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ABSTRACT

Zero-shot neural architecture search aims to predict multiple characteristics of
neural architectures using proxy indicators without actual training, however, most
methods focus on evaluating only a single characteristic of neural networks. Since
the Neural Tangent Kernel (NTK) offers a promising theoretical framework for
understanding the characteristics of neural networks, we propose NTK-score, a
proxy indicator that includes three metrics derived from NTK’s eigenvalues and
kernel regression, to assess three critical characteristics: trainability, expressivity,
and generalization. Moreover, to exploit three metrics of our NTK-score, we em-
ploy the Borda Count approach on our NTK-score to rank architectures in neural
architecture search. Compared with state-of-the-art proxies, experimental results
demonstrate that the NTK-score correlates well with both the test accuracy and
training time of architectures, and outperforms comparison proxies across various
search spaces and methods, including NAS-bench-201, DARTS, and ResNet, as
well as pruning, reinforce, and evolutionary algorithm.

1 INTRODUCTION

Neural networks have brought many important technological breakthroughs and innovations to the
field of computer vision, promoting the rapid development and widespread application of this field.
However, manually designing neural network architectures is challenging and requires extensive
professional knowledge and experience, as well as a lot of experiments and adjustments |[Baker et al.
(2016), Rumiantsev & Coates| (2023)). Therefore, automatically designing neural networks, such as
Neural Architecture Search (NAS), has attracted increasing research interest.

NAS enables automated neural network design by searching the space of possible network archi-
tectures and evaluating the performance of each architecture. As more and more NAS methods
have been proposed, the NAS methods can now be categorized into three types based on training
frequency: multi-shot NAS [Xie & Yuille| (2017), one-shot NAS [Liu et al| (2018) and zero-shot
NAS |Chen et al.| (2021). This categorizing reflects the varying consumption of time and resources
involved in training. Due to the huge overhead of time and resources required for training architec-
tures, our work focuses on the zero-shot NAS.

Zero-shot NAS evaluates and selects potential neural network architectures based on some sophis-
ticated metrics, bypassing network training. The lack of training necessitates an accuracy ranking
agent [Chen et al.| (2021]), |Chen et al.| (2023b)). For instance, TEG-NAS |Chen et al.| (2023b) and
AZ-NAS |[Lee & Ham (2024) employ their proxies to rank the neural networks based on multiple
characteristics. However, most proposed agents focus solely on one characteristic, often leading to
results that fail to outperform certain naive agents |Li et al.|(2024)). As Neural Tangent Kernel (NTK)
provides a stable mathematical framework to understand and analyze the characteristics of neural
networks by linearizing the training dynamics and remaining constant over time in the infinite-width
limit, our designed agent utilizes NTK to evaluate neural networks across the dimensions of train-
ability, expressivity, and generalization simultaneously.

The trainability of a neural network refers to how quickly it converges to the expected loss or accu-
racy during training, indicating its ability to adapt to the training data|Li et al.|(2024). To characterize
the trainability, TE-NAS|Chen et al.[(2021)) utilizes the condition number x |Xiao et al.|(2020), which
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only focuses on the max and min eigenvalues, somewhat ignores the distribution of eigenvalues, as
the entire spectrum of the NTK can be a better measure [Wang et al.| (2023). We argue that neu-
ral networks with better generalization capabilities tend to exhibit more similar NTK eigenvalues.
Therefore, we present a metric that quantifies an architecture’s trainability by utilizing the ratio of
larger NTK eigenvalues.

Expressivity of a neural network refers to its ability to capture and represent the number of com-
plex patterns and relationships within data Raghu et al.| (2017). A common expressivity measure
indicator is the number of parameters, which is not applicable to deep networks as networks with
the same number of parameters but different depths perform quite differently. Hence, the current
NAS approaches mostly use the Number of Linear Regions (NLR) divided by the ReLU function
Mellor et al.|(2021), [Chen et al.| (2021) rather than NTK. Considering that the output of a neural
network can be efficiently evaluated using NTK |Lee et al|(2019), and the network’s capacity to
map similar inputs to distinct regions can serve as a reflection of the network’s expressive ability
Xiong et al.| (2020), we propose an expressivity metric by computing the cross-entropy of the output
distributions of two similar inputs, in which the output distributions are calculated through NTK.

