 18.61 40.07 10.7 59.27 40.72 35.9

ods primarily demonstrate results on smaller datasets like
CIFAR-10. Therefore, these methods are not utilized here.

4.2. Main Results

Firstly, we conduct experiments to assess our method un-
der feature distribution skew. From the results in Table 1,
we highlight several observations: 1) Compared to all used
methods, FedLMG consistently demonstrates superior per-
formance across all datasets, which effectively demonstrates
the performance of our method on large-scale realistic
datasets. 2) Compared to Ceiling, in multiple data domains,
our method exhibits superior performance, which confirms
that the vast knowledge of diffusion models can effectively
assist in the training of the aggregated model, resulting in
the performance surpassing the traditional performance ceil-
ing of centralized training. 3) Compared to Prompts Only,
FedLMG shows promising performance on most clients,
which emphasizes the necessity of assistance from the client
models. Images generated solely based on text prompts
have a distribution that is too broad and cannot comply with
the local image distribution of the clients. 4) Compared
to other diffusion-based methods, FedLMG demonstrates
a performance advantage on most clients. This indicates
that our method can extract more precise information about
the client distribution from the client models, guiding the
DM to generate higher-quality synthetic datasets. 5) The
comparison of three model aggregation strategies shows
that FedLMG SD achieves superior performance on most
clients, further confirming the ability of our method to gener-
ate data that complies with different distributions, enabling
the specific teachers to provide more accurate guidance.
Additionally, on DomainNet, the reason FedLMG MD per-
forms better on more clients is that the distribution within
the same data domain is more complex, and there is more
overlap between domains, allowing teachers from other
clients to contribute valuable information.

To further validate the generating ability of our method, we
present visualization results in Figure 2, illustrating that
FedLMG successfully generates images that possess accu-
rate semantic information and exhibit competitive quality
with the original client datasets.

4.3. Ablation Experiments

Ablation experiments about the loss functions. Table 2
and Figure 3 demonstrate the impact of different losses. As
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Table 4. Comparison about the communication cost.
Parameters requiring communication (M)

Ceiling FedAvg FedDISC FGL FedLMG
Upload Download Total Upload Download Total Upload Download Total Upload Download Total Upload Download Total
270.95 0 270.95 233.8 222.11 455.91 4.23 427.62 431.85 0.345 469.73 470.08 11.69 0 11.69

Table 5. Comparison of the client computation cost.
FedAvg FedDISC FGL FedLMG

FLOPS (G) 72.8 334.73 227.34 3.64

shown in Table 2, the inclusion of BN loss and classification
loss introduces category and contextual information, lead-
ing to the generation of synthetic datasets that better com-
ply with client distributions, thereby training an aggregated
model with improved performance. Figure 3 illustrates that
classification loss provides more precise category informa-
tion, while BN loss introduces more detailed contextual
information, preserving the stylistic alignment between the
synthetic dataset and the client data.

Ablation experiments about the number of generated
images. The number of images in the synthetic dataset
directly affects the performance of the aggregated model.
In most of our experiments, to ensure a fair comparison
with the Ceiling baseline in terms of the number of training
images, we maintain the total number of images across all
clients equal to that in the synthetic dataset. However, to
further investigate the impact of the number of generated
images on the performance of the aggregated model, we
conduct related ablation experiments. Using each client’s
local model, we generated 10, 30, and 50 images per class
for the categories present on the client. Therefore, for Do-
mainNet with 345 categories, the total number of images
per client N in the synthetic dataset is 3450, 10350, and
17250 respectively. The results are presented in Table 3. As
shown, increasing the number of generated images leads to
improved performance. Moreover, we observe that as the
dataset size grows, the performance gain does not saturate,
further demonstrating the diversity of the synthetic dataset.

Ablation experiments about the number of clients We
conduct ablation experiments on the number of clients on
the Common NICO++ and Unique NICO++ datasets under
label distribution skew. We set the number of clients to 6,
30, 60, and 180. The experimental results are presented in
Table 6. It can be observed that, with the well-trained client
models, the quality of the synthetic dataset and the perfor-
mance of the trained aggregated model are not significantly
affected by the increase in the number of clients. What’s
more, our method is relatively independent for each client,
showing strong adaptability to the increase in the number
of clients. These results underscore the practicality of our
method in scenarios with a large number of clients.

