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Abstract
Channel identifiability (CID) refers to the ability
to distinguish among individual channels in time
series (TS) modeling. The absence of CID often
results in producing identical outputs for identi-
cal inputs, disregarding channel-specific charac-
teristics. In this paper, we highlight the impor-
tance of CID and propose Channel Normaliza-
tion (CN), a simple yet effective normalization
strategy that enhances CID by assigning distinct
affine transformation parameters to each chan-
nel. We further extend CN in two ways: 1) Adap-
tive CN (ACN) dynamically adjusts parameters
based on the input TS, improving adaptability in
TS models, and 2) Prototypical CN (PCN) in-
troduces a set of learnable prototypes instead of
per-channel parameters, enabling applicability to
datasets with unknown or varying number of chan-
nels and facilitating use in TS foundation models.
We demonstrate the effectiveness of CN and its
variants by applying them to various TS mod-
els, achieving significant performance gains for
both non-CID and CID models. In addition, we
analyze the success of our approach from an in-
formation theory perspective. Code is available at
https://github.com/seunghan96/CN.

1. Introduction
Time series (TS) forecasting is widely used in various fields,
including traffic (Cirstea et al., 2022), electricity (Dudek
et al., 2021), and sales forecasting (Li et al., 2022). A
range of TS forecasting methods have been developed based
on different architectures, such as Transformers (Vaswani
et al., 2017), multi-layer perceptrons (MLPs) (Rumelhart
et al., 1986), and state-space models (SSMs) (Gu & Dao,
2023). Among them, some models are inherently able to
distinguish among channels (i.e., channel-identifiable or
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Figure 1: Motivating example for channel identifiability. When
two different channels receive the locally identical inputs (green),
a non-CID model yields the same outputs (yellow) for both, failing
to distinguish between them, as shown in the left panel. In contrast,
applying CN enables CID and produces distinct outputs even with
the same inputs, as shown in the right panel.

Average MSE (4Hs) ETTm1 Weather PEMS03 Imp.

iTransformer .408 .260 .142 -
+ Constant vector .397 .246 .114 6.5%

Table 1: Necessity of CID. Simply adding different constant vec-
tors to each channel token improves the performance. Full results
and comparison with our methods are shown in Appendix G.

CID), while others are not (i.e., channel-unidentifiable or
non-CID), producing identical outputs for the identical input
regardless of the channel (Liu et al., 2024; Zeng et al., 2023).

Figure 1 illustrates the TS forecasting results using iTrans-
former (Liu et al., 2024), a widely adopted non-CID model,
on a toy dataset with two channels displaying distinct pat-
terns. The figure shows that the model fails on this simple
task, as non-CID models lack information about channel
identities, producing identical outputs (yellow) for both
channels whenever given identical inputs (green). Further-
more, Table 1 shows that adding distinct constant vectors
to each channel token, enabling the model to distinguish
among channels, improves the forecasting performance.
These results highlight the importance of CID in TS models.

A naive approach to solving this issue is to use different pa-
rameters for each channel in the tokenization layer, although
this increases computational burden (Nie et al., 2024), or to
add learnable vectors to each channel token (i.e., channel
identifiers) (Chi et al., 2024). These methods yield limited
performance gains, as discussed in Section 5.3, motivating
us to design a simple yet effective method to enhance CID.

To this end, we propose Channel Normalization (CN), a
simple yet effective normalization strategy designed to en-
hance CID of TS models. Unlike Layer Normalization (LN)
(Ba et al., 2016) which applies shared affine transformation
parameters across all channels, CN employs distinct param-
eters for each channel, allowing the model to differentiate
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Figure 2: Effectiveness of CN/ACN. (a) shows that our method is effective across various backbones, where 1) non-CID models (e.g.,
RMLP, iTransformer) exhibit greater improvements from CN and 2) data-independent models (e.g., RMLP, TSMixer), whose parameters
do not depend on the input, benefit more from transitioning from CN to ACN. (b) shows forecasting results with and without our methods.

among channels effectively. Furthermore, we introduce two
variants of CN: 1) Adaptive CN (ACN), which dynamically
adjusts parameters based on the input TS to improve adapt-
ability, and 2) Prototypical CN (PCN), which introduces a
set of learnable prototypes as affine transformation param-
eters after normalization to handle multiple datasets with
unknown/varying number of channels using a single model,
particularly useful for TS foundation models (TSFMs).

The main contributions are summarized as follows:

• We propose CN to enhance CID of TS models by employ-
ing channel-specific parameters, unlike Layer Normaliza-
tion which uses shared parameters, offering a simple and
effective strategy.

• We propose two variants of CN: 1) ACN to better capture
time-varying characteristics of each channel by adapting
its parameters to input TS and 2) PCN to handle multiple
datasets with unknown/varying number of channels by
introducing learnable prototypes where parameters are
assigned to prototypes instead of channels.

• We provide extensive experiments on various backbones
including TSFMs, achieving significant improvements for
both CID and non-CID models as shown in Figure 2(a).

• We analyze the effect of our method from an information
theory perspective, showing that it 1) enriches feature rep-
resentations, 2) improves the uniqueness of each channel
representation, and 3) diversifies the correlation between
channel representations, supporting the performance gain.

2. Related Works
TS forecasting models. TS forecasting in deep learning has
been approached with two strategies: channel-dependent
(CD) strategy, which captures dependencies among chan-
nels, and channel-independent (CI) strategy, which treats
each channel individually and focuses only on the temporal
dependency (TD). Methods using these strategies include
Transformer-based, MLP-based, and SSM-based models.

For Transformer-based models, PatchTST (Nie et al., 2023)
divides TS into patches and feeds them into a Transformer
in a CI manner. iTransformer (Liu et al., 2024) treats each
channel as a token to capture CD using the attention mecha-
nism, resulting in significant performance gains. However,
these models suffer from the quadratic complexity of the
attention mechanism. To overcome this issue, various MLP-
based models have been proposed, where DLinear (Zeng

et al., 2023) uses a linear model to capture TD, RLinear and
RMLP (Li et al., 2023) integrate reversible normalization
(RevIN) (Kim et al., 2021) to MLPs, and TSMixer (Chen
et al., 2023) adopts MLPs to capture both TD and CD. Re-
cently, various methods (Ahamed & Cheng, 2024; Ma et al.,
2024; Zeng et al., 2024; Cai et al., 2024) have been proposed
that utilize Mamba (Gu & Dao, 2023), which introduces
a selective scan mechanism to SSM to capture long-range
context with linear complexity. S-Mamba (Wang et al.,
2025) and Bi-Mamba+ (Liang et al., 2024) capture CD with
bidirectional Mamba, and SOR-Mamba (Lee et al., 2024)
employs a regularization strategy to effectively capture CD.

Recently, several methods have emerged that enhance CID
of TS models. InjectTST (Chi et al., 2024) proposes a chan-
nel identifier that helps a Transformer differentiate among
channels and C-LoRA (Nie et al., 2024) conditions a CD
model on channel-specific components using a channel-
aware low-rank adaptation method. Similarly, CCM (Chen
et al., 2024a) integrates channel-cluster identity to a TS
model by grouping channels based on their similarities.
However, these methods, aside from the channel identifier,
were not primarily developed to enhance CID, and their im-
pact on CID is merely a byproduct. Furthermore, they either
require modifications to the architecture (Chen et al., 2024a;
Nie et al., 2024) or provide only limited performance gains
(Chi et al., 2024; Nie et al., 2024), as shown in Table 6.

Normalization. Various normalization methods for deep
neural networks have been introduced (Ioffe, 2015; Wu &
He, 2018) to improve convergence and training stability,
differing in the dimension they normalize. Layer Normaliza-
tion (LN) (Ba et al., 2016), which uses shared affine transfor-
mation parameters across channels, is commonly employed
in TS backbones (Nie et al., 2023; Wang et al., 2025) to
reduce inter-channel discrepancies (Liu et al., 2024). In
contrast to LN, we propose assigning channel-specific pa-
rameters to distinguish among channels.

3. Preliminaries
TS forecasting (TSF). In TSF tasks, a model predicts the
future values y = (xL+1, . . . ,xL+H) with a lookback win-
dow (i.e., input TS) x = (x1, . . . ,xL). In this setup, each
xi ∈ RC represents values at individual time steps, with L,
H , and C indicating the size of the lookback window, the
forecast horizon, and the number of channels, respectively.
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Figure 3: Overall framework of CN/ACN/PCN. (1) CN employs channel-specific parameters, enabling the model to distinguish among
channels. (2) ACN extends CN by adapting its parameters to the input TS by utilizing local parameters, which are attended to with
different weights based on the similarity between input channels (i.e., channel similarity). (3) PCN makes CN applicable to multiple
datasets with unknown/varying number of channels by assigning parameters to each prototype instead of each channel, which are attended
to with different weights depending on the similarity between input channels and prototypes (i.e., channel-prototype similarity).

Framework of TSF models. General TS forecasting mod-
els follow the framework below:

(Optional): x← NORMALIZE(x)

1. Token Embedding: z← g1(x),

2. Encoder: z← f(z),

3. Projection Layer: ŷ← g2(z),

(Optional): ŷ← DENORMALIZE(ŷ),

(1)

where z is a D-dimensional vector and various normaliza-
tion methods apply within f for training stability (e.g., LN).
Similarly, our method applies within f , remaining orthog-
onal to techniques that normalize the input (x) and denor-
malize the output (ŷ) to address distribution shifts (Passalis
et al., 2019; Kim et al., 2021).

Model property 1: Channel identifiability. Let X =
{x1, . . . , xC} ∈ RL×C be an input TS with C channels of
length L. A TSF model ϕ exhibits CID if it can distinguish
among channels with identical input. That is, A CID model
can produce distinct outputs ϕ(X)i ̸= ϕ(X)j even with the
same inputs xi = xj , whereas a non-CID model produces
the same outputs ϕ(X)i = ϕ(X)j .

Model property 2: Data dependency. A TSF model ϕ is
data dependent (Chen et al., 2023) if its parameters adapt
to the input TS (e.g., attention in Transformers or selective
scanning in Mamba). In contrast, ϕ is data independent if
its parameters are fixed across the input TS (e.g., linear mod-
els). Data-dependent models exhibit high representational
capacity, whereas data-independent models are simpler and
less prone to overfitting (Chen et al., 2023).

