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Abstract

We propose a new method named LoD-Loc for visual localization in the air. Unlike
existing localization algorithms, LoD-Loc does not rely on complex 3D represen-
tations and can estimate the pose of an Unmanned Aerial Vehicle (UAV) using a
Level-of-Detail (LoD) 3D map. LoD-Loc mainly achieves this goal by aligning
the wireframe derived from the LoD projected model with that predicted by the
neural network. Specifically, given a coarse pose provided by the UAV sensor,
LoD-Loc hierarchically builds a cost volume for uniformly sampled pose hypothe-
ses to describe pose probability distribution and select a pose with maximum
probability. Each cost within this volume measures the degree of line alignment
between projected and predicted wireframes. LoD-Loc also devises a 6-DoF pose
optimization algorithm to refine the previous result with a differentiable Gaussian-
Newton method. As no public dataset exists for the studied problem, we collect two
datasets with map levels of LoD3.0 and LoD2.0, along with real RGB queries and
ground-truth pose annotations. We benchmark our method and demonstrate that
LoD-Loc achieves excellent performance, even surpassing current state-of-the-art
methods that use textured 3D models for localization. The code and dataset are
available at https://victorzoo.github.io/LoD-Loc.github.io/.

1 Introduction

Aerial visual localization is the process of determining the global position and orientation for a UAV
camera relative to a known map. This process benefits many important applications, ranging from
cargo transport [69], surveillance [19, 72], to search and rescue [15, 63].

Following localization algorithms on the ground [18, 30, 42, 53, 54, 57, 67, 68, 70, 77], current
aerial visual localization approaches [22, 72] typically involve matching pixels in a query image
with points in a pre-built high-quality 3D map, which is often derived from 3D texture models [43,
76, 72]. Subsequently, a Perspective-n-Point (PnP) RANSAC [32, 37, 14, 23, 27, 24] technique
is commonly used to calculate the camera pose. However, building high-quality 3D maps using
photogrammetry [12, 28, 64, 58, 33] is expensive on a global scale and requires frequent updates to
account for temporal changes in visual appearance. Besides, these 3D maps are costly to store, which
poses significant challenges for terminal deployment on drones. Furthermore, high-resolution 3D
maps disclose detailed information about the localization area, raising critical concerns regarding
homeland security and privacy preservation.
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Figure 1: In this paper, we propose LoD-Loc to tackle visual localization w.r.t a scene represented
by a LoD 3D map, characterized by its ease of acquisition, lightweight nature, and built-in privacy-
preserving capabilities. Given a query image and its coarse sensor pose, our method utilizes the
wireframe alignment of LoD models to recover the camera pose.

To address these challenges, we propose to leverage the Level of Detail (LoD) 3D city maps [38, 16] as
the cue for localization, as illustrated in Figure 1. Compared with traditional textured 3D models, LoD
3D models enjoy the following advantages: 1) Ease of acquisition and maintenance: World-scale
LoD city models can be generated with the rapid development of remote sensing [17, 34, 48, 52, 31].
Many commercial companies, such as Google Maps [8] and Baidu Maps [7], have already integrated
LoD 3D models into their MAP Applications. 2) Light-weight map size: LoD maps are extremely
compact, up to 104 times smaller in size than textured 3D maps, enabling on-device localization
over large areas. 3) Privacy preservation and policy-friendly: As LoD city models only reveal the
basic 3D outlines of buildings in a highly abstracted and simplified manner, they raise fewer concerns
about the disclosure of privacy and land resource secrets.

However, compared with a textured 3D model, using LoD maps for localization is very challenging,
primarily due to the lack of texture and detail. This deficiency makes it nearly impossible to establish
local feature-based 2D-to-3D correspondences. Inspired by the idea that, when the pose is correctly
solved, the network-predicted building wireframes can align with those projected from the LoD 3D
model, as shown in Figure 1, we introduce LoD-Loc, a novel approach tailored for visual localization
in LoD 3D city maps. Our method takes a query image and its real sensor data (i.e., GPS, gravity, and
compass) as input, and estimates the 6-DoF pose of a drone in flight. Specifically, we initially fix the 2-
DoF gravity direction and generate pose hypotheses by sampling 4-DoF (comprising position and yaw
angle) around the sensor pose, given that the gravity direction provided by the inertial unit exhibits
minor error. Following the generation of pose hypotheses, LoD building wireframes are projected
onto the query image plane. Each pose hypothesis is then scored based on the alignment between the
projected and predicted wireframes, thereby forming a 4D pose cost volume. By applying a softmax
operation, we derive a probability density over the pose, which can be used for pose selection through
classification. Moreover, after the pose selection stage, a differentiable Gauss-Newton method, with
an optimization objective to maximize the wireframe alignment, is employed to refine the overall
6-DoF pose. The pose selection and optimization processes are fully differentiable w.r.t. the network
output, which enables the use of ground-truth poses as supervision for training feature extraction and
pose estimation in an end-to-end manner.

To achieve high accuracy and low memory usage, we propose a hierarchical scheme for pose
selection that utilizes multiple small pose volumes, to progressively compute poses in a coarse-to-fine
manner. Throughout the hierarchy, we adopt an adaptive sampling strategy, where the variance-based
uncertainty from the previous stage influences the sampling range of the next stage for constructing
pose cost volume. This adaptive process enables reasonable and fine-grained spatial partitioning of
poses, resulting in a significant improvement in the final pose output.

To facilitate research in this area, and to train and evaluate our method, we release two datasets with
map levels of LoD3.0 and LoD2.0, respectively, as shown in Figure 2. For the LoD3.0 dataset, we
employ a semi-automatic method to generate LoD model data from a recent large-scale oblique
photography scene [72], covering an area of 2.5 square kilometers. The query images are captured by
drones, with sensor data (e.g., GPS, IMU) recorded. For the LOD2.0 dataset, we use LoD model
data provided by the Swiss federal authorities, specifically the SwissTOPO [9–11] data near École
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Table 1: Differenet types of maps for visual localization.

Map Type SfM
SLAM

Mesh
model

Satellite
images OpenStreetMap LoD model

(our works)

What? 3D points
+features

textured
meshes

pixel
intensity

polygons,
lines, points

wireframes,
faces

Explicit geometry? 3D 3D × 2D 3D
Visual appearance? ✓ ✓ ✓ × ×
x-DoF pose estimation 6-DoF 6-DoF 3-DoF 3-DoF 6-DoF
Storage per 1km2 42 GB 9.8 GB 75 MB 4.8 MB 2.84 MB
Size reduction v.s. SfM - 4.28× 550× 8800× 15100×

Polytechnique Fédérale de Lausanne (EPFL), covering an area of 8.2 square kilometers. The query
images with ground-truth poses are sourced from the CrossLoc [74] project.

We conduct extensive experiments on these two datasets. The results show that, due to the lack of
both color and texture in the LoD 3D model, previous state-of-the-art image retrieval-and-matching
methods [44, 53, 54, 29, 41, 25, 66, 46, 47] basically fail. In contrast, our method consistently
achieves excellent results, even surpassing current state-of-the-art methods [53, 54, 66, 72] that use
textured 3D models for localization.