Generalization of a neural network also stands as a crucial indicator for evaluating the neural net-
work’s capacity to operate effectively on unseen data Zhu et al.| (2022). Recent research has as-
sociated NTK with the generalization capabilities of neural networks, such as degree k fractional
variance of the NTK kernel Yang & Salman|(2019) and Mean Squared Error (MSE) loss in NTK
kernel regression [Chen et al.[(2023a). NTK kernel regression simply represents the network’s label
on the test set|Lee et al.|(2019), and its loss with the true label shows the network’s ability on unseen
data. We also use this metric to evaluate the generalization ability of neural networks.

After characterizing the trainability, expressivity, and generalization of a neural network based on
NTK, we organize the three values of these characteristics as a proxy NTK-score for ranking neural
architectures in NAS. Due to the disparate nature of these three score values, direct arithmetic oper-
ations are challenging. To address this, we employ the Borda Count approach on the NTK-score’s
three characteristics, and design an NAS framework called SABoC-NAS.

In summary, our contributions are as follows:

e To evaluate and rank neural architectures, we introduce NTK-score, which includes three
training-free metrics derived from NTK’s eigenvalues and kernel regression, to assess the
trainability, expressivity, and generalization of a neural network respectively.

e We develop a NAS framework using our NTK-score, namely SABoC-NAS, managing
trade-offs among trainability, expressivity, and generalization by Borda Count.

2 RELATED WORK

2.1 NEURAL ARCHITECTURE SEARCH

At first, people used brute force methods to directly use the accuracy of the trained network architec-
ture for screening, including Genetic CNN Xie & Yuille (2017) and MetaQNN Baker et al.| (2016).
Then, in order to reduce the overhead required for training, one-shot was proposed, that is, Supernet
is trained only once, and multiple different networks are obtained through weight sharing, such as
DARTS [Liu et al.| (2018)), FBNet ' Wu et al.| (2019), GreedyNAS |You et al.| (2020) and Single-Path
One-Shot NAS Guo et al.|(2020).

Recently, zero-shot NAS becomes the mainstream method of NAS |Li et al.| (2024). Gradient of
deep network parameters is first proposed to design agents that can rank the accuracy of candidate
network architectures, such as Fisher Liu et al.|(2021]), SNIP|Lee et al.|(2018)), Synflow [Tanaka et al.
(2020), GraSP|Wang et al.|(2020), Gradnorm |Abdelfattah et al.|(2021)), ZiCo|Bhardwaj et al.|(2023).

TE-NAS |Chen et al.|(2021) ranked architectures by analyzing the spectrum of NTK and the number
of linear regions in the input space that respectively imply the trainability and expressivity of the
neural network. On the basis of TE-NAS, TEG-NAS |Chen et al.| (2023a) completed the training
indicators in generalization and promotes the visualization of the search space. KNAS [Xu et al.
(2021) found a practical gradient kernel that exhibits strong correlations with both training loss and
validation performance and proposed a new kernel based architecture search approach. Further-
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more, Label-Gradient Alignment (LGA) Mok et al.|(2022) is introduced as a metric based on NTK,
to capture the extensive nonlinear characteristics present in contemporary neural architectures. Ad-
ditionally, Neural Network Gaussian Process (NNGP) Rumiantsev & Coates| (2023)) which can be
computed more efficiently was introduced as a kernel metric to evaluate the architectures faster.

What’s more, recent NAS research is increasingly focusing on evaluating one or more specific capa-
bilities of the network. Zen-NAS [Lin et al.| (2021) directly searched high expressivity architectures
in a data-free manner by maximizing the target network’s Zen-Score for a given inference budget. In
addtion, gradient Signal-To-Noise Ratio (GSNR)|Sun et al.| (2023)) which has been shown to correlate
with the generalization performance of neural networks, have been used as a zero-Shot NAS agent
to predict network accuracy upon initialization. SWAP-NAS |Peng et al.| (2024) presented Sample-
Wise Activation Patterns and its derivative SWAP-score to measure the architectures’ expressivity,
which can be further enhanced by regularization. AZ-NAS Lee & Ham)| (2024) proposed a zero-shot
proxy that evaluates architectures along four complementary dimensions: expressiveness, progres-
siveness, trainability and complexity, which can be evaluated simultaneously in a single forward and
backward pass, as well as their nonlinear ranking aggregation method.

