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Abstract
Recent progress with conditional image diffusion
models has been stunning, and this holds true
whether we are speaking about models condi-
tioned on a text description, a scene layout, or
a sketch. Unconditional image diffusion mod-
els are also improving but lag behind, as do dif-
fusion models which are conditioned on lower-
dimensional features like class labels. We pro-
pose to close the gap between conditional and
unconditional models using a two-stage sampling
procedure. In the first stage we sample an embed-
ding describing the semantic content of the image.
In the second stage we sample the image condi-
tioned on this embedding and then discard the
embedding. Doing so lets us leverage the power
of conditional diffusion models on the uncondi-
tional generation task, which we show improves
FID by 25− 50% compared to standard uncondi-
tional generation.

1. Introduction
Recent text-to-image diffusion generative models (DGMs)
have exhibited stunning sample quality (Saharia et al., 2022)
to the point that they are now being used to create art (Op-
penlaender, 2022). Further work has explored conditioning
on scene layouts (Zhang & Agrawala, 2023), segmentation
masks (Zhang & Agrawala, 2023; Hu et al., 2022), or the ap-
pearance of a particular object (Ma et al., 2023). We broadly
lump these methods together as “conditional” DGMs to con-
trast them with “unconditional” image DGMs which sample
an image without dependence on text or any other informa-
tion. Relative to unconditional DGMs, conditional DGMs
typically produce more realistic samples (Ho & Salimans,
2022; Bao et al., 2022; Hu et al., 2022) and work better with
few sampling steps (Meng et al., 2022). Furthermore our
results suggest that sample realism grows with “how much”
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Figure 1. Left: Output from Stable Diffusion (Rombach et al.,
2022) prompted to produce “aerial photography”. Right: Using
a more detailed prompt2with the same random seed removes the
“smudged” road artifact that appears on the left. VCDM builds on
this observation.

information the DGM is conditioned on: as hinted at in Fig-
ure 1 an image is likely to be more realistic if conditioned
on being “an aerial photograph of a road between green
fields” than if it is if simply conditioned on being “an aerial
photograph.” This gap in performance is problematic. Imag-
ine trying to generate a dataset of synthetic aerial photos
for testing a computer vision system. A researcher doing so
would currently have to either (a) make up a scene descrip-
tion before generating each dataset image, and ensure these
cover the entirety of the desired distribution, or (b) accept
the inferior image quality gleaned by conditioning just on
each image being “an aerial photograph”.

To close this gap, we take inspiration from “chain of thought”
reasoning (Wei et al., 2022) in large language models
(LLMs). Consider using an LLM to answer a puzzle: Roger
has 5 tennis balls. He buys 2 more cans of tennis balls. Each
can has 3 tennis balls. How many tennis balls does he have
now? If the LLM is prompted to directly state the answer,
it must perform all reasoning and computation in a single
step. If instead it is prompted to explain its reasoning as it
computes an answer, it can first conclude that the answer
is given by the expression 5 + 2 × 3, and then output an
answer conditioned on it arising from such an expression.
Printing this expression in an intermediate step dramatically
improves accuracy (Wei et al., 2022).

2We used the prompt “Aerial photography of a patchwork of
small green fields separated by brown dirt tracks between them. A
large tarmac road passes through the scene from left to right.”
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Figure 2. CLIP-conditional samples on AFHQ/FFHQ. Each row
shows three samples conditioned on the same CLIP embedding.

Let us imagine an image generative model along these
lines. When prompted to sample “an aerial photograph”,
it may start by sampling a more detailed description: “an
aerial photograph of a patchwork of small green fields [...]”.
Given this detailed description, it can leverage the full
power of a conditional DGM to generate a high-quality
image. Our approach follows these lines but, instead of
operating on language, our intermediate space consists of
a semantically-meaningful embedding from a pretrained
CLIP embedder (Radford et al., 2021). Specifically we
train a DGM to model the distribution of CLIP embed-
dings of images in our dataset. From this we achieve im-
proved unconditional image generation by first sampling a
CLIP embedding and then feeding this CLIP embedding
into a conditional image DGM. Note that, while this tech-
nique is related to text-conditional image generation, we
are instead applying it to improved unconditional image
generation. We call the resulting model a Visual Chain-
of-Thought Diffusion Model (VCDM) and release code at
https://github.com/plai-group/vcdm.