Contributions.

• We propose the use of Level of Detail (LoD) 3D maps for 6-DoF visual localization in the air.

• We introduce a novel localization method that utilizes wireframe alignment for pose estimation.

• Our method is differentiable, allowing the pipeline to be trained end-to-end with pose supervision.

• We release two LoD city datasets, complete with RGB queries and ground-truth pose annotations.

2 Related Works

Localization from SfM or Mesh Map. SfM maps typically consist of reference images and
3D track points with their associated features [58]. For a given query image, an image retrieval
method [13, 29] is initially utilized to identify co-visible reference images. Following this, feature
matching algorithms [41, 25, 54, 66] are employed to establish accurate 2D-2D correspondences
between the query image and the identified reference images, with track information being used to
transform these 2D-2D correspondences into 2D-3D relationships. Finally, the pose is resolved using
PnP RANSAC [32, 37, 14, 23, 27, 24, 77].

Mesh maps are typically defined by a textured mesh model. Initially, reference images with depth
are rendered at appropriate viewpoints surrounding the model [72, 43, 44, 76]. Similar image
retrieval [13, 29] and matching [41, 25, 54, 66] processes are employed to identify co-visible
images and to establish 2D-2D correspondences. The depth map is utilized to transform 2D-2D
correspondences into 2D-3D relationships, and the pose is subsequently determined by a PnP
RANSAC [32, 37, 14, 23, 27, 24, 77].

Despite providing high-accuracy localization results, both SfM and mesh models present significant
challenges in terms of reconstruction and maintenance. Additionally, their extensive size complicates
deployment, necessitating its existence solely in the cloud. Moreover, these maps raise serious
concerns about the privacy of personal and land resource leakage.

Localization from other types of Map. To mitigate these issues, researchers have proposed to
use alternative types of maps for localization. In addressing the difficulty of map reconstruction
and maintenance, some methods opt for overhead imagery such as satellite [59, 60, 73, 56], or
leverage OpenStreetMap [55] as a reference. However, these methods are limited to estimating a
3-DoF (planar position and heading) pose at most. To address the issue of large map size, some
methods have made attempts to compress the maps [20, 21, 78], reduce model complexity [44],
or utilize geometry information without features [49, 79, 39, 75]. In the context of privacy, some
methods [36, 61, 65] propose to transform 3D point clouds into 3D line clouds, leverage semantic
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Figure 2: Overview of datasets. The left side shows the LoD models of the released data. The
LoD2.0 model from Swiss-EPFL includes building height and roof information, while the LoD3.0
model from UAVD4L-LoD contains more detailed structural information such as building height,
roof, and side pillars. The right side illustrates samples of query images, which consist of images
captured by drones in various scenes.

information from point clouds, or utilize semantic 3D maps to enhance privacy [50]. Some other
methods apply learning-based pose regression or scene point regression models [35, 62, 40] that do
not explicitly store the 3D map. However, the effectiveness and generalizability of these methods are
often inferior to those that rely on SfM or texture mesh maps. A detailed comparison of attributes
from different maps is provided in Table 1.

3 Method

Given a 3D city LoD map M, a query image I, and its coarse sensor pose ξp, the goal of the proposed
method is to compute the absolute 6-DoF pose ξ∗. First, a convolutional neural network is used to
extract the wireframe probability map for the query image I at multiple levels (Sec. 3.1). Second,
at each level, uniform pose sampling and 3D wireframe projection are employed to build a cost
volume for various pose hypotheses, describing the pose probability distribution. The pose with
the maximum probability is then selected (Sec. 3.2). Finally, a post-processing network refines the
wireframe probability map after the last level, and a Gauss-Newton method is applied to refine the
pose chosen in the previous stage (Sec. 3.3). Figure 3 provides an overview of the proposed method.

3.1 Multi-Scale Feature Extractor

We use a standard convolutional architecture with U-Net [51] to extract multi-level features from
the query image I. Different from previous works that maintain a high-dimensional feature map to
encapsulate rich visual information for each level, we abstract and reduce the feature map dimension
to a single channel, where each pixel in this map signifies the likelihood of being a wireframe. The
resulting feature maps are denoted by Fl ∈ RHl×Wl×1, where l = {1, 2, 3} is the level index. More
details on the architecture of the proposed network can be found in Appendix D.1.

3.2 Pose Selection from Cost Volume

After feature extraction, we construct a cost volume based on various pose hypotheses sampled
around the coarse sensor pose, selecting the pose with the highest probability at each level. To ensure
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Figure 3: Overview of LoD-Loc. 1. LoD-Loc employs a CNN to extract multi-level features Fl for
the query image I (Sec. 3.1). 2. A cost volume Cl is built for various pose hypotheses sampled around
the coarse sensor pose ξp to select the pose ξl with the highest probability, based on the projected
wireframe of the 3D LoD model (Sec. 3.2). 3. A differentiable Gauss-Newton method is used to
refine the final selected pose ξ3, to obtain a more accurate pose ξ∗ (Sec. 3.3).

efficient sampling, we utilize the uncertainty in pose selection at the current level to determine the
pose sampling range for the next level.

Pose cost volume reconstruction. This subsection explains how to construct the pose cost volume.
For a specific level l, the initial pose is represented by ξl, and the computed pose is denoted as ξ̂l. As
part of a progressive process, we keep ξ1 = ξp and ξl+1 = ξ̂l. The pose ξl can be decoupled into
six degrees, with ξl = (xl, yl, zl, θl, φl, ψl), where (xl, yl, zl) represents the translation in 3D space
while (θl, φl, ψl) refers to the Eular angles (i.e., yaw, pitch, roll). Since the pitch and roll (φp, ψp) of
the gravity direction from the sensor pose data exhibit high accuracy, we fix (φl, ψl) = (φp, ψp) and
only conduct operations on the remaining 4-DoF (i.e., (xl, yl, zl, θl) ) in the following steps.

Specifically, we begin by uniformly sampling 4-DoF poses centered on the initial pose
ξl, with the sampling range and number defined as rl = [rl(x), rl(y), rl(z), rl(θ)] and
[ml(x),ml(y),ml(z),ml(θ)], respectively. The pose hypothesis {ξhypl (d)} is generated along
(x, y, z, θ) directions separately, where d ∈ (x, y, z, θ).

{ξhypl (d)} = {−rl(d)/2 + dl, · · · , dl, · · · , dl + rl(d)/2︸ ︷︷ ︸
ml(d)

}. (1)

Next, for a given pose hypothesis, denoted as ξhypl = (Rhyp
l , thypl ) and a set of discrete 3D wireframe

points denoted as {Pi}, we define a line alignment cost:

Cl(ξhypl ) =
1

n
·

n∑
i=1

Fl [pi] . (2)

In this equation, pi = Π(Rhyp
l · Pi + thypl ) represents the projection of 3D point Pi under pose

hypothesis ξhypl and [·] denotes a lookup with sub-pixel interpolation. The construction of the
3D wireframe points {Pi} is provided in the next paragraph. By combining these costs in a grid
manner across four distinct dimensions (x, y, z, θ), we obtain a pose cost volume Cl with dimensions
[ml(x)×ml(y)×ml(z)×ml(θ)]. Finally, a softmax function is applied to Cl to yield a probability
distribution volume Pl. For pose inference, we select the pose ξ̂l with maximum probability by
argmax operation upon Pl.

