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Abstract

Meta-learning promises “few-shot" learners
that can adapt to new distributions by repurpos-
ing knowledge acquired from previous train-
ing. However, meta-learning has thus far
failed to achieve this in NLP due to the lack
of a well-defined task distribution, leading to
alternatives that treat datasets as tasks. Such
an ad hoc task distribution has two negative
consequences. The first one is due to a lack
of quantity—since there’s only a handful of
datasets, meta-learners tend to overfit their
adaptation mechanism. The second one is due
to a lack of quality—since NLP datasets are
highly heterogenous, many learning episodes
have poor transfer between their support and
query sets, which dis-incentivizes the meta-
learner from adapting. To alleviate these
issues, we propose DReCa (Decomposing
datasets into Reasoning Categories), a simple
method for discovering and using latent rea-
soning categories in a dataset, to form addi-
tional high quality tasks. DReCa works by
splitting examples into label groups, embed-
ding them with a fine-tuned BERT model and
then clustering each group into reasoning cate-
gories. Across 4 NLI fewshot problems, we
demonstrate that using DReCa improves the
performance of meta-learners by 1.5—4 accu-
racy points.

1 Introduction

Over the last few years, we have seen tremendous
progress on fundamental natural language under-
standing problems. At the same time, there is in-
creasing evidence that these models learn superfi-
cial correlations that fail to generalize beyond the
training distribution (Jia and Liang, 2017; Guru-
rangan et al., 2018; McCoy et al., 2019). How can
we move from doing well on datasets toward more
human-like understanding of tasks?

A key desideratum for human-like understanding
is few-shot adaptation. From a practical perspec-
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Figure 1: Overview of our approach. We embed all ex-
amples with BERT, and then apply k-means over each
label group separately. Then, we group clusters from
distinct label groups to form tasks.

tive, adaptation is central to many NLP applications
since new words and concepts appear every month,
leading to distribution shifts. People can effort-
lessly deal with these distribution shifts by learning
these new concepts quickly and we would like our
models to have similar capabilities. Recently, pre-
trained transformers have led to impressive results
on many NLP problems, but they still require 1000s
of samples where humans might require only a few.

Could these pre-trained transformers also be
made to achieve few-shot adaptation? One promis-
ing direction is meta-learning. Meta-learning
promises “few-shot" classifiers that can adapt to
new tasks by repurposing skills acquired from train-
ing tasks. An important prerequisite for successful
application of meta-learning is a task-distribution
from which a large number of tasks could be sam-
pled to train the meta-learner. While meta-learning
is very appealing, applications in NLP have thus
far proven challenging due to the absence of a well-
defined set of tasks that correspond to re-usable
skills. This has led to less effective ad hoc alterna-
tives, like treating entire datasets as tasks.

Treating entire datasets as tasks has two major is-



sues. First, because there’s only a small number of
supervised datasets available for any NLP problem,
we run into learner overfitting (Rajendran et al.,
2020): due to the small number of training tasks,
the meta-learner overfits its adaptation mechanism,
and doesn’t generalize to new tasks. Second, the
heterogeneity of NLP datasets can lead to learning
episodes that encourage memorization overfitting
(Yin et al., 2020; Rajendran et al., 2020), a phe-
nomenon where a meta-learner ignores the support
set, and doesn’t learn to adapt.

To improve the quality as well as quantity
of tasks, we propose Decomposing datasets into
Reasoning Categories or DReCa. DReCa is a meta
data augmentation strategy that takes as input the
original set of tasks (entire datasets), and then de-
composes them to approximately recover the la-
tent reasoning categories underlying these datasets.
This allows us to approximately recover reasoning
categories, e.g., various syntactic constructs within
a dataset, linguistic categories such as quantifiers
and booleans. These reasoning categories are then
used to construct additional few-shot classification
tasks, augmenting the original task distribution. We
illustrate these steps in illustrated in Fig. 1. DReCa
first embeds the examples using a BERT model
fine-tuned over all the datasets. We then run k-
means clustering over these representations to pro-
duce a refinement of the original tasks.

Experiments demonstrate the effectiveness of
our simple approach. First, we adapt the clas-
sic sine-wave regression problem from Finn et al.
(2017) to reflect the challenges of our setting, and
observe that standard meta-learning procedures
fail to adapt. However, a model that meta-learns
over the underlying reasoning types shows a sub-
stantial improvement. Next we consider the prob-
lem of natural language inference (NLI). We show
that meta-learners augmented with DReCa improve
over baselines by 1.5-4 accuracy points across four
separate NLI few-shot problems without requiring
domain-specific engineering, or additional unla-
beled data.