2. Background
Conditional DGMs We provide an overview of condi-
tional DGMs that is sufficient to understand our contribu-
tions, referring to Karras et al. (2022) for a more complete
introduction. A conditional image DGM (Tashiro et al.,
2021) samples an image x given a conditioning input y,
where y can be, for example, a class label, a text description,
or both of these in a tuple. We can recover an unconditional
DGM by setting y to a null variable in the below. Given
a dataset of (x,y) pairs sampled from pdata(·, ·), a condi-
tional DGM pθ(x|y) is fit to approximate pdata(x|y). It is
parameterized by a neural network x̂θ(·) trained to optimize

Eu(σ)pσ(xσ|x,σ)pdata(x,y)

[
λ(σ)||x− x̂θ(xσ,y, σ)||2

]
(1)

where xσ ∼ pσ(·|x, σ) is a copy of x corrupted by Gaussian
noise with standard deviation σ; u(σ) is a broad distribution
over σ; and λ(σ) is a weighting function. During inference,
samples from pθ(x|y) are drawn via a stochastic differential
equation with dynamics dependent on x̂θ(·).
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Figure 3. FID versus dimensionality of y on AFHQ (Choi et al.,
2020) and FFHQ (Karras et al., 2018). With small training budgets
(brown), it is harmful when y is too informative. With larger
training budgets (purple), it is helpful to make y high dimensional.

CLIP embeddings CLIP (contrastive language-image
pre-training) (Radford et al., 2021) consists of two neu-
ral networks, an image embedder ei(·) and a text embedder
et(·), trained on a large captioned-image dataset. Given an
image x and a caption y, the training objective encourages
the cosine similarity between ei(x) and et(y) to be large
if x and y are a matching image-caption pair and small if
not. The image embedder therefore learns to map from an
image to a semantically-meaningful embedding capturing
any features that may be included in a caption. We use a
CLIP image embedder with the ViT-B/32 architecture and
weights released by Radford et al. (2021). We can visualize
the information captured by the CLIP embedding by show-
ing the distribution of images produced by our conditional
DGM given a single CLIP embedding; see Figure 2.

3. Conditional vs. unconditional DGMs
What does it mean to say that conditional DGMs beat
unconditional DGMs? A standard procedure to evaluate
unconditional DGMs is to start by sampling a set of N im-
ages independently from the model: x(1), . . . ,x(N) ∼ pθ(·).
We can then compute the Fréchet Inception distance
(FID) (Heusel et al., 2017) between this set and the dataset.
If the generative model matches the data distribution well,
the FID will be low. For conditional DGMs the standard
procedure has one extra step: we first independently sam-
ple y(1), . . . ,y(N) ∼ pdata(·). We then sample each image
given the corresponding y(i) as x(i) ∼ pθ(·|y(i)). Then, as
in the unconditional case, we compute the FID between
the set of images x1, . . . ,xN and the dataset, without ref-
erence to y1, . . . ,yN . Even though it does not measure
alignment between x,y pairs, conditional DGMs beat com-
parable unconditional DGMs on this metric in many settings:
class-conditional CIFAR-10 generation (Karras et al., 2022),
segmentation-conditional generation (Hu et al., 2022), or
bounding box-conditional generation (Hu et al., 2022).

Why do conditional DGMs beat unconditional DGMs?
Conditional DGMS “see” more data during training than
their unconditional counterparts because updates involves

https://github.com/plai-group/vcdm
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Figure 4. FID throughout training. We show results for each method trained from scratch and, on AFHQ and FFHQ, for finetuning a
pretrained EDM model (which was trained for the equivalent of 32 GPU days). VCDM quickly outperforms EDM when trained from
scratch and quickly improves on the pretrained model when used for finetuning.

y as well as x. Hu et al. (2022) show this is not the sole
reason for their successes because the effect holds up when
y is derived through through self-supervised learning on an
unconditional dataset. Bao et al. (2022) therefore posit that
conditional distributions typically have “fewer modes and
[are] easier to fit than the original data distribution.”

When do conditional DGMs beat unconditional DGMS?
We present results in Figure 3 to answer this question. We
show FID scores for conditional DGMs trained to condition
on embeddings of varying information content. We produce
y by starting from the CLIP embedding of each image in
our dataset and using either principal component analysis
to reduce their dimensionality (left two panels) or K-means
clustering to discretize them (right two panels) (Hu et al.,
2022). We see that, given a small training budget, it is best
to condition on little information. With a larger training
budget, performance appears to improve steadily as the
dimensionality of y is expanded. We hypothesize that (1)
conditioning on higher-dimensional y slows down training
because it means that points close to any given value of
y will be seen less frequently and (2) with a large enough
compute budget, any y correlated with x will be useful to
condition on. This suggests that, as compute budgets grow,
making unconditional DGM performance match conditional
DGM performance will be increasingly useful.

4. Method
We have established that conditioning on CLIP embeddings
improves DGMs. We now introduce VCDM which lever-
ages this phenomenon to benefit the unconditional setting
(in which the user does not wish to specify any input to
condition on) and the “lightly-conditional” setting in which
the input is low-dimensional, e.g. a class-label. We will
denote any such additional input a (letting a be a null vari-
able in the unconditional setting) and from now on always
use y := ei(x) to refer to a CLIP embedding. VCDM
approximates the target distribution pdata(x|a) as

pdata(x|a) = Epdata(y|a) [pdata(x|y,a)] (2)
≈ Epϕ(y|a) [pθ(x|y,a)] (3)

where pϕ(y|a) is a second DGM modeling the CLIP em-
beddings. We can sample from this distribution by sampling
y ∼ pϕ(·|a) and then leveraging the conditional image
DGM to sample x ∼ pθ(·|y,a) before discarding y. From
now on we will call pθ(x|y,a) the conditional image model
and pϕ(y|a) the auxiliary model. In our experiments the
auxiliary model uses a small architecture relative to the
conditional image model and so adds little extra cost.3

Auxiliary model Our auxiliary model is a conditional
DGM targeting pdata(y|a), where y is a 512-dimensional
CLIP embedding. We follow the architectural choice of
Ramesh et al. (2022) and use a DGM with a transformer
architecture. It takes as input a series of 512-dimensional
input tokens: an embedding of σ; an embedding of a if
this is not null; an embedding of aσ; and a learned query.
These are passed through six transformer layers and then the
output corresponding to the learned query token is used as
the output. Like Ramesh et al. (2022), we parameterize the
DGM to output an estimate of the denoised a instead of esti-
mating the added noise as is more common in the diffusion
literature. On AFHQ and FFHQ we find that data augmen-
tation is helpful to prevent the auxiliary model overfitting.
We perform augmentations (including rotation, flipping and
color jitter) in image space and feed the augmented image
through ei(·) to obtain an augmented CLIP embedding. Fol-
lowing Karras et al. (2022), we pass a label describing the
augmentation into the transformer as an additional input to-
ken so that we can condition on there being no augmentation
at test-time.

Conditional image model Our diffusion process hyperpa-
rameters and samplers build on those of Karras et al. (2022).
For AFHQ and FFHQ, we use the U-Net architecture origi-
nally proposed by Song et al. (2020). For ImageNet, we use
the slightly larger U-Net architecture proposed by Dhariwal
& Nichol (2021). We match the data augmentation scheme
to be the same as that of Karras et al. (2022) on each dataset.
There are established conditional variants of both architec-

3For our ImageNet experiments, sampling takes 862ms per
batch item for our image model and 35ms for our auxiliary model,
so VCDM has inference time only 4% greater than our baselines.
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tures (Dhariwal & Nichol, 2021; Karras et al., 2022), which
incorporate y via a learned linear projection that is added
to the embedding of the noise standard deviation σ. Our
conditional image model needs to additionally incorporate
a; we can do so by simply concatenating it to y and learning
a projection for the resulting vector.

5. Experiments
We experiment on three datasets: AFHQ (Choi et al., 2020),
FFHQ (Karras et al., 2018) and ImageNet (Deng et al.,
2009), all at 64 × 64 resolution. We target unconditional
generation for AFHQ and FFHQ, and class-conditional gen-
eration for ImageNet. As well as training networks from
scratch on each dataset, we report results with the model
checkpoints released by Karras et al. (2022) on AFHQ and
FFHQ, which we finetune to be conditional on the CLIP
embedding. To do so, we simply add a learnable linear
projection of the CLIP embedding and initialize its weights
to zero. Figure 4 reports the FID on each setting and dataset
throughout the training of the conditional image model.4 In
each case, the auxiliary model is trained for one day on one
V100 GPU. We compare VCDM to three other approaches:
EDM (Karras et al., 2018) is a standard DGM directly mod-
eling pdata(x|a). VCDM with oracle uses our conditional
image model but uses the ground-truth y for each test a
instead of sampling from the learned auxiliary model, i.e. it
is the performance that VCDM would achieve with a perfect
auxiliary model. Class-cond is an ablation that applies to
unconditional tasks where a is null. It uses discrete y (as
on the right of Figure 3) so that pdata(y|a) = pdata(y) is a
simple categorical distribution which we can sample from
exactly, but is outperformed by VCDM.

VCDM consistently outperforms unconditional generation
after 1-2 GPU-days and this performance gap continues for
as long as we train the networks. Comparing VCDM’s per-
formance with and without the oracle we see that they are
close. For networks trained from scratch we show in Sec-
tion 5 that VCDM always has an improvement over EDM at
least 80% as large as that of VCDM with an oracle, indicat-
ing that pϕ(y|a) is a good approximation of pdata(y|a). We
can therefore leverage almost the full power of conditional
DGMs for unconditional sampling.

6. Related work
Several existing image generative models leverage CLIP em-
beddings for better text-conditional generation (Nichol et al.,
2021; Ramesh et al., 2022). We differ by suggesting that

4Each FID is estimated using 20 000 images, each sampled
with the SDE solver proposed by Karras et al. (2022) using 40
steps, Schurn = 50, Snoise = 1.007, and other parameters set to
their default values.

Table 1. Final FID score for the models we train from scratch and
a comparison of their improvements over EDM.

Dataset AFHQ FFHQ ImageNet

y null null class label

VCDM 1.83 4.73 18.1
VCDM + oracle 1.57 4.35 19.7
Class-cond. 2.56 5.24 -
EDM 3.53 6.39 26.5

Improv. w/ VCDM 48.2% 26.0% 31.5%
Improv. w/ oracle 55.6% 31.9% 25.6%

Improv. w/ VCDM
Improv. w/ oracle 86.6% 81.3% 123%

CLIP embeddings are not only useful for text-conditioning,
but also as a general tool to improve the realism of gener-
ated images. We demonstrate this for unconditional and
class-conditional generation. Our work takes inspiration
from Weilbach et al. (2022), who show improved perfor-
mance in various approximate inference settings by model-
ing problem-specific auxiliary variables (like y) in addition
to the variables of interest (x) and observed variables (a).
We apply these techniques to the image domain and incorpo-
rate pretrained CLIP embedders to obtain auxiliary variables.
VCDM also relates to methods which perform diffusion in
a learned latent space (Rombach et al., 2022): our auxiliary
model pϕ(y|a) is analogous to a “prior” in a latent space
and our conditional image model pθ(x|a,y) to a “decoder”
Such methods typically use a near-deterministic decoder
and so their latent variables must summarize all information
about the image. Our conditional DGM decoder on the other
hand will function reasonably however little information is
stored in y and so VCDM provides an additional degree of
freedom in terms of what to store. This is an interesting
design space for future exploration. Classifier (Song et al.,
2020) and classifier-free guidance(Ho & Salimans, 2022)
are two alternative methods for conditional sampling from
DGMs. Both have a “guidance strength” hyperparameter to
trade fidelity to pdata(x|y) against measures of alignment
between x and y. A possible extension to VCDM could
parameterize pθ(x|y,a) with either of them.

7. Discussion and conclusion
We have presented VCDM, a method for unconditional or
lightly-conditional image generation which harnesses the
impressive performance of conditional DGMs. A massive
unexplored design space remains: there are almost certainly
more useful quantities that we could condition on than CLIP
embeddings. It may also help to condition on multiple quan-
tities, or “chain” a series of conditional DGMs together. An
alternative direction is to simplify VCDM’s architecture by,
for example, learning a single diffusion model over the joint
space of x and y instead of generating them sequentially.
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