2.2 NEURAL TANGENT KERNEL

The concept of NTK was first proposed to prove that the gradient descent of artificial neural networks
is equivalent to kernel gradient descent. Further research shows that NTK enables the scrutiny of
the network’s trainability, expressivity, and generalization.

Trainability. The condition number £ = A4z /Amin and the largest/smallest eigenvalue of the
NTK A0z /min |X120 et al. (2020) are used to analyze trainability. The degree k fractional variance
Yang & Salman| (2019) is proposed as a metric to evaluate the generalization properties of neural
networks. In addition, the training process of a neural network can be decomposed along differ-
ent directions defined by the eigenfunctions of the neural tangent kernel, each direction having its
own convergence rate determined by the corresponding eigenvalues (Cao et al.| (2019), Bowman &
Montufar (2022). Furthermore, it is borne out that larger eigenvalues express the convergence speed
and the learning rate is related to the eigenvalues [Kopitkov & Indelman| (2020).

Expressivity. The dynamics of the network function fy aligns with kernel gradient descent in func-
tion space concerning a limiting kernel during training Jacot et al.| (2018). Moreover, the ODE of
the neural network output with respect to NTK is obtained [Lee et al|(2019). The result is further
extended by decomposing the ODE along different eigenvectors Xiao et al.| (2020). Since the out-
put can be easily represented through NTK, NTK can be used to analyze the expressivity of neural
networks.

Generalization. NTK can provide memory, optimization and generalization guarantees in deep neu-
ral networks [Bombari et al.[(2022)). The minimum eigenvalue is used to establish the generalization
error bound in stochastic gradient descent training |Zhu et al.|(2022)),/Zhu et al.|(2023)). The positive
definiteness of NTK is proved by providing the lower bound of the minimum eigenvalue of NTK in
deep learning theory, both in the limiting case of infinite widths and for finite widths Nguyen et al.
(2021), Bombari et al.| (2022), Zhu et al.|(2022), Zhu et al.|(2023), Banerjee et al.| (2023)).

3 PRELIMINARY

Given a neural network f, NTK at time ¢ is defined as an n X n positive semidefinite matrix H;

whose (i, j)th-entry is < af(gg’wi)7 af(g;’%) >, where f(6;,x) is the output of the network, 6; is
all parameters of the network and x is the input.

The evolving output f(x) of the neural network over time [Lee et al.| (2019) can be represented by

Eq. (I) and Eq. (2)
f(Xtrain) = (I - e_nHtTam’tTGMt)Y;‘/rain7 (1)
f(Xtest) = Htest,trainHt:-iimtTain(I - einHt”Li"’tmmt)Y;Srain7 (2)

where Hiyqin train 1S NTK calculated on the training dataset at initialization, Hiest trqin 18 NTK
calculated on the training and test dataset at initialization, X4y 1S the training data, X, is the
test data, Y;,qin is the labels of training data.
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Neglecting the time factor ¢, the equation can be simplified calculated by Eq. (3)
f(Xtest) = Htest,trainHt_r;in,trm‘n)/traina (3)
enabling us to efficiently compute the simple output of the neural network without training.

The equation is further decomposed Hj along different eigenfunctions |Xiao et al.[(2020), evolve as
Eq. @)

f(Xtrain)i = (I - e_nkit)}/train,h (4)
where ); is the eigenvalues of Hy and maximum feasible learning rate 77 ~ 2/ [Lee et al.| (2019).

During the training phase of the neural network, decomposition along distinct directions defined by
the eigenfunctions of the neural tangent kernel reveals unique convergence rates which are dictated
by the corresponding eigenvalues [Cao et al.| (2019), Bowman & Montufar| (2022)). Therefore, the
condition number of NTK, defined as x = :\\m‘” is introduced and used as a metric to quantify
the trainability of the neural network by TE-NAS |Chen et al.[| (2021), which regards that a neural
network is not trainable if x diverges.

4 METHOD

After defining NTK-score as a triplet to characterize trainability, expressivity, and generalization
of a neural architecture, we depict a training-free framework SABoC-NAS integrated Borda Count
approach for ranking neural architectures.