2 Related Work

Few Shot Classification in NLP. The goal of
learning from few examples has been studied for
various NLP applications. Common settings in-
clude few shot adapting to new relations (Han et al.,
2018), words (Holla et al., 2020) domains (Bao
et al., 2020; Yu et al., 2018; Geng et al., 2019) and

language pairs (Gu et al., 2018). In these works,
since task distributions are well defined, they do
not have the same overfitting challenges. On the
other hand, many works deal with fewshot adapta-
tion in settings with no clear task distribution such
as Dou et al. (2019); Bansal et al. (2019) but do not
address meta-overfitting.

Overfitting and Task Augmentation. The
memorization problem in meta-learning is studied
in Yin et al. (2020) who propose a meta-regularizer
to encourage the meta-learner to adapt, but this not
directly applicable to NLP. Task Augmentation
for mitigating overfitting in meta-learners is first
studied in Rajendran et al. (2020) in the context
of few-shot label adaptation. Hsu et al. (2019)
propose CACTUs, a clustering based approach
for unsupervised meta-learning in the context of
few-shot label adaptation for images, but do not
study meta-overfitting. Most closely related to our
work is the recent work by Bansal et al. (2020).
They propose SMLMT, a task augmentation
strategy that require a large text corpus to construct
augmented tasks. On the other hand, DReCa
creates task augmentations based solely on the
provided training data. In Section-6, we compare
our model against SMLMT, and demonstrate
comparable performance.

3 Setting

3.1 NLI

We consider the problem of Natural Language In-
ference or NLI (MacCartney and Manning, 2008;
Bowman et al., 2015), also known as Recognis-
ing Textual Entailment (RTE) (Dagan et al., 2005).
Given a sentence pair x = (p, h) where p is re-
ferred to as the premise sentence, and h is the hy-
pothesis sentence, the goal is to output a binary la-
bel § € {0, 1} indicating whether the hypothesis h
is entailed by the premise p or not. For instance, the
sentence pair (The dog barked, The animal barked)
is classified as entailed, whereas the sentence pair
(The dog barked, The labrador barked) would be
classified as not entailed. As shown in Table. 1,
NLI datasets typically encompass a broad range of
linguistic phenomenon. Apart from the reasoning
types shown in Table. 1, examples may also vary
in terms of their genre, syntax, annotator writing
style etc. leading to extensive linguistic variability.
Taken together, these factors of variation make NLI
datasets highly heterogenous.



Reasoning types Example

Restrictive Modifiers
Intersective Adjectives
Comparatives

Negation

Coreference Resolution
(Negation, Comparatives)

The boy with the green jacket went back = The boy went back

The white rabbit ran — The rabbit ran

Bill is taller than Jack =% Jack is taller than Bill

The dog barked =~ The dog did not bark

The man went to the restaurant since he was hungry — The man was hungry
Bill is taller than Jack = Jack is not taller than Bill

Table 1: Some common reasoning types within NLI. These can also be composed to create new types.

3.2 Meta learning

The goal of meta-learning is to output a black box
meta-learner f: (S;, xf]) — ¢ that takes as input
a support set S; of labeled examples and a query
point xfl and returns a prediction ¢. In the usual
meta-learning setting, these support and query sets
are defined as samples from a task 77, which is
a collection of labeled examples {(z*,y*)}. In N-
way k-shot adaptation, each 7" is an N-way clas-
sification problem, and f is given k examples per
label to adapt. A simple baseline for meta-learning
is to train a supervised model on labeled data from
training tasks, and then fine-tune it at test time on
the support set. This can be powerful, but ineffec-
tive for very small support sets. A better alternative
is episodic meta-learning, which explicitly trains
models to adapt using training tasks

Episodic Training. In the standard setup for
training episodic meta-learners, we are given a col-
lection of training tasks. We assume that both train
and test tasks are i.i.d. draws from a task distribu-
tion p(7T). For each training task 7" ~ p(7), we
create learning episodes which are used to train
the meta-learner. Each learning episode consists
of a support set and a query set Q; = {(l, yl)}.
To make predictions on a query z’, the meta-
learner f uses S; to adapt. The goal of episodic
meta-learning is to ensure that the meta-learning
loss L(f(S;, xé), yf]) is small on training tasks 7;".
Since train tasks are i.i.d. with test tasks, this re-
sults in meta-learners that achieve low loss at test
time.

