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Abstract

Training deep neural networks is a very demanding task, especially challenging is how to
adapt architectures to improve the performance of trained models. We can find that some-
times, shallow networks generalize better than deep networks, and the addition of more
layers results in higher training and test errors. The deep residual learning framework
addresses this degradation problem by adding skip connections to several neural network
layers (He et al., 2016). It would at first seem counter-intuitive that such skip connec-
tions are needed to train deep networks successfully as the expressivity of a network would
grow exponentially with depth. In this paper, we first analyze the flow of information
through neural networks. We introduce and evaluate the batch-entropy which quantifies
the flow of information through each layer of a neural network. We prove empirically and
theoretically that a positive batch-entropy is required for gradient descent-based training
approaches to optimize a given loss function successfully. Based on those insights, we in-
troduce batch-entropy regularization to enable gradient descent-based training algorithms
to optimize the flow of information through each hidden layer individually. We show em-
pirically that we can train a "vanilla" fully connected network—no skip connections, batch
normalization, dropout, or any other architectural tweak—with 500 layers by simply adding
the batch-entropy regularization term to the loss function. Additionally, we show that the
proposed method also improves the performance of state-of-the-art network architectures
such as residual networks, autoencoders, and also transformer models over a wide range of
computer vision as well as natural language processing tasks. Our code base is available at
https://anonymous.

1 Introduction

The training of deep neural networks on large-scale datasets pushed state-of-the-art results in many differ-
ent areas such as computer vision, natural language processing, time-series prediction, medicine, or drug
discovery (Alassafi et al., 2022; Devlin et al., 2019; He et al., 2016; Tran et al., 2021; Xu et al., 2019). One
reason for this achievement is that the expressivity of neural networks grows exponentially with the depth
of the network (Raghu et al., 2017). The development and training of deep neural networks on a given task
is challenging and many different methods and improvements have been developed to simplify the training
of deep networks, such as a more careful weight initialization (Glorot & Bengio, 2010; He et al., 2015),
better activation functions (Dahl et al., 2013), regularization methods (Ioffe & Szegedy, 2015; Srivastava
et al., 2014), and innovative architectural designs (He et al., 2016; Srivastava et al., 2015; Vaswani et al.,
2017). Nevertheless, designing novel architectures with high performance for different downstream tasks is
a laborious one and often, cannot simply be achieved through the creation of deeper networks (Tan & Le,
2019) as at times, they may perform worse on a given task than shallower architectures or even sometimes
not be trainable at all. Surprisingly for such cases, the deeper the network, the lower the accuracy (He et al.,
2016), which is known as the degradation problem. This degradation problem can be overcome through the
use of residual connections.

In this paper, we analyze the degradation problem from an information theoretical point of view. To
approximate the amount of information that flows through each layer, we introduce the batch-entropy and
show empirically that trainable networks maintain a flow of information through the network. On the other
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hand, whenever this flow of information collapses i.e. the batch-entropy becomes zero, the network cannot
be optimized with gradient descent. Through dimensionality reduction, we found experimentally that the
loss surface becomes highly non-convex which provides a hint about the reason behind the difficulty in the
training of such networks (Li et al., 2018). We study this information flow collapse not only empirically, but
also from a theoretical perspective and prove that classical loss functions such as the cross-entropy loss cannot
be minimized with gradient descent if the batch-entropy of a single layer is zero. Based on these insights, we
introduce the batch-entropy regularization term, which ensures a positive batch-entropy and hence enables
the training of deep neural networks. We will show that deep "vanilla" fully connected networks—no skip
connections, batch normalization, dropout, or any other architectural tweak—with 500 layers can then be
successfully trained. Even more, batch-entropy regularization has a positive effect on the performance of
many different architectures and tasks as we provide in our empirical analysis. More precisely, we study
fully connected networks, residual networks, autoencoders as well as transformer models for both computer
vision and natural language processing datasets.

The main contributions of this paper are as follows:

• Batch-entropy is applied in order to estimate the amount of information that flows through every
layer inside a network.

• A batch-entropy regularization term is introduced to enable gradient descent to optimize the flow
of information through a neural network.

• The loss surface is analyzed during the training of neural networks, which will provide the indications
as to why training without batch-entropy regularization can be a demanding task.

• We demonstrate experimentally that using our approach, (1) deeper networks can be trained with-
out the need of any architectural tweaks and (2) the performance of existing architectural designs
increases if our the batch-entropy regularization term is used.

Related work is given in section 2. In section 3 we introduce the batch-entropy to approximate the amount
of information that flows through a network and the batch-entropy regularization which enables gradient
descent to optimize the flow of information through each layer. In section 4, we experimentally analyze the
positive effects of batch-entropy regularization. We finish our paper with a discussion on our findings and
propose future work in section 5.

2 Related Work

Optimization problems in deep neural networks have been the subject of a wide range of studies. These
studies have shown that a careful initialization of parameters has a significant effect on the training (LeCun
et al., 2012) and revealed the problem of vanishing or exploding errors and how to keep the error flow constant
(Hochreiter & Schmidhuber, 1997). Initialization methods—that initialize weights such that gradients are
not vanishing or exploding at the beginning of the training—have been the subject of extensive study
(Glorot & Bengio, 2010; He et al., 2015; Hinton et al., 2006; Krähenbühl et al., 2016; Mishkin & Matas,
2016). Unfortunately, deep neural networks are still difficult to optimize, even when those initialization
methodologies are used (Srivastava et al., 2015). He et al. (2016) called this the degradation problem and
showed that special architectures with skip connections (Srivastava et al., 2015; He et al., 2016) could avoid
this problem. Later, Peer et al. (2021b) found that certain layers in neural networks exist that may be the
source of the degradation in performance of very deep models and proved that skip-connections would bypass
those misleading layers. The same authors showed that those layers do not contribute to the classification
and therefore, around 60% of the layers of a trained residual network can be pruned with a negligible effect
on the test-error (Peer et al., 2021a).