4.1 NTK-SCORE ON TRAINABILITY, EXPRESSIVITY, AND GENERALIZATION

NTK-score, denoted by a triplet (.S, Se, Sg), describes a neural architecture across three dimen-
sions: trainability, expressivity, and generalization, respectively. All elements of NTK-score are
derived from Neural Tangent Kernel (NTK) of the given architecture, and explained as follows.

Trainability. Given a neural architecture f, a training dataset X;,4in, the NTK Hipgin, train IS
computed on the training dataset, and the value of trainability metric S; is calculated by Eq. (§)

[Vil=1 4.
St = 2127?,1 La (5)
Zz‘:o Ai
where A\g > A1 > ... > \,_; are the eigenvalues of the NTK Hyqin train, 7 iS the batch size of the
input data, and [/n] denotes a small fraction of larger eigenvalues which accounts for most of the
sum of all eigenvalue.

Expressivity. To characterize the expressivity of a neural architecture, we use both of test dataset
Xiest and training dataset X,.qiy,, and let the NTK H;eg; ¢rqin De on training dataset and test dataset,
the output of the neural network on the test dataset f(X¢.s:) is calculated by Eq. (@)

-1
f(Xtest) = Htest,t’r‘ainHtraimtrain}/train7 (6)
where Y,q4in 1s the label set of training dataset. Eq. @ represents a NTK kernel regression.

And then, we apply a minor perturbation € to Xy, yielding Xyes¢/, and subsequently compute the
output f(Xyest) in the same way by Eq. (7) and Eq.

Xtest’ = Xtest + €, €~ N(O, 10_4) (7)

-1
f(Xtest’) = Htest/,tramHtraimtrainY'train- (8)

having f(Xyest) and f(Xieser ), we calculate the difference between them as the value of expressivity
metric S. by Eq. (9)
Se = 7Cr055Entr0py(f(Xtest), f(Xtest’ ))7 (9)

where — is unify the standard so that the smaller the S., the stronger the expressivity.

Generalization. Following TEG-NAS |Chen et al.| (2023a), we use the square loss between the suc-
cinctly estimated output f(Xyes:) and the true label Yi.4; of test dataset as the value of generalization
metric Sg, as shown by Eq. (T0)

Sy = [If (Xtest) — Yiest||2- (10)
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4.2 SABOC-NAS: SEARCHING ARCHITECTURE BY BORDA COUNT

We depict SABoC-NAS framework for selecting the target architecture with high scores across all
three metrics, as it is proved that there is no single architecture that is optimal in all three characteris-
tics given a fixed budget|Chen et al.|(2023b). Considering the significant disparity in the magnitudes
of the three metrics, simple addition or subtraction is inadequate for fusing them, we employ the
Borda Count approach to flexibly trade-off between trainability, expressivity, and generalization.

Specifically, given a set of architectures {a1,as, ..., an,}, we calculate the NTK-scores of all m
architectures separately, denoted by Eq.
SPm={S}.87,....8"),  i=tey, (1n

where subscript i of metric value S¥ indicates different metrics, and superscript k indicates archi-
tecture ag.

Having the three metric values of all architectures S}, S¢™, S ;:m, we sort all architectures based
on each metric’s values separately, and calculate the Borda Count rankings, as shown by Eq. (12)

SE™ = rank(SE™) + rank(SE™) + rank(SL™), (12

where rank(-) sorts input values and returns a permutation of {1,2,...,m} which indicates the
positions of all input values at the ordered array.

The core component of our SABoC-NAS framework is the proxy S} for ranking architectures,
and various search algorithms, such as pruning algorithm, reinforce algorithm and evolutionary
algorithm, could be easily integrated into our SABoC-NAS framework.

5 EXPERIMENT

We demonstrate the correlation coefficients between our training-free NTK-score and established
measurement indicators, along with other SOTA proxies (Sec[5.2)), and conduct an ablation study to
explore different combinations of the NTK-score and analyze each component (Sec[5.3)). In addition,
we compare our SABoC-NAS with the SOTA zero-shot proxies in terms of accuracy and search cost
using different search spaces(Sec[5.4) and search methods (Sec[5.5).

5.1 IMPLEMENTATION DETAILS

We introduce the search space, search methods, SOTA proxies, as well as parameter settings used in
the experiments.

Search Space. NAS-Bench-201 Dong & Yang| (2020) search space contains 5 operations: none
(zero), skip connection, 1 x 1 convolution, 3 x 3 convolution, and average pooling 3 x 3.