4. Methodology
In this section, we introduce CN1 which employs channel-
specific parameters, unlike LN which employs shared pa-
rameters, to enhance CID of TS models. Furthermore, we
propose two variants: ACN, which adjusts the parameters
based on the input TS, and PCN, which handles multiple
datasets with unknown or varying number of channels. The
overall framework is shown in Figure 3.

1CN can serve as both a strategy (framework) and a method.

4.1. Channel Normalization (CN)

Layer Normalization (LN). LN applies affine transforma-
tions with parameters {α, β} to the normalized data as:

Norm (zb,c,d) =
zb,c,d − µb,c

σb,c
,

ẑb,c,d = α ·Norm (zb,c,d) + β.

(2)

Various TS methods apply LN by using shared parameters
{α, β} across channels to reduce discrepancies among the
channels (Liu et al., 2024; Wang et al., 2025).

Channel Normalization (CN). Unlike LN, which uses
shared affine transformation parameters across channels,
CN employs channel-specific parameters as follows:

ẑb,c,d = αc ·Norm (zb,c,d) + βc, (3)

where αc and βc denotes the parameters of the c-th channel.
This simple modification enables the model to distinguish
among channels, with the additional computational burden
of using channel-specific parameters being minor compared
to the shared parameters of LN, as shown in Table 8.

Variants of CN. To further enhance the flexibility and ap-
plicability of CN, we propose two variants, ACN and PCN,
addressing the following questions, respectively:
• Q1) As the parameters of CN are independent on input

and unable to capture the dynamic characteristics of each
input channel, how can we make them adapt to the input?

• Q2) As CN requires a predefined number of channels,
how can we handle multiple datasets with unknown or
varying number of channels (e.g., training TSFMs)?

4.2. Adaptive Channel Normalization (ACN)

The parameters of CN are fixed across time steps and in-
dependent of the input TS. However, the characteristics of
each channel may vary over time due to distribution shifts
(Han et al., 2023). To this end, we propose ACN by intro-
ducing local parameters (αL

c ) to CN, which are attended to
with different weights depending on the input channels. To
distinguish local parameters from the original parameters of
CN, we refer to the original parameters as global parameters
(αG

c ), as they are shared globally across the time steps.
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Algorithm 1 Channel Normalization (CN)
Require:
1: Input z ∈ RB×C×D

2: Parameters α, β ∈ RC×D

Ensure: Output ẑ ∈ RB×C×D

3: for b = 1, . . . , B do
4: for c = 1, . . . , C do
5: for d = 1, . . . , D do
6: ẑb,c,d = αc,d ·Norm(zb,c,d) + βc,d

7: end for
8: end for
9: end for

Channel similarity. To attend to local parameters adap-
tively based on the input, we construct a channel similarity
matrix Ŝ ∈ RB×C×C , representing the similarity between
the input channels, where B denotes a batch size. Specifi-
cally, we use cosine similarity, which is then normalized by
softmax with temperature τ as:

Sb,c1,c2 =
zb,c1 · zb,c2
∥zb,c1∥ ∥zb,c2∥

, (4)

Ŝb,c1,c2 =
exp (Sb,c1,c2/τ)∑C
i=1 exp (Sb,c1,i/τ)

, (5)

where b ∈ {1, . . . , B} and c1, c2 ∈ {1, . . . , C}. This matrix
S serves as dynamic weights to obtain (dynamic) parameter
α̂L
b,c ∈ RD from the (static) parameter αL

c ∈ RD as below2:

α̂L
b,c =

C∑
i=1

Ŝb,c,i · αL
i , (6)

where Ŝb,c,i is the similarity between the c-th and the i-th
channel of the b-th data, αL

i is the (static) local parameter of
the i-th channel, and α̂L

b,c is the resulting (dynamic) local
parameters of the c-th channel of the b-th data, representing
the weighted average of αL

i using Ŝb,c,i as dynamic weights.

The parameters of ACN are constructed by element-wise
multiplication of the global and dynamic local parameters
(αG

c ◦ α̂L
b,c), which complement each other, as shown in

Table 7. Further analyses regarding the robustness to the
similarity metric, τ , and the space where the similarity is
calculated are shown in Appendix H, J, and K, respectively.

4.3. Prototypical Channel Normalization (PCN)

Since CN assign parameters to each channel, it is infeasible
to handle datasets with an unknown C (e.g., inference on
unseen datasets) or to train on multiple datasets with varying
Cs (e.g., require parameters for all channels in all datasets).
To address this issue, we propose PCN by introducing learn-
able prototypes, where learnable parameters are assigned to
each prototype instead of each channel, enabling it to han-
dle an arbitrary number of channels. Similar to ACN, these
prototype parameters (αP

k) are attended to with different
weights depending on the input TS.

2The same procedure is applied to β as to α.

Algorithm 2 Adaptive Channel Normalization (ACN)
Require:
1: Input z ∈ RB×C×D

2: Channel similarity matrix Ŝ ∈ RB×C×C

3: Global and local parameters αG, αL, βG, βL ∈ RC×D

Ensure: Output ẑ ∈ RB×C×D

4: for b = 1, . . . , B do
5: for c = 1, . . . , C do
6: for d = 1, . . . , D do
7: αb,c,d = αG

c,d ·(
∑C

i=1 Ŝb,c,i· αL
i,d)

8: βb,c,d = βG
c,d ·(

∑C
i=1 Ŝb,c,i· βL

i,d)
9: ẑb,c,d = αb,c,d ·Norm(zb,c,d) + βb,c,d

10: end for
11: end for
12: end for

Algorithm 3 Prototypical Channel Normalization (PCN)
Require:
1: Input z ∈ RB×C×D

2: Channel-proto similarity matrix Ŝα, Ŝβ ∈ RB×C×K

3: Prototype parameters αP, βP ∈ RK×D

Ensure: Output ẑ ∈ RB×C×D

4: for b = 1, . . . , B do
5: for c = 1, . . . , C do
6: for d = 1, . . . , D do
7: αb,c,d =

∑K
i=1 Ŝ

α
b,c,i · α

P
i,d

8: βb,c,d =
∑K

i=1 Ŝ
β
b,c,i · β

P
i,d

9: ẑb,c,d = αb,c,d ·Norm(zb,c,d) + βb,c,d

10: end for
11: end for
12: end for

Channel-prototype similarity. To enable channels with
an arbitrary number to utilize the prototype parameters,
we construct a channel-prototype similarity matrix Ŝα ∈
RB×C×K , representing the similarity between input chan-
nels and prototypes. Note that rather than employing a
latent space (z) to represent channels, we apply an addi-
tional projection layer (h) in the data space (x) to align with
the prototype space. Specifically, we use cosine similarity,
which is then normalized by softmax with temperature τ as:

Sα
b,c,k =

h(xb,c) · αP
k

∥h(xb,c)∥
∥∥αP

k

∥∥ , (7)

Ŝα
b,c,k =

exp
(
Sα
b,c,k/τ

)
∑K

i=1 exp
(
Sα
b,c,i/τ

) , (8)

where k ∈ {1, . . . ,K}, K is the number of prototypes, and
h is a linear projection layer. Similar to ACN, this matrix is
used as dynamic weights to obtain α̂P

b,c from αk as below:

α̂P
b,c =

K∑
i=1

Ŝα
b,c,i · αP

i . (9)

Further analyses of the robustness to K and the employment
of h are demonstrated in Appendix I and K.2, respectively.
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Non-CID models iTransformer + CN + ACN Imp. (MSE) RMLP + CN + ACN Imp. (MSE)

Datasets MSE MAE MSE MAE MSE MAE + CN + ACN MSE MAE MSE MAE MSE MAE + CN + ACN

ETTh1 .457 .449 .441 .439 .438 .438 3.5% 4.2% .471 .453 .445 .437 .448 .435 5.5% 4.9%
ETTh2 .384 .407 .376 .404 .374 .402 2.1% 2.6% .381 .408 .380 .405 .376 .402 0.3% 1.3%
ETTm1 .408 .412 .396 .403 .395 .402 2.9% 3.2% .401 .406 .384 .397 .383 .396 4.2% 4.5%
ETTm2 .293 .337 .289 .331 .288 .330 1.4% 1.7% .280 .326 .277 .324 .277 .323 1.1% 1.1%

PEMS03 .142 .248 .101 .204 .098 .203 31.0% 38.0% .205 .294 .192 .284 .159 .266 6.3% 22.4%
PEMS04 .121 .232 .088 .196 .088 .195 27.3% 27.3% .236 .321 .212 .304 .156 .265 10.2% 33.9%
PEMS07 .102 .205 .087 .178 .085 .174 14.7% 16.7% .200 .284 .184 .270 .131 .233 8.0% 34.5%
PEMS08 .254 .306 .159 .223 .153 .221 37.4% 39.8% .277 .333 .247 .308 .187 .279 10.8% 32.5%
Exchange .368 .409 .352 .401 .349 .398 4.4% 5.2% .356 .403 .355 .400 .353 .399 0.3% 0.8%
Weather .260 .281 .247 .273 .245 .271 5.0% 5.8% .272 .292 .249 .274 .246 .273 8.5% 9.6%

Solar .234 .261 .228 .258 .220 .253 2.6% 6.0% .261 .313 .248 .276 .242 .277 5.0% 7.3%
ECL .179 .270 .161 .256 .158 .256 10.1% 11.7% .228 .313 .190 .277 .189 .276 16.7% 17.1%

Average .275 .318 .244 .297 .241 .295 11.3% 12.4% .297 .346 .280 .330 .262 .319 5.7% 11.8%
Best count (/48) 0 0 9 9 46 46 ∆ Imp.: 1.1%p 0 0 4 7 44 46 ∆ Imp.: 6.1%p

CID models S-Mamba + CN + ACN Imp. (MSE) TSMixer + CN + ACN Imp. (MSE)

ETTh1 .457 .452 .455 .450 .448 .446 0.4% 2.0% .462 .449 .438 .435 .453 .441 5.2% 1.9%
ETTh2 .383 .408 .375 .401 .374 .400 2.1% 2.3% .403 .418 .387 .410 .386 .407 4.0% 4.2%
ETTm1 .398 .407 .397 .406 .394 .404 0.3% 1.0% .401 .406 .386 .398 .385 .397 3.7% 4.0%
ETTm2 .290 .333 .286 .329 .284 .328 1.4% 2.1% .287 .330 .286 .329 .280 .325 0.3% 2.4%