Other authors have studied neural networks from an information theoretical viewpoint to improve their
performance: Blot et al. (2018) proposed a regularizer in order to improve the intermediate representations
of single samples x by calculating the entropy of a sample conditioned to the corresponding label y. The
authors showed that a model that is invariant to many transformations will produce the same representation
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for different inputs, which improves the performance of the model. Achille & Soatto (2018) showed that
a representation can be made invariant against nuisances—random variables that affect the observed data,
but are not informative for the task—by limiting its information throughput. This can be achieved by
injecting noise (e.g. dropout) or creating a bottleneck (e.g. a pooling layer) through a regularization term
which penalizes the information that is contained in the weights. Gilad-Bachrach et al. (2003) studied the
tradeoff between the complexity of data representation and the accuracy of the model. Another information
theory based regularization method is proposed by Pereyra et al. (2017), which penalizes low entropy output
distributions which acts as a strong regularizer in supervised learning, improving the overall performance
of the model. Upper bounds on the generalization error of learning algorithms based on an information-
theoretic analysis have also been derived (Xu & Raginsky, 2017). Other works have focused on biological
plausible spiking neurons in order to estimate the information extracted by spiking neurons from a continuous
time series (Zeldenrust et al., 2017) or analyze the information flow between two different spiking neural
networks with transfer entropy (Nazari & Faez, 2019).

3 Methods

In this section, the flow of information through neural networks is analyzed from a theoretical perspective.
We first introduce the batch-entropy to measure the amount of information that is propagated through each
individual layer. We then prove that a positive batch-entropy is required at each layer in order to successfully
optimize a given objective (e.g. the cross-entropy between the output and the ground truth) with gradient
descent. Based on those insights we introduce a regularization term that adjusts the flow of information
through each individual layer to convert networks that were not previously trainable into networks that can
be successfully trained.

3.1 Notation

Scalar values are represented with lower case letters such as k, vectors are written in bold x = [x1, x2, ...xk]T
and matrices are represented with bold upper case letters W. Sets of vectors are represented by X =
{x1,x2, ...xk}.

We call a training set S ∈ X × Y which contains items (e.g. images) X and their labels Y 1. We assume
that the ground truth y ∈ Y is one-hot encoded. c is the dimensionality of a single label. The input to a
layer is of dimension m and its output dimension n. Weight matrices W ∈ Rn×m and bias terms b ∈ Rn×1

are trainable parameters of a network. The outputs of a given layer l ∈ {1, ..., L} for a neural network with
L layers are vectors al+1(x) = f(zl+1) with zl+1 = Wlal(x) + bl computed for a given input x ∈ X with a
nonlinearity function f and a0(x) = x. The output of an individual neuron i at the output for layer l would
be al

i(x).

The network is trained with mini-batches that satisfy B ⊆ X . Without loss of generality it is assumed that
batches B are uniformly distributed w.r.t. the class labels. The surrogate loss, optimized with gradient
descent, is calculated using the cross-entropy loss as L(x) = LCE(g(x),y) for input x with corresponding
label y, where g(x) = softmax(θ) with θ = WLaL(x) + bL. The gradient is then

∂L
∂WL

= ∂L
∂g

∂g

∂θ

∂θ

∂WL
= (g(x)− y) aL(x)T

.

The gradient for the whole mini-batch can be calculated as

∂L(B)
∂WL

= 1
|B|

|B|∑
b=1

∂L(xb)
∂WL

.

3.2 Quantifying the Flow of Information through each Layer

In order to analyze the flow of information through neural networks during forward propagation, we quan-
tify the amount of information that is propagated through each individual layer as the average amount of

1For simplicity we put our focus on classification problems although the theory can be extended to e.g. regression problems.
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(a) Neuron with
large output

range.

(b) Neuron with
small output

range.

(c) Neuron with
constant output

values.

Figure 1: Histogram of 1024 output values of three different neurons from a fully connected network trained
on MNIST. The x-axis shows the output-value and the y-axis how often the neuron fired with this value. On
the top of each plot, the estimated batch-entropy eq. (3) is shown. More neurons are shown in appendix A.

information that is propagated through each individual neuron within a layer. Output values of neurons are
continuous and therefore, the amount of information passed through a neuron can be calculated using the
differential entropy (Shannon, 1948):

h
(l)
i = −

∫ ∞
∞

al
i(x) log al

i(x) dx. (1)

Unfortunately, the underlying data-generating distribution of individual neurons is unknown. Nevertheless,
we have access to samples of the distribution by measuring output values of neurons for different inputs of
our training dataset X . Based on those samples, the entropy of each neuron can be approximated with e.g.
nearest neighbor distances (Beirlant et al., 1997). We make use of the batch-entropy to regularize neural
networks with gradient descent, which requires a differentiable batch-entropy. Nearest neighbor methods
provide good approximations of the real entropy but are not differentiable. Hence, a batch-entropy using
nearest neighbor methods is not suitable as a regularizer. Therefore, we search for an approximation of the
entropy that is differentiable and can be used in combination with a gradient descent based optimizer.

To develop a differentiable function that approximates the entropy, we analyzed the output values of different,
randomly selected neurons from a fully connected network. Histograms for three randomly selected neurons
sampled from a neural network trained on MNIST are shown in fig. 1. More neurons for detailed analysis
are shown in appendix A. It can be seen that output values of almost all neurons seem to be Gaussian
distributed. Using the empirically motivated assumption that neurons are Gaussian distributed, the following
differentiable approximation of the entropy can be derived:

H = 1
2 log(2πe σ2

k + ε), (2)

where σk is the standard deviation of a single neuron k, computed for the values of a mini-batch B. A
mathematical derivation of the differential entropy for the normal distribution is given by Michalowicz et al.
(2013). A bias term of ε = 1 was introduced in all our experiments to not only ensure numerical stability,
with ε = 1 we also ensure that H ∈ [0,∞).

Figure 1 shows how entropy values (H) correlate with the output distribution: For example, the neuron
shown in fig. 1b has a smaller batch-entropy than the neuron shown in fig. 1a because the latter neuron fires
values in a much larger range and hence propagate more information to the next layer. In the extreme case
shown in fig. 1c, where a neuron outputs the same constant value for each input, the entropy is zero, which
is reasonable as each input leads to the same output.
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(a) FNN with 15 layers. (b) FNN with 30 layers.

Figure 2: Flow of information through different layers of two fully connected networks (FNN) with 15 layers
(a) and 30 layers (b).The x axis shows the layer l of the network which is evaluated and the y axis is
the corresponding batch-entropy. The color scheme indicates the step after which the batch-entropy was
evaluated. Early training stages are blue, later training stages are shown in red. At the beginning of training
(blue), the batch-entropy decreases as we go up in the network hierarchy (from left to right).