Prompts Only + Painting BN Loss+ Quickdraw BN Loss

+ Drums Classification Loss + Violin Classification LossPrompts Only

Figure 3. Visualization about the impact of different losses.

4.4. Discussions and Limitations

Communication Cost. We thoroughly discuss the commu-
nication cost of the proposed method. Since the communi-
cation cost of FedAvg, FedDF, FedProx, and FedDyn are
essentially the same, their results are not repeated. Prompts
Only does not involve any communication between the
client and the server. The number of iterations and the
used model structures follow the default experimental set-
tings. The comparison results of the upload and download
communication costs between FedLMG and other methods
are shown in Table 4. From the results, it is evident that
because there is no foundation model used on the clients,
FedLMG does not involve any download communication
cost, resulting in the lowest communication cost.

Computation Cost. The computation cost include the com-
putation cost on the client and the server. Regarding the
server computation cost, on one hand, as same as other
diffusion-based OSFL methods, FedLMG involves gener-
ating synthetic datasets and training the aggregated model
on the server, leading to similar server computation cost.
Meanwhile, FedLMG uses local models for conditional gen-
eration rather than incorporating additional input conditions,
which perform repeated noise prediction at each timestep.
FedLMG can reduce the server computation cost required
for generation. On the other hand, in FL, although generat-
ing data requires more computation on the server, the server,
as the center of the FL, typically has sufficient computa-
tional power. Therefore, lower client computation cost are
relatively more advantageous for practicality (Kairouz et al.,
2021). Regarding client computation cost, we conduct thor-
ough quantitative experiments in Table 5. Since FedAvg,
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Table 6. Results of the ablation experiments on the number of clients.
The Number of

Clients
Unique NICO++ Common NICO++

client0 client1 client2 client3 client4 client5 Avg autumn dim grass outdoor rock water Avg
6 75.13 73.30 70.31 68.88 73.60 72.51 72.28 54.63 49.21 58.13 54.75 54.64 47.03 53.07

30 74.24 74.32 71.63 68.97 72.53 72.10 72.29 53.23 50.47 57.07 55.66 54.09 46.49 52.84
60 74.52 73.64 70.39 69.54 73.65 71.05 72.13 54.27 49.18 57.99 54.44 53.16 48.90 52.99

180 75.64 74.06 70.89 68.67 72.15 71.94 72.23 53.26 49.45 56.55 53.86 53.19 46.73 52.17

Client Dataset The Synthetic Dataset 

Figure 4. Visualization of privacy-sensitive categories.

FedDF, FedProx, and FedDyn have similar client computa-
tion costs, they are not compared separately. Ceiling and
Prompts Only do not involve any client computation, so
they are not included in the comparison. The number of
iterations and the model structures used follow the default
experimental settings. The quantified results demonstrate
that FedLMG has a significant advantage in client compu-
tation cost due to not involving any foundation model on
the clients and only requiring training of client models in a
single round of iteration, demonstrating its practicality.

Privacy Issues. Transmitting client models is the most com-
mon practice in FL. Since our method only requires upload-
ing the client model once, it offers a significant advantage
in privacy protection compared to other traditional FL meth-
ods. Compared to other OSFL methods, where either the
trained generative model (Zhang et al., 2022; Heinbaugh
et al., 2022) or direct descriptions of client images are up-
loaded (Yang et al., 2024a; Zhang et al., 2023a), extracting

Table 7. Impact of adding noise to the uploaded parameters.

Noise Weight clipart infograph painting quickdraw real sketch average

0 44.25 17.51 38.74 9.43 57.31 38.44 34.28
20 43.53 17.06 38.49 9.13 57.08 38.15 33.91
50 42.82 16.73 37.63 8.67 56.51 37.25 33.273
100 40.86 16.04 35.28 8.19 55.68 35.14 31.86

user privacy information from client models is more chal-
lenging. To further demonstrate FedLMG’s performance
in privacy protection, we conduct sufficient quantitation
and visualization experiments. We select some categories
from OpenImage that may contain privacy-sensitive infor-
mation, such as human faces, vehicle registration plates, and
notebooks. We train client models on these categories and
generate synthetic datasets. The visualization results are
shown in Figure 4. It can be observed that the synthetic
datasets only share similar styles and accurate semantics
with the original client datasets. It is almost impossible to
extract specific privacy-sensitive information from the client
models, which aim to learn the classification boundary.

Moreover, since our method only involves uploading lo-
cal models, consistent with traditional FL, most existing
privacy-preserving techniques in traditional FL can be di-
rectly applied to our method. To further validate this, we
add noise to the uploaded model parameters to ensure dif-
ferential privacy, which is commonly used in FL (Wei et al.,
2020), and evaluate its impact on model performance. We
add different weights of noises to the uploaded model pa-
rameters and conduct experiments. The results are presented
in Table 7. As shown in this table, our method can effec-
tively accommodate privacy-protecting techniques in FL.
By adding noise to the uploaded parameters, we can protect
client privacy and achieve differential privacy.

5. Conclusion
In this paper, we propose FedLMG. Compared to existing
OSFL methods, we eliminate the need for auxiliary datasets
and generator training, making it effortlessly applicable in
real-world scenarios. Comprehensive experiments on three
large-scale datasets demonstrate that the proposed FedLMG
outperforms all compared methods and even surpasses the
performance ceiling of centralized training in some cases,
underscoring the potential of applying DMs in OSFL.
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Impact Statement
Given that our method utilizes a pre-trained diffusion model,
there is a possibility of generating sensitive or private infor-
mation. However, the Stable Diffusion model we rely on has
been equipped with a robust safety-checking mechanism
designed to minimize such risks. We also conduct sufficient
experiments to demonstrate the performance of our method
in privacy protection. As a result, we feel that our method
does not raise additional significant concerns or potential
broader impacts that warrant specific attention or further
discussion here.
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In the appendix, we provide a substantial amount of content that couldn’t be included in the main text due to space
limitations, which can mainly be divided into three sections: 1) Method Details. We further elaborate on the details of
the proposed method, including proofs of theoretical analyses and pseudo code of the proposed method. 2) Experimental
Setting Details. More detailed information about the datasets and client partitions are provided, along with thorough
implementation details. 3) Supplementary Experiments. We further demonstrate the performance of the proposed method
through supplementary quantitation and visualization experiments, such as ablation experiments regarding the number of
clients and the use of different diffusion models, quantitation and visualization experiments concerning privacy, and more
visualization experiments of synthetic datasets, etc.

A. Method Details
Our method focuses on one-shot federated learning (OSFL), involving using the client models trained by the clients to guide
the DMs in generating the synthetic dataset that complies with different client distributions. In the main text, we delve into
the relationship between the synthetic data distribution and the client distribution and provide theoretical analyses. In this
section, we detail our theoretical analyses and provide the pseudocode of the proposed method in Algorithm 1.

A.1. Proofs

In this section, we provide a proof of the theoretical analyses in the main text, regrading the upper bound of the KL
divergence between the distributions of the synthetic dataset and the client datasets. Firstly, in section 3.1 of the main text,
we introduce an assumption: for the data distribution of client k pk(x) and the data distribution of the DMs pϵθ (x), we have:

Assumption 1 There exists λ > 0 such that the Kullback-Leibler divergence from pk(x) to pϵθ (x) is bounded above by λ:

KL(pϵθ (x)∥pk(x)) < λ (14)

Based on this assumption, considering the KL divergence between the distributions of the original client dataset pk(x) and
the synthetic dataset pϵθ (x|θk), which is the conditional distribution of the DMs conditioned on the trained discriptions θk,
we have:

Theorem 1 There exists λ > 0, for the local data distribution pk(x) and the conditional distribution pϵθ (x|θk) of the DM
ϵθ conditioned the client model Fθk

trained on client k, we have:

KL(pk(x)∥pϵθ (x|θk)) < λ+ E(log pϵθ (θk))−
∫

pk(x) log pϵθ (θk|x)dx (15)

Proof. Firstly, based on the definition of KL divergence, we have:

KL(pk(x)∥pϵθ (x|θk)) = −
∫

pk(x) log
pϵθ (x|θk)

pk(x)
dx (16)

Based on the Bayes’ theorem, we have:

pϵθ (x|θk) =
pϵθ (θk|x)pϵθ (x)

pϵθ (θk)
(17)

From Eq. 16 and Eq. 17, we have:
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KL(pk(x)∥pϵθ (x|θk)) = −
∫

pk(x) log
pϵθ (x|θk)

pk(x)
dx

= −
∫

pk(x) log
pϵθ (θk|x)pϵθ (x)
pk(x)pϵθ (θk)

dx

=

∫
pk(x) log

pk(x)pϵθ (θk)

pϵθ (θk|x)pϵθ (x)
dx

=

∫
pk(x) log

pk(x)

pϵθ (x)
dx+

∫
pk(x) log

pϵθ (θk)

pϵθ (θk|x)
dx

= KL(pk(x)∥pϵθ (x)) +
∫

pk(x) log
pϵθ (θk)

pϵθ (θk|x)
dx (18)

From Eq. 14 and Eq. 18, we have:

KL(pk(x)∥pϵθ (x|θk)) < λ+

∫
pk(x) log

pϵθ (θk)

pϵθ (θk|x)
dx (19)

, where λ is defined in Assumption 1. Next, we focus on the integral term within Eq. 19:∫
pk(x) log

pϵθ (θk)

pϵθ (θk|x)
dx

=

∫
pk(x) log pϵθ (θk)dx−

∫
pk(x) log pϵθ (θk|x)dx

= E(log pϵθ (θk))−
∫

pk(x) log pϵθ (θk|x)dx (20)

Therefore, from Eq. 19 and Eq. 20, we have :

KL(pk(x)∥pϵθ (x|θk)) < λ+ E(log pϵθ (θk))−
∫

pk(x) log pϵθ (θk|x)dx (21)

With Theorem 1 proven, we thoroughly demonstrate that under the assistance of client models, the conditional distribution
of the server’s DM is sufficiently close to the local distribution of different clients. Moreover, the more comprehensive the
client models training, the higher overlap between the non-conditional distribution of the diffusion model and the client
local distributions, and the smaller the KL divergence between the conditional distribution and the local distributions. This
provides a theoretical foundation for us to generate synthetic datasets that match different client distributions on the server.

B. Experimental Setting Details
In this section, we detail the experimental settings of the proposed method that couldn’t be elaborated on in the main
text due to the space limitations, primarily comprising three parts: 1) Dataset Details. 2) Client Partition Details. 3)
Implementation Details.

B.1. Dataset Details

Our experiments are conducted on three datasets: DomainNet (Peng et al., 2019), OpenImage (Kuznetsova et al., 2020)
and NICO++ (Zhang et al., 2023c). The example images of each dataset are presented in figure 5. As mentioned in
the main text, this figure clearly illustrates the emphases on the partition of data domains across different datasets is
different. DomainNet primarily focuses on image style, OpenImage concentrates on fine-grained subcategories within each
supercategory, Common NICO++ prioritizes image backgrounds, and Unique NICO++ places its emphasis on specific
object attributes. The datasets we employ comprehensively simulate various types of differences that may exist among
clients, thereby further enhancing the practicality of the proposed method.
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Algorithm 1 FedLMG: a heterogeneous one-shot Federated learning method with Local model-Guided diffusion models
Input: The client models {Fθk

}Kk=1. A pre-trained diffusion model ϵθ. Output: An aggregated model Fθg adapted to the
data distributions of all client datasets Dk = {(xi, yi)}Nk

i=1 , yi ∈ {1, . . . , C}.
1: create empty synthetic dataset X̂ = {}
2: for domain label k = 1, . . . ,K do
3: for number of synthetic images i = 1, . . . , N do
4: randomly select a category y supported by the client model Fθk

.
5: randomly sample the initial noise x̂M

T from N (0, I).
6: for m = M, . . . , 0 do
7: use ϵθ to compute ϵθ (x̂

m
T , T |y)

8: x̂m
0,T ←

x̂m
T −

√
1−αT ϵθ(x̂

m
T ,T |y)√

αT

9: L(x̂m
T , y,θk)← LBN (x̂m

0,T ,θk)

10: x̂m−1
T ← x̂m

T − η▽x̂m
T
L(x̂m

T , y,θk).
11: end for
12: xT ← x̂0

T

13: for t = T, . . . , 0 do
14: use ϵθ to compute ϵθ (xt, t|y)
15: x̂0,t ← xt−

√
1−αtϵθ(xt,t|y)√

αt

16: compute L(xt, y,θk) by Eq. (6).
17: compute ϵ̂ (xt, t|y) by Eq. (8).
18: compute xt−1 by Eq. (2).
19: end for
20: (x̂k

i , y
k
i )← (x0, y)

21: add (x̂k
i , y

k
i ) to synthetic dataset X̂

22: end for
23: end for
24: use X̂ = {(x̂k

i , y
k
i )}Ni=1, k = 1, . . . ,K to train an aggregated model Fθg

by fine-tuning, multi-teacher distillation or
specific-teacher distillation as described in the main text.