DARTS [Liu et al.| (2018]) search space contains 8 operations: none (zero), skip connection, separable
convolution 3 x 3 and 5 x 5, dilated separable convolution 3 x 3 and 5 x 5, max pooling 3 x 3, average
pooling 3 x 3.

ResNet He et al.[(2016) search space consists of residual blocks and bottleneck blocks. The convo-
lution kernel size is in the set {3,5,7}

Search Method. Pruning Algorithm, slimier to TE-NAS (Chen et al.|(2021)). The neural network is
structured with standardized cells of parallel edges. For an operation performed on a parallel edge
between two cells in each iteration ¢, the NTK-scores of the network are calculated both before
and after the operation. The pruning probability is then determined by comprehensively evaluat-
ing the scores in three characteristics: trainability, expressivity, and generalization. The algorithm
iteratively prunes one of the parallel edges until only a single path remains.

Reinforce Algorithm, slimier to TEG-NAS |Chen et al.| (2023a). The action space in reinforcement
learning is defined as the edge operation between cells, and the reward is defined as the compre-
hensive score of the trainability, expressivity, and generalization of the new architecture generated
by the selected action. The algorithm selects actions from the action space according to probability,
and then updates the probability of action selection according to the reward. The above operation is
repeated for T steps, and finally the top ranked architecture by Borda Count is selected.
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Evolutionary Algorithm, slimier to Zen-NAS [Lin et al.|(2021). In each iteration ¢, a new architecture
is generated through genetic operations and mutations, which is then added to the population. When
the population size exceeds the maximum limit, the architecture with the worst score for each of
the three metrics is removed, resulting in the simultaneous removal of three architectures. At the
conclusion of iterations, we select the target architecture based on the comprehensive ranking by the
Borda Count of the three metrics.

Dataset. CIFAR-10 and CIFAR-100 [Krizhevsky et al| (2009) are both widely used benchmark
datasets in the field of computer vision. CIFAR-10 consists of 60,000 32x32 color images in 10
classes, with 6,000 images per class. CIFAR-100 is similar but contains 100 classes, with each class
containing 600 images.

ImageNet-16-120 Chrabaszcz et al.| (2017)) is a subset of the ImageNet dataset, specifically curated
for benchmarking purposes. It consists of 16 object categories with a total of 120 fine-grained
classes. Each category contains a varying number of classes, with a total of 1,281 images for training
and 50 images for validation per class.

SOTA Proxies. Gradient-based methods such as Fisher [Liu et al.| (2021), SNIP |[Lee et al.| (2018),
Synflow [Tanaka et al.| (2020), GraSP |Wang et al.| (2020), Gradnorm |Abdelfattah et al.| (2021), ZiCo
Li et al.| (2023)

Kernel-based methods such as ETE-NAS [Rumiantsev & Coates| (2023), KNAS Xu et al.| (2021)),
LGA Mok et al.| (2022), TE-NAS |Chen et al.|(2021), TEG-NAS |Chen et al.| (2023a)

Other methods such as NASWOT Mellor et al.| (2021), Zen-NAS [Lin et al.| (2021), SWAP-NAS
Peng et al.| (2024), AZ-NAS [Lee & Ham|(2024)).

Parameter Settings. We set batch size = 64 and use Kaiming normal initialization A/ (0, N;) to
initialize the network, where IV; is the width at layer .

5.2 NTK-SCORE vs SOTA PROXIES

To demonstrate the effectiveness of the NTK-score, we calculate the Kend-7 correlation coefficient
between the predicted rankings derived from various zero-shot metrics and the actual rankings based
on established measurement indicators Dong & Yang| (2020) for CIFAR-100 in NAS-Bench-201.

We calculates the Kend-7 correlation coef-
ficient between the predicted rankings de-
rived from the NTK-score and other state-
of-the-art (SOTA) proxies, compared with
the actual rankings based on Test Set Ac-
curacy for CIFAR-100 in NAS-Bench-201,
as we consider classification accuracy to be
the most critical indicator of architecture per-
formance. Moreover, we use the 100-epoch
Training Accuracy as an auxiliary measure
of trainability, as it reflects the model’s train-
ing speed. A higher 100-epoch training ac-
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relation coefficient with Test Set Accuracy, of various metrics on CIFAR-100 of NAS-
and the y-axis represents 100-epoch Training Bench-201

Accuracy, derived from 1024 randomly se-
lected architectures.