The entropy of a complete layer l with n neurons can be calculated by averaging the entropy of all neurons
as follows:

H l = 1
2n

n∑
i

log(2πe σ2
k + ε), (3)

where σk is the standard deviation of neuron k of layer l computed for the values of the mini-batch B. We
call eq. (3) the batch-entropy of layer l.

By computing the batch-entropy (eq. (3)), we can measure the flow of information through a network, so that
two different networks can easily be compared in terms of how information propagates through them. An
example of such a comparison is shown in fig. 2 for a network with 15 layers that is trainable, and a network
with 30 layers that is untrainable using gradient descent. Both networks are initialized with the method
proposed by He et al. (2015) and trained on MNIST for 2 epochs. Figure 2a shows that the shallow network
was successfully trained on MNIST. At the beginning of the training (blue dots), the flow of information is
high in the early layers and decreases as we go deeper in the network. After analyzing the batch-entropy at
the output layer, we found that it is slightly larger than zero, which would indicate that at least some useful
information is propagated from the first to the last layer. During training, the information flow increases
also for later layers (fig. 2a, color change from blue to red). On the other hand, fig. 2b shows the case
of a deeper network where no information is propagated to the output layer. After testing many different
hyperparameter settings, we found that such networks cannot be trained at all and the information flow
never increases during training. Next, we analyze from a theoretical viewpoint why neural networks are not
trainable whenever ∃ l ∈ {1, ..., L} such that H l = 0 :

First of all, whenever H l = 0, then for all subsequent layers k > l every input of a mini-batch is the same
such that ∀k > l,Hk = 0 which implies that HL = 0. An information theoretic proof of this statement is
given in appendix B. Therefore, it is sufficient to prove that a network is untrainable whenever HL = 0. We
need to show next that the gradient points into a direction that is independent of the desired labels y ∈ Y
whenever HL = 0. A gradient that is independent of its ground truth cannot update weights to improve the
performance which will therefore conclude our statement.

Without loss of generality we can assume that labels are one-hot encoded vectors y that are uniformly
distributed w.r.t different classes in our mini-batch B. It follows that
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∂L(B)
∂WL

= 1
|B|

|B|∑
b=1

∂L(xb)
∂WL

Gradient of mini-batch

= 1
|B|

|B|∑
b=1

(g(xb)− yb) aL(xb)T Gradient as defined in section 3.1

= 1
|B|

|B|∑
b=1

(g− yb) aL(xb)T
HL = 0 =⇒ g(x0) = g(x1) = ...g(x|B|) = g

= 1
|B|

|B|∑
b=1

(g− yb) aT HL = 0 =⇒ aL(x0) = aL(x1) = ...aL(x|B|) = a

=

g− 1
|B|

|B|∑
b=1

yb

 aT Rewrite

=
(

g− 1
c

1
)

aT , Uniformly distributed batches w.r.t different classes of yb

where 1 is a vector with components 1 of dimension c for a dataset consisting of c classes.

It can be seen that the gradient is independent of labels y whenever HL = 0. Therefore, the error signal is
invalid w.r.t the real objective, and weights are updated in misleading directions. Whenever the output gi

of neuron i is gi >
1
c weights are updated in order to decrease the output in the next iteration. On the other

hand, whenever gi <
1
c weights are updated in order to increase the output value. Therefore, during the

training, weights are adjusted until each output neuron fires with a constant value of 1
c . Whenever g = 1

c 1
the gradient becomes ∂L(B)

∂WL = 0. It can then be concluded that the network fires with constant values and
the performance of the model accuracy can no longer increase, as the gradient is zero.

We analyzed the output values of neurons for networks with HL = 0 and have indeed found that those
fire with a constant value of 1

c after a few training steps. Additionally, we evaluated whether the gradient
becomes zero whenever HL = 0 by evaluating the loss surface for both cases, HL > 0 and HL = 0. The
loss surface of the cross-entropy in the weight space is shown in fig. 3. We generated two random orthogonal
vectors to plot a 3-dimensional loss surface using the methodology proposed by Li et al. (2018), more samples
are shown in appendix C. Networks are easier to optimize whenever the loss surface seems close to being
convex in this highly compressed space (Li et al., 2018). We can confirm this finding as the surface for
HL = 0 (fig. 3a) is flat, highly non-convex and that the network was not trainable at all. Additionally, the
gradient is zero in this region which would explain why gradient descent cannot find a solution. On the
other hand, whenever HL > 0 (fig. 3b) we found that the network can be trained successfully and that the
test accuracy increased during training. The loss surface of the highly compressed space as shown in fig. 3b
looks convex and according to Li et al. (2018), the network is therefore easier to optimize. This theoretical
and empirical study leads to the following hypothesis:

Hypothesis 1. A network is not trainable with gradient descent, if ∃ l ∈ {1, ..., L} such that H l = 0 for a
network of depth L.

Next we provide a solution to escape from regions where HL = 0 in the form of a regularization term that
will help gradient descent move into regions where HL > 0. This solution will allow at-first untrainable
networks to be trained by bending the loss surface such that the gradient points into a direction where the
cross-entropy loss can be optimized successfully.
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(a) HL = 0. (b) HL > 0.

Figure 3: Comparison of the cross-entropy loss (LCE) surface for networks with different information through-
put trained on MNIST. X and Y represent two random orthogonal directions in the weight space (Li et al.,
2018).

3.3 Batch-Entropy Regularization

We introduce a regularization term LBE that allows gradient descent to directly optimize the batch-entropy
within each layer. Thanks to this analysis of batch-entropy, weights of layers can be adjusted such that
information flows through the whole network converting invalid error signals of the cross-entropy into valid
error signals.

The batch-entropy is differentiable and can be used directly as part of the loss term. Unfortunately, we
found empirically that minimizing the cross-entropy and maximizing the batch-entropy leads to networks
with low performance. This is reasonable because H l ∈ [0,∞). Because of this, the entropy can always
be maximized while the cross-entropy loss could be neglected, leading to sub-optimal networks with low
accuracy. This problem can be solved by defining the precise level of information that should be passed
through each individual layer. We do so through a parameter αl per layer, which defines the desired level of
information that should pass through each layer. Therefore, during the training, weights of each layer l can
be adjusted until H l = αl.