PEMS03 .133 .240 .108 .214 .107 .213 18.8% 19.5% .129 .236 .124 .228 .120 .230 3.9% 7.0%
PEMS04 .096 .205 .085 .189 .095 .202 11.5% 1.0% .115 .228 .114 .222 .109 .222 0.9% 5.2%
PEMS07 .090 .191 .078 .168 .073 .167 13.3% 18.9% .115 .210 .115 .209 .103 .203 0.0% 10.4%
PEMS08 .157 .242 .133 .216 .121 .216 15.3% 22.9% .186 .275 .167 .250 .167 .258 10.2% 10.2%
Exchange .364 .407 .362 .405 .357 .402 0.5% 1.9% .365 .406 .358 .402 .356 .400 1.9% 2.5%
Weather .252 .277 .246 .273 .247 .274 2.4% 2.0% .260 .285 .246 .274 .242 .272 5.4% 6.9%

Solar .244 .275 .230 .262 .228 .261 5.7% 6.6% .255 .294 .246 .267 .245 .274 3.5% 3.9%
ECL .174 .269 .163 .261 .162 .259 6.3% 6.9% .211 .310 .181 .280 .174 .273 14.2% 17.8%

Average .253 .309 .243 .298 .240 .297 4.0% 5.1% .266 .321 .254 .309 .243 .308 4.5% 8.6%
Best count (/48) 1 0 15 25 38 31 ∆ Imp.: 1.1%p 0 0 10 16 40 36 ∆ Imp.: 4.1%p

Table 2: Results of TS forecasting. We apply CN/ACN to non-CID and CID models, achieving performance gains across all models.

5. Experiments
Experimental setups. We demonstrate the effectiveness
of our method on TSF tasks with 12 datasets. For evalua-
tion metrics, we use mean squared error (MSE) and mean
absolute error (MAE). We follow the experimental setups
from C-LoRA (Nie et al., 2024), with size of the lookback
window (L) set to 96, and divide all datasets into training,
validation, and test sets in chronological order. Further
details of the setups are provided in Appendix A.

Datasets. For the experiments, we use 12 datasets: four ETT
datasets (ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al.,
2021), four PEMS datasets (PEMS03, PEMS04, PEMS07,
PEMS08) (Chen et al., 2001), Exchange, Weather, ECL (Wu
et al., 2021), and Solar-Energy (Solar) (Lai et al., 2018). De-
tails of the dataset statistics are provided in Appendix A.1.

Backbones. For the experiments, we select four backbones:
iTransformer (Liu et al., 2024), RMLP (Li et al., 2023), S-
Mamba (Wang et al., 2025), and TSMixer (Li et al., 2023).
For backbones that utilize LN, we replace it with our method,
and for those without, we add our method. As illustrated in
Figure 2(a), these methods can be categorized based on their
a) inherent CID ability and b) data dependency of model
parameters. Furthermore, for PCN, we employ UniTS (Gao
et al., 2024), a TSFM that addresses diverse tasks using
prompt-tuning, to demonstrate its capability to handle mul-
tiple datasets with varying Cs and perform inference on
unseen datasets with unknown Cs. The baseline results are
obtained from previous works (Nie et al., 2024; Lee et al.,

2024) and replicated using the official codes.

5.1. Application of CN/ACN

TS forecasting. Table 2 presents the average performance
across four horizons (H ∈ {96, 192, 336, 720}), demon-
strating that both CN and ACN consistently improve across
all datasets and backbones, with ACN yielding additional
gains compared to CN. Below, we analyze the performance
gain from CN and the additional gain from ACN in relation
to the two properties of the backbones.

a) CID vs. non-CID. As CN enhances the CID of models,
it provides substantial improvements for non-CID models
(e.g., iTransformer, RMLP), as shown in Figure 2(a). How-
ever, it also benefits CID models (e.g., S-Mamba, TSMixer)
that already have the ability to distinguish among channels,
although the improvements are relatively smaller. This is
further validated by the results in Table 2, where non-CID
models exhibit greater performance gains than CID models.

b) Data dependent vs. Data independent. As ACN im-
proves upon CN by adapting to the input TS, transitioning
from CN to ACN provides substantial improvements for
data-independent models (e.g., RMLP, TSMixer), as shown
in Figure 2(a). However, it also benefits data-dependent
models (e.g., iTransformer, S-Mamba) whose parameters
already adapt to the input TS, although the improvements
are relatively smaller. This is further validated by the results
in Table 2, where data-independent models exhibit greater
additional performance gains from CN to ACN.
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(N : # datasets, Ci: # channels of i-th dataset)

# Parameters Zero-shot

CN 2
∑N

i=1 Ci ·D ✗
ACN 4

∑N
i=1 Ci ·D

PCN 2K ·D ✓

Table 3: PCN for TSFMs.

Metric (Best #) UniTS + PCN Imp.

20 FCST
(MSE)

Sup. .469 (4) .433 (16) 7.7%

Pmt. .478 (3) .453 (20) 5.2%

18 CLS
(Acc.)

Sup. 80.6 (2) 83.0 (16) 3.0%

Pmt. 75.1 (3) 79.5 (16) 5.5%

Table 4: PCN to TSFMs.

12 Datasets MSE Imp.

iTransformer .275 -
+ CN .244 11.3%

+ ACN .241 12.4%
+ PCN .252 8.4%

Table 5: PCN to single-task models.

Average MSE across 4 horizons ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL Avg. Imp.

N
on

-C
ID iT

ra
ns

fo
rm

er

- .457 .384 .408 .293 .142 .121 .102 .254 .368 .260 .234 .179 .275 -
+ C-token .450 .389 .400 .290 .123 .109 .106 .157 .376 .246 .255 .169 .256 6.9%

+ C-project .452 .381 .399 .286 .119 .109 .097 .163 .366 .244 .230 .163 .251 8.7%
+ Channel identifier .445 .382 .397 .293 .100 .093 .082 .168 .365 .248 .231 .165 .248 9.8%

+ C-LoRA .450 .392 .398 .289 .114 .113 .106 .169 .364 .248 .241 .167 .254 7.6%
+ ACN .438 .374 .395 .288 .098 .088 .085 .153 .349 .245 .220 .158 .241 12.4%

R
M

L
P

- .471 .381 .401 .280 .205 .236 .200 .277 .356 .272 .261 .228 .297 -
+ C-token .455 .391 .385 .277 .220 .218 .196 .286 .368 .246 .267 .205 .293 1.4%

+ C-project .455 .389 .384 .277 .186 .190 .172 .233 .366 .245 .249 .195 .278 6.3%
+ Channel identifier .452 .380 .393 .279 .191 .209 .185 .262 .356 .250 .254 .199 .284 4.4%

+ C-LoRA .451 .379 .383 .279 .192 .198 .182 .264 .359 .245 .256 .190 .282 5.1%
+ ACN .448 .376 .383 .277 .159 .156 .131 .187 .353 .246 .242 .189 .262 11.8%

C
ID

S-
M

am
ba

- .457 .383 .398 .290 .133 .096 .090 .157 .364 .252 .244 .174 .253 -
+ C-token .463 .383 .400 .285 .117 .087 .097 .134 .376 .245 .244 .171 .250 1.2%

+ C-project .466 .400 .405 .294 .122 .089 .099 .151 .391 .249 .266 .176 .259 -2.4%
+ Channel identifier .457 .406 .399 .287 .112 .086 .078 .137 .360 .248 .239 .167 .248 2.0%

+ C-LoRA .457 .405 .399 .289 .112 .084 .092 .144 .359 .247 .238 .169 .250 1.2%
+ ACN .448 .374 .394 .284 .107 .095 .073 .121 .357 .247 .228 .162 .240 5.1%

T
SM

ix
er

- .462 .403 .401 .287 .129 .115 .115 .186 .365 .260 .255 .211 .266 -
+ C-token .456 .417 .402 .327 .230 .221 .154 .258 .413 .271 .279 .291 .310 -16.5%

+ C-project .457 .412 .401 .324 .232 .222 .154 .268 .407 .271 .275 .281 .309 -16.2%
+ Channel identifier .454 .390 .394 .284 .124 .114 .106 .185 .355 .245 .251 .186 .257 2.3%

+ C-LoRA .460 .407 .399 .283 .122 .110 .103 .181 .366 .245 .251 .187 .260 3.4%
+ ACN .453 .386 .385 .280 .120 .109 .103 .167 .356 .242 .245 .174 .243 8.6%

Table 6: Comparison with other methods. We compare ACN with 1) baseline methods, which employ channel-specific parameters
for token embedding (C-token) or projection layers (C-project), and 2) previous methods, including channel identifier and C-LoRA.

5.2. Application of PCN

Application to TSFMs. As shown in Table 3, applying CN
and ACN to TSFM is infeasible due to 1) the substantial
increase in parameters, as it requires parameters for all chan-
nels across all datasets and 2) their inability to handle unseen
datasets during training, as the number of channels may dif-
fer between training and inference datasets. In contrast,
PCN addresses these limitations by employing prototypes.
Table 4 presents the application of PCN to UniTS, showing
the average results for 20 forecasting and 18 classification
tasks under supervised (Sup.) and prompt-tuning (Pmt.)
settings, with consistent improvements observed across all
tasks. Full results of Table 4 and improvements on zero-shot
forecasting tasks are provided in Appendix N and L.

Application to single-task3 models. Although PCN is de-
signed for TSFMs, it also improves the performance of
single-task models trained on a single dataset, even when
the number of channels is unknown. As shown in Table 5,
applying PCN with K = 5 to iTransformer improves perfor-
mance by 8.4% on average across 12 datasets and 4 horizons,
though the improvement is smaller than that achieved by CN
and ACN. We attribute this to the fact that, unlike CN and
ACN which assign each channel a distinct parameter, PCN
assigns each prototype (channel cluster) a distinct parameter,

3A single-task model is trained on a single dataset.

resulting in a weaker enforcement of CID.

5.3. Comparison with Other Methods

To demonstrate the effectiveness of ACN, we compare it
with two categories of methods: 1) baseline methods, which
use a naive strategy of employing channel-specific param-
eters for token embedding (C-token) or projection layers
(C-project), and 2) previous methods, including channel
identifier (Chi et al., 2024), a learnable vector added to
channel tokens and C-LoRA (Nie et al., 2024), which ap-
plies a channel-aware LoRA to TS models. Table 6 demon-
strates that our method outperforms these approaches across
all backbones, while two baseline methods (C-token and
C-project) even degrade the performance of CID models.