The correlation coefficient between NTK-score and Test Set Accuracy reaches 0.532, representing
the highest correlation observed, while the correlation coefficient with 100-epoch Training Accuracy
is 0.509, which is also the second highest, second only to Zen-score [Lin et al.| (2021) of 0.551.
This demonstrates that the NTK-score is strongly linked to both model accuracy and training time,



Under review as a conference paper at ICLR 2025

positioning it as a valuable metric for ranking architectures. By leveraging the NTK-score, we can
more effectively identify models that achieve higher accuracy while minimizing training time.

Table 1: Ablation Study of Kend-7 Correla-

tion Coefficient with Test Set Accuracy on Table 2: Kend-7 Correlation Coefficient with

CIFAR-100 of NAS-Bench-201 Test Set Accuracy of various batch size of S;
on CIFAR-100 of NAS-Bench-201

Methods Kend-7
Sy 0.433 batch size n | Kend-7
Se 0.514 16 0.324
Sy 0.513 32 0.401
S & S, 0.524 64 0.433
Sy & S, 0.522 96 0.459
Se & 9 0.518 128 0.477
St & S & S, | 0.532

5.3 ABLATION STUDY

To further validate the effectiveness of each metric of NTK-score, we examine the Kend-7 correla-
tion coefficient using various combinations of S;, S, and S, in the NTK-score. Table[I]displays the
correlation coefficients between the predicted rankings derived from different NTK-score combina-
tions and the actual rankings for Test Set Accuracy on CIFAR-100 from NAS-Bench-201.

When using only one metric, S, achieves the highest correlation coefficient of 0.514. When employ-
ing two metrics, S;&S. has the highest correlation coefficient at 0.522, while the lowest, Sc&S,
was still significant at 0.518. It is evident that using a composite ranking based on multiple metrics
results in higher relevance compared with using a single metric. When all three characteristics of
the NTK-score are combined, the relevance reaches its maximum at 0.532.

In addition, we also analyze the each component of NTK-score. Figure [2| shows the correlation
coefficient between each component of NTK-score and Test Set Accuracy.

Trainability. As shown in Figure the Kend-7 reaches 0.433, indicating that S; correlates with
Test Set Accuracy and can be used to effectively filter out architectures. In comparison, the condition
number « used in TE-NAS [Chen et al. (2021) yields a Kend-7 of 0.397, showing that S; provides
an improvement of 0.036, validating the effectiveness of our approach.

Analyzing the reasons for the improvement, the neural network can be decomposed along various
eigenfunctions, each of which is associated with a different eigenvalue. And the output equation
of the neural network decomposing along eigenfunction with larger corresponding eigenvalue will
tend to stabilize faster. Furthermore, a network’s convergence primarily relies on a subset of its
eigenfunctions, which is why we use 1/n in the ratio. Therefore, networks with a tighter distribution
of eigenvalue values converge faster, making S;, which utilizes the eigenvalue ratio, more effective
than x, which may overlook the distribution of eigenvalues when assessing this feature.

As S; relies on the batch size n, we further calaulate Kend-7 correlation coefficient of different n
for Sy to verify the effectiveness of \S; depicted in Table[2] As n increases, Kend-7 of S; continues
to rise. This trend is reasonable because a larger batch size leads to a more complex computation of
NTK, allowing S; to become a more precise measure. Consequently, Kend-7 increases, reaching its
highest value of 0.477 at a batch size of 128. Even with n = 16, Kend-7 remains significant at 0.324.

Expressivity and Generalization. As shown in Figures and both S, and S, exhibit a strong
correlation with Test Set Accuracy, with Kend-7 values of 0.514 and 0.513, respectively.

The expressive capacity of a neural network can be evaluated by the number of divided linear re-
gions, and since NTK transforms a neural network into kernel regression, the difference in outputs
for similar inputs serves as a useful metric for assessing the network’s expressive capability. A
higher S, indicates the network’s enhanced ability to differentiate between similar samples, show-
casing its proficiency in capturing and representing complex patterns and relationships within the
data, thus leading to higher accuracy.
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Figure 2: NTK-score Evaluating on CIFAR-100 from NAS-Bench-201.