We showed in fig. 2 that the information flow is different for each layer. Unfortunately, we were not able to
postulate a theoretical framework that would describe for each layer l which exact αl value would lead to high
generalization capabilities for a specific model. Figure 2a provides us with a hint that the information flow
has different compression and expansion phases. Instead of having to specify a precise value for αl, we include
it as part of the training process. Note that we pre-initialize each αl with the value α at the beginning of the
training. We found α through a hyperparameter grid search for each architecture individually. Additionally,
αl is constrained to αl ∈ (αmin,∞) with αmin > 0, ensuring a flow of information through the network. For
αmin we found that it is sufficient to set it to a small positive value (e.g. 0.2). The layerwise batch-entropy
loss for a single layer l can therefore be calculated with

Ll
BE =

(
H l −max(αmin, |αl|)

)2
. (4)

The batch-entropy loss (LBE) for the whole network can be calculated as follows:

LBE = β

L

L∑
l=0
Ll

BE (5)

The number of additional learnable parameters is L (one αl for each layer) which is negligible for networks
with millions of parameters. In order not to exceed the cross-entropy loss (LCE) and be able to focus on
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(a) Backpropagation without batch-entropy
regularization

(b) Backpropagation with batch-entropy
regularization

Figure 4: Comparison of backpropagation without (a) and with (b) LBE regluarization whenever HL = 0.

the LBE whenever the cross-entropy cannot be optimized, we included a β hyperparameter which we find
through a hyperparameter search for each experiment individually. Additionally, we scale the LBE with the
LCE which ensures that optimizing the information flow is secondary and mainly active whenever the LCE

is large i.e. in a local minimum:

L = LCE + LCE ∗ LBE . (6)

The effect of scaling the LBE with LCE can be analyzed by computing the gradient:

∂L
∂Wl

= ∂LCE

∂Wl
+ ∂(LCE ∗ LBE)

∂Wl

= ∂LCE

∂Wl
+ LCE

∂LBE

∂Wl
+ LBE

∂LCE

∂Wl
.

Whenever the cross-entropy is small, the gradient of the LBE becomes negligible and the main objective—
LCE—is optimized. On the other hand in a local minimum where the LCE is large, the gradient of the LBE

is additionally increased. We now continue our analysis for the case where the cross-entropy is in a local
minimum:

∂L
∂Wl

= 0 + LCE
∂LBE

∂Wl
+ 0 Assumption that ∂LCE

∂Wl
= 0

= LCE
∂

∂Wl

(
β

L

L∑
k=0
Lk

BE

)

= LCE
∂

∂Wl

(
β

L
Ll

BE

)
= LCE

β

L

∂Ll
BE

∂Wl
.

Whenever the cross-entropy cannot be optimized because H l = 0, gradient descent can still optimize weights
of each layer to ensure thatH l > 0. We additionally verify this statement empirically in section 4. A graphical
illustration of why optimization without the LBE fails and why it works with batch-entropy regularization
is shown in fig. 4. Without batch-entropy regularization, the ∇Ll

CE = 0 is propagated backwards through
the whole network. With batch-entropy regularization, the LBE gradient is directly applied to the weights
of each layer ensuring that H l > 0 as the training proceeds.

We empirically evaluated the loss surface during training as shown in fig. 5 and compared the LCE loss after
different training steps when LBE is used, to further support hypothesis 1. It can be seen that the LBE
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(a) Without LBE : LCE Loss after
0 steps.

(b) Without LBE : LCE Loss after
200 steps.

(c) Without LBE : LCE Loss after
1500 steps.

(d) With LBE : LCE Loss after 0
steps.

(e) With LBE : LCE Loss after 200
steps.

(f) With LBE : LCE Loss after
1500 steps.

Figure 5: Loss surface of a fully connected network at different training steps (0, 200 and 1500) when HL = 0
at the beginning of the training without LBE (a, b, c) and including LBE regularization (d, e, f). Compare
the errors surfaces in the top row (without LBE) with the ones in the bottom row (with LBE)

loss pushes weights into a direction where the cross-entropy loss can be successfully optimized with gradient
descent, while networks that are trained without LBE are unable to escape from local minima. We report
more loss surfaces after different stages of training in appendix C, where we provide the cross-entropy loss
surface, the LBE loss surface, and the accuracy surface.

In fig. 2b we have shown that networks with HL = 0 are not trainable. We executed this experiment again,
but added the batch-entropy regularization term to the loss with α = 0.5 and β = 0.2. The results are
shown in fig. 6. It can indeed be seen that the network with 30 layers that was not trainable at first (fig. 2b)
became trainable (fig. 6b), so that the accuracy increased from 11.35% (fig. 2b) to 42.95% in only 100 steps of
training. In this same figure, we can see that the network that was trainable before (fig. 2a) is not negatively
influenced by the batch-entropy regularization term. The accuracy is even a bit larger indicating that the
LBE can have a positive effect on the training of networks that are trainable without LBE too. Therefore,
we hypothesise that

Hypothesis 2. Regularizing the information flow through neural networks can improve the performance of
the trained model.

We study hypothesis 1 and hypothesis 2 empirically in section 4 on different architectures and tasks.

4 Experimental Evaluation

We analyze our hypothesis 1 and hypothesis 2 empirically on computer vision as well as natural language
processing tasks for a wide range of architectures, namely fully connected networks, residual networks,
transformer models and autoencoders.
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(a) FNN with 15 layers. (b) FNN with 30 layers.

Figure 6: Flow of information through different layers of an FNN, trained on MNIST for 2 epochs with
batch-entropy regularization for β = 0.2, all αl are initialized with 0.5. The x axis shows the layer l of the
network to be evaluated and the y axis is its the batch-entropy. The color scheme indicates the step after
which the batch-entropy was evaluated. Early training stages are blue, later training stages are shown in
red.