Several algorithms have been proposed for meta-
learning that follow this general setup, such as
Matching Networks (Vinyals et al., 2016), MANN
(Santoro et al., 2016), Prototypical Networks (Snell
et al., 2017) and MAML (Finn et al., 2017). In this
work, we use MAML as our meta-learner.

MAML. In MAML, the meta-learner f takes the
form of gradient descent on a model hg: = — y

using the support set,
F(Sivat) = g () (1)

where 0} denotes task specific parameters ob-
tained after gradient descent. The goal of MAML
is to produce an initialization #, such that after
performing gradient descent on hy using S;, the up-
dated model kg can make accurate predictions on
9;. MAML consists of an inner loop and an outer
loop. In the inner loop, the support set S; is used to
update model parameters 6, to obtain task-specific
parameters 6/,
0;=0—aVy > Lhg(zl),yl). ()

These task specific parameters are then used to
make predictions on Q;. The outer loop takes gra-
dient steps over 6 such that task-specific parameters
¢; perform well on Q;. Since ¢/ is itself a differ-
entiable function of 6, we can perform this outer
optimization using gradient descent,

0 0pt |6,V > Lihg(ah),yl)

(z,y)€Q;

3

Here, Opt is an optimization algorithm typi-
cally chosen to be Adam. The outer loop gra-
dient is typically computed in a mini-batch fash-
ion by sampling a batch of episodes from distinct
training tasks. The gradient VQE(hgg(.fUé)? ye) in-
volves back-propagation through the adaptation
step which requires computing higher order gra-
dients. This can be computationally expensive so a
first order approximation (FOMAML),

VoL(hg (), yy) = Vo L(hg (x0),yy)  (4)

is often used instead (Finn et al., 2017).



Figure 2: A snapshot of 4 datasets from our synthetic
2d sine wave regression problem. Each dataset is a unit
square with multiple reasoning categories; A reasoning
category is a distinct sinusoid along a ray that maps
x = (x1,22) tO Y.

4 Opverfitting in Meta Learning

As mentioned earlier training tasks in NLP are of-
ten entire datasets, due to the lack of a well-formed
task distribution. This results in a small number
of heterogeneous training tasks, which can lead to
learner and memorization overfitting. Learner over-
fitting occurs when the meta-learner is exposed to
a very small number of tasks at meta-training time
causing it to not generalize to test tasks. Memo-
rization overfitting when the meta-learner ignores
its support set and doesn’t learn to adapt at all.
We illustrate memorization overfitting challenges
through a simple few-shot generalization problem
based on 2D sine wave regression.

Dataset. We extend a standard meta-learning toy
regression problem from Finn et al. (2017) to our
setting. The key hypothesis here is that meta-
learning on a small number of heterogenous tasks
leads to poor performance. To reflect these chal-
lenges, we construct a meta-learning problem with
a dataset-based task distribution where each dataset
consists of multiple reasoning categories (Fig. 2).
Much like the original sine wave problem, the key
challenge in adapting to a new reasoning category
involves estimating the phase angle of the sine
wave mapping from a small number of support
set examples.

Our construction consists of multiple datasets.
Each dataset is defined as a unit square sampled
from a 10 x 10 grid over z; = [—5,5] and z2 =
[—5, 5]. Within each dataset, we construct multiple

reasoning categories by defining each reasoning
category to be a sine wave with a distinct phase.
This is illustrated in Fig. 2 where each 1 x 1 repre-
sents a dataset, and sine waves along distinct rays
correspond to reasoning categories. The target la-
bel y for the regression task is defined for each cat-
egory by a randomly sampled phase ¢ € [0.1, 27]
and y = sin(||z — |z]|[|2 — ¢). At meta-training
time, we sample a subset of these 100 squares as
our training datasets, and then evaluate few shot
adaptation to reasoning categories from held out
datasets at meta-test time.
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Figure 3: Learning curves for MAML-Base (a) and
MAML-Oracle (b). The lack of a gap between pre-
adaptation (orange) and post-adaptation (blue) losses
for MAML-Base indicates strong memorization over-
fitting. On the other hand, we see a big gap for
MAML-Oracle which indicates that this model learns
to adapt.

Experiments. We use similar hyperparameters
as Finn et al. (2017) elaborated in Appendix A.1.