For generalization, it is intuitive that to be evaluated using the loss of the initialized network output
and the true label, as the training process of the neural network is to minimize the loss between the
predicted output and the true label by continuously adjusting the weights.

5.4 NTK-SCORE USED IN DIFFERENT SEARCH SPACES

In this section, we employ widely-used kernel methods alongside an efficient pruning algorithm for
our search approach, utilizing NAS-Bench-201 and DARTS as the primary search spaces, running
five trials with different random seeds. For architectures derived from DARTS, we conduct training
over 400 epochs to assess accuracy.

To further evaluate the NTK-score’s performance in more complex search spaces, we also explore
the ResNet architecture, known for its capability to construct intricate networks with high perfor-
mance. Following the approach of Zen-NAS [Lin et al.| (2021), we implement an evolutionary algo-
rithm with a population size of 256 and conduct 24,000 evolutionary iterations.

Due to the differing search spaces and methods employed in the original papers for various SOTA
metrics, we adopt a unified setup for our experiments to ensure fairness. All results are reproduced
using the official code provided by the authors.

Table 3: Pruning Results on NAS-Bench-201

CIFAR-10 | CIFAR-100 | ImageNet-16-120

Methods Accuracy-1 | Accuracy-1 Accuracy-1 Search Cos(s)
Fisher 90.86 66.67 37.50 109
SNIP 91.91 67.34 39.18 92
Synflow 93.43 70.42 42.88 82
GraSP 93.11 70.21 43.66 93
Gradnorm 92.01 67.27 39.59 49
ZiCo 93.28 70.58 43.60 50
Zen-NAS 93.46 70.36 43.25 20
SWAP-NAS 93.18 70.14 42.09 18
AZ-NAS 93.01 70.40 44.68 26
ETE-NAS 92.75 69.94 41.38 38
KNAS 93.03 70.22 42.61 452
LGA 93.16 69.95 44.13 434
TE-NAS 93.31 70.38 44.53 1964
TEG-NAS 93.20 70.48 44.68 3228
SABoC-NAS(ours) 93.63 71.06 45.10 921

5.4.1 PRUNING ON NAS-BENCH-201

Table [3| displays the top-1 accuracy and search cost of architectures generated using the pruning
algorithm on NAS-Bench-201 for CIFAR-10, CIFAR-100, and ImageNet-16-120. SABoC-NAS
achieves the highest accuracy across all three datasets, with improvements of at least 0.17%, 0.48%,
and 0.42%, respectively.
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Table 4: Pruning Results on DARTS

Methods CIFAR-10 | CIFAR-100 | ¢ . p Cost(s)
Accuracy-1 | Accuracy-1

ETE-NAS 95.36 80.08 1793
KNAS 95.84 79.47 13992
LGA 96.25 80.58 14499
TE-NAS 96.50 80.34 25169
TEG-NAS 96.62 81.76 25004
SABoC-NAS(ours) 96.81 81.82 25232

Table 5: Evolution Results on ResNet

CIFAR-10 CIFAR-100

Methods Accuracy-1 | Accuracy-5 | Accuracy-1 | Accuracy-5 Search Cost(h)
Zen-NAS 97.28 99.93 81.67 96.17 11.6
NASWOT 95.14 99.83 71.64 91.46 16.7
ETE-NAS 95.04 99.85 73.73 93.65 62.3
TE-NAS 96.03 99.90 76.44 94.10 65.0
TEG-NAS 96.46 99.94 78.51 95.02 124.7
SABoC-NAS(ours) 96.97 99.92 80.11 95.97 137.0

In comparison to methods that rely on forward propagation or gradients, which generally incur
lower computational costs, SABoC-NAS demonstrates an average enhancement of 0.94%, 1.79%,
and 3.27% on CIFAR-10, CIFAR-100, and ImageNet-16-120, respectively. Additionally, when eval-
uated against NTK-based methods, SABoC-NAS shows an average improvement of 0.46%, 0.8%,
and 1.11%, indicating that the NTK-score serves as a more effective metric.

Notably, SABoC-NAS leverages NTK to simplify the complex expressivity calculations associated
with the number of linear regions, significantly reducing search costs. This stands in contrast to
TEG-NAS [Chen et al.|(2023a), which also evaluates architectures based on NTK.