4.1 Setup

All experiments are implemented in PyTorch (Paszke et al., 2017) and executed on Nvidia GPUs. Wandb was
used for experiment tracking (Biewald, 2020). Our source code is publicly available on GitHub2, including
sweep files for each experiment which describe precise hyperparameter ranges that we used in order to
reproduce all experiments. We split the training set into training (80%) and validation (20%) and use the
validation set to find a good hyperparameter setup for each method. Precise hyperparameter values for
each experiment are given in the appendix. The performance results, comparing models that are trained
with / without LBE, is provided on the test-set to ensure that we do not overfit the validation set through
hyperparameter search. Following previous work on deep learning (Devlin et al., 2019), we report the
average over 5 random restarts using different seeds. In total we used 7 different datasets for evaluation,
including computer vision as well as natural language processing tasks: MNIST (LeCun & Cortes, 2010),
FashionMNIST (Xiao et al., 2017), CIFAR10 and CIFAR100 (Krizhevsky et al., 2009), RTE (Bentivogli
et al., 2009), MRPC (Dolan & Brockett, 2005) and CoLA (Warstadt et al., 2018).

4.2 Fully Connected Neural Networks

In this section, we show empirically that deep fully connected networks become trainable whenever batch-
entropy regularization is used. We executed a quantitative experiment and trained fully connected networks
with depths from 10 to 50 and evaluated the test accuracy for each network when trained with and without
LBE . All networks contain 1000 neurons per layer that are trained for 100 epochs, with a batch size of 512,
using the Adam optimizer (Kingma & Ba, 2015), on MNIST (LeCun & Cortes, 2010). Weights are initialized
with the method as proposed by He et al. (2015). To find a good setup for the baseline, we optimized for
the learning rate lr ∈ [1e− 4, 5e− 4, 1e− 3] utilizing grid-search, and took the best run w.r.t the validation
set. Specific hyperparameter values which were determined using grid search are provided in appendix D.1 (
table 5). We additionally trained a "vanilla" fully connected network with 500 layers to further analyse our
hypothesis 1.

A quantitative analysis of different fully connected networks is shown in table 1. The mean accuracy of
5 runs on our test set together with the standard error is shown. First of all, it can be seen that deep
networks (depth 30 - 50) can only be trained if the LBE loss is used, where the batch-entropy of each layer

2https://anonymous
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Depth LBE Test Accuracy Std. Error
10.0 No 98.94 0.01

Yes 98.95 0.01
20.0 No 97.86 0.60

Yes 98.48 0.13
30.0 No 11.35 0.00

Yes 92.84 1.86
40.0 No 11.35 0.00

Yes 93.51 0.67
50.0 No 11.35 0.00

Yes 92.93 1.22

Table 1: Comparison of training fully connected networks with or without batch-entropy regularization. All
fully connected networks are trained for 100 epochs with a batch size of 512. Weights are initialized with
the method as proposed by He et al. (2015). Larger numbers are written in bold.

(a) Accuracy. (b) LCE loss. (c) LBE loss.

Figure 7: Shows the training of a "vanilla" fully connected network. The network has 500 layers with 1000
neurons per layer and is trained for 600 epochs. The accuracy as well as the two loss terms (LCE , LBE) are
shown.

is regularized in order to enable training of deep neural networks with gradient descent (hypothesis 1). For
a depth of 10, the test-accuracy is almost the same when training with and without LBE . For a depth of
20, batch-entropy regularization shows a very positive effect on the final performance of the model, even
though the network is still trainable without the LBE . In this case, the variance between different runs is
also heavily reduced because of the use of LBE (0.13 compared to 0.60), which indicates that batch-entropy
regularization not only helps to convert untrainable networks into trainable networks, but also has a positive
effect on the training in general. Another interesting observation we can extract from appendix D.1 is that
α—found through grid search—is 0.1 for almost all depths. Only for the deepest network with 50 layers
α = 0.3. This indicates that (1) α values are quite consistent for a given architecture and datasets, which
could help to reduce the hyperparameter search space the future runs and (2) deeper networks require a
larger flow of information through each layer to reach high performance since the deepest network required
a larger α value.

To further evaluate hypothesis 1, we trained a network with 500 fully connected layers. The accuracy, LCE

and LBE loss during training is shown in fig. 7. Such a deep network is not trainable if no LBE was applied.
On the other hand, with batch-entropy regularization, this "vanilla" fully connected network reached a test
accuracy of 95.22% which shows that we can indeed train very deep vanilla fully connected networks by
optimizing the information flow through LBE regularization. Additionally, it can be seen that regularization
of the batch-entropy is necessary during the whole training procedure since after about 14M steps, the LBE

increased, which would indicate that some weight updates cause a drop in the information flow. This means
the degradation problem cannot be solved with pure weight initialization at the beginning of the training.
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Dataset Depth LBE Test Accuracy Std. Error
CIFAR10 26 No 89.40 0.03

Yes 89.41 0.08
74 No 89.70 0.20

Yes 89.89 0.22
152 No 88.16 0.31

Yes 88.54 0.19
CIFAR100 26 No 62.85 0.10

Yes 63.12 0.05
74 No 63.95 0.30

Yes 64.63 0.15
152 No 62.47 1.40

Yes 64.68 0.49
FashionMNIST 26 No 94.33 0.06

Yes 94.25 0.06
74 No 93.89 0.09

Yes 94.18 0.09
152 No 93.33 0.13

Yes 93.55 0.17
MNIST 26 No 99.68 0.02

Yes 99.67 0.01
74 No 99.67 0.02

Yes 99.68 0.01
152 No 99.59 0.02

Yes 99.66 0.03

Table 2: Comparison of training different residual networks with or without batch-entropy regularization.
All residual networks are trained for 100 epochs with a batch size of 256. Weights are initialized with the
method as proposed by He et al. (2015). Larger numbers are written in bold.

4.3 Residual Networks

He et al. (2016) introduced the residual framework to overcome the degradation problem. They introduced
residual blocks containing multiple convolutional layers that are bypassed with skip connections. The per-
formance is further improved with batch-normalization layers and dropout just before the output layer. In
this experiment, we evaluate the effect of optimizing the information flow through networks with residual
connections.

We used a learning rate of 0.1 at the beginning of the training and divide it by 10 whenever it plateaus,
together with a weight decay of 0.0001 and a momentum of 0.9. The network is trained on four different
datasets which are MNIST (LeCun & Cortes, 2010), FashionMNIST (Xiao et al., 2017), CIFAR10 and
CIFAR100 (Krizhevsky et al., 2009) using SGD with a mini-batch size of 256 (He et al., 2016). Weights
are initialized with the method as proposed by He et al. (2015). To compute the LBE , we regularized the
information flow of the intermediate layers within a residual block as we found empirically that regularization
of the complete residual block has no effect.