We start by considering MAML-Base, a meta-
learner that is trained directly over a dataset-based
task distribution. Concretely, we define each train-
ing task as a dataset and randomly sample episodes
to train the meta-learner. Note that since episodes
are drawn uniformly at random from an entire
dataset, we expect support and query sets to often
contain points from disjoint reasoning categories.
In such scenarios, adaptation is not possible since
the model cannot estimate the phase angle for query
examples based on support examples. Thus, we ex-
pect pre and post adaptation losses to be similar.
This is indeed reflected in the learning curves in
Fig. 3(a). We observe that the orange and blue lines,
corresponding to pre and post adaptation losses re-
spectively, almost overlap. In other words, the
model ignores the support set entirely. This is what
we mean by memorization overfitting.

Next we consider MAML-Oracle, a meta-
learner that is trained on tasks based on the un-
derlying reasoning categories. In this setting, sup-



port and query sets are both drawn from the same
sine wave, thus the model should be able to es-
timate phase angle for query examples from the
support. This suggests that we should expect post
adaptation loss to be lower than the pre adapta-
tion loss. Empirically, from Fig. 3(b), we observe
large gaps between pre and post adaptation losses
which indicates that memorization overfitting has
been mitigated. This leads us to the main question:
Could we discover these reasoning categories?

Can we discover reasoning categories? In an
attempt to discover these latent reasoning cate-
gories, we train a feedforward neural net (para-
materized similarly as hg) on the union of all the
datasets, and use the final layer representation to
cluster examples. We then use these clusters in-
stead of the true reasoning categories to augment
the original task distribution.

We now show learning curves on held out test
tasks in Fig. 4. As expected MAML-Base fails to
adapt to new reasoning categories, indicating that
it was unable to acquire the required skill from its
training tasks. On the other hand, MAML-Oracle
is able to adapt very well, which confirms our hy-
pothesis that a large number of high quality tasks
helps. Finally, we see that using MAML trained
on the augmented task distribution is able to match
the performance of the oracle.
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Figure 4: Results on the Toy sine-wave regression
task. We observe that the oracle meta-learner outper-
forms the baseline, and our proposed approach is able
to bridge the gap.

S Our Approach

Experiments on the 2D sine wave regression prob-
lem confirm our hypothesis about the challenges of
meta-learning with heterogenous task distributions.
Since NLI datasets require a wide range of skills,
we expect similar challenges on few-shot NLI as

iy

Figure 5: t-SNE plot of BERT vectors after fine-tuning
on HANS. We see distinct clusters corresponding to
the various reasoning categories.

well. Motivated by the success of the clustering ap-
proach from Section 4, we now demonstrate that a
similar procedure can extract reasoning categories
for NLI. The key hypothesis here is that high qual-
ity sentence pair representations, such as those ob-
tained from a fine-tuned BERT model, can bring
out the micro-structure of NLI datasets.

We start by studying an analogue to our clus-
tering approach for HANS (McCoy et al., 2019),
a diagnostic NLI dataset. HANS consists of 30
manually defined syntactic templates which can
be grouped into 15 reasoning categories. We fine-
tune BERT (Devlin et al., 2019) for 5000 randomly
chosen examples from HANS. To obtain a vector
representation for each example x = (p, h), we
concatenate the vector at the [CLS] token, along
with a mean pooled representation of the premise
and hypothesis. We then use t-SNE (Maaten and
Hinton, 2008) to project these representations onto
2 dimensions. Each point in Fig. 5 is colored with
its corresponding reasoning category, and we can
observe a clear clustering of examples according to
their reasoning category. Indeed, the fact that pre-
trained transformers can be used to create meaning-
ful clusters has been shown in other recent works
(c.f. Aharoni and Goldberg (2020); Joshi et al.
(2020)). The ability of finetuned BERT representa-
tions to discover reasoning categories suggests our
more general approach, which we describe below.

