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ABSTRACT

We introduce FeedFace, a novel inference-based method designed to augment
text-to-image diffusion models with face-based conditional generation. Trained
on a thoroughly curated and annotated dataset of diverse human faces, FeedFace
operates without additional training for new facial conditions during generation.
Our method can create images that are not only true to the textual descriptions but
also exhibit remarkable facial faithfulness in seconds. Our model supports using
multiple faces as input conditions, leveraging extra facial information to improve
facial consistency. A key strength of our method lies in its efficiency. Through our
experiments, we demonstrate that FeedFace can produce face-conditioned sam-
ples with comparable quality to leading industry methods, using only 0.4% of
their data volume and fewer than 5% of the samples seen by these methods dur-
ing training.

1 INTRODUCTION

Advancements in text-to-image (T2I) generation, particularly diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2020), have led to the creation of high-quality and di-
verse images (Rombach et al., 2021; Ramesh et al., 2022; Bao et al., 2023). However, the challenge
persists in generating images with highly consistent facial features. Traditional approaches predom-
inantly rely on optimization-based methods with a limited dataset for training, enabling generation
that aligns with the samples (Ruiz et al., 2022; Gal et al., 2022). Yet, this approach requires individ-
ual training and storage of parameters, resulting in substantial computational and memory costs.

In our research, we have developed a method that facilitates the generation of highly consistent
human images without additional training for each new subject. Remarkably, our pre-training pro-
cess is considerably more efficient compared to existing industry standards (e.g. Face0 (Valevski
et al., 2023)), requiring only 41K data samples and 4.8M training steps. This represents a significant
reduction in training costs, paving the way for more efficient and scalable solutions in the field.

2 METHOD

To seamlessly integrate new conditions in T2I models with efficient training, our approach focuses
on two key aspects: model architectural design and strategic training framework formulation.

2.1 ARCHITECTURE DESIGN

2.1.1 FACE IMAGE ENCODER

We use the pre-trained CLIP image encoder1 as the face feature extractor. CLIP (Radford et al.,
2021), a multi-modal model trained on a vast array of image-text pairs, is adept at extracting rich

∗Equal contribution.
1https://huggingface.co/openai/clip-vit-base-patch32
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Figure 1: Our face-controlnet architecture design.

semantic content due to its well-aligned image and text feature spaces. This is complemented by a
simple, trainable linear layer to align the face features with the model’s latent space.

2.1.2 FACE-CONTROLNET

We propose a face-controlnet, designed to enable our model to integrate additional conditional in-
puts. Illustrated in Figure 1, our architecture combines a control block and an origin block, both
using the same image latent as input. The control block comprises a self-attention block, a cross-
attention block, an MLP, and a linear layer initialized at zero. The cross-attention block is specifi-
cally used for processing facial condition information, while the zero-initialized linear layer ensures
the initial model predictions remain consistent with the original model for a gradual optimization
process and prevention of training disruptions. The origin block represents the standard transformer
blocks in the U-Net/U-ViT and stays frozen during training. The outputs of these blocks are added
together to produce the final result.

2.2 TRAINING STRATEGY DESIGN

We solely optimize the control blocks and the linear layers added to the CLIP image encoder. To aid
the model learn the relevant parts of the image condition, we employ a regularization mask loss:

loss =
∥∥mask · (ϵ− ϵθ (xt, t, c)) + (1−mask) · (ϵθ̂ − ϵθ (xt, t, c))

∥∥2
2
,

where mask represents the facial mask, ϵ the ground truth noise, ϵθ̂ the noise predicted by the
original model, and ϵθ the noise in the face-conditioned model predictions. Details on training and
inference can be found in Appendix B, including the hyperparameters used in our experiments.

3 EXPERIMENTS & RESULTS

Our training uses a refined collection of 41K samples (0.4% of the 10M used by Face0) from FFHQ
(Karras et al., 2018), described in detail in Appendix A. During train, our model uses a total of 4.8M
image-text pairs for optimization (3.75% of the 128M used by Face0).

Methods
Face Align. ↑ Text Align. ↑

Overall ↑ Time ↓
Insightface CLIP ImageReward CLIP

DreamBooth 0.176 0.718 0.878 0.316 2.09 72min
FeedFace (Ours) 0.293 0.818 0.760 0.298 2.17 22min

Table 1: Results against DreamBooth (Ruiz et al., 2022) on face and text alignment, and time usage.