The results on the test set are shown in table 2. Results indicate that generalization of residual networks
benefits from batch-entropy regularization as the network trained with LBE outperforms the baseline in 10
out of 12 cases (hypothesis 2). The standard error decreases as well for almost all evaluations indicating more
stable results when executed with different seeds. Another observation is that the median of α increased
as the complexity of the dataset increased (appendix D.2): For MNIST, FashionMNIST, CIFAR10, and
CIFAR100 the median of α for all different depths is 0.5, 1.0, 1.0, and 1.5 respectively. It seems reasonable
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Dataset Depth LBE Test MSSIM Std. Error
FashionMNIST 1 no 0.61 0.0005

yes 0.61 0.0007
5 no 0.53 0.0138

yes 0.57 0.0009
10 no 0.13 0.0001

yes 0.41 0.0084
25 no 0.13 0.0002

yes 0.41 0.0059
MNIST 1 no 0.75 0.0013

yes 0.75 0.0017
5 no 0.12 0.0005

yes 0.65 0.0071
10 no 0.12 0.0003

yes 0.42 0.0038
25 no 0.12 0.0004

yes 0.39 0.0168

Table 3: Comparison of training autoencoders with or without batch-entropy regularization. The networks
are trained for 50 epochs with a batch size of 128 using the Adam optimizer. A depth of d means that both
the encoder and the decoder have d hidden layers each. Larger numbers are written in bold.

that more complex data (e.g. more classes, more color channels, etc.) would require more information
throughput and therefore, a higher batch-entropy.

4.4 Autoencoders

Autoencoders are a class of unsupervised learning algorithms traditionally used for dimensionality reduction
or feature learning. Autoencoders are neural networks with a bottleneck in their architecture, usually in the
middle hidden layer. The network predicts the input itself, hence the bottleneck forces the network to learn
a compressed representation z ∈ RNz×1 of the data, such that for input x, the encoder returns z = f(x).
The decoder reconstructs the input from such representation, x̂ = g(z). Assuming each x ∈ x is Bernoulli
distributed, the autoencoder is trained by minimizing the binary cross-entropy between the ground-truth x
and the reconstructed input x̂.

We trained autoencoders with depths d ∈ {1, 5, 10, 25}, where a depth of d means that both the encoder
and the decoder have d hidden layers each. The dimension of the bottleneck was set to Nz = 10 and all
hidden layers contain 256 neurons. All networks were trained for 50 epochs with a batch size of 128. The
Adam (Kingma & Ba, 2015) optimizer with a waterfall schedule was used. An initial learning rate of 1e− 3
was used and every time the validation error stopped decreasing—estimated over a window of 5 epochs—the
learning rate was scaled down by a factor of 0.5. Experiments were run for the MNIST (LeCun & Cortes,
2010) and FashionMNIST (Xiao et al., 2017) datasets. All images were flattened to a one-dimensional array
of size 784. For evaluation we compare the similarity between the target x and reconstruction x̂ using the
Mean Structural Similarity Index (MSSIM) (Wang et al., 2004).

The average MSSIM and std. error of 5 runs on the test set are given in Table 3. The first observation
is that for a depth of one the performance between the autoencoders with and without batch-entropy reg-
ularization is the same, adding batch-entropy regularization has no negative (nor positive) effect on the
performance of shallow autoencoders (hypothesis 2). For larger depths—d ∈ {5, 10, 25}—autoencoders with
batch-entropy regularization outperform their counterparts without batch-entropy regularization. The per-
formance, though, is not as high as for a shallow autoencoder. For a depth of d = 5 the MSSIM is still close
to the best MSSIM, especially on the FashionMNIST dataset. For a depth larger than 5 we see that the
network is only trainable if the LBE regulaizer is used (hypothesis 1). Deep autoencoders with depths 5,
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Dataset Model LBE Test Perf. Std. Error
RTE BERTBase no 67.42 0.89

yes 67.34 1.54
BERTLarge no 69.76 1.20

yes 70.78 0.87
MRPC BERTBase no 88.58 0.70

yes 89.13 0.88
BERTLarge no 89.06 0.37

yes 89.28 0.55
CoLA BERTBase no 55.63 0.97

yes 56.70 1.04
BERTLarge no 59.39 0.71

yes 60.13 0.63

Table 4: Comparison of training with or without batch-entropy regularization for BERTBase with 12 layers
and BERTLarge with 24 layers. All networks are pre-trained on a large-scale text corpus (Devlin et al., 2019)
and fine-tuned with a batch size of 32. Larger numbers are written in bold.

10, 25 and 50 and without batch-entropy regularization, all collapse at similar local optima, MSSIM = 0.12
for MNIST and MSSIM = 0.13 for FashionMNIST. The network outputs the mean value of all images in
the training set S—1/|S|

∑|S|
i=1 xi—independently of the input, which is a widely known problem of deep

autoencoders (Murphy, 2012). On the other hand, autoencoders trained with the LBE regularizer do not
suffer from this problem as shown in table 3.

4.5 Transformer Models

Transformer models are a class of models which implement self-attention layers followed by fully connected
layers in order to find correlations between different parts of input tokens (e.g. words in a sentence) (Devlin
et al., 2019). Those networks are pre-trained in a self-supervised fashion on a huge text corpus such as
wikipedia. After the pre-training they are fine-tuned on a given downstream task. We will now evaluate
whether batch-entropy regularization is also beneficial for this type of models, which are already pre-trained.
Different from previous experiments on computer vision tasks, transformers are mostly used for natural
language processing. More precisely, we trained a BERTBase with 12 layers and BERTLarge model with 24
layers on the RTE (Bentivogli et al., 2009), MRPC (Dolan & Brockett, 2005) and CoLA (Warstadt et al.,
2018) dataset.

Following Devlin et al. (2019), we fine-tuned networks with a batch-size of 32 and a learning rate that
we found through a grid-search ∈ [1e − 5, 3e − 5, 5e − 5]. Similar to the findings about residual networks,
batch-entropy regularization improves the performance of trained models for transformer models on natural
language processing tasks (hypothesis 2). Only for BERTBase trained on RTE, the model was slightly worse
when including LBE . For the rest of cases, there was an improvement when including LBE regularization. Of
special interest is the MPRC, where the BERTBase with LBE had a higher score (89.13), than the BERTLarge

without LBE (89.06). These latter results show that those pre-trained models are not fully exploited yet
and the downstream-performance can be further improved without the need of additional pre-training.