Discrete 3D wireframe points generation. For a query image I and its associated sensor pose
ξp, we describe how to sample and identify discrete 3D wireframe points {Pi} across the entire
LoD map M. Assume the LoD map M is characterized by a number of faces with vertices Vj =
[Xj , Yj , Zj ]

T ∈ R3. We derive each line of the LoD model as ℓjk = [(Xj , Xk), (Yj , Yk), (Zj , Zk)]
by connecting vertices Vj and Vk. To focus on distinct geometric structures such as building edges,
we discard lines whose normals of their neighboring faces exhibit a significant difference, larger than
µ = 10 degrees. The line simplification process is facilitated with the assistance of Blender [1].
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Figure 4: Toy examples to illustrate the uncertainty sampling range estimation. We show pose
distribution (connected blue dots), pose prediction (yellow dash line), the ground truth pose (red dash
line), and uncertainty sampling range (gray) in the three levels.

Subsequently, we set the sampling density δ in meters and uniformly sample points along all simplified
lines {ℓjk} to obtain 3D points as {Pu

i }, where i represents the index of the 3D points. To obtain
visible 3D points for a query image I, we use the pinhole camera projection (with intrinsic matrix
Kp) and pose prior ξp = (Rp, tp) to identify 3D points, taking factors such as frustum inside and
occlusion information into account. In particular, we first project 3D points onto the 2D image plane:

di[ui, vi, 1]
⊤ = Kp

(
Rp[Xi, Yi, Zi]

⊤ + tp
)

(3)

where [Xi, Yi, Zi] ∈ {Pu
i }, and d is the projected depth for point [Xi, Yi, Zi]. We then render a

depth map from the LoD map M from pose ξp, denoted as D. A boolean mask is calculated as:

Bi = di < D(ui, vi) & 0 < ui < H & 0 < vi < W (4)
where H and W denote the size of the image I, D(ui, vi) means the interpolating value on depth
map D at (ui, vi). The final discrete visible 3D wireframe points {Pi} can be obtained using Eq. 5:

{Pi} = {Pu
i [Bi]}. (5)

Uncertainty sampling range estimation. During the coarse-to-fine process, we leverage the pose
selection uncertainty from the previous level to determine the sampling range of the current level.
This strategy allows us to progressively subdivide the pose sampling space, thereby enhancing the
precision of pose selection. More specifically, for l = 1, we define the pose sampling range by
evaluating the error in the coarse sensor pose. The sampling range for (x, y, z, θ) is defined as
[r1(x), r1(y), r1(z), r1(θ)] = [rp(x), rp(y), rp(z), rp(θ)]. For l = {2, 3}, we employ the variance of
the probability distribution volume Pl−1 at l − 1 to determine the pose sampling range rl.

In particular, since the pose hypothesis {ξhypl }, pose cost volume Cl and probability distribution
volume Pl share the same data structure, we flatten them and index them by t. The variance vl at
level l is calculated as:

vl =
∑
t

tPl−1 · ∥ξ̂l−1 ⊖ tξhypl−1∥
2. (6)

Here, the symbol ⊖ represents the subtraction operation separately applied to the (x, y, z, θ) directions.
The corresponding standard deviation is computed as σl =

√
vl. We compute the pose sampling

range as rl = 2λ · σl, where λ is a hyperparameter that adjust the length of the sample range. A
visualization of this uncertainty sampling range estimation process can be found in Figure 4.

3.3 Pose Refinement

Based on the selected pose ξ̂3 from the previous stage, we use a refined wireframe probability map
Frf , which is further extracted from the feature map F3 via a post-processing convolutional network,
we optimize the pose ξ∗ = (R∗, t∗) so as to align the 3D wireframe with the 2D predicted wireframe.
Specifically, we define the objective function:

E(ξ∗) = −
∑
i

||fi||2 = −
∑
i

||Frf [Π(R∗ ·Pi + t∗)]||2, (7)
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where Pi is the 3D wireframe point and Π is the projection operation. Minimizing this function aligns
the projected 3D wireframe points with the 2D locations that have a higher predicted probability. The
pose update formula for ξ∗, as derived from the Gauss-Newton method, is given by:

∆ξ =−
∑
i

(JT
i Ji)

−1
∑
i

(JT
i fi)

t∗ =R∗ ·∆ξt + t∗

R∗ =R∗ · exp(∆ξr).

(8)

In this formula, ∆ξ ∈ R6 represents a six-dimensional transformation vector, where ∆ξr ∈ R3

constitutes the rotational component and ∆ξt ∈ R3 represents the translational component. We
transform the rotational component ∆ξr into a 3×3 rotation matrix by the exponential map of the
Lie algebra so(3). Besides, Ji represents the Jacobian matrix of the residual function fi with respect
to the pose parameters. A comprehensive explanation and detailed implementation of the Jacobian
computation are provided in Appendix D.2.

3.4 Supervision

We employ two separate loss functions to facilitate end-to-end training of the pose selection procedure
(Sec. 3.2) and the pose refinement module (Sec. 3.3). For the pose selection module, we minimize
the negative log-likelihood loss on the probability distribution volume Pl at three levels, where
l ∈ {1, 2, 3}.

Ls = −
∑
l

logPl[ξ], (9)

For the pose refinement process, the training involves minimizing the reprojection errors between 3D
wireframe points transformed by the estimated pose ξ∗ and the ground truth pose ξ = (R, t):

Lf =
∑
i

ρ(||Π(R∗ ·Pi + t∗)−Π(R ·Pi + t)||2), (10)

where ρ represents the Huber robust kernel.

4 Experiment

Extensive experiments are conducted on the UAVD4L-LoD and Swiss-EPFL datasets to demonstrate
the effectiveness of our proposed model as described in Sec. 4.2. Additionally, ablation studies are
conducted on the UAVD4L-LoD dataset in Sec. 4.3.

Datasets. The released datasets consist of two distinct parts, named UAVD4L-LoD and Swiss-EPFL,
providing LoD3.0 and LoD2.0 models, respectively. The UAVD4L-LoD dataset, which spans an
area of 2.5 square kilometers, is generated through a semi-automatic process which produces a 3D
LoD map from the mesh model of the UAVD4L [72] dataset. The Swiss-EPFL dataset, which covers
an expansive area of 8.18 square kilometers, derives its LoD2.0 models from data made publicly
accessible by the Swiss federal authorities [9–11]. We illustrate the 3D LoD maps and query images
of these two datasets in Figure 2. More details can be found in Appendix A, B and C.