6. Analysis
In this section, we conduct (1) ablation studies on ACN,
(2) entropy analyses to explain the proposed method from
an information theory perspective, and (3) other analyses
including both qualitative and quantitative evaluations.

6.1. Ablation Study

To demonstrate the effectiveness of ACN, we conduct an
ablation study of using the global and local parameters with
iTransformer. Table 7 presents the results, indicating that
using all components yields the best performance.
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ACN Average MSE across 4 horizons
Avg. Imp.

Adaptive CN ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

.457 .384 .408 .293 .142 .121 .102 .254 .368 .260 .234 .179 .275 -
✓ .439 .375 .395 .289 .108 .110 .099 .174 .347 .247 .226 .162 .247 10.2%

✓ .441 .376 .396 .289 .101 .088 .087 .159 .352 .247 .228 .161 .244 11.3%
✓ ✓ .438 .374 .395 .288 .098 .088 .085 .153 .349 .245 .220 .158 .241 12.4%

Table 7: Ablation study. None:{αd} vs. Adaptive (local parameters):{α̂L
b,c,d} vs. CN (global parameters):{αG

c,d} vs. ACN:{αG
c,d ·α̂L

b,c,d}.

(a) Entropy gain vs. Number of channels (C). (b) Entropy gain vs. MSE.

Figure 4: Channel entropy gain by CN. (a) Datasets with higher C show a higher entropy gain. (b) Datasets with higher entropy gain
show a higher performance gain (average MSE across four horizons).
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Figure 5: Entropy gain by CN. Non-CID models show greater
channel/feature entropy gains from CN than CID models.

6.2. Entropy Analysis

We demonstrate the effect of our method through entropy
analyses with four different backbones, showing that it 1)
enriches feature representations (feature entropy ↑), 2) in-
creases the uniqueness of each channel representation (chan-
nel entropy ↑), and 3) diversifies the attention heads and
correlation between channel representations.

Gaussian entropy. Let Z ∈ RD be a random vector follow-
ing a multivariate Gaussian distribution with a covariance
matrix Σ ∈ RD×D. Then, the Gaussian entropy of Z is de-
fined as H(Z) = 1

2 log
(
(2πe)D det(Σ)

)
, which can be es-

timated by N samples z = [z1, z2, . . . , zN ]
⊤ ∈ RN×D as

H(z) = 1
2 log

(
(2πe)D det

(
1
N z⊤z+ εI

))
, with εI added

to avoid non-trivial solutions, following the previous works
(Yu et al., 2020; Chen et al., 2024b; 2025).

For the analysis, we compute the average over a test dataset
with z̄ ∈ RC×D and use the normalized entropy averaged
over the last dimension for comparison across different di-
mensions. Then, we define the entropy of z̄ and z̄⊤ as the
feature entropy and channel entropy respectively, as they
measure 1) the richness of the feature dimension and 2)
uniqueness of each channel representation.

Entropy gain of non-CID vs. CID models. Figure 5 illus-
trates the gains in channel and feature entropies achieved by

LN CN ACN
+ Ours

KL-divergence btw 8 attention heads (8x8)
Figure 6: Diversity of attention heads.

Elements of correlation matrix(a) (b)Correlation matrix (LN) Correlation matrix (CN)

Figure 7: Diversity of correlations btw channel representations.

CN for both non-CID and CID models. The figure shows
that non-CID models exhibit higher gains compared to CID
models, indicating richer feature representations and greater
uniqueness in channel representations. This supports our ar-
gument that the proposed method benefits non-CID models
more than CID models, which aligns with the greater per-
formance gain of non-CID models, as shown in Figure 2(a).

Entropy gain by datasets. To evaluate the effectiveness
of CN across datasets, we analyze the channel entropy gain
achieved by CN using iTransformer with respect to (1) the
number of channels and (2) the performance gain for each
dataset. Figure 4(a) illustrates the relationship between the
entropy gain and C, showing that datasets with higher C
achieve greater entropy gain. Figure 4(b) presents the rela-
tionship between the entropy gain and MSE improvement,
with a correlation (ρ) of 0.724, indicating that datasets with
higher entropy gain show greater performance improvement.

Diverse attention heads & correlations btw channels.
Figure 6 illustrates the KL divergence (KLD) between the
distributions of eight attention heads of iTransformer on
PEMS03 (Chen et al., 2001), showing that our method en-
ables the model to maintain greater diversity across the
heads. Specifically, the average KLD between the heads
of the first and last encoder layers is 0.289 and 0.077 for
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(b) Visualization of 3 channels for each cluster (Cluster 1, 2, 3, 4)(a) t-SNE of CN parameters (c) Correlation matrix 
of 21 channelsCluster 1

Cluster 4
Cluster 2

Cluster 3

Figure 8: Visualization of parameters and channels. (a) shows the t-SNE of the parameters of CN, with four clusters formed. (b)
visualizes three channels from each cluster, demonstrating that channels in the same cluster share similar patterns except for those in the
4th cluster. (c) visualizes the correlation matrix of the channels, where channels in the 4th cluster lack close relationships with others.

L = 96, H = 12 iTrans. + Ch. identifier + C-LoRA
Ours

+ CN + ACN

Train (sec/epoch) 7.7 9.4 11.1 7.8 10.8
Inference (ms) 2.0 2.3 2.8 2.1 2.5

# Parameters 3.2M + 0.1M +2.8M + 0.7M +1.4M

Avg. MSE .254 .168 .169 .159 .153

Table 8: Efficiency analysis.

LN, compared to 0.369 and 0.395 for CN. Additionally,
Figure 7(a) presents the correlation matrices of channel
representations of PEMS03 using iTransformer with and
without CN, along with the distribution of matrix elements
in Figure 7(b), demonstrating that CN enhances the diversity
of the correlations. This increase in diversity in both aspects
supports the performance improvements achieved by our
method, with the average MSE across four horizons being
0.142, 0.101, and 0.098 for LN, CN, and ACN.

6.3. Other Analyses

Visualization of CN params. To demonstrate that the pa-
rameters of CN effectively capture the CID, we visualize the
parameters (α) of 21 channels in Weather (Wu et al., 2021)
using t-SNE (Van der Maaten & Hinton, 2008). Figure 8
shows the result, displaying (a) four distinct clusters and (b)
the visualization of channels corresponding to each cluster.
The figure indicates that channels with similar patterns be-
long to the same cluster, except for the fourth cluster (blue),
whose channels show no close relationship with other chan-
nels, as also shown by the (c) correlation matrix.

Efficiency analysis. Table 8 shows the 1) number of pa-
rameters, 2) training time (per epoch), and 3) inference time
(per data instance) of iTransformer on PEMS08 (Chen et al.,
2001) across various methods for CID. The results indicate
that applying our methods has minimal impact on the num-
ber of parameters and computational time, while providing
a greater performance gain compared to other methods.

Performance under varying Ls. To validate the effective-
ness of our method under various sizes of lookback windows
(L), we evaluate our method on iTransformer with a forecast
horizon of H = 12 for the PEMS datasets and H = 96 for
the other datasets. Figure 9 indicates that the performance
gain remains robust across all datasets regardless of L.

Various Ks for PCN. Figure 10 shows the t-SNE visualiza-
tions of prototype parameters (αP) of PCN across varying

48 96 192 336 720
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ACN
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Figure 9: Effectiveness of CN/ACN under various L.
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*Sum of squared distances to cluster centers*M
SE 0.460 0.453 0.454 0.454

Redundant 
prototypes.

# Clusters # Clusters # Clusters # Clusters

*Avg.MSE of 20 FCST tasks (Baseline: 0.478)

Figure 10: t-SNE & distortion plot of PCN parameters.

numbers of prototypes (K), using UniTS as the backbone.
The distortion plots, shown below, are obtained by perform-
ing K-means clustering on these parameters to assess the
redundancy of the prototypes. The figures indicate that in-
creasing K leads to performance stabilization after a certain
point (K = 20), as redundant prototypes begin to emerge.

For further analyses, please refer to the below sections:

• Theoretical entropy analysis: Appendix C
• Comparison with Instance Normalization: Appendix F
• Robustness to K, τ , similarity space: Appendix I, J, K
• PCN for zero-shot forecasting with TSFM: Appendix L
• Application of multiple methods for CID: Appendix E
• Visualization of TS forecasting results: Appendix O

7. Conclusion
In this work, we introduce CN, a normalization strategy to
enhance CID of TS models with channel-specific parame-
ters. Furthermore, we propose ACN to adapt to input TS
on single-task models, and PCN to handle multiple datasets
with unknown/varying number of channels on TSFMs. A
potential direction for future work involves developing a
method to automatically determine the number of proto-
types for PCN based on the dataset. We hope that our work
highlights the importance of CID in TS analysis.
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A. Experimental Settings
A.1. Dataset Statistics

Dataset statistics. For the experiments, 12 datasets from various domains are used, with their statistics detailed in Table A.1,
where C and T represent the number of channels and timesteps, respectively.

Dataset split. We follow the same data processing steps and train-validation-test split protocol as used in S-Mamba (Wang
et al., 2025), maintaining a chronological order in the separation of training, validation, and test sets, using a 6:2:2 ratio for
the Solar-Energy, ETT, and PEMS datasets, and a 7:1:2 ratio for the other datasets. Hyperparameters are tuned based on the
validation loss.

Size of lookback window (L). Following the previous works (Nie et al., 2024; Liu et al., 2024), L is uniformly set to 96 for
all datasets and models. Further analysis regarding the performance under different L is discussed in Figure 9.

Dataset
Statistics Dataset Split Size of Input & Output

C T (Ntrain, Nval, Ntest) L H

ETTh1 (Zhou et al., 2021)

7

17420 (8545, 2881, 2881)

96

{96, 192, 336, 720}

ETTh2 (Zhou et al., 2021) 17420 (8545, 2881, 2881)
ETTm1 (Zhou et al., 2021) 69680 (34465, 11521, 11521)
ETTm2 (Zhou et al., 2021) 69680 (34465, 11521, 11521)

Exchange (Wu et al., 2021) 8 7588 (5120, 665, 1422)
Weather (Wu et al., 2021) 21 52696 (36792, 5271, 10540)
ECL (Wu et al., 2021) 321 26304 (18317, 2633, 5261)
Solar-Energy (Lai et al., 2018) 137 52560 (36601, 5161, 10417)

PEMS03 (Liu et al., 2022) 358 26209 (15617, 5135, 5135)

{12, 24, 48, 96}PEMS04 (Liu et al., 2022) 307 15992 (10172, 3375, 3375)
PEMS07 (Liu et al., 2022) 883 28224 (16911, 5622, 5622)
PEMS08 (Liu et al., 2022) 170 17856 (10690, 3548, 3548)

Table A.1: Datasets for TS forecasting.

A.2. Experimental Setups

Application of CN/ACN. For all experiments regarding TS forecasting with four different backbones, we use the official
code from C-LoRA (Nie et al., 2024), except for S-Mamba (Wang et al., 2025), as C-LoRA does not use S-Mamba as a
backbone.

Application of PCN. For all experiments involving TSFM, UniTS (Gao et al., 2024) is trained across multiple tasks using
a unified protocol. To accommodate the largest dataset, samples from each dataset are repeated within each epoch. The
training protocol, as outlined in the original paper, is as follows:

• Supervised training: Models are trained for 5 epochs with gradient accumulation, yielding an effective batch size of
1024. The initial learning rate is set to 3.2e-2 and adjusted using a multi-step decay schedule.

• Self-supervised pretraining: Models are trained for 10 epochs with an effective batch size of 4096, starting with a
learning rate of 6.4e-3 and utilizing a cosine decay schedule.

The embedding dimension is set to 64 for the supervised version and 32 for the prompt-tuning version. Note that we
encountered a convergence issue in the prompt-tuning setting, which was also reported by others in a GitHub issue. To
resolve this, we set the hidden dimension to 32, which led to a performance decrease compared to the results in the original
paper. For a fair comparison, this setting is applied uniformly to both UniTS and its application to PCN.
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Parameter initialization. The initialization of the parameters for Channel Normalization (CN), Adaptive Channel
Normalization (ACN), and Prototypical Channel Normalization (PCN) is designed to ensure that no normalization occurs
when learning has not yet taken place:

• The scale parameter (α) is initialized to 1.
• The shift parameter (β) is initialized to 0.

This choice is consistent with the default initialization used in PyTorch (Paszke et al., 2019) normalization layers, including
Layer Normalization and Batch Normalization. Therefore, the parameters for CN, ACN, and PCN are initialized as follows:

• CN: α = 1, β = 0

• ACN: αG = 1, αL = 0, βG = 1, βL = 0

• PCN: αP = 1, βP = 0

B. Properties of TS Backbones
B.1. Channel Identifiability

Definition. A MTS forecasting model f : RL×C → RH×C exhibits channel identifiability (CID) if, for any input TS
x ∈ RL×C the output f(x) depends on the channel index c of x, such that the forecasted value f(x):,c is unique to c, even
when all channels in x have identical values.

Using the above property, MTS forecasting models can be classified into two categories: models without CID and models
with CID.

1) Model without channel identifiability. If a model f lacks CID, then for any x ∈ RL×C with all channels having
identical input values, the forecasted outputs for all channels will also be identical:

x [:, c1] = x [:, c2]⇒ f(x) [:, c1] = f(x) [:, c2] , ∀c1, c2. (B.1)

2) Model with channel identifiability. If a model f possesses CID, then for any x ∈ RL×C with all channels having
identical input values, the forecasted outputs for different channels will be distinct due to the model’s ability to incorporate
channel positional information:

x [:, c1] = x [:, c2] ̸⇒ f(x) [:, c1] = f(x) [:, c2] , ∀c1, c2, (B.2)

where the inequality arises from the model’s recognition of channel positions.

B.2. Data Dependency

Definition. A MTS forecasting model f : RL×C → RT ′×C exhibits data dependency if the model parameters θ depend on
the input TS x. Specifically, for a given input TS x ∈ RL×C , the model parameters θ may vary based on the content or
structure of x, affecting the model’s output.

Using the above property, MTS forecasting models can be classified into two categories: models without data dependency
and models with data dependency.

1) Model without data dependency. If a model f does not exhibit data dependency, then the model parameters θ are fixed
and independent of the input TS x:

y = f (x, θ) . (B.3)

2) Model with data dependency. If a model f exhibits data dependency, then the model parameters θ depend on the input
TS x:

y = f (x, θ(x)) . (B.4)
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C. Theoretical Entropy Analysis
Following the previous work (Chen et al., 2025), we analyze our approach using theoretical entropy analysis.

Justification 1. Applying CN achieves a more informative representation (ZCN) compared to LN (ZLN) or without any
normalization (ZNone), as it increases in the entropy :

H(ZNone) ≤ H(ZLN) ≤ H(ZCN). (C.1)

Proof. The joint entropy can be decomposed as follows:

H(Z)
=HNone

≤ H(Z) +H(α1, β1|Z) (C.2)

= H(Z, α1, β1)
=HLN

(C.3)

≤ H(Z, α1, β1) +H({αi, βi}Ci=2|α1, β1) (C.4)

= H(Z, {αi, βi}Ci=1)
=HCN

, (C.5)

This follows from the non-negativity of conditional entropy (Thomas & Joy, 2006).

Justification 2. A more informative representation (i.e., higher H (Z)) can potentially lower forecasting error, as under the
Gaussian assumption, the minimum mean-squared error (MMSE) is bounded by:

MMSE ≥ exp (2H (Y | Z))
2πe

. (C.6)

Proof. Following Equation 1, we construct the chain with a modification where the last layer of g2 is separated:

X
g1−→ Zpre

f−→ Z
g′
2−→ Zpost

g′′
2−→ Ŷ. (C.7)

This allows the propagation in the final layer g2 to be expressed as:

Ŷ = g′′2 (Zpost) = WZpost. (C.8)

Assuming a Gaussian distribution for Zpost, Ŷ, and Y, we can derive the following bound, as shown in previous works
(Carson et al., 2012; Prasad, 2010):

MMSE ≥
exp 2H (Y | Zpost)

2πe
. (C.9)

Since Zpost = g′2 (Z), the chain property (Thomas & Joy, 2006) ensures that Z contains at least as much information about
Y as Zpost, i.e., knowing Z reduces the uncertainty about Y:

H (Y | Zpost) ≥ H (Y | Z) . (C.10)

By substituting Equation C.10 into Equation C.9, we obtain:

MMSE ≥
exp (2H (Y | Zpost))

2πe
≥ exp (2H (Y | Z))

2πe
. (C.11)
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D. Various Backbones
Backbones for CN/ACN. The four backbones used in the experiments are categorized based on their 1) channel identifiability
(CID) and 2) data dependency, as shown in Figure D.1.

• RMLP (Li et al., 2023) captures temporal dependencies within each channel in a channel-independent manner, applying
identical weights across all channels.

• iTransformer (Liu et al., 2024) captures channel dependencies using a self-attention mechanism that is order-invariant,
rendering channels unidentifiable (non-CID).

• TSMixer (Chen et al., 2023) employs MLPs to capture both temporal and channel dependencies, with distinct weights
assigned to each channel.

• S-Mamba (Wang et al., 2025) utilizes the Mamba architecture to capture channel dependencies, leveraging the inherent
properties of Mamba (e.g., state-space modeling) to differentiate between channels.

For architectures that utilize Layer Normalization (LN), such as iTransformer and S-Mamba, we replace LN with our
proposed method. For architectures without any normalization, we incorporate our method directly.

Non-CID

Ch1 Ch2 Ch3 Ch4

Ch1 Ch2 Ch3 Ch4

iTransformer 

≈ç

Ch1 Ch2 Ch3 Ch4

Ch1 Ch2 Ch3 Ch4

Ch1 Ch2 Ch3 Ch4

RMLP (Linear models)

Ch1 Ch2 Ch3 Ch4

Ch1 Ch2 Ch3 Ch4

Ch1 Ch2 Ch3 Ch4

S-Mamba (SSM-based)
TSMixer

Ch1 Ch2 Ch3 Ch4

Ch1 Ch2 Ch3 Ch4

Ch1

Ch2

Ch3

Ch4

Ch1

Ch2

Ch3

Ch4

: Parameters depend on input (data)

: Parameters do not depend on input (data)

C
ID

X

O

X O
Data-dependent

CID

Ch1 Ch2 Ch3 Ch4

Figure D.1: Four different backbones and their properties.

Backbones for PCN. UniTS (Gao et al., 2024) is designed with three distinct UniTS blocks, as well as a GEN tower and a
CLS tower. Each data source is assigned unique prompt and task tokens, while tasks within the same source that require
different forecast lengths use a shared prompt and GEN token. To facilitate zero-shot learning for new datasets, a universal
prompt and GEN token are utilized across all data sources.

15



Channel Normalization for Time Series Channel Identification

E. Application of Multiple Methods for CID
As a plug-in method, ACN is applicable to TS models along with other CID methods. To demonstrate that our method
complements these techniques, we evaluate its performance when combined with channel identifier (Chi et al., 2024) and
C-LoRA (Nie et al., 2024), using iTransformer (Liu et al., 2024) as the backbone, as shown in Table E.1.

iTransformer
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

- .457 .384 .408 .293 .142 .121 .102 .254 .368 .260 .234 .179 .275
+ ACN .438 .374 .395 .288 .098 .088 .085 .153 .349 .245 .220 .158 .241
+ ACN + C-LoRA .438 .380 .397 .285 .109 .090 .096 .162 .360 .245 .227 .162 .246
+ ACN + Channel identifier .442 .377 .394 .289 .099 .089 .084 .158 .344 .245 .222 .158 .242
+ ACN + C-LoRA + Channel identifier .440 .381 .400 .286 .105 .090 .089 .163 .346 .245 .226 .162 .244

Table E.1: Application of multiple methods for CID.

F. Comparison with Instance Normalization
Table F.1 shows the comparison of our methods (CN, ACN) with Instance Normalization (IN) (Ulyanov, 2016) on
iTransformer (Liu et al., 2024) in terms of average MSE across four horizons for various datasets, demonstrating that our
methods outperforms IN.

iTransformer
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

+ IN .442 .377 .397 .291 .101 .092 .088 .165 .356 .249 .226 .162 .246
+ CN .441 .376 .396 .289 .101 .088 .087 .159 .352 .247 .228 .161 .244
+ ACN .438 .374 .395 .288 .098 .088 .085 .153 .349 .245 .220 .158 .241

Table F.1: Comparison with Instance Normalization (IN).

G. Comparison with Constant Vectors
Table G.1 presents the performance of adding different constant vectors to each channel token, allowing the model to
distinguish channels on iTransformer (Liu et al., 2024). The results indicate that this simple addition improves performance,
while our methods (CN, ACN) achieves better performance in terms of average MSE across four horizons for various
datasets.

iTransformer
Average MSE across 4 horizons

Avg. Imp.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

- .457 .384 .408 .293 .142 .121 .102 .254 .368 .260 .234 .179 .275 -
+ Constant vector .443 .378 .397 .290 .114 .113 .103 .181 .355 .246 .233 .170 .252 8.4%

+ CN .441 .376 .396 .289 .101 .088 .087 .159 .352 .247 .228 .161 .244 11.3%
+ ACN .438 .374 .395 .288 .098 .088 .085 .153 .349 .245 .220 .158 .241 12.4%

Table G.1: Comparison with contant vectors.
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H. Robustness to Similarity Metric
To construct a channel similarity matrix S ∈ RB×C×C for ACN, various similiarity metric can be employed. To evaluate
whether the proposed method is sensitive to the choice of similarity metric, we compare several options, including (negative)
cosine similarity, ℓ1 distance, and ℓ2 distance. Table H.1 presents the average MSE across four horizons for various datasets,
demonstrating that the performance remains robust to the choice of similarity metric.

iTransformer
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 Exchange Weather Solar ECL

LN (Base) .457 .384 .408 .293 .368 .260 .234 .179 .329

CN
ℓ1 .440 .374 .395 .288 .350 .245 .220 .179 .309
ℓ2 .439 .375 .395 .288 .350 .245 .221 .158 .309

Cosine .438 .374 .395 .288 .349 .245 .220 .158 .308

Table H.1: Robustness to similarity metric for ACN.

I. Robustness to Number of Prototypes K
Table I.1 shows the results of applying PCN with various values of K. The results indicate that the performance remains
robust to the choice of K.

Average MSE across 4 horizons
Avg.

PCN K ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

✗ 1 .457 .384 .408 .293 .142 .121 .102 .254 .368 .260 .234 .179 .275

✓

2 .440 .376 .404 .290 .115 .121 .102 .180 .340 .257 .235 .169 .252
3 .439 .375 .403 .290 .116 .121 .101 .179 .345 .257 .235 .169 .252
5 .437 .376 .404 .289 .117 .120 .101 .176 .349 .257 .232 .169 .252

10 .438 .376 .403 .289 .116 .119 .101 .182 .339 .257 .233 .169 .252
20 .434 .376 .404 .288 .117 .120 .102 .183 .336 .257 .233 .169 .252

Table I.1: Robustness to K for PCN.
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J. Robustness to Temperature τ

Tables J.1, J.2, J.3, and J.4 display the average MSE across four different horizons for the 12 datasets, with four different
backbones, using various values of the temperature (τ ) in ACN. The results show that the effectiveness of ACN is consistent
across different values of τ .

τ
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

0.05 .439 .376 .396 .288 .099 .088 .087 .156 .351 .245 .221 .159 .242
0.1 .439 .376 .396 .288 .099 .088 .085 .156 .351 .246 .222 .158 .242
0.2 .439 .375 .395 .289 .099 .088 .086 .154 .350 .246 .223 .158 .242
0.5 .439 .375 .395 .289 .098 .088 .086 .159 .350 .247 .224 .158 .242
1.0 .439 .376 .395 .289 .098 .088 .087 .159 .350 .248 .224 .158 .242

Table J.1: Robustness to τ for ACN with iTransformer.

Backbone: S-Mamba

τ
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

0.05 .449 .375 .394 .285 .108 .093 .075 .122 .358 .248 .228 .164 .241
0.1 .449 .375 .394 .285 .107 .095 .074 .127 .358 .248 .229 .168 .241
0.2 .449 .375 .395 .285 .108 .095 .076 .129 .358 .249 .230 .163 .241
0.5 .449 .375 .395 .285 .109 .095 .076 .124 .358 .250 .231 .165 .241
1.0 .449 .375 .395 .285 .108 .095 .076 .124 .358 .250 .231 .165 .241

Table J.2: Robustness to τ for ACN with S-Mamba.

Backbone: TSMixer

τ
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

0.05 .453 .387 .391 .280 .130 .112 .105 .178 .356 .242 .248 .174 .255
0.1 .453 .387 .391 .280 .124 .109 .103 .177 .356 .242 .247 .174 .254
0.2 .453 .388 .391 .280 .120 .109 .103 .168 .356 .242 .246 .175 .253
0.5 .455 .388 .390 .280 .121 .110 .103 .171 .356 .242 .246 .174 .253
1.0 .455 .388 .390 .280 .122 .110 .104 .173 .356 .242 .246 .174 .254

Table J.3: Robustness to τ for ACN with TSMixer.

Backbone: RMLP

τ
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

0.05 .449 .378 .384 .277 .162 .164 .136 .200 .354 .246 .244 .189 .265
0.1 .450 .377 .384 .277 .159 .157 .131 .187 .354 .246 .243 .189 .263
0.2 .450 .377 .383 .277 .160 .157 .131 .188 .353 .247 .251 .189 .264
0.5 .448 .377 .384 .277 .178 .168 .136 .199 .353 .247 .257 .190 .268
1.0 .448 .377 .384 .277 .180 .168 .138 .202 .353 .247 .257 .191 .268

Table J.4: Robustness to τ for ACN with RMLP.
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K. Robustness to Similarity Space for ACN & PCN
K.1. Similarity Space for ACN

The similarity between the channels in TS for ACN can be calculated either in the data space (X) or the latent space (Z).
Table K.1 indicates that performance is robust to the choice of space across various datasets with four different backbones,
further validating the effectiveness of ACN.

Sim. space
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

iT
ra

ns
. - .457 .384 .408 .293 .142 .121 .102 .254 .368 .260 .234 .179 .275

A
C

N X .438 .375 .395 .288 .100 .089 .085 .156 .349 .247 .221 .158 .242
Z .438 .374 .395 .288 .098 .088 .085 .153 .349 .245 .220 .158 .241

S-
M

am
. - .457 .383 .398 .290 .133 .096 .090 .157 .364 .252 .244 .174 .253

A
C

N X .448 .375 .394 .285 .107 .092 .073 .121 .357 .247 .228 .162 .240
Z .448 .374 .394 .284 .107 .092 .073 .121 .357 .247 .228 .162 .240

T
SM

ix
er - .462 .403 .401 .287 .129 .115 .115 .186 .365 .260 .255 .211 .266

A
C

N X .453 .387 .387 .280 .121 .109 .103 .168 .356 .242 .245 .178 .244
Z .453 .386 .385 .280 .120 .109 .103 .167 .356 .242 .245 .174 .243

R
M

L
P - .471 .381 .401 .280 .205 .236 .200 .277 .356 .272 .261 .228 .297

A
C

N X .448 .376 .383 .277 .161 .157 .131 .186 .353 .246 .243 .189 .262
Z .448 .376 .383 .277 .159 .156 .131 .187 .353 .246 .242 .189 .262

Table K.1: Robustness to similarity space for ACN.
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K.2. Similarity Space for PCN

The similarity between the channels in TS and the prototypes for PCN can be calculated either in the data space (X), latent
space (Z), or the latent space with an additional linear layer (h), which is used to align the space between the input TS and
the prototypes. Table K.2 indicates that performance is robust to the choice of space across various datasets with different
numbers of prototypes (K), further validating the effectiveness of PCN.

PCN (K = 5)
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 Exchange Weather

- .457 .384 .408 .293 .368 .260 .362

Sp
ac

e X .440 .378 .404 .289 .342 .258 .352
Z .443 .381 .404 .290 .340 .259 .353

h(Z) .437 .376 .404 .289 .349 .257 .352

PCN (K = 10)
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 Exchange Weather

- .457 .384 .408 .293 .368 .260 .362

Sp
ac

e X .440 .377 .406 .289 .342 .259 .352
Z .443 .378 .405 .290 .341 .260 .355

h(Z) .438 .377 .403 .289 .339 .257 .351

PCN (K = 20)
Average MSE across 4 horizons

Avg.
ETTh1 ETTh2 ETTm1 ETTm2 Exchange Weather

- .457 .384 .408 .293 .368 .260 .362

Sp
ac

e X .439 .377 .404 .289 .333 .258 .350
Z .441 .379 .404 .290 .341 .259 .352

h(Z) .434 .375 .404 .288 .336 .257 .349

Table K.2: Robustness to similarity space for PCN with K = 5, 10, 20
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L. Application of PCN to Zero-shot Forecasting with TSFMs
We conduct TS forecasting tasks under two types of zero-shot settings with UniTS (Gao et al., 2024): the 1) Zero-shot
dataset, which involves evaluation on a dataset not seen during training, and the 2) Zero-shot task, where we evaluate a new
forecasting horizon not included in the training process by appending mask tokens at the end of the TS to predict future time
steps.

Zero-shot dataset. In the TS forecasting task on unseen datasets, we evaluate our method with three datasets (NREL, 2006;
McLeod & Gweon, 2013; Hyndman et al., 2008). The results, shown in Table L.1, highlight consistent improvements by
incorporating PCN.

Zero-shot horizon. For the TS forecasting task with new horizons, we predict an additional 384 time steps beyond the base
forecasting horizon of 96 by appending 24 masked tokens of length 16 at the end of the TS. Table L.2 presents the results on
four datasets (Zhou et al., 2021; Wu et al., 2021), showing performance improvements across all datasets.

Dataset
UniTS + PCN Imp.

MSE MAE MSE MAE MSE MAE

Solar .597 .607 .592 .514 0.8% 15.3%
River 1.374 .698 1.272 .580 7.4% 16.9%

Hospital 1.067 .797 1.046 .787 2.0% 1.3%

Avg. 1.013 .701 .970 .627 4.2% 10.6%

Table L.1: Results of TS forecasting with zero-shot dataset.

Dataset
UniTS + PCN Imp.