25: return the aggregated model Fθg

B.2. Client Partition Details

B.2.1. CLIENT PARTITION.

The client partitioning is primarily aimed at reflecting the non-IID of data across various clients. In federated learning, there
are primarily two types of non-IID data: feature distribution skew and label distribution skew (Kairouz et al., 2021). We
address these two scenarios separately in our client partition. For feature distribution skew, we conduct experiments on all
four datasets. For each dataset, we allocate the six data domains of all categories to six clients, with each client possessing
data from one unique domain for all categories. Regarding label distribution skew, experiments are conducted on Common
NICO++ and Unique NICO++ datasets. Each 10 categories of the total 60 categories is grouped, resulting in six clients.
Each client owns all data from 10 categories. As mentioned in the main text, there is no data overlap between clients in all
partitions. Therefore, our partitioning maximizes the degree of non-IID among client data and considers various non-IID
scenarios.

B.2.2. NUMBER OF IMAGES.

The number of images on each client is important in our experimental setting, since we need to compare the performance of
the proposed method with Ceiling, the performance ceiling of centralized training, involving the direct comparison between
the synthetic dataset and original client dataset. Considering the cost of generation, we set the number of images generated
with the assistance of each client model to 30 in most experiments except the ablation experiments about the number of
images. The total number of images in each category of the synthetic dataset is 180. To ensure the fairness in comparing
the synthetic dataset with the original client dataset, the maximum number of images for each category in each client local
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Figure 5. Example images of used datasets.

Table 8. Client partition on the OpenImage dataset.
Supercategory Baked Goods Bird Building Carnivore Clothing Drink Fruit Furniture Home appliance Human body

Client0 Pretzel Woodpecker Convenience Store Bear Shorts Beer Apple Chair Washing Machine Human Eye
Client1 Bagel Parrot House Leopard Dress Cocktail Lemon Desk Toaster Skull
Client2 Muffin Magpie Tower Fox Swimwear Coffee Banana Couch Oven Human Mouth
Client3 Cookie Eagle Office Building Tiger Brassiere Juice Strawberry Wardrobe Blender Human Ear
Client4 Bread Falcon Castle Lion Tiara Tea Peach Bed Gas Stove Human Nose
Client5 Croissant Sparrow Skyscraper Otter Shirt Wine Pineapple Shelf Mechanical Fan Human Foot

Supercategory Kitchen Utensil Land Vehicle Musical Instrument Office Supplies Plant Reptile Sports Equipment (Ball) Toy Vegetable Weapon
Client0 Spatula Ambulance Drum Pen Maple Dinosaur Football Doll Potato Knife
Client1 Spoon Cart Guitar Poster Willow Lizard Tennis Ball Balloon Carrot Axe
Client2 Fork Bus Harp Calculator Rose Snake Baseball Dice Broccoli Sword
Client3 Knife Van Piano Whiteboard Lily Tortoise Golf Ball Flying Disc Cabbage Handgun
Client4 Whisk Truck Violin Box Common Sunflower Crocodile Rugby Ball Kite Bell Pepper Shotgun
Client5 Cutting Board Car Accordion Envelope Houseplant Sea Turtle Volleyball Teddy Bear Pumpkin Dagger

dataset is also set to 30, as same as the image number for each category in each data domain of the synthetic dataset.

B.2.3. NUMBER OF CLIENTS.

Regarding the number of clients, it’s worth noticing that in our method, each client is entirely independent of the other
clients. When the total number of images of the synthetic dataset is consistent, increasing the number of clients do not
introduce interference between clients and affect the performance of the proposed method. Therefore, in the majority of our
experiments, we set the number of clients to 6.