DReCa: The goal of DReCa is to take a hetero-
geneous task (such as a dataset) and produce a
decomposed set of tasks. In doing so, we hope to
obtain a large number of relatively homogeneous
tasks that can be used to avoid meta overfitting.
Given a training task 7., we first group ex-
amples by their labels, and then embed exam-



Model HANS-fewshot DNC-fewshot CombinedNLI  GLUE-SciTail
Multitask 80.76 £1.83  70.27 £ 0.71 65.47 £ 3.19 75.80 £+ 2.58
MAML-Base 82.64 £1.80 70.59 &£ 1.17 72.61 £ 0.85 76.38 £ 1.25
MAML-DReCa 87.53 +-2.38 73.86 +1.28 75.36 £ 0.69 77.91 £ 1.60
SMLMT (Bansal et al., 2020) - - - 76.75 £ 2.08
MAML-Oracle 86.74 £ 1.06  72.06 £ 1.16 - -

Table 2: Results on NLI Fewshot learning. We report the mean and 95% confidence intervals assuming accuracies
follow a Gaussian. Bolded cells represent the best mean accuracy for the particular dataset. For all settings except
GLUE-SciTail, we consider 2 way 1 shot adaptation. For GLUE-SciTail, we consider 2 way 4 shot adaptation.

Dataset #Reasoning Categories  Cluster purity
HANS-fewshot 10 85.6%
DNC-fewshot 19 76.4%

Table 3: Measuring cluster purity. Our model is effec-
tive at recovering underlying reasoning types.

ples within each group with an embedding func-
tion EMBED(.). Concretely, for each N-way
classification task 7" we form groups gf =
{(EMBED(2?),4¥) | ¥ = I}. Then, we proceed
to refine each label group into K clusters via k-
means clustering to break down 7" into groups
{CI(g}) le forl=1,2...N.

These cluster groups can be used to produce KV
DReCa tasks. Each task is obtained by choosing
one of K clusters for each of the N label groups,
and taking their union. At meta-training time, learn-
ing episodes are sampled uniformly at random from
DReCa tasks with a probability A and from one
of the original tasks with probability 1 — A. To
produce learning episodes from DReCa tasks, we
simply sample support and query sets from these
augmented tasks.

Since our clustering procedure is based on fine-
tuned BERT vectors, we expect the resulting clus-
ters to roughly correspond to distinct reasoning
categories. Indeed, when the true reasoning cat-
egories are known we show in Section 6.3 that
DReCa yields clusters that recover these reasoning
categories almost exactly.

6 NLI Experiments

6.1 Datasets

We evaluate DReCa on 4 NLI few-shot learning
problems which we describe below.

HANS-fewshot is a few-shot classification prob-
lem over HANS (McCoy et al., 2019), a synthetic

dataset for NLI. Each example in HANS comes
from a hand-designed syntactic template which
is associated with a fixed label (entailment or
not_entailment). The entire dataset consists of 30
such templates which we use to define 15 reasoning
categories. We then hold out 5 of these for evalua-
tion, and train on the remaining 10. While this is
a simple setting, it allows us to compare DReCa
against an “oracle” with access to the underlying
reasoning categories.

DNC-fewshot uses a subset of DNC (Poliak
et al., 2018), a collection of multiple datasets recast
as NLI. We manually write a collection of patterns
representing a reasoning category, and match each
example against these patterns. For each pattern,
all examples that match this pattern form a task.
This results in 25 distinct reasoning categories, out
of which we hold out 8 tasks for evaluation.

CombinedNLI consists of a combination of 3
NLI datasets: MultiNLI (Williams et al., 2018),
DNC and Semantic Fragments (Richardson et al.,
2020) for training and RTE for evaluation. We
convert both MultiNLI and Semantic Fragments to
a 2-way classification by collapsing contradiction
and neutral labels into a not_entailment label.

GLUE-SciTail where we train on all the NLI
datasets from the GLUE benchmark (Wang et al.,
2019) and evaluate on SciTail (Khot et al., 2018).
This setting is comparable to Bansal et al. (2019)
with the difference that we only meta-train on the
NLI subset of GLUE, whereas Bansal et al. (2019)
meta-train on all GLUE tasks. For GLUE-SciTail,
we follow Bansal et al. (2019) and report 2-way
4-shot accuracy on SciTail.

6.2 Baselines

We compare our approach against several alterna-
tives. Multitask is a non-episodic baseline that



Model

Accuracy

MAML-DReCa

MAML-DReCa (No fine-tuning)
MAML-DReCa (K =5)

87.53 £2.38
82.20 £2.25
82.76 +£2.07

Table 4: Ablations. We compare our full model against 2 variations.

trains hg on the union of all examples from each
T, and then additionally fine-tunes the trained
model separately on the support set of each test
task. MAML-Base is a MAML model where every
task corresponds to a dataset. When the true rea-
soning categories are known, we also compare with
an oracle model MAML-Oracle which is trained
over a mixture of dataset-based tasks as well as ora-
cle reasoning categories. Finally, MAML-DReCa
is our model which trains MAML over a mixture
of the original dataset-based tasks as well as the
augmented tasks from DReCa.

Evaluation. To control for variations across dif-
ferent support sets, we sample 5—-10 random sup-
port sets for each test task. We fine-tune each of our
models on these support sets and report means and
95% confidence intervals assuming the accuracies
follow a Gaussian.

Training Details. For computational efficiency,
we use first order MAML (FoMAML). We use
BERT-base as the parameterization for hy. The
inner loop optimization involves 10 gradient steps
with Adam, with a support set of 2 examples (2-
way 1-shot) for all except GLUE-SciTail where
the support set size is 8 (2-way 4-shot). For
DReCa, we use the fine-tuned BERT model to de-
fine EMBED(; ), similar to Section 5. The mixing
weight A is set to 0.5 for all our experiments.

Results. We find that DReCa improves model
performance across all 4 datasets: MAML-DReCa
improves over MAML-Base by +4.3 points on
HANS-fewshot, +2.2 points on DNC-fewshot, +2.7
points on CombinedNLI and +1.6 points on GLUE-
SciTail (Table 2). Moreover, we observe that
MAML-DReCa is able to obtain comparable per-
formance as MAML-Oracle (as confidence inter-
vals overlap) on both HANS-fewshot and DNC-
fewshot. On GLUE-SciTail, we also compare
against the SMLMT model from (Bansal et al.,
2020). We find that MAML-DReCa improves
over this model by 1.5 accuracy points. However,
we note that the confidence intervals of these ap-

proaches overlap, and also that (Bansal et al., 2019)
consider the entire GLUE data to train the meta-
learner whereas we only consider NLI datasets
within GLUE.

6.3 Quantitative evaluation of clusters

To understand whether reasoning categories can be
accurately recovered with our approach, we mea-
sure the purity of DReCa clusters when true rea-
soning categories are known. This is evaluated by
first computing the number of examples belong-
ing to the majority reasoning type for each cluster
and then dividing by the total number of exam-
ples. Since this requires knowing oracle reasoning
categories, we compute cluster purity for HANS-
fewshot and DNC-fewshot. Results are in Table 3.
We observe a very high cluster purity which pro-
vides some evidence that DReCa is able to recover
true reasoning categories.

6.4 Model Ablations

We investigate the effects of number of clusters
as well as the choice to use a fine-tuned BERT
for clustering via ablation experiments. Our hy-
pothesis is that fine-tuning representations is essen-
tial to bring out the micro-structure specific to our
datasets, resulting in better augmented tasks. More-
over, a large number of augmented tasks would
lead to improved performance due to less meta-
overfitting. Results are in Table 4. We observe that
MAML-Oracle (No fine-tuning) suffers a perfor-
mance drop of 5.3 accuracy points suggesting that
fine-tuning BERT is essential. Next, we see that
decreasing the number of augmented tasks down
to 25 (K = 5) from 400 also incurs a drop of 4.7
points compared to our full model.

7 Discussion

In this work, we take a closer look at using meta-
learning tools for few-shot classification problems.
One of the main ingredients for successful appli-
cation of meta-learning is a large number of high
quality training tasks to sample learning episodes
for the meta-learner. We observe that such a task



distribution is usually not available for important
NLP problems, leading to less desirable ad hoc al-
ternatives that often treat entire datasets as tasks. In
response, we propose DReCa as a simple and gen-
eral purpose task augmentation strategy. From re-
sults on 4 NLI few-shot classification benchmarks,
we conclude the effectiveness of our approach.

Many works suggest that there are fundamental
challenges in creating systems that achieve human-
like understanding of tasks like NLI. In this work,
we studied conditions under which systems can
learn with extremely few samples, and we believe
that such systems would complement and enhance
further study into more sophisticated challenges
such as model extrapolation.
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A Appendix

A.1 2D Sine Wave Regression: Training
Details

We use a two layer neural network with 40 di-
mensional hidden representations and ReLLU non-
linearity as the parameterization of f. Following
Finn et al. (2017), we take a single gradient step
on the support set at meta-training time, and take
10 gradient steps at meta-test time. The MAML
weights are optimized with Adam and the inner
loop adaptation is done with SGD with a learning
rate of 1e-2. For each outer loop update, we sample
5 tasks, and each episode consists of a support set
of size 5 i.e. we consider 5 shot adaptation.