We finalise our analysis by exposing some interesting facts regarding the differences between residual networks
and transformer models. For residual networks, we found that the performance improved most when the α
value—which regularizes the information flow—is large (≈ 1.0). On the other hand, for transformer models,
a small α value (≈ 0.3) improved their performance the most, which would indicate that the compression
and reduction of information are beneficial. Our insights on this observation are as follows: Transformer
models implement a pooling layer just before the classifier which pools all output tokens (e.g. 128, 256, or
512) except for the first token. Compressing as much information as possible into the first token therefore
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would help for classification. A complete and precise evaluation of this hypothesis is out of scope for this
paper and is left for future work.

5 Conclusion and Discussion

In this paper, we analyzed the flow of information through deep neural networks. We introduced the
batch-entropy to approximate the amount of information that is propagated through each individual layer.
A positive batch-entropy is necessary at each layer of the network in order to optimize a given objective
function with gradient descent correctly as shown in section 3. Through dimensionality reduction and the
analysis of the loss surface, we found that whenever the information flow through a network is zero, the
gradient is also zero almost everywhere.

The batch-entropy regularization term presented in this work optimizes the flow of information through
the network by regularizing the batch-entropy of each layer individually. We showed through extensive ex-
perimental evaluation that networks not trainable at first, could be trained thanks to the inclusion of the
proposed regularizer. Blot et al. (2018) also proposed a regularizer in order to improve the intermediate
representations of single samples x but they calculate the entropy of a sample conditioned to the correspond-
ing label y. The authors showed that a model that is invariant to many transformations will produce the
same representation for different inputs, which improves the performance of the model. Instead of penal-
izing layer-transformations, we add a regularization term to ensure a positive flow of information through
each layer. Our empirical evaluation also showed that this regularization term has a positive effect on the
performance of a trained model for a wide range of tasks and architectures. Specifically, such positive effect
was consistent across different networks, such as fully connected, residual, autoencoder, and transformer
networks applied to computer vision and natural language processing tasks.

The results of our experimental evaluation are very promising and we think it can serve to improve future deep
learning research, even so, we would like to finish our analysis with some open questions. First, even though
the α value—which regularizes the information flow—can be consistently set for a network architecture
trained on a given task, the value is currently determined through a grid search. One solution worth of
further analysis is to obtain a good initial value for α from an analysis of the entropy of training data, this is
a line of work on which we are currently working. Second, the batch-entropy is currently computed through
different samples of a mini-batch and can therefore only be derived whenever the batch size is larger than
one. If a batch size of one is used, similar methods as gradient accumulation can be better suited, which is
worth investigating in future work. Finally, in the case of transformer models, we found that compression
of information improves scores, which is a strong indicator that the current pooling layer is not optimal
w.r.t a given downstream task. Further research could include not just regularizing networks with LBE ,
but also a novel pooling layer to improve scores. To end with a final positive outcome, we found a positive
effect of batch-entropy regularization on generalization and in our future work we would like to additionally
investigate, whether this same method has also a positive effect on the adversarial robustness of a trained
model.
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A Distribution of Individual Neurons

The distribution of output values of 25 randomly selected neurons for 128 different output values is shown
in fig. 8. The neural network was trained on the MNIST dataset.

Figure 8: Histogram of 1024 output values of several neurons from a fully connected network trained on
MNIST. The x-axis shows the output-value for each neuron and the y-axis depicts the number of times that
output-value was observed. On the top of each plot, the estimated batch-entropy eq. (3) is shown.

B Information Theoretic Perspective on the Entropy of Subsequent Layers

We denote a random variable with a capital letter, e.g., X. A single event is denoted with a lower case letter
x ∈ X (note that x can be multi-dimensional). The probability density function of a continuous random
variable is given be p(x) and the mutual information between random variables X and Y is given by I(X;Y ).

A neural network can be interpreted as a Markov Chain (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby,
2017), where each hidden layer is a (stochastic) map of the previous layer. The training data is represented by
random variables X and Y , for the objects and labels respectively, and have a joint probability distribution
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p(x, y) with I(X;Y ) > 0. The output of a hidden layer l is represented by random variable Tl and the
output of the network is represented by random variable Ŷ . A neural network with L hidden layers forms
the following Markov Chain:

Y ←→ X −→ T1 −→ T2 −→ · · · −→ TL −→ Ŷ , (7)

where Y ↔ X indicates that the factorization of p(x, y) is not known. The Data Processing Inequality
(DPI) (Cover & Thomas, 2006) gives us the following inequalities:

I(Y ;X) ≥ I(Y ;T1) ≥ I(Y ;T2) ≥ . . . ≥ I(Y ;TL) ≥ I(Y ; Ŷ ). (8)

Which implies that our estimate Ŷ can at most contain as much information about Y as X. It also implies
that each hidden layer Tl can at most contain as much information about Y as the previous hidden layer
Tl−1.

In the worst case all, information about the input X gets lost and we will have I(X;Tl) = 0 for some hidden
layer l. Given that the only information Tl can contain about Y is through X, we also have I(Y ;Tl) = 0. The
DPI tells us that I(X;Tl) ≥ I(X;Tl+1) ≥ . . . ≥ I(X; Ŷ ), hence I(X;Tl) = I(X;Tl+1) = . . . = I(X; Ŷ ) = 0.
The output Ŷ contains no information about the input X (and Y ).

A standard neural network is deterministic, which is as a special case of the problem described above. The
mutual information between input X and layer l can be written as:

I(X;Tl) = H(Tl)−H(Tl | X), (9)

where H(Tl) is the (differential) entropy of layer l and H(Tl | X) is the conditional (differential) entropy
of layer l given input X, i.e., the entropy that cannot be explained by input X. The conditional entropy
represents external information, e.g., noise, that is being added during the processing steps from input X
to layer l. For deterministic neural networks it is safe to assume no external information is added, i.e.,
H(Tl | X) = 0. Given I(X;Tl) = 0, this implies H(Tl) = H(Tl | X) = 0. In other words, if no information
besides the input is added to the network and a layer l contains no information about the input, it must be
zero entropy.

C Loss Surfaces of LCE, LBE and Accuracy

In this appendix we show the loss surfaces for the LBE as well as the LCE loss after different stages of
training. It can be seen that weights of the network are never pushed into regions that can be optimized
w.r.t. the objective function, if the batch-entropy regularization is not used as shown in fig. 9, fig. 10, and
fig. 11.
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(a) Training without LBE - LCE

Loss
(b) Training without LBE - LBE

Loss
(c) Training without LBE -

Accuracy

(d) Training with LBE - LCE Loss (e) Training with LBE - LBE Loss (f) Training with LBE - Accuracy

Figure 9: Different loss surfaces and accuracy for a network with 30 layers at the beginning of training on
MNIST. The LBE Loss points away from the local minimum leading to a network that can be optimized
with cross entropy.

(a) Training without LBE - LCE

Loss
(b) Training without LBE - LBE

Loss
(c) Training without LBE -

Accuracy

(d) Training with LBE - LCE Loss (e) Training with LBE - LBE Loss (f) Training with LBE - Accuracy

Figure 10: Different loss surfaces and accuracy for a network with 30 layers trained on MNIST. After training
for 1k steps the LBE is close to the cross entropy loss such that the focus of optimization is on minimizing
the real objective function (cross entropy) rather than the information flow (LBE).
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(a) Training without LBE - LCE

Loss
(b) Training without LBE - LBE

Loss
(c) Training without LBE -

Accuracy

(d) Training with LBE - LCE Loss (e) Training with LBE - LBE Loss (f) Training with LBE - Accuracy

Figure 11: Different loss surfaces and accuracy for a network with 30 layerstrained on MNIST. After training
for 2k steps the LBE is close to the cross entropy loss such that the focus of optimization is on minimizing
the real objective function (cross entropy) rather than the information flow (LBE).

D Hyperparameter Tuning LBE

In this appendix, we report the hyperparameters α and β that are used for LBE regularization. We found
the values through a grid search. Additionally, we report the validation and test accuracy for each setup.

D.1 Fully Connected Networks

Depth Alpha Beta Val. Accuracy Test Accuracy Std. Error
10.0 0.0 0.0000 97.96 98.94 0.01

0.1 0.0005 97.97 98.95 0.01
20.0 0.0 0.0000 95.83 97.86 0.60

0.1 0.0001 96.83 98.48 0.13
30.0 0.0 0.0000 11.17 11.35 0.00

0.1 0.0010 88.70 92.84 1.86
40.0 0.0 0.0000 11.17 11.35 0.00

0.1 0.0005 88.10 93.51 0.67
50.0 0.0 0.0000 11.17 11.35 0.00

0.3 0.0001 87.45 92.93 1.22

Table 5: Evaluation of fully connected networks.

D.2 Residual Networks

.
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Dataset Depth Alpha Beta Val. Accuracy Test Accuracy Std. Error
CIFAR10 26 0.0 0.000 89.49 89.40 0.03

1.0 0.005 89.59 89.41 0.08
74 0.0 0.000 89.71 89.70 0.20

0.5 0.005 90.04 89.89 0.22
152 0.0 0.000 88.20 88.16 0.31

1.0 0.005 88.66 88.54 0.19
CIFAR100 26 0.0 0.000 62.24 62.85 0.10

1.5 0.005 62.53 63.12 0.05
74 0.0 0.000 63.02 63.95 0.30

1.5 0.001 64.03 64.63 0.15
152 0.0 0.000 61.32 62.47 1.40

1.5 0.005 63.82 64.68 0.49
FashionMNIST 26 0.0 0.000 93.57 94.33 0.06

0.5 0.005 93.69 94.25 0.06
74 0.0 0.000 93.32 93.89 0.09

1.0 0.010 93.39 94.18 0.09
152 0.0 0.000 92.76 93.33 0.13

1.5 0.001 92.99 93.55 0.17
MNIST 26 0.0 0.000 99.51 99.68 0.02

0.5 0.010 99.51 99.67 0.01
74 0.0 0.000 99.47 99.67 0.02

0.5 0.005 99.48 99.68 0.01
152 0.0 0.000 99.39 99.59 0.02

1.0 0.001 99.42 99.66 0.03

Table 6: Evaluation of residual networks.

D.3 Autoencoder

Dataset Model Depth Alpha Beta Val. MSSIM Test MSSIM Std. Error
FashionMNIST AE 1 0.0 0.0 0.61 0.61 0.0005

1.5 0.1 0.61 0.61 0.0007
5 0.0 0.0 0.54 0.53 0.0138

1.5 0.2 0.58 0.57 0.0009
10 0.0 0.0 0.13 0.13 0.0001

1.5 0.2 0.41 0.41 0.0084
25 0.0 0.0 0.13 0.13 0.0002

2.0 0.5 0.41 0.41 0.0059
MNIST AE 1 0.0 0.0 0.75 0.75 0.0013

1.5 0.1 0.75 0.75 0.0017
5 0.0 0.0 0.11 0.12 0.0005

2.5 0.5 0.64 0.65 0.0071
10 0.0 0.0 0.11 0.12 0.0003

1.5 0.1 0.41 0.42 0.0038
25 0.0 0.0 0.11 0.12 0.0004

1.5 0.1 0.40 0.39 0.0168

Table 7: Evaluation of autoencoders.
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D.4 Transformer

Dataset Model Alpha Beta Val. Performance Test Performance Std. Error
rte BERTBase 0.0 0.000 68.42 67.42 0.89

0.5 0.010 69.00 67.34 1.54
BERTLarge 0.0 0.000 70.38 69.76 1.20

0.2 0.010 72.17 70.78 0.87
mrpc BERTBase 0.0 0.000 86.62 88.58 0.70

0.2 0.005 86.80 89.13 0.88
BERTLarge 0.0 0.000 87.04 89.06 0.37

0.3 0.005 88.34 89.28 0.55
cola BERTBase 0.0 0.000 58.48 55.63 0.97

0.2 0.050 58.81 56.70 1.04
BERTLarge 0.0 0.000 63.22 59.39 0.71

0.3 0.005 64.31 60.13 0.63

Table 8: Evaluation of transformers.
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