Nevertheless, we still conduct experiments related to the number of clients to demonstrate the practicality of the proposed
method for a large number of clients. Following the commonly used Dirichlet distribution in partitioning non-IID clients (Hsu
et al., 2019), in the feature distribution skew scenario, for the 6 domains of the Common NICO++ and Unique NICO++
datasets, we sample 5, 10, and 30 clients per domain from Dirichlet(α = 1.0) according to the categories. Consequently,
the total number of clients changes from the original 6 to 30, 60, and 180. The clients simultaneously exhibit feature
distribution skew and label distribution skew. The number of images in each category of the client local dataset remains 30.
To ensure fairness in comparison across different numbers of clients, the total number of images in each category of the
synthetic dataset remains 180, shifting the number of the generated images guided by each client model from 30 to 6, 3, and
1. For example, when the number of clients is 180, each model trained on each client guides the generation of 1 image in the
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Table 9. Results of the ablation experiments on the used diffusion model.
The Used

Diffusion Model
Unique NICO++ Common NICO++

client0 client1 client2 client3 client4 client5 Avg autumn dim grass outdoor rock water Avg
SD-1.5 77.34 79.94 75.01 71.87 76.69 74.92 75.96 61.49 51.47 65.28 60.03 59.57 51.14 58.16
SD-2.1 78.56 80.43 75.80 72.79 76.57 74.21 76.39 60.13 52.01 66.03 59.60 59.88 52.46 58.35
LDM 75.50 77.11 75.34 70.14 72.37 72.25 73.79 58.74 50.42 65.78 58.3 55.85 50.85 56.65

Table 10. Comparison of the FID between datasets.
FID between Different Datasets

Clipart Infograph Painting Quickdraw Real B Sketch Synthetic
Real A 284.39 228.44 221.01 297.37 131.48 195.74 147.94

synthetic dataset on the server.

B.3. Implementation Details

In our experiments, we mainly use ResNet-18 (He et al., 2016) as the model structure of the aggregated model. In the
experiment with heterogeneous models, the structures of the client models are MobileNetV3 (Howard et al., 2019), ResNet18
(He et al., 2016), ResNet34 (He et al., 2016), MobileNetV2 (Sandler et al., 2018), VGG16 (Simonyan & Zisserman, 2014),
and ShuffleNet (Zhang et al., 2018), and the structure of the aggregated model is ResNet50 (He et al., 2016). The pre-trained
DM we mainly used is Stable-diffusion-v1.5 from the HuggingFace model repository, which includes a corresponding CLIP
text encoder used in our method to extract text features fc for the name of each category c. We also use Stable-diffusion-v2.1
from the HuggingFace model repository and the pre-trained Latent Diffusion Model (Rombach et al., 2022) from Github. The
Stable-diffusion-v1.5 and Stable-diffusion-v2.1 are pre-trained on the LAION-5B dataset (Schuhmann et al., 2022) and the
Latent Diffusion Model is pre-trained on the LAION-400M dataset (Schuhmann et al., 2021). Both datasets are large-scale
image-text paired datasets, covering a wide range of image distributions encountered in daily life to satisfy Assumption
1. All experiments are conducted with four NVIDIA GeForce RTX 3090 GPUs. Regarding specific hyperparameters, the
weight λ in the loss function is set to 0.2. The relevant hyperparameters for the diffusion generation process are set to their
default values. The number of inference steps is 50, and the guidance scale of the generation is 3.

C. Supplementary Experiments
We primarily conduct supplementary experiments targeting three aspects that are not detailed in the main text because
of the space limitation: 1) Ablation Experiments. Experiments regarding the used pre-trained diffusion models, the
heterogeneous client models and the experiments under the label distribution skew. 2) Privacy-related Supplementary
Experiments. Experiments regarding the discussions in the main text, including experiments on privacy. 3) More
Visualization Experiments. Experiments to further illustrate the quality and diversity of the synthetic dataset.

C.1. Ablation Experiments.

As stated in the main text, to further demonstrate the performance of the proposed method, we conduct sufficient ablation
experiments. We discuss the two components of the loss function: the BN loss and the cross entropy loss, as well as the role
of initial noise editing. Additionally, we discuss the impact of various hyperparameters used in our method, including the
number of images generated by the server, the number of clients, and the specific employed DM. Due to space constraints in
the main text, we provide some of the ablation experiments here.