We build a benchmark with 36 identity cases. Specifics about metric design and computation are
detailed in Appendix C. Summarized in Table 1, our results demonstrate the efficiency and effec-
tiveness of our approach against DreamBooth (Ruiz et al., 2022), a widely recognized method.
Generation samples and further results are available in Appendix E.

4 CONCLUSION

Our work successfully extends the capabilities of T2I diffusion models to support face-conditioned
generation, demonstrating the efficacy and efficiency of our method. Discussion on limitations and
future work is available in Appendix D
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(a) Standard diffusion loss (b) Mask diffusion loss (c) Regularization mask loss

Figure 2: Visualization of different loss function strategies with a mask. Higher brightness means
the constraint of that given part of the image is closer to ground truth. Accordingly, the black parts
mean there is no constraint.

A DATA PROCESSING DETAILS

We use the FFHQ dataset (Karras et al., 2018), which includes 70K in-the-wild images, as our
primary training dataset. The processing of these images included several critical steps to ensure the
quality and relevance of the data for training:

• Image Filtering: Removal of images containing multiple or unrecognizable faces.
• Image Captioning: Utilization of the LLaVA visual-language model (Liu et al., 2023) for

generating descriptive captions for the images.
• Face Detection and Cropping: Implementation of Insightface (Deng et al., 2018) for face

detection. We expanded the bounding box around each face by 1.1 times, then cropped it
into a square based on the longer side to ensure the entire face was included.

• Face Mask Generation: Create high-quality face masks using Facer (Deng et al., 2020).

This process yielded a refined dataset of 41K instances. Each instance comprises four elements: the
original image, its corresponding caption for the text encoder, the detected face image for the image
encoder, and the face mask for computing the regularization mask loss.

B TRAINING AND INFERENCE DETAIL

B.1 DESIGN OF REGULARIZATION MASK LOSS

We illustrate various loss computation strategies using a mask in Figure 2. The mathematical for-
mulations for each method are as follows:

Standard diffusion loss : ∥(ϵ− ϵθ (xt, t, c))∥22,
Mask diffusion loss : ∥mask · (ϵ− ϵθ (xt, t, c))∥22,

Regularization mask loss :
∥∥mask · (ϵ− ϵθ (xt, t, c)) + (1−mask) · (ϵθ̂ − ϵθ (xt, t, c))

∥∥2
2
,

where mask represents the facial mask, ϵ the ground truth noise, ϵθ̂ the noise predicted by the
original model, and ϵθ the noise in the face-conditioned model predictions, t is the noise level, c is
the condition. The standard diffusion loss applies to all pixels in the image, which could lead the
model to fit less important areas, especially when the facial region is small. The mask diffusion loss
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Figure 3: Generated images with blurred and low-detail backgrounds due to the mask diffusion loss.

Methods Training Data Volume ↓ # Samples Seen During Training ↓
Face0 10M 128M
FeedFace (Ours) 41K 4.8M

Table 2: Results against Face0 (Valevski et al., 2023) on training efficiency.

focuses solely on the facial pixels; however, without constraints on the background, this can result
in a sacrificed background quality, often leading to low details or blurring, as shown in Figure 3.
The regularization mask loss employs ground truth noise for constraints on the face, enabling the
model to learn a more accurate mapping between facial features and generated images. For the
background, it uses the prediction noise of the original model for constraints, ensuring that the face-
controlnet does not impact unimportant areas. This approach aligns with the zero-linear aspect of
the face-controlnet, allowing the model’s initial predictions to match the original model. As a result,
the background part loss is initially zero, with the optimization led primarily by the face part loss,
thereby facilitating faster convergence.

B.2 TRAINING DETAIL

The overall framework is optimized with AdamW (Loshchilov & Hutter, 2019) with a learning rate
of 2e−5. During training, the face condition feature is set to a zero vector 10% of the time to enable
classifier-free guidance on the direction of the face. Additionally, also at a ratio of 10%, we use the
standard diffusion loss to reduce the face-paste appearance in the generated images.

The training procedure was conducted on 6 NVIDIA A100 GPUs (80GB), with a total batch size of
96 (i.e., with a batch size of 16 per GPU) and for 50k steps. The process took approximately one day
and a half to complete, with the model training on 4.8M image-text pairs. Head-to-head comparison
with Face0 (Valevski et al., 2023) is presented in Table 2.

B.3 INFERENCE DETAILS

B.3.1 MULTIPLE IMAGE CONDITION

For batch image conditioning, we first detect faces in each image, then encode these using the
CLIP image encoder to obtain a batch of image features. These features are concatenated along the
sequence length dimension and then fed into the control block as conditions.

B.3.2 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance is implemented with a scale factor of 5 for both face and text directions. For
conditional noise prediction, input text and faces serve as conditions, while for unconditional noise
prediction, an empty text prompt and a zero vector as the face condition are used. The final noise
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prediction equation is:

ϵ = ϵc + scale× (ϵc − ϵuc),

where ϵc is noise prediction on both text and face, and ϵuc is noise prediction on empty text and face.

C EVALUATION DETAIL

We use the PPR10K dataset (Liang et al., 2021), which consists of 11K high-quality photos orga-
nized into 1,681 identity-consistent groups, to construct our benchmark. After filtering out images
with multiple faces, we select 36 identity-consistent groups as reference images for our final evalu-
ation. For each group, 5-8 captions are randomly chosen from our caption buffer (captions for other
datasets). This results in 36 test cases, each with 5-8 prompts, amounting to approximately 200
image-text pairs in total.

Our evaluation focuses on three key metrics: face and text alignment, and time usage. Face features
are extracted using Insightface (Deng et al., 2018), and the mean cosine similarity between reference
and generated faces is calculated to assess face similarity. Textual consistency is evaluated using
ImageReward (Xu et al., 2023) to generate a corresponding score. Furthermore, we evaluate our
method based on CLIP image and text similarity metrics, commonly used by related works in the
field. Here, for the face alignment, we detect and crop the faces into squares based on the longer side
to ensure the entire face is included and use the CLIP image embedding cosine similarity between
reference and generated faces. Time usage is measured as the total time taken to process all 36 cases.

It is important to note that these scores depend on the specific prompts and identities. The scores for
face and textual alignment not based on CLIP were normalized as follows:

scorenorm =
score− scoremin

scoremax − scoremin
.

A preliminary step involved generating 20 images for each image-text pair within the test case
using the original model to determine reasonable maximum and minimum scores for the alignment
metrics. These, expected to show high text consistency but low face similarity, serve as base images.

The maximum face similarity score was established based on the self-similarity of reference images.
In contrast, the respective minimum score was derived from evaluating the similarity between refer-
ence images and the base images. Similarly, the maximum textual consistency score was obtained
from the scores of base images, and the respective minimum score was calculated using the scores
of reference images.

D LIMITATIONS AND FUTURE WORK

Our work successfully demonstrates the efficient generation of visually consistent facial images
using face-conditioned T2I diffusion models, however, several challenges persist. In the context of
facial generation, nuanced details such as facial expressions and orientation still pose difficulties,
many times resulting in a pasting-like artifact. Moreover, despite the proficiency of our model in
producing high-quality and consistent facial images, there are noticeable trade-offs in terms of the
semantic alignment with the textual descriptions and overall image quality. Addressing these issues
not only underscores the current limitations but also points towards potential avenues for future
research. Additionally, in the realm of conditional generation, further future developments might
involve handling more complex conditions (e.g., simultaneous generation of multiple identities),
and extending our work to the open-domain conditional generation task.
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E ADDITIONAL RESULTS

In Figures 4 and 5, we present some generated samples from the UniDiffuser-based implementation
of our method.

Reference wearing a spacesuit in the laboratory reading a book

Figure 4: Additional generated samples from our method. Takes several images as input but we only
show one image here for simplicity.
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Reference sitting at a table
in a classroom Reference wearing glasses and

a pink shirt

Reference with flowers in
her hair Reference in a green dress with a

sunflower on her head

Figure 5: Additional generated samples from our method with emphasis on text alignment. The
image references are taken from the PPR10K dataset (Liang et al., 2021).
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