MSE MAE MSE MAE MSE MAE

ECL .237 .329 .229 .322 3.4% 2.2%
ETTh1 .495 .463 .486 .459 1.8% 0.9%
Traffic .632 .372 .616 .362 2.5% 2.7%

Weather .335 .336 .334 .335 0.3% 0.3%

Avg. .425 .375 .416 .369 2.1% 1.6%

Table L.2: Results of TS forecasting with zero-shot horizon.
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M. Full Results: Application of CN & ACN
Table M.1 and Table M.2 present the results of TS forecasting for non-CID and CID models, respectively. The proposed
method shows greater improvement in non-CID models, highlighting its role in enabling channel identifiability.

Models iTransformer + CN + ACN RMLP + CN + ACN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 .387 .405 .382 .401 .381 .400 .405 .413 .375 .394 .381 .394
192 .441 .436 .432 .429 .431 .429 .460 .444 .433 .426 .435 .424
336 .487 .458 .472 .451 .471 .450 .505 .466 .479 .449 .482 .446
720 .509 .494 .478 .474 .470 .469 .514 .490 .493 .478 .492 .473

Avg. .457 .449 .441 .439 .438 .438 .471 .453 .445 .437 .448 .435

E
T

T
h2

96 .301 .350 .300 .351 .299 .350 .298 .349 .295 .346 .291 .343
192 .381 .399 .375 .397 .375 .396 .374 .397 .369 .395 .367 .392
336 .427 .434 .410 .428 .409 .427 .424 .435 .423 .432 .418 .429
720 .430 .446 .420 .441 .413 .436 .433 .449 .431 .446 .428 .444

Avg. .384 .407 .376 .404 .374 .402 .381 .408 .380 .405 .376 .402

E
T

T
m

1

96 .342 .377 .328 .364 .328 .364 .337 .374 .319 .358 .318 .357
192 .383 .396 .373 .388 .370 .387 .379 .391 .364 .383 .361 .381
336 .418 .418 .409 .412 .407 .411 .412 .412 .394 .404 .393 .403
720 .487 .456 .475 .448 .474 .446 .478 .447 .461 .442 .459 .441

Avg. .408 .412 .396 .403 .395 .402 .401 .406 .384 .397 .383 .396

E
T

T
m

2

96 .186 .272 .181 .264 .181 .262 .179 .259 .177 .258 .175 .257
192 .254 .314 .248 .307 .247 .307 .242 .303 .241 .302 .239 .300
336 .317 .353 .314 .350 .315 .349 .300 .340 .298 .340 .298 .339
720 .412 .407 .411 .405 .410 .404 .401 .397 .394 .398 .395 .396

Avg. .293 .337 .289 .331 .288 .330 .280 .326 .277 .324 .277 .323

PE
M

S0
3

12 .071 .174 .069 .170 .067 .168 .080 .188 .077 .187 .071 .179
24 .097 .208 .080 .184 .078 .181 .125 .236 .120 .232 .102 .216
48 .161 .272 .112 .215 .108 .214 .231 .324 .216 .312 .176 .288
96 .240 .338 .143 .246 .138 .247 .383 .430 .353 .405 .285 .379

Avg. .142 .248 .101 .204 .098 .203 .205 .294 .192 .284 .159 .266

PE
M

S0
4

12 .081 .188 .071 .175 .071 .174 .097 .205 .093 .202 .083 .191
24 .099 .211 .079 .186 .080 .187 .149 .260 .138 .250 .113 .226
48 .133 .246 .095 .203 .093 .201 .266 .355 .237 .333 .172 .285
96 .172 .283 .109 .220 .109 .219 .432 .463 .379 .430 .258 .358

Avg. .121 .232 .088 .196 .088 .195 .236 .321 .212 .304 .156 .265

PE
M

S0
7

12 .067 .165 .056 .151 .056 .150 .074 .177 .072 .175 .065 .165
24 .088 .190 .076 .173 .073 .169 .121 .228 .116 .223 .093 .198
48 .113 .218 .097 .185 .096 .183 .226 .316 .204 .298 .144 .251
96 .172 .283 .119 .202 .114 .195 .379 .416 .344 .385 .221 .318

Avg. .102 .205 .087 .178 .085 .174 .200 .284 .184 .270 .131 .233

PE
M

S0
8

12 .088 .193 .078 .181 .078 .181 .096 .201 .091 .196 .084 .187
24 .138 .243 .109 .214 .109 .214 .158 .260 .142 .246 .125 .231
48 .334 .353 .217 .240 .196 .236 .299 .368 .260 .338 .204 .304
96 .458 .436 .232 .257 .228 .252 .555 .504 .494 .451 .334 .394

Avg. .254 .306 .159 .223 .153 .221 .277 .333 .247 .308 .187 .279

E
xc

ha
ng

e

96 .086 .206 .086 .206 .085 .205 .083 .203 .084 .203 .082 .200
192 .177 .299 .174 .298 .173 .297 .175 .299 .175 .298 .173 .296
336 .338 .422 .324 .412 .323 .412 .325 .415 .325 .413 .323 .411
720 .847 .691 .824 .687 .815 .675 .839 .693 .835 .688 .834 .687

Avg. .368 .409 .352 .401 .349 .398 .356 .403 .355 .400 .353 .399

W
ea

th
er

96 .174 .215 .162 .205 .160 .204 .196 .235 .166 .210 .163 .209
192 .224 .258 .211 .251 .210 .250 .240 .271 .214 .252 .210 .251
336 .281 .298 .268 .293 .266 .290 .291 .307 .269 .292 .267 .292
720 .359 .351 .346 .343 .345 .341 .363 .353 .346 .342 .344 .342

Avg. .260 .281 .247 .273 .245 .271 .272 .292 .249 .274 .246 .273

So
la

r

96 .201 .234 .197 .233 .185 .222 .233 .296 .217 .257 .207 .252
192 .238 .261 .229 .257 .221 .246 .260 .316 .245 .274 .239 .272
336 .248 .273 .239 .269 .231 .266 .276 .323 .265 .287 .261 .288
720 .249 .275 .246 .275 .241 .268 .273 .316 .265 .287 .263 .292

Avg. .234 .261 .228 .258 .220 .249 .261 .313 .248 .276 .242 .277

E
C

L

96 .148 .240 .133 .229 .132 .228 .201 .287 .164 .253 .162 .252
192 .167 .258 .152 .247 .150 .244 .209 .297 .174 .262 .173 .262
336 .179 .272 .165 .262 .164 .260 .228 .316 .191 .279 .190 .278
720 .220 .310 .191 .286 .187 .280 .273 .350 .232 .312 .230 .312

Avg. .179 .270 .161 .256 .158 .256 .228 .313 .190 .277 .189 .276

Average .275 .318 .244 .297 .241 .295 .297 .346 .280 .330 .262 .319

1st Count 0 0 9 9 46 46 0 0 4 7 44 46
2nd Count 10 9 39 39 3 2 4 7 43 41 4 2

Table M.1: TS backbones w/o CID ability. Full results of TS forecasting tasks.

22



Channel Normalization for Time Series Channel Identification

Models S-Mamba + CN + ACN TSMixer + CN + ACN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 .385 .404 .385 .405 .381 .403 .398 .411 .380 .399 .389 .402
192 .445 .441 .442 .438 .439 .435 .452 .441 .430 .426 .441 .426
336 .491 .462 .491 .465 .480 .459 .495 .462 .473 .448 .476 .454
720 .506 .497 .501 .492 .492 .488 .501 .482 .470 .466 .496 .479

Avg. .457 .452 .455 .450 .448 .446 .462 .449 .438 .435 .453 .441
E

T
T

h2

96 .297 .349 .290 .342 .289 .342 .316 .358 .308 .354 .311 .353
192 .378 .399 .371 .394 .370 .393 .401 .409 .378 .399 .399 .399
336 .425 .435 .418 .429 .415 .425 .440 .444 .428 .436 .416 .428
720 .432 .448 .422 .441 .423 .441 .454 .462 .433 .449 .426 .443

Avg. .383 .408 .375 .401 .374 .400 .403 .418 .387 .410 .386 .407

E
T

T
m

1

96 .326 .368 .328 .365 .326 .363 .330 .366 .319 .358 .316 .355
192 .378 .393 .375 .392 .374 .391 .374 .391 .364 .385 .363 .382
336 .410 .414 .409 .415 .406 .412 .417 .415 .394 .404 .394 .409
720 .474 .451 .474 .451 .472 .448 .484 .450 .466 .444 .466 .444

Avg. .398 .407 .397 .406 .394 .404 .401 .406 .386 .398 .385 .397

E
T

T
m

2

96 .182 .266 .176 .260 .175 .259 .178 .261 .177 .261 .175 .257
192 .252 .313 .246 .307 .243 .303 .245 .305 .248 .308 .239 .301
336 .313 .349 .311 .348 .308 .345 .313 .348 .311 .346 .303 .342
720 .416 .409 .409 .403 .409 .405 .416 .406 .410 .403 .401 .400

Avg. .290 .333 .286 .329 .284 .328 .287 .330 .286 .329 .280 .325

PE
M

S0
3

12 .066 .171 .062 .164 .062 .164 .066 .171 .065 .169 .064 .169
24 .088 .197 .080 .185 .079 .185 .090 .202 .089 .197 .085 .195
48 .165 .277 .121 .231 .120 .230 .142 .253 .137 .244 .133 .245
96 .213 .313 .170 .276 .168 .275 .218 .319 .204 .300 .196 .312

Avg. .133 .240 .108 .214 .107 .213 .129 .236 .124 .228 .120 .230

PE
M

S0
4

12 .073 .177 .069 .170 .072 .175 .074 .181 .074 .179 .072 .176
24 .084 .192 .077 .182 .085 .191 .091 .200 .091 .200 .087 .197
48 .101 .213 .091 .196 .102 .212 .121 .239 .121 .234 .117 .234
96 .125 .236 .103 .210 .124 .231 .173 .294 .168 .274 .159 .280

Avg. .096 .205 .085 .189 .095 .202 .115 .228 .114 .222 .109 .222

PE
M

S0
7

12 .060 .157 .054 .145 .054 .147 .066 .167 .063 .161 .058 .155
24 .082 .184 .068 .160 .065 .160 .088 .190 .087 .187 .079 .179
48 .100 .204 .084 .175 .080 .179 .125 .220 .127 .224 .113 .215
96 .117 .218 .105 .189 .094 .188 .181 .273 .184 .265 .161 .264