C.1.1. EXPERIMENTS WITH DIFFERENT DIFFUSION MODEL

Since the synthetic datasets are used to train the aggregated model, the DM used for generating these synthetic datasets is
important in our method. However, this does not mean that our method is heavily dependent on a specific DM. Firstly, as
stated in Assumption 1, we only need a partial overlap between the distributions of the DM and the client distributions. This
can be easily achieved with DM pre-trained on large-scale image datasets like LAION-5B (Schuhmann et al., 2022). Even if
clients are concentrated in specialized fields, such as medical images, it is entirely feasible to firstly train the specialized
DM on the server. Secondly, compared to other diffusion-based OSFL methods (Yang et al., 2024a; Zhang et al., 2023a) or
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Table 11. Performance of different methods on NICO++ with heterogeneous models under feature distribution skew.
Unique NICO++ Common NICO++

client0 client1 client2 client3 client4 client5 Avg autumn dim grass outdoor rock water Avg
Ceiling 83.07 84.89 84.11 80.85 84.76 84.47 83.69 70.25 60.98 70.28 68.45 68.01 59.97 66.33
FedDF 71.09 70.57 67.96 66.67 62.11 52.34 65.12 49.97 43.37 60.05 55.12 53.75 51.17 52.24

Prompts Only 76.56 76.43 77.08 70.05 75.78 71.77 74.61 66.68 50.52 67.42 59.73 62.50 52.42 59.88
FedDISC 80.15 77.53 77.18 72.92 76.55 73.85 76.36 65.93 52.78 68.58 60.35 64.09 54.20 60.98

FGL 79.47 78.76 78.73 71.88 77.86 70.59 76.21 65.31 54.38 70.29 62.67 60.28 53.08 61.01
FedLMG FT 81.77 76.56 79.68 75.03 76.82 77.24 77.85 65.06 57.33 69.47 63.64 66.01 57.34 63.14
FedLMG SD 81.38 79.68 82.03 76.63 79.42 74.31 78.91 64.62 55.51 66.42 61.89 62.40 55.26 61.01
FedLMG MD 81.64 81.91 82.55 81.89 82.94 75.48 81.07 68.19 57.55 71.46 66.28 67.18 58.82 64.91

Table 12. Performance of different methods on NICO++ under label distribution skew.
Unique NICO++ Common NICO++

client0 client1 client2 client3 client4 client5 Avg autumn dim grass outdoor rock water Avg
Ceiling 74.02 78.90 79.68 74.47 77.34 77.47 76.98 50.24 54.36 63.35 64.82 61.99 65.09 59.98
FedAvg 34.96 58.98 38.41 63.41 45.44 59.76 50.16 18.23 27.79 36.32 52.42 37.96 39.24 35.33
FedDF 51.85 52.34 55.85 52.47 54.42 59.24 54.36 31.40 32.22 43.73 45.19 36.01 43.08 38.61

FedProx 54.55 60.51 54.05 58.34 55.69 57.78 56.82 37.31 35.95 42.78 48.92 41.07 47.53 42.26
FedDyn 55.29 59.71 56.68 61.74 48.99 61.31 57.29 36.83 37.85 45.21 51.38 42.74 44.36 43.06

Prompts Only 67.38 71.88 67.70 64.19 63.41 63.28 66.31 38.64 45.55 53.08 54.72 50.19 59.91 50.35
FedDISC 71.89 73.20 70.51 70.02 75.62 69.82 71.84 50.75 51.64 60.79 58.33 55.41 57.28 55.70

FGL 69.51 74.59 71.36 69.41 69.65 71.42 70.99 45.34 51.41 60.44 59.65 58.87 62.33 56.34
FedLMG FT 73.30 71.48 68.97 69.71 72.91 65.49 70.31 58.98 46.53 60.93 57.45 53.92 54.32 55.36
FedLMG SD 67.77 76.04 73.95 70.44 76.56 68.35 72.19 49.27 52.63 57.52 59.84 65.11 64.98 58.25

federated learning methods based on foundation models (Su et al., 2024; Yang et al., 2023; Qiu et al., 2023), our method
does not utilize the foundation models on the clients. Therefore, there is no requirement for the foundation model to fit the
client data, significantly reducing the dependency on the foundation model.

To substantiate this claim, we conduct ablation experiments on three commonly used diffusion models, Stable-diffusion-v1.5,
Stable-diffusion-v2.1, and Latent Diffusion Model (LDM). The experimental results are provided in Table B.2.1. From
the table, it is evident that: 1) Our method can train high-performance aggregated models with different diffusion models.
2) Although the performance with LDM consistently surpasses other traditional FL methods, there is a performance gap
compared to using Stable Diffusion. This is mainly because the LDM is pre-trained on LAION-400M (Schuhmann et al.,
2021), and the difference in data scale results in a less extensive distribution and limited generative capability. This indirectly
supports Theorem 1. 3) The best training results are achieved using Stable-diffusion-v2.1. Despite both Stable-diffusion-v2.1
and Stable-diffusion-v1.5 being pre-trained on LAION-5B (Schuhmann et al., 2022), Stable-diffusion-v2.1 has better
generative quality due to its parameters and improved denoising capability. These results indicate that our method is not
limited to the specific diffusion model, enhancing its practicality.

C.1.2. EXPERIMENTS ON HETEROGENEOUS CLIENT MODELS

In addition to data heterogeneity, we also discuss the performance of FedLMG when there is heterogeneity in model
structures across clients. Since FedAvg, FedProx, and FedDyn all require averaging the model parameters uploaded by
clients and do not support heterogeneous model aggregation, they are not included in the comparison. The results are
shown in the table B.3. From the table, we highlight the following two observations: 1) Because FedLMG does not
restrict the specific model structure used by clients, these results also demonstrate excellent performance of our method on
heterogeneous models, consistently surpassing all comparison methods and exceeding the performance ceiling of centralized
training on some clients, further enhancing the practicality of FedLMG. 2) Notably, unlike the scenario with homogeneous
client models, FedLMG MD achieves better performance on most clients with heterogeneous models. The primary reason
is that due to differences in model structures, the classifiers uploaded by clients vary significantly in performance. As a
result, teachers from other clients might provide more accurate information despite the differences among clients, leading to
better performances.
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Figure 6. Supplementary visualization of the synthetic dataset on DomainNet.

C.1.3. EXPERIMENTS UNDER LABEL DISTRIBUTION SKEW

To validate the performance of FedLMG under label distribution skew, we conduct experiments on Unique NICO++ and
Common NICO++. Due to the label distribution skew among clients, the teachers from different clients cannot provide
effective information, and therefore FedLMG MD is not included in this comparison. The results are presented in Table B.3.
As shown in the table, similar to the experiments conducted under feature distribution skew, our method also outperforms
all comparison methods under label distribution skew, with performance on some clients even surpassing the centralized
training upper bound. This further demonstrates the adaptability of our method on various non-IID client data scenarios.

C.2. Privacy-related Supplementary Experiments.

In the main text, we conduct sufficient discussions and visualization experiments to demonstrate the privacy protection
performance of our method. Here, we further address privacy issues, including comparing the FID (Fréchet Inception
Distance) between the synthetic dataset and the client datasets, as well as presenting more visualization experiment results.

To illustrate the effectiveness of our method in preserving privacy, we assess the Fréchet Inception Distance (FID) between
the synthetic dataset and the client local datasets, focusing on categories containing potentially sensitive information, such as
the Face in DomainNet. Specifically, we divide the dataset of the Real domain into two non-overlapping parts, referred to as
Real A and Real B, to represent the FID between datasets without privacy leakage but with the same style. We compute the
FID between Real A and datasets from other domains, as well as the Real domain of the synthetic dataset. Additionally, we
gather photos of the same individual with different styles from the internet, partitioning them into two groups and calculating
the FID between these groups to establish a threshold for potential privacy leakage. Through various experiments, we
determine that this FID threshold is approximately 80, as shown in Table 10. Analysis of the table reveals that the FID
between Real A and the synthetic dataset falls within an optimal range—not too low, which could imply the presence of
identical images leading to privacy concerns, nor too high, indicating significant style discrepancies in the generated images.
These quantitative findings affirm that with the assistance of client models, the server can produce a synthetic dataset that
aligns with client distributions while safeguarding privacy-sensitive information.
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Figure 7. Supplementary visualization of the synthetic dataset on OpenImage and NICO++.

C.3. More Visualization Experiments.

Similar to the main text, we conduct more visualization experiments to illustrate the quality and diversity of the synthetic
dataset. The experimental results are presented in Figure 6 and 7. These visualizations further demonstrate that the generated
synthetic dataset complies with various client distributions in style, subcategory, or background, with accurate semantic
information. The synthetic dataset has comparable diversity and quality with the original client datasets, directly contributing
to the performance of the trained aggregated model.
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