5.4.2 PRUNING ON DARTS

Table @] shows the top-1 accuracy and search cost of architectures generated using the pruning
algorithm on DARTS for CIFAR-10 and CIFAR-100. We compare several relevant NTK kernel
methods, including KNAS [Xu et al.| (2021} using Frobenius norm, LGA Mok et al.[ (2022) using
Label-Gradient Alignment, TE-NAS |Chen et al.|(2021) leveraging «, TEG-NAS |Chen et al.|(2023a)
employing both x and M SE, and ETE-NAS Rumiantsev & Coates| (2023)) utilizing NNGP.

Although SABoC-NAS requires more time than NNGP, it generates architectures with superior ac-
curacy, notably achieving an improvement of 1.74% on CIFAR-100. Furthermore, when compared
with NTK-based methods, SABoC-NAS yields the highest accuracy, with average enhancements of
0.51% on CIFAR-10 and 1.28% on CIFAR-100, underscoring the effectiveness of the NTK-score.

5.4.3 EVOLVING ON RESNET

Table [5] presents the top-1 and top-5 accuracy, along with the search cost of architectures generated
for CIFAR-10 and CIFAR-100. SABoC-NAS outperforms other kernel-based methods while main-
taining a comparable search time, achieving the most significant improvement in top-1 accuracy on
the CIFAR-100 dataset, with an average increase of 3.88%.

Additionally, SABoC-NAS ranks second only to Zen-NAS |Lin et al.| (2021)), which is specifically de-
signed for ResNet architectures and is less effective for DARTS and NAS-Bench-201. This suggests
that our NTK-score is well-suited for more complex and contemporary architectures, delivering
excellent performance.

When compared with TE-NAS |Chen et al.| (2021)) and TEG-NAS |Chen et al.| (2023a)), both of which
evaluate architectures based on multiple characteristics, SABoC-NAS demonstrates superior perfor-
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mance. We attribute this to the limitations inherent in their methods for calculating the number of
linear regions, which hinder their effectiveness in assessing the expressiveness of architectures. In
contrast, our NTK-score effectively addresses this issue.

5.5 NTK-SCORE USED IN DIFFERENT SEARCH METHODS

To demonstrate the versatility of the NTK-score across various search methods, we test it on NAS-
Bench-201 using the reinforce algorithm and evolutionary algorithm, in addition to the pruning
algorithm. For comparison, we include AZ-NAS |[Lee & Ham| (2024) and TEG-NAS |Chen et al.
(2023a)), both of which evaluate architectures based on the same three characteristics with identical
setups. Each method is run five times with different random seeds.

As shown in table [6] SABoC-NAS achieves the highest accuracy in most scenarios. Notably, com-
pared with AZ-NAS [Lee & Ham)| (2024), SABoC-NAS demonstrates superior performance, partic-
ularly on ImageNet-16-120, with a maximum improvement of 4.14%, despite requiring more time.
In comparison to TEG-NAS |Chen et al.| (2023a), which also utilizes kernel methods, SABoC-NAS
improves accuracy by an average of 0.36% while reducing computation time by 14.8%. Overall,
these results affirm that the NTK-score is applicable to a variety of search methods.

Table 6: Results in different search methods on NAS-Bench-201

CIFAR-10 | CIFAR-100 | ImageNet-16-120 | Search

Methods Accuracy-1 | Accuracy-1 Accuracy-1 Cost(s)
AZ-NAS 93.64 70.43 41.65 77
reinforce TEG-NAS 93.21 70.42 44.88 3885
SABoC-NAS(ours) 93.56 70.68 45.31 3058
AZ-NAS 93.05 69.37 40.69 279
evolution TEG-NAS 93.00 70.10 44.45 9376
SABoC-NAS(ours) 93.43 70.42 44.83 8600

6 CONCLUSION

In this work, we introduce the NTK-score, a metric that leverages NTK to evaluate neural net-
works across three key characteristics: trainability, expressivity, and generalization. We also present
the SABoC-NAS framework, which utilizes the Borda Count approach to effectively integrate the
diverse aspects of the NTK-score. By focusing exclusively on eigenvalues and kernel regression de-
rived from the NTK, our method achieves higher accuracy and lower computational costs compared
with other kernel-based approaches. In the future, we will place greater emphasis on the theoretical
analysis of NTK-based metrics, explore additional applications of NTK in NAS, and conduct more
extensive experimental validations.
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