Avg. .090 .191 .078 .168 .073 .167 .115 .210 .115 .209 .103 .203

PE
M

S0
8

12 .076 .178 .071 .169 .071 .171 .081 .186 .080 .182 .079 .181
24 .110 .216 .093 .192 .092 .195 .115 .222 .113 .217 .110 .214
48 .173 .254 .134 .227 .133 .232 .188 .289 .181 .274 .179 .277
96 .271 .321 .233 .277 .190 .266 .362 .402 .295 .327 .304 .360

Avg. .157 .242 .133 .216 .121 .216 .186 .275 .167 .250 .167 .258

E
xc

ha
ng

e

96 .086 .206 .086 .206 .086 .205 .086 .205 .085 .203 .084 .203
192 .181 .303 .180 .302 .179 .302 .177 .302 .175 .298 .173 .297
336 .331 .417 .323 .411 .324 .412 .329 .414 .321 .411 .317 .408
720 .858 .699 .860 .699 .841 .690 .868 .704 .851 .697 .846 .694

Avg. .364 .407 .362 .405 .357 .402 .365 .406 .358 .402 .356 .400

W
ea

th
er

96 .165 .209 .160 .205 .162 .207 .181 .228 .159 .206 .156 .204
192 .215 .255 .208 .250 .209 .251 .227 .263 .209 .252 .206 .250
336 .273 .296 .268 .292 .268 .294 .280 .300 .267 .295 .263 .293
720 .353 .349 .348 .344 .350 .348 .353 .347 .350 .345 .343 .343

Avg. .252 .277 .246 .273 .247 .274 .260 .285 .246 .274 .242 .272

So
la

r

96 .207 .246 .194 .230 .189 .229 .222 .281 .200 .231 .215 .251
192 .240 .272 .227 .258 .223 .258 .261 .301 .251 .265 .250 .277
336 .262 .286 .248 .277 .246 .278 .271 .299 .269 .278 .264 .288
720 .267 .293 .250 .282 .252 .285 .267 .293 .266 .292 .254 .282

Avg. .244 .275 .230 .262 .228 .261 .255 .294 .246 .267 .245 .274

E
C

L

96 .139 .237 .135 .233 .135 .233 .177 .278 .147 .250 .146 .248
192 .165 .261 .157 .255 .155 .250 .193 .293 .166 .266 .162 .262
336 .177 .274 .168 .267 .162 .268 .215 .315 .187 .288 .177 .278
720 .214 .304 .190 .289 .186 .286 .260 .352 .223 .316 .209 .304

Avg. .174 .269 .163 .261 .162 .259 .211 .310 .181 .280 .174 .273

Average .253 .309 .243 .298 .240 .297 .266 .321 .254 .309 .243 .308

1st Count 1 0 15 25 38 31 0 0 10 16 40 36
2nd Count 10 14 31 23 9 17 9 6 35 30 8 12

Table M.2: TS backbones w/ CID ability. Full results of TS forecasting tasks.
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N. Full Results: Application of PCN
N.1. Application of PCN to non-TSFMs

Although PCN is developed for scenarios with multiple datasets and varying C (e.g., TSFM), it can also be applied to
single-task models trained on a single dataset, assuming the number of channels remains unknown. Table N.1 presents the
results of applying PCN with K = 5 to iTransformer. The results, averaged over 12 datasets and 4 horizons, show an 8.4%
performance improvement, which is smaller than the improvement achieved by CN and ACN.

iTrans.
Average MSE across 4 horizons

Avg. Imp.
ETTh1 ETTh2 ETTm1 ETTm2 PEMS03 PEMS04 PEMS07 PEMS08 Exchange Weather Solar ECL

- .457 .384 .408 .293 .142 .121 .102 .254 .368 .260 .234 .179 .275 -
CN .441 .376 .396 .289 .101 .088 .087 .159 .352 .247 .228 .161 .244 11.3%

ACN .438 .374 .395 .288 .098 .088 .085 .153 .349 .245 .220 .158 .241 12.4%
PCN .437 .376 .404 .289 .117 .120 .101 .176 .349 .257 .232 .169 .252 8.4%

Table N.1: Application of PCN to iTransformer.

N.2. Application of PCN to TSFMs

Table 4 summarizes the results of 20 forecasting and 18 classification tasks under supervised and prompt-tuning settings,
with full results for both tasks shown in Table N.2 and Table N.3, respectively.

UniTS (LN)
Supervised Prompt-Tuning

- + PCN - + PCN

Dataset H MSE MAE MSE MAE MSE MAE MSE MAE

NN5 112 .635 .556 .610 .545 .611 .552 .602 .543

ECL

96 .172 .273 .168 .272 .174 .277 .173 .278
192 .185 .284 .182 .283 .189 .289 .189 .292
336 .196 .297 .197 .296 .205 .304 .205 .306
720 .238 .321 .227 .321 .251 .340 .241 .334

ETTh1

96 .390 .408 .388 .406 .390 .411 .384 .405
192 .428 .432 .438 .434 .432 .439 .433 .432
336 .462 .451 .477 .454 .480 .460 .472 .450
720 .489 .476 .484 .475 .532 .500 .492 .475

Exchange 192 .239 .342 .202 .323 .221 .337 .207 .329
336 .479 .486 .383 .446 .387 .453 .366 .441

ILI 60 2.48 .944 1.93 .895 2.45 .994 2.14 .940

Traffic

96 .496 .325 .483 .320 .502 .330 .481 .318
192 .497 .327 .495 .324 .523 .331 .505 .322
336 .509 .328 .506 .326 .552 .338 .535 .330
720 .525 .350 .536 .341 .626 .369 .591 .352

Weather

96 .161 .211 .157 .207 .175 .214 .166 .217
192 .212 .255 .205 .251 .226 .266 .219 .261
336 .266 .295 .262 .293 .280 .303 .275 .299
720 .343 .344 .338 .342 .352 .350 .350 .348

Best Count (/20) 4 3 16 18 3 4 20 16

Average .469 .386 .433 .378 .478 .393 .453 .384

Table N.2: Results of multi-task forecasting with UniTS.
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UniTS (LN)
Supervised Prompt-Tuning

- + PCN - + PCN

Heartbeat 59.0 71.7 69.3 73.1
JapaneseVowels 93.5 92.7 90.8 92.7
PEMS-SF 83.2 84.9 85.0 82.7
SelfRegulationSCP2 47.8 55.0 53.3 51.7
SpokenArabicDigits 97.5 98.0 92.0 94.9
UWaveGestureLibrary 79.1 85.3 75.6 84.1
ECG5000 92.6 93.6 93.4 94.0
NonInvasive. 90.5 89.7 27.1 54.8
Blink 99.1 99.8 91.1 98.0
FaceDetection 64.1 66.7 57.6 60.7
ElectricDevices 60.3 62.1 55.4 59.4
Trace 91.0 96.0 82.0 92.0
FordB 76.0 76.5 62.8 67.2
MotionSenseHAR 92.8 93.2 93.2 94.7
EMOPain 78.0 79.2 80.3 85.1
Chinatown 97.7 98.0 98.0 98.3
MelbournePedestrian 87.3 88.2 77.0 78.5
SharePriceIncrease 61.9 63.1 68.4 68.4

Best Count (/18) 2 16 3 16

Average Score 80.6 83.0 75.1 79.5

Table N.3: Results of multi-task classification with UniTS.
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O. Visualization of Forecasting Results
To validate the effectiveness of our method, we visualize the predicted results for various L and H across different backbone
architectures and four datasets from diverse domains: ETTm1 (Zhou et al., 2021), Weather (Wu et al., 2021), ECL (Wu
et al., 2021), and PEMS (Liu et al., 2022), using three types of normalizations: base (LN), CN, and ACN.

O.1. Visualization of TSF with iTransformer

H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.1: TS forecasting results of ETTm1 with iTransformer.

H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.2: TS forecasting results of Weather with iTransformer.
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H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.3: TS forecasting results of ECL with iTransformer.

H: (12,24,48,96)

Base (LN) / CN / ACN

Figure O.4: TS forecasting results of PEMS07 with iTransformer.
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O.2. Visualization of TSF with RMLP

H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.5: TS forecasting results of ETTm1 with RMLP.

H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.6: TS forecasting results of Weather with RMLP.
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H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.7: TS forecasting results of ECL with RMLP.

H: (12,24,48,96)

Base (LN) / CN / ACN

Figure O.8: TS forecasting results of PEMS07 with RMLP.
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O.3. Visualization of TSF with TSMixer

H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.9: TS forecasting results of ETTm1 with TSMixer.

H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.10: TS forecasting results of Weather with TSMixer.
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H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.11: TS forecasting results of ECL with TSMixer.

H: (12,24,48,96)

Base (LN) / CN / ACN

Figure O.12: TS forecasting results of PEMS07 with TSMixer.
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O.4. Visualization of TSF with S-Mamba

H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.13: TS forecasting results of ETTm1 with S-Mamba.

H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.14: TS forecasting results of Weather with S-Mamba.
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H: (96,192,336,720)

Base (LN) / CN / ACN

Figure O.15: TS forecasting results of ECL with S-Mamba.

H: (12,24,48,96)

Base (LN) / CN / ACN

Figure O.16: TS forecasting results of PEMS07 with S-Mamba.

33


	Introduction
	Related Works
	Preliminaries
	Methodology
	Channel Normalization (CN)
	Adaptive Channel Normalization (ACN)
	Prototypical Channel Normalization (PCN)

	Experiments
	Application of CN/ACN
	Application of PCN
	Comparison with Other Methods

	Analysis
	Ablation Study
	Entropy Analysis
	Other Analyses

	Conclusion
	Experimental Settings
	Dataset Statistics
	Experimental Setups

	Properties of TS Backbones
	Channel Identifiability
	Data Dependency

	Theoretical Entropy Analysis
	Various Backbones
	Application of Multiple Methods for CID
	Comparison with Instance Normalization
	Comparison with Constant Vectors
	Robustness to Similarity Metric
	Robustness to Number of Prototypes 
	Robustness to Temperature 
	Robustness to Similarity Space for ACN & PCN
	Similarity Space for ACN
	Similarity Space for PCN

	Application of PCN to Zero-shot Forecasting with TSFMs
	Full Results: Application of CN & ACN
	Full Results: Application of PCN
	Application of PCN to non-TSFMs
	Application of PCN to TSFMs

	Visualization of Forecasting Results
	Visualization of TSF with iTransformer
	Visualization of TSF with RMLP
	Visualization of TSF with TSMixer
	Visualization of TSF with S-Mamba