Baseline. We compared our approach with two visual localization baselines: UAVD4L [72], pred-
icated on textured mesh models, and CadLoc [44], predicated on LoD models, employing diverse
feature extractors and matchers. Both baselines employ a keypoint-based strategy: 1) SIFT [41]
descriptor with traditional Nearest Neighbor (NN) matching, 2) learning-based extractor SuperPoint
(SPP) [25] with graph-based networks Superglue (SPG) [54], 3) detector-free matcher LoFTR [66]
and 4) e-LoFTR [71], 5) dense feature matcher RoMA [26]. Additionally, considering the line
structure of the LoD model, we apply three line-based algorithms for the CadLoc: 6) deep neural
network SOLD2 [45] for joint detection and description of line segments, 7) deep line segment detec-
tor DeepLSD [46] with line detector in SOLD2, 8) DeepLSD with wireframe-based representation
and dual-softmax matching method GlueStick [47]. Further details about the implementation of the
baseline experiments can be found in Appendix E.

Metrics. We follow the standard localization evaluation procedure [68] and set recall thresholds of
(2m, 2◦), (3m, 3◦), and (5m, 5◦).
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Table 2: Quantitative comparison results over the UAVD4L-LoD dataset.

Method in-Traj. out-of-Traj.

2m-2° 3m-3° 5m-5° 2m-2° 3m-3° 5m-5°

Sensor Priors 0 0 4.3 0 0 0.36

UAVD4L
Mesh model

SIFT+NN 73.13 78.62 80.42 82.39 85.13 86.36
SPP+SPG 91.71 92.02 92.14 93.43 93.70 93.80
LoFTR 84.98 88.09 88.90 91.56 92.02 92.11
e-LoFTR 84.47 88.21 88.96 91.06 91.93 92.02
RoMA 93.27 93.70 93.77 95.03 95.53 95.53

CadLoc
LoD model

SIFT+NN 0 0 0 0 0 0
SPP+SPG 0 0 0 0 0 0
LoFTR 0 0 0 0 0 0
e-LoFTR 0.37 0.87 1.31 0.41 0.78 1.37
RoMA 2.18 2.87 3.68 6.93 8.76 10.40
SOLD2 0 0 0 0 0 0
DeepLSD+SOLD2 0 0 0 0 0 0
DeepLSD+GlueStick 0 0 0 0 0 0

Ours
LoD model

no NWE 10.41 16.21 24.19 6.93 12.64 21.62
no USR 70.39 85.47 95.32 82.62 94.71 97.63
no Refine 51.31 76.06 86.78 74.27 97.95 99.36
Full model 84.41 91.77 96.95 95.94 99.00 99.36

4.1 Implementation Details

During training, we set a random seed to limit 3D wireframe points {Pi} to 2, 000 points, and the pose
sampling number ml(x),ml(y),ml(z),ml(θ) for level l = 1, 2, 3 is uniformly set to [13, 7, 3] due
to constraints related to CUDA memory. The image size is (512, 480) for the UAVD4L dataset and
(720, 480) for the Swiss-EPFL dataset. The pose sampling range at level 1 is set as [10, 10, 30, 7.5]
which refers to [rp(x), rp(y), rp(z), rp(θ)]. For the UAVD4L-LoD dataset, we incorporate a subset of
synthesized images from UAVD4L [72], which includes buildings, as training data. For Swiss-EPFL,
we train the model by combining synthetic images LHS and real query images from the CrossLoc [74]
project, following its data split pattern.

During inference, experiments are executed on real query images {Ii} derived from two datasets.
We make the following changes, the discrete retrieval points from the 3D wireframe are sampled at
an interval of 1 meter. The pose sampling number is increased to [ml(x),ml(y),ml(z),ml(θ)] =
[10, 10, 30, 8] for all levels. λ is set as 0.8. The training and inference of the entire network are
executed using 2 NVIDIA RTX 4090 GPUs. Additionally, we employ four variations to validate the
effectiveness of our method. Specifically, 1) -no NWE means no neural wireframe estimation, which
extracts explicit line segments using DeepLSD [46] and constructs a distance field for each segment.
It then replaces the cost function in Equations 2 and 7 with the distance function values, and solves
for the pose using coarse-to-fine pose selection followed by Gauss-Newton refinement; 2) -no USR
means a model without uncertainty sampling range estimation (Sec. 3.2); 3) -no Refine denotes a
model without pose refinement (Sec. 3.3); and 4) full model is our proposed LoD-Loc.

4.2 Evaluation Results

Evaluation over UAVD4L-LoD dataset. As described in Table 2, our method shows excellent
performance, both in the in-Traj. and out-of-Traj. queries. Apart from the 2m − 2◦ and 3m − 3◦

metric in the in-Traj queries, which are marginally lower than UAVD4L with RoMA matcher, all other
metrics surpass those of contemporary baselines. Note that this comparison is unfair, as baselines
reference on a high-precision texture model that is richer in texture and geometry, while we only
employ a LoD model. We further compare with CadLoc, which shares the same 3D reference model
as ours. However, we observe that regardless of the choice of descriptors (point-based or line-based),
these methods perform poorly. We visualize their retrieval and matching failure cases in Appendix E.3.
Furthermore, we analyze why our method performs better in the out-of-Traj. scenarios compared to
the in-Traj. scenarios in Appendix F.3.
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Table 3: Quantitative comparison results over the Swiss-EPFL dataset.

Method in-Place out-of-Place

2m-2° 3m-3° 5m-5° 2m-2° 3m-3° 5m-5°

Generated Priors 0 0 0.56 0 0 1.06

UAVD4L
Mesh model

SIFT+NN 14.47 23.31 36.52 32.98 54.35 71.50
SPP+SPG 34.83 60.39 77.25 77.04 89.71 92.35
LoFTR 27.67 49.58 66.43 68.87 81.00 84.96
e-LoFTR 37.64 60.96 76.40 81.53 91.03 93.93
RoMA 45.98 66.77 80.73 89.18 98.68 98.94

CadLoc
LoD model

SIFT+NN 0 0 0 0 0 0
SPP+SPG 0 0 0 0 0 0
LoFTR 0 0 0 0 0 0
e-LoFTR 0 0.14 0.14 0 0 0.53
RoMA 0.98 1.97 2.67 2.37 5.01 6.33
SOLD2 0 0 0 0 0 0
DeepLSD+SOLD2 0 0 0 0 0 0
DeepLSD+GlueStick 0 0 0 0 0 0

Ours
LoD model

no NWE 11.37 21.35 33.57 18.99 31.39 45.91
no USR 42.42 58.29 71.21 31.40 48.81 70.45
no Refine 36.10 58.01 76.97 18.21 39.31 66.23
Full model 48.60 65.31 79.78 37.73 57.26 77.57

Table 4: Ablation study on different stages. T.e./R.e. means translation/rotation error.

Category Level Recall (%) Median Error

2m-2° 3m-3° 5m-5° T.e.(m) R.e.(°)

in-Traj.

Level 1 23.88 60.35 83.85 2.58 1.41
Level 2 48.57 75.06 85.10 2.03 1.27
Level 3 51.31 76.06 86.78 1.97 1.25
Refine 84.41 91.77 96.95 0.97 0.52

out-of-Traj.

Level 1 34.81 78.01 97.67 2.31 1.05
Level 2 65.37 95.35 99.22 1.76 0.97
Level 3 74.27 97.95 99.36 1.63 0.95
Refine 95.94 99.00 99.36 1.06 0.49

Evaluation over Swiss-EPFL dataset. Table 3 presents the inference results on the Swiss-EPFL
dataset. CadLoc continues to exhibit widespread failures due to its poor retrieval and matching
results across different modalities. We surpass the state-of-the-art UAVD4L method in the in-Place
queries, but fall behind in the out-of -Place queries. Moreover, the overall results obtained on
the Swiss-EPFL dataset are not as strong as those on the UAVD4L-LoD dataset. We attribute this
discrepancy to the inferior quality of the images in the training database as explained in Appendix F.1.
Besides, the LoD2.0 model provides less structured information, making it harder for pose inferences.

Analysis of Methodological Advantages. First, compared to the SOTA texture-based approach,
the LoD-Loc employs distinct cues for localization. The texture-based method determines the pose
by optimizing the re-projection error of corresponding 2D-3D points. Conversely, the LoD-Loc
aligns the 3D wireframe projection to solve the pose. Second, 3D-model-based methods typically
employ a two-stage scheme, which involves building 2D-3D matches and then solving the pose with
PnP RANSAC. The LoD-Loc method directly solves the pose in an end-to-end manner, potentially
leading to better pose accuracy. Third, the LoD-Loc includes several important modules to improve
performance, such as coarse-to-fine pose cost volume reconstruction, uncertainty-based sampling
range estimation, and differential Gauss-Newton refinement. These factors contribute to the superior
performance of our method.
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Figure 5: Visualization of feature maps from different levels. The feature maps of different levels
reflect different fineness of wireframe extraction.

4.3 Ablation Studies

We perform ablation experiments on the UAVD4L-LoD dataset, focusing on different levels. More
ablation studies are provided in Appendix F.2.

Levels. As depicted in Table 4, we present the results of the ablation experiments in terms of recall,
translation errors, and rotation errors. The localization accuracy shows a gradual improvement as
the number of levels increases. This demonstrates the effectiveness of the progressive coarse-to-fine
estimation and final pose refinement. Figure 5 visualizes feature maps for each level, illustrating that
wireframe features extracted from deeper levels is clearer.

5 Conclusion

This paper presents LoD-Loc, a novel approach for localizing aerial images using a LoD 3D map.
Compared to large and expensive 3D maps that existing methods rely on, the LoD map provides
a simple, accessible, and privacy-friendly scene representation. With the coarse sensor pose, the
proposed LoD-Loc uses a unified pipeline to estimate the camera pose, including a multi-scale feature
extractor, pose selection from cost volume, and pose refinement. Furthermore, we contribute two
datasets with map levels of LoD3.0 and LoD2.0, along with real RGB queries with ground-truth
pose annotation. LoD-Loc achieves excellent performance, even surpassing current state-of-the-art
methods that use textured 3D models for localization. We believe LoD-Loc opens new possibilities
for visual localization with simple and scalable 3D maps.

Limitation. LoD-Loc operates under the assumptions of a known gravity direction and a location prior.
While these assumptions are reasonable, they restrict the application of LoD-Loc in environments
where GPS is denied or unavailable.

Broader impact. This work has implications regarding privacy and surveillance. However, the LoD
models represent building structures in a highly abstracted form, which alleviates concerns about the
disclosure of personal privacy or land resource information.
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A Details on Dataset Collection

The released datasets consist of two distinct parts, UAVD4L-LoD and Swiss-EPFL, providing LoD3.0
and LoD2.0 models, respectively. The UAVD4L-LoD dataset, which spans an area of 2.5 square
kilometers, is derived from a semi-automatic process that generates a 3D LoD map based on the mesh
model of the UAVD4L [72] dataset. This dataset includes a diverse array of architectural structures,
including skyscrapers, villas, apartment complexes, educational institutions, and rural dwellings. The
query images for this dataset were captured using two UAVs equipped with real sensor data: a DJI
M300 [3] drone with an H20T [2] camera and a DJI Mavic3 Pro [5] drone. The Swiss-EPFL dataset,
which covers an expansive area of 8.18 square kilometers, sources its LoD2.0 models from data
made publicly accessible by the Swiss federal authorities [9–11]. This dataset features a variety of
architectural styles, such as libraries, residential apartments, and stadiums. The query images for this
dataset were acquired through the CrossLoc [74] projects, using a DJI Phantom 4 RTK [6] drone.
Figure 2 presents the 3D LoD maps and query images from these two datasets.

A.1 3D LoD Map Collection

The 3D LoD map for the UAVD4L-LoD dataset is generated semi-automatically with the assistance
of the DP Modeler tool[4]. The process begins with the automatic generation of building blocks,
characterized by their footprints and heights. Manual refinement is then applied to the architectural
details of each building, raising them to the LoD3.0 level. The LoD accuracy of the UAVD4L-LoD
dataset is consistent with the mesh model derived from UAVD4L.

For the Swiss-EPFL dataset, LoD2.0 models are downloaded from the SwissTOPO website [9–11].
To synchronize the coordinate systems between the map data and the drone-captured data from the
CrossLoc dataset (which covers the same area with ground truth pose annotation), we converted the
Swiss LoD map data in LV95 and LN02 coordinate systems to the ECEF coordinate system.

A.2 Query Image Collection

The query images of the UAVD4L-LoD dataset are divided into two categories: in-Traj. and out-
of-Traj., representing trajectory-based and free-flight scenarios, respectively. The in-Traj. images,
totaling 1, 604, were captured using a DJI M300 drone equipped with an H20T camera, focusing
primarily on residential buildings, villas, and educational institutions. In contrast, the out-Traj. images,
totaling 2, 192, were captured using a DJI Mavic3 Pro drone, covering a variety of architectural
structures such as skyscrapers and rural dwellings. Both the in-Traj. and out-of-Traj. datasets
include real sensor priors. Table 5 outlines the specific differences between the in-Traj. and out-Traj.
sequences.

Table 5: Key distinctions between the in-Traj. and out-of-Traj. sequences.

Name Capture device Capture pitch angle Capture height Capture route
in-Traj. DJI M300+H20t 0° or 45° 120m Zig-zag flight on a se-

lected region
out-of-Traj. DJI Mavic3 Pro 30° ∼ 60° 90m ∼ 150m Manually controlled

flight on the map

The real query images in the Swiss-EPFL dataset come from the CrossLoc [74] dataset. However,
because the real-time kinematics (RTK) data from the DJI Phantom4 were used directly as ground
truth (GT) poses, some GT poses show significant mislabeling. To resolve this issue, we projected
the wireframes of LoD maps onto query images to identify and remove incorrectly labeled poses.
The final query dataset comprises 2, 254 images.

A.3 Query GT Generation

For the UAVD4L-LoD dataset, we employ a semi-automatic annotation approach to generate pseudo-
GT poses

{
ξi
}

for the query images {Iqi }. The process is based on the SfM results and textured
mesh model of the UAVD4L [72]. First, we perform SfM separately on the query images {Iqi } and
the reference images {Iri } from the UAVD4L to obtain SfM results Cq and Cr. Next, we manually
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in-Traj. out-of-Traj.

Figure 6: Flight trajectories of query images in the UAVD4L-LoD dataset. We present the flight
trajectories of the registered in-Traj. and out-of -Traj. query images. The in-Traj. images follow
a predetermined flight path, primarily covering the left half of the map. In contrast, the out-of -Traj.
images navigate arbitrarily without a fixed route, randomly covering the entire map.

select points with distinctive visual features (e.g., building corners) as tie points to align Cq with Cr.
To further enhance the accuracy of the pseudo-GT, we utilize the render-and-compare pipeline [76]
to refine the final poses

{
ξi
}

.

Additionally, we analyze the discrepancies between the pose prior and the GT pose, decoupling
the poses into 3D translation in WGS84 space and Euler angles in terms of ’yaw-pitch-roll’. It is
observed that the translation errors for x and y are within ±10, z errors are within ±30, yaw errors
are within ±7.5, and pitch and roll errors are approximately 1 degree.

B Details on UAVD4L-LoD Dataset

B.1 Pseudo-GT Generation

In the UAVD4L-LoD dataset, we employed a semi-automatic annotation technique to generate
pseudo-GT poses

{
ξi
}

for the query images {Ii}. Initially, we performed SfM separately on the
query images {Ii} and the reference images {Irj} from UAVD4L, yielding corresponding SfM results
Cq and Cr. Subsequently, based on the capture region of the {Ii}, we manually identified e distinctive
tie points, such as the corner of the building, to align Cq with Cr, resulting in Cf . We then refined the
pose accuracy of Cf using Bundle Adjustment. The accuracy of the GT poses was evaluated through
the median reprojection error, which was 0.43 pixels for all connected points and 1.19 pixels for the
tie points. Finally, we employed a render-and-compare [76] pipeline for the final refinement of the
GT poses. In this manner, with the annotation of tens of e = 20 manual tie points, we were able
to obtain pseudo-GT poses

{
ξi
}

for a total of 3, 796 query images {Ii}. Figure 6 shows the flight
trajectories of the in-Traj. and out-of -Traj.

B.2 Sensor Pose Accuracy

In the UAVD4L-LoD dataset, we conduct a comprehensive data analysis to validate the precision
of the sensor pose. This is accomplished by employing absolute error bar charts, as illustrated in
Figure 7. Additionally, we assess the accuracy by projecting wireframe points onto the image plane
using both sensor and GT poses. Results of these projections are depicted in Figure 8.

C Details on Swiss-EPFL Dataset

C.1 Data Cleaning

In the Swiss-EPFL dataset, the GT poses
{
ξi
}

for the query images {Ii} are sourced from the
CrossLoc project [74]. This project directly acquires RTK data from the DJI Phantom 4 for GT
annotation. Considering that the RTK device may introduce some noise, we identified and excluded
query images with incorrect labeling. This was accomplished by projecting the wireframe onto the
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Figure 7: The errors between priors and GT poses. We visualize the absolute pose errors between
the sensor and GT pose in 6-DoF. The errors in theX-Y -Z-yaw dimensions show indicate substantial
discrepancies. Specifically, the errors in the X-Y range from −10 to 10 meters, the Z ranges from
−30 to 30 meters, and the yaw fluctuates within the range of −7.5 to 7.5 degrees.

image plane and manually discarding the items exhibiting noticeable misalignment. The process is
visualized in Figure 9.

C.2 Sensor Poses Generation

Since the CrossLoc [74] project does not provide GPS or other sensor data, we randomly generate
sensor poses ξp by emulating the pose errors derived from the UAVD4L-LoD dataset. Specifically,
X-Y for position range between [−10, 10] meters, Z ranges between [−30, 30] meters, yaw for
rotation ranges in [−7.5, 7.5] degrees, and pitch-roll range between [−1, 1] degrees. We present the
discrepancy between the generated sensor poses and GT poses in a bar chart, as depicted in Figure 11.
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Priors GT Priors GT

Figure 8: 3D wireframe projection over UAVD4L-Lod dataset. We visualize the projected
wireframe on query images based on sensor and GT poses to demonstrate their accuracy.

D Details on Method

D.1 Architecture of Multi-scale Feature Extractor

In this section, we provide a detailed description of the architecture of the multi-scale feature extractor
in Table 6.

D.2 Jacobian Computation

The objective function for pose refinement is:

E(ξ∗) = −
∑
i

||fi||2 = −
∑
i

||Frf [Π(R∗ ·Pi + t∗)]||2. (11)

We compute the Jacobian matrix of the residual function fi with respect to the pose parameters as
followed:

Ji =
∂fi
∂ξ∗

=
∂Frf

∂pi

∂pi
∂Pcam

i

∂Pcam
i

∂ξ∗
, (12)
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Figure 9: Samples of mislabeled and selected query images over Swiss-EPFL dataset. We
eliminate mislabeled query images by manually identifying the alignment between the projected 2D
wireframe and the corresponding RGB image.

where ∂Frf

∂pi
is the gradient of the feature map Frf at the 2D location pi and

pi =Π(Pcam
i ) =

(
Xcam

i

Zcam
i

fx + cx
Y cam
i

Zcam
i

fy + cy

)
,

∂pi
∂Pcam

i

=

(
1

Zcam
i

fx 0 − Xcam
i

(Zcam
i )2 fx

0 1
Zcam

i
fy − Y cam

i

(Zcam
i )2 fy

)
.

(13)

Besides, Pcam
i is the point which transformed to the camera space. To compute the last derivative of

Eq. 12, we add a perturbation ∆ξ to the transformation:

Pcam
i = R∗(∆RPi +∆t) + t∗, (14)

Finally, the derivatives w.r.t the translation component and rotation component are:

∂Pi

∂ξ∗t
=
∂Pi

∂∆t
= R∗

∂Pi

∂ξ∗r
=
∂Pi

∂∆R
= −R∗[Pi]×,

(15)

where []× is the skew-symmetric matrix.

E Details on Baseline

E.1 Sensor-guided Image Retrieval

For baselines, a retrieval-and-matching process is used upon the reference images in the dataset.
To ensure a fair comparison, we apply the sensor poses to guide the image retrieval process for
UAVD4L [72] and Cad-Loc [44]. For each query image I, we narrow the retrieval candidates qI
using Eq. 16.

qI = {Iri | ∀ ∥tri − tq∥ ≤ γt, arccos(Rr
i ,R

q) ≤ γo} , (16)
where ∥·∥ denotes the Frobenius Norm between two translation matrices, arccos(·) calculates the
rotation angles between two matrices, γt and γo are the threshold for translation and orientation,
respectively. To determine the proper values for γt and γo for the baseline methods, a series of
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Figure 10: Visualization of reference RGB and depth maps. RGB and depth maps are rendered
using a textured mesh model or a 3D LoD map.

experiments are conducted on the UAVD4L dataset. In these experiments, we hypothesize that if no
reference image could be located within the defined search area, the sensor pose would be utilized as
the localization result. Table 7 shows that stricter thresholds result in worse outcomes. Consequently,
we set γt = 150 and γo = 30 to ensure a sufficient search space. Furthermore, we measure the
impact of retrieval number k in Table 8. The results suggest that while a larger k value enhances the
performance of the benchmark algorithm, it also leads to an increase in inference time. Following
previous work [72], the retrieval number is set at k = 3. It is worth noting that regardless of the
choice of k, our method exhibits a substantial acceleration in speed, outperforming by several-fold,
or even an order of magnitude.

E.2 Reference Image Details

We provide a detailed description of the reference images used in the two datasets. These images
serve dual purposes: they function as the database images for retrieval and matching in baselines,
and they are also utilized as training data for the proposed LoD-Loc method. Specifically, for the
UAVD4L-LoD dataset, we use a subset dataset of synthesis images in UAVD4L [72], excluding data
that does not contain buildings. For the Swiss-EPFL dataset, synthetic images rendered in Latin
Hypercube Sampling (LHS) [74] pattern have been employed as reference images. Notably, the
CrossLoc dataset [74] did not include images in proximity to the out-of -Place area. To address
this, we adopted the same synthetic scheme from [74] to generate synthetic reference images for
this region. Figure 10 shows reference samples of RGB images and Depth images for both the
mesh-based model and LoD-based model.

E.3 Failure Cases in Baselines

Although baselines have achieved impressive performance, they suffer from retrieving and matching
repetitive texture images and cross-modal images. For example, Figure 13 exhibits deficiencies in
retrieving repetitive texture images, and Figure 14 depicts poor matching results between RGB and
LoD-rendered images.
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Figure 11: The discrepancy between our generated poses and GT poses over the Swiss-EPFL
dataset. We use the generated poses to simulate the pose of the sensor.

F Details of Experiments

F.1 Visualization of Training Data

We visualize some synthetic training samples of LoD-Loc, as shown in Figure 15. For the Swiss-
EPFL dataset, the reference 3D model is derived from LiDAR point clouds, Terrain Models, and
Orthophotos. In contrast, in the UAVD4L-LoD dataset, the reference 3D model is generated from
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Table 6: The architecture of our multi-scale feature extractor. We discuss the details of each con-
volutional unit. conv represents a unit consisting of a 2D convolutional layer, a batch normalization
layer and a ReLU layer. While fine_conv denotes a general convolutional layer. deconv means a
deconvolutional unit. The colored cells are the outputs for each level l with a single channel.

Layer Stride Kernel Channel Input
conv0_0 1×1 3×3 3→8 rgb
conv0_1 1×1 3×3 8→8 conv0_0
conv1_0 2×2 5×5 8→16 conv0_1
conv1_1 1×1 3×3 16→16 conv1_0
conv1_2 1×1 3×3 16→16 conv1_1
conv2_0 2×2 5×5 16→32 conv1_2
conv2_1 1×1 3×3 32→32 conv2_0
conv2_2 1×1 3×3 32→32 conv2_1

conv_out1 1×1 1×1 32→1 conv2_2
deconv1_0 2×2 3×2 32→16 conv2_2

concat1 - - - deconv1_0, conv1_2
conv3_0 1×1 3×3 32→16 concat1

conv_out2 1×1 1×1 16→1 conv3_0
deconv2_0 2×2 3×3 16→8 conv3_0

concat2 - - - deconv2_0, conv0_1
conv4_0 1×1 3×3 16→8 concat2

conv_out3 1×1 1×1 8→1 conv4_0

concat3 - - - conv4_0, conv_out3,
rgb

fine_conv0 1×1 5×5 12→24 concat3
fine_conv1 1×1 5×5 24→12 fine_conv0
conv_out4 1×1 1×1 12→1 fine_conv1

Table 7: Ablation study on different threshold γt and γo for baselines.

Method Threshold
(γt, γo)

in-Traj. out-of-Traj.

2m-2° 3m-3° 5m-5° 2m-2° 3m-3° 5m-5°

UAVD4L

SIFT+NN
(30, 7.5) 0.62 0.69 4.99 25.87 26.82 27.42
(50, 15) 27.00 28.30 32.29 55.66 57.44 58.26

(150, 30) 73.13 78.62 80.42 82.39 85.13 86.36

SPP+SPG
(30, 7.5) 0.94 0.94 5.24 30.11 30.20 30.29
(50, 15) 33.92 33.92 37.28 60.99 61.13 61.18

(150, 30) 91.71 92.02 92.14 93.43 93.70 93.80

LoFTR
(30, 7.5) 0.94 0.94 5.20 29.79 30.02 30.16
(50, 15) 33.29 33.35 36.72 60.90 60.90 60.99

(150, 30) 84.98 88.09 88.90 91.56 92.02 92.11

high-resolution aerial imagery through oblique photography reconstruction. As a result, the synthetic
images from the former are of a lower quality. This could partly elucidate why our method yields
lower results on the Swiss-EPFL dataset compared to UAVD4L-LoD.

F.2 Additional Ablation Studies

We provide more ablation studies in this section, which include the pose sampling number, the sample
density δ of 3D wireframes, the sampling range controller lambda λ. Additionally, we explore the
convergence and generalization of our method.

Pose sampling number. As illustrated in Table 9, we report the experimental results with varying
numbers of pose samples. The findings suggest that a reduction in the number of sampled poses
brings about a decrease in accuracy.
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Table 8: Ablation study on different Top-k for baselines.

Method Top-k in-Traj. out-of-Traj. Time
(s)2m-2° 3m-3° 5m-5° 2m-2° 3m-3° 5m-5°

UAVD4L

SIFT+NN
3 73.13 78.62 80.42 82.39 85.13 86.36 1.85

10 85.97 89.65 90.52 90.28 92.43 93.66 1.96
20 88.09 91.33 92.64 92.75 94.71 95.99 2.13

SPP+SPG
3 91.71 92.02 92.14 93.43 93.70 93.80 1.79

10 99.25 99.31 99.31 98.45 98.49 98.49 3.31
20 99.75 99.81 99.81 99.91 99.95 99.95 5.44

LoFTR
3 84.98 88.09 88.90 91.56 92.02 92.11 1.70

10 90.21 91.65 92.08 94.75 94.89 94.89 3.78
20 85.97 87.53 87.91 90.37 90.83 91.29 6.26

Ours − 84.41 91.77 96.95 95.94 99.00 99.36 0.34

Table 9: Ablation study on different pose sampling numbers for LoD-Loc.

Category Numbers on
[θ, x, y, z]

Recall (%) Median Error

2m-2° 3m-3° 5m-5° T.e. (m) R.e. (°)

in-Traj.
[2 , 3 , 3 , 8] 18.83 24.94 36.03 7.67 4.37

[4, 5 , 5 , 15] 77.68 84.98 90.15 1.07 0.59
[8, 10, 10, 30] 84.41 91.77 96.95 0.97 0.52

out-of-Traj.
[2 , 3 , 3 , 8] 12.36 16.93 23.81 11.49 5.51

[4, 5 , 5 , 15] 87.27 93.25 94.25 1.15 0.54
[8, 10, 10, 30] 95.94 99.00 99.36 1.06 0.49

3D wireframe points sampling density. We conduct ablation studies for varying sampling densities,
which affects the interpolation process on the feature map. As depicted in Table 10, there is no
significant fluctuation in localization accuracy with changes in sampling density.

Sampling range controller. The parameter lambda λ adjusts the length of the sampling range.
Through ablation studies, we demonstrate that the sensitivity of this parameter during the testing
phase is low. The results are shown in Table 11.

Convergence and initial poses. Table 12 reports the localization recall with different initial prior
errors on the UAVD4L-LoD dataset. It can be observed that the success rate of localization decreases
as the initial prior error increases. Such issues occur when the GPS signal in the air is heavily
interfered with. In such cases, we believe using sequence information could be a possible solution.

Cross-scene generalization. Table 13 illustrates the generalization capability of LoD-Loc through
training and testing in diverse regions. Figure 16 delineates regional data using distinctive symbols
and colors. On the UAVD4L-LoD dataset (A1 and A2), cross-scene testing yields results slightly
lower than those obtained from training on the entire scene. For the Swiss-EPFL dataset (B1 and B2),
we employ a model trained on the synthetic UAVD4L-LoD dataset, which achieves similar or even
better performance compared to a model trained specifically on the Swiss-EPFL dataset. Additionally,
the supplementary materials include two demo videos showcasing the model’s capacity to localize
cross-modal thermal images.

Computational cost comparison. We conducted test experiments on a single batch (Batch Size =
1) of images using the NVIDIA GeForce RTX 4090 device, and recorded the average peak CUDA
usage as well as the average inference time. The details are provided in Table 14

F.3 Visualization of Results

We present more visualization results, including examples of corner houses (Figure 12), feature maps
(Figure 17) and prediction results (Figure 18) at different levels. We found that the preset zig-zag
route in a selected region resulted in some images capturing only the corners of houses, as shown
in Figure 18. This led to poorer performance under strict 2m-2° metrics. However, it is important
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Table 10: Ablation study on different wireframe sampling density. x-m means sampling per-x
meter on each wireframes.

Category Density
δ

Recall (%) Median Error

2m-2° 3m-3° 5m-5° T.e. (m) R.e. (°)

LoD-Loc

in-Traj.
4-m 85.10 92.39 96.51 0.95 0.52
2-m 84.16 91.08 96.95 0.97 0.52
1-m 84.41 91.77 96.95 0.97 0.52

out-of-Traj.
4-m 95.21 98.68 99.18 1.00 0.45
2-m 95.44 98.91 99.32 1.06 0.48
1-m 95.94 99.00 99.36 1.06 0.49

Table 11: Ablation study on different Lambda λ.

Category Lambda
λ

Recall (%) Median Error

2m2° 3m3° 5m5° T.e. (m) R.e. (°)

LoD-Loc
in-Traj.

1.5 83.42 91.02 96.57 1.00 0.49
1 84.41 91.77 97.01 0.95 0.53

0.8 84.41 91.77 96.95 0.97 0.52
0.5 84.04 91.58 96.45 0.97 0.52

out-of-Traj.

1.5 91.97 97.54 98.45 1.11 0.53
1 95.71 99.04 99.36 1.07 0.50

0.8 95.94 99.00 99.36 1.06 0.49
0.5 95.71 98.86 99.32 1.06 0.49

to note that in the in-Traj. scenario, our method achieves comparable or superior results for coarse
metrics. For instance, we achieve 96.95% on 5m-5° while the closest baseline achieves 92.14%.
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Table 12: Impact of the initial pose for LoD-Loc. The parameters ∆x and ∆y denote the error
range in the horizontal plane, while ∆z represents the error range in the vertical dimension. For
instance, ∆x = 10 implies that the initial error in the x value lies within the interval [-10, 10]. The
rotation error remains consistent with the real sensor data. All error ranges are measured in meters.

Category Prior Error Range
[∆x,∆y,∆z]

Recall (%)

2m-2° 3m-3° 5m-5°

LoD-Loc

in-Traj.

[10, 10, 30] 84.41 91.77 96.95
[20, 20, 30] 87.28 90.77 91.65
[30, 30, 30] 78.93 82.98 83.85
[50, 50, 30] 43.08 48.82 50.69

[100, 100, 30] 5.67 7.36 8.79

out-of-Traj.
[10, 10, 30] 95.94 99.00 99.36
[20, 20, 30] 82.07 88.05 89.55
[30, 30, 30] 74.27 80.66 81.79
[50, 50, 30] 46.53 53.60 55.98

[100, 100, 30] 6.93 9.95 11.99

Table 13: Cross-scene generalization. We assess the generalization ability of our method by training
and testing on different regions. The regional divisions are illustrated in Figure 16, identified by a
specific color and letter.

Train region
Synthesis

Test region
Real

Recall (%)

2m-2° 3m-3° 5m-5°

LoD-Loc

A2 A1 83.39 91.50 96.81
A1, A2 A1 89.51 95.01 97.98

A1 A2 82.54 91.01 91.52
A1, A2 A2 95.56 98.66 99.38
A1, A2 B1 55.41 71.77 84.17
B1, B2 B1 37.73 57.26 77.57
A1, A2 B2 50.00 59.27 65.45
B1, B2 B2 48.60 65.31 79.78

Method Memory (Mb) Time (s)

UAVD4L

SPP 610 1.79
SIFT 443 1.85

LoFTR 2631 1.70
RoMA 5488 4.68

eLoFTR 1650 1.06
ours 4810 0.34

Table 14: Computational cost comparison. Figure 12: Example of corner houses.
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Figure 13: Failure retrieval cases of baselines. Even with narrowed searching scopes, the retrieval
phase still suffers from issues such as repetitive textures and cross-modal challenges.
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Figure 14: Failure matching cases of baselines. The differences in viewpoint and modality influence
the results for image matching.
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Figure 15: Samples of the training dataset. The UAVD4L-LoD dataset offers high-quality training
set, while the Swiss-EPFL dataset suffers from lower quality, as evidenced by issues such as blurriness
and voids on the sides of buildings.

UAVD4L-LoD Swiss-EPFL

A1 A2 B1
B2

Figure 16: Region of training and testing. We use boxes with different colors and symbols to
delineate different regions.

28



L
o
D

 3
.0

Query Level 1 Level 2 Level 3 Refine

L
o
D

 2
.0

Figure 17: Visualization of feature maps at different levels. The feature maps at different levels
reflect varying degrees of fineness in wireframe extraction.

29



U
A

V
D

4
L

-L
o

D
S

w
is

s-
E

P
F

L

Priors Level 1 Level 2 Level 3 Refine

Figure 18: Visualization of predictions at different levels. Based on the predicted poses at each
stage, we can obtain 2D projected wireframe and overlay them on the query image to check the
accuracy of the poses. It can be observed that as the levels progress, the projected wireframes
gradually align with the edges of the buildings. Please zoom in to see the details of the alignment.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: It can be found in Abstract and Introduction Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: It can be found in the end of the Conclusion Section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: It is indicated in the Conclusion Section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

34

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The data and code used in the paper comply with licensing and usage terms
and are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: Once the paper is accepted, the code and data will be open-sourced with
detailed usage instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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