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Abstract

Multi-modal contrastive representation (MCR) of more than three modalities is
critical in multi-modal learning. Although recent methods showcase impressive
achievements, the high dependence on large-scale, high-quality paired data and
the expensive training costs limit their further development. Inspired by recent C-
MCR, this paper proposes Extending Multimodal Contrastive Representation (Ex-
MCR), a training-efficient and paired-data-free method to build unified contrastive
representation for many modalities. Since C-MCR is designed to learn a new
latent space for the two non-overlapping modalities and projects them onto this
space, a significant amount of information from their original spaces is lost in
the projection process. To address this issue, Ex-MCR proposes to extend one
modality’s space into the other’s, rather than mapping both modalities onto a
completely new space. This method effectively preserves semantic alignment
in the original space. Experimentally, we extend pre-trained audio-text and 3D-
image representations to the existing image-text space. Without using paired data,
Ex-MCR achieves comparable performance to advanced methods on a series of
audio-image-text and 3D-image-text tasks and achieves superior performance when
used in parallel with data-driven methods. Moreover, semantic alignment also
emerges between the extended modalities (e.g., audio and 3D). Our project page is
available at https://github.com/MCR-PEFT/Ex-MCR.

1 Introduction

Multi-modal Contrastive Representation (MCR) learning aims to align inputs from diverse modalities
within a shared representation space. Recently, the high-quality contrastive representations of more
than three modalities attract increasing attention [1, 2, 3, 4, 5, 6, 7], and play a fundamental role in
many application scenarios of multi-modal understanding [8, 9, 10, 11, 12] and generation [13, 14,
15, 16, 17, 18]. Previous methods focused on collecting a large amount of paired data for cross-modal
semantic alignment. However, as the number of modalities increases, the costs associated with data
preparation and model training to learn a contrastive representation space escalate significantly.

Recently, [19] introduces a novel training-efficient method, called C-MCR, for learning contrastive
representations between modalities that lack paired data by mining knowledge from existing semantic-
aligned spaces. It connects two pre-trained spaces onto a new shared space via overlapping modalities.
Since the modalities of pre-trained spaces are intrinsically aligned, the connection learned from
overlapping modalities can also be transferred to non-overlapping modalities. Experimentally,
without using image-audio and 3D-text data pairs, C-MCR demonstrates advanced performance in
image-audio and 3D-text downstream tasks.
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Despite the remarkable flexibility and performance of C-MCR, its broader applications are hindered
by a critical limitation: C-MCR mainly focuses on learning a new space for the two non-overlapping
modalities, while the modality alignments in powerful original pre-trained spaces are forgotten. As a
result, C-MCR faces challenges in conducting continuous connection operations and fully utilizing
all the knowledge in unified representation spaces. Therefore, it is difficult for C-MCR to build a
unified embedding space, especially with more than three modalities.

This paper introduces Extending Multi-modal Contrastive Representations (Ex-MCR), a novel
training-efficient and paired-data-free unified representation learning method with excellent modality
extensibility. Ex-MCR better preserves the alignment within the original pre-trained space and
enhances the overall learning pipeline to align different spaces more robustly. By inheriting and
reorganizing existing knowledge of the representation space, Ex-MCR achieves low training costs and
data requirements. Furthermore, when used in conjunction with large-scale pre-training methods, Ex-
MCR can complementarily enhance the unified representation space. Specifically, the two important
designs of Ex-MCR are discussed in detail below:

1. We extend one space (called leaf space) into another fixed space (called base space) rather than
connecting two pre-trained spaces to a new space. Such a simple yet effective approach maximizes the
preservation of modality alignment within base space, demonstrating great potential for augmenting
existing unified space and integrating more pre-trained spaces.

2. We enhance the whole learning pipeline to promote stronger alignment across different spaces.
Specifically: From a training data perspective, since another modality cannot fully represent semantic
information in one modality, we treat different modalities as queries to retrieve pseudo-data pairs (so-
called different mode-centric data) and combine them to form a comprehensive view of multimodal
semantic alignment. From the architecture perspective, we propose a decoupled projector, which
reduces interference among different optimization objectives. From the learning objective perspective,
we employ a dense contrastive loss on pseudo-pairs between all possible modalities pairs, further
enhancing the stability of learned alignments.

Utilizing Ex-MCR, we can flexibly align multiple leaf spaces onto the same base space without any
paired data and with extremely low training costs. To evaluate the effectiveness of our Ex-MCR, we
try to extend pre-trained 3D-image and audio-text spaces onto image-text space via the overlapping
image and text modality, which derive unified audio-image-text-3D representations. Without using
any paired data, Ex-MCR attains state-of-the-art performance results across various zero-shot tasks,
including audio-visual, 3D-image, audio-text, visual-text retrieval, and 3D object classification. More
importantly, semantic alignment is also observed between extended modalities (e.g., audio-3D),
which highlights the potential of Ex-MCR in modality extensibility.

Our contributions can be summarized as three-fold:

(1) We propose Extending Multi-modal Contrastive Representations (Ex-MCR), a novel training-
efficient and paired-data-free representation learning method for more than three modalities. More-
over, Ex-MCR is orthogonal and complementary to previous data-driven methods, combining both
can bring an enhanced space.

(2) We comprehensively augment the entire space alignment learning pipeline from the perspectives
of training data, architecture, and learning objectives. These novel designs offer valuable insights
about effectively integrating knowledge within existing spaces.

(3) Leveraging pre-trained models like CLIP, CLAP, and ULIP, we extend audio and 3D to image-text
space and obtain high-quality unified audio-image-text-3D representations. These representations
exhibit advanced performance on a series of tasks.

2 Related Works

2.1 Multi-Modal Contrastive Representations

Multi-modal Contrastive Representations (MCR) learning aims to acquire semantically aligned
cross-modal representations by pretraining the model on large-scale paired data. These aligned
representations play a pivotal role in downstream comprehension and generation tasks. Inspired by
the success of CLIP [20], many works try to learn contrative representations for two modalities [20,
21, 22, 23, 24]. CLIP [20] and ALIGN [25] learn shared image-text representations from million-level
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image-text pairs. CLAP [26, 27] learns the audio-text representation, and CAV-MAE [28] focus on
acquiring shared audio-visual feature space. C-MCR [19] focuses on learning new representation
space by connecting the pre-trained spaces through overlapping modality.

Apart from aligning two modalities, shared representations for more than three modalities attract
increasing attention. AudioCLIP [2] and WAV2CLIP [29] train an audio encoder aligned with
CLIP using audio-text-image triplets data. ULIP [3, 4] and openshape [5] construct 3D-image-
text triplets data through rendering 3D mesh into 2D images and captioning images for textual
description, thereby learning a corresponding 3D encoder for image-text MCR space. Furthermore,
Imagebind [12] exclusively utilizes data pairs between various modalities and images to expand CLIP
with multiple modal alignment encoders.

However, these methods heavily rely on large-scale, high-quality paired data collected from the
internet or generated automatically and exceptionally high computational resources. Due to the lack
of high-quality paired data for more modal combinations, such as audio-visual and text-3D, the
extensibility of representation learning is notably constrained. Furthermore, the exceedingly high
computational costs also diminish the flexibility of MCR learning.

2.2 Audio-Visual-Text and 3D-Visual-Text Learning

Audio-visual-text and 3D-visual-text learning have significant applications in multi-modal recog-
nition [30, 31, 32, 33], localization [34, 35, 36, 37, 38, 39, 40, 41? ], question-answer [11, 10, 42,
43, 44], and generation [45, 46, 47, 48, 49, 50]. They also play important roles in robot-related
tasks such as human-machine interaction and synthetical information obtaining in complex environ-
ments [51, 52].

Previous unified spaces, such as AudioCLIP [2] and ULIP [3, 4], mainly focus on automatically
collecting or generating more paired data, but they are limited by the relatively low quality of
the training datasets. Imagebind [12] employed individual vision-aligned data instead of triplets
but pre-training the encoders from scratch results in high computational costs. FreeBind [53]
and OmniBind [54] achieve strong modality alignment by integrating representation spaces that
simultaneously contain multiple instances of the same modality. These two methods mainly focus
on enhancing modality alignment within existing spaces, whereas Ex-MCR is a training paradigm
designed to construct new modality alignments. Our approach uses paired-free data and minimal
computational resources, yet it still achieves superior performance in audio-image-text and 3D-image-
text retrieval. More importantly, Ex-MCR is orthogonal to existing data-driven solutions, allowing
it to be flexibly used in parallel with the large-scale pre-training unified space for even stronger
performance.

3 Extending Multi-modal Contrastive Representations

3.1 Extending Rather Than Connecting

Given two pre-trained MCR spaces on modalities (A,B) and (B, C), C-MCR [19] employs two
projectors to map them into a new shared space, where the alignment of different spaces can be learned
from overlapping modality B. Since each pre-trained space intrinsically contains the alignment of
(A,B) and (B, C), the alignment learned from overlapping modality theoretically can be transferred
to the non-overlapping modalities.

Specifically, for aligning different spaces, the embeddings of B are aligned in the new space, and
pseudo (A, C) pairs retrieved by the same data of B are also aligned for a more comprehensive
inter-space alignment. Moreover, the embeddings of different modalities within the same space are
realigned to close the modality gap [55], which significantly enhances the transferability of learned
inter-space alignment. C-MCR shows remarkable flexibility and versatility since connecting two
existing spaces only requires two learnable projectors and unpaired unimodal data.

However, as C-MCR is designed to learn a new latent space for the two non-overlapping modalities
(A, C) and projects them onto this space, a significant amount of information from their original
spaces is lost in the projection process.. As a result, it faces challenges in concurrently establishing
connections among three or more spaces. Therefore, C-MCR is not suitable for learning a unified
representation space for more than three modalities.
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Figure 1: The pipeline of Ex-MCR. (a) We extend leaf spaces to base space via the overlapping
modalities. The base space is frozen and the leaf spaces are aligned to the base space via projectors.
(b) When extending the audio-text space to the text-image space, we iteratively use texts, audio, and
images as queries to retrieve and aggregate the corresponding semantically consistent embeddings.
The pseudo embedding pairs generated from different modality data are shuffled together to build the
final various modality-centric data pool.

To learn unified multi-modal representations in a training-efficient and paired-data-free manner,
we propose to extend one space into another space rather than connect two spaces to a new space.
Considering the two spaces on modalities (A,B) and (B, C), Ex-MCR chooses one as the base space
(A,B), and the other as the leaf space (B, C). In the “Extending" scheme, the base space is frozen,
and we only train one projector to map leaf space to base space via the overlapping modalities B.
Specifically, we employ the native pairs of B and pseudo pairs generated by B to align leaf space
to base space. Simultaneously, we close the modality gap between (B, C) modalities of leaf space,
thereby facilitating more transferable alignments.

In contrast to C-MCR, Ex-MCR can conveniently expand more spaces and learn unified representation
for three or more modalities. Benefiting from efficient training and no need for paired data, we
can flexibly align multiple leaf spaces to the same base space. In addition to explicitly establishing
alignment among modalities of leaf space and base space, semantic alignment also emerges between
extended modalities. Ex-MCR employs base space as a bridge for achieving semantic alignment
among modalities in multiple leaf spaces.

3.2 Enhancing Alignment Learning Pipeline

Before delving into the details of our learning pipeline, we first clarify the necessary symbols and
notations. We align the ULIP (3D-image) and CLAP (audio-text) onto CLIP (image-text). As shown
in Fig.1 (a), the unimodal data of audios A, texts T , images V , and 3D point clouds P are input to
their corresponding encoders, and the set of the extracted feature is denoted as AA, TA, TI , VI , VU

and PU , where superscripts A, I , U indicate representation space of CLAP, CLIP, ULIP, respectively.
The AA = {aA1 ,aA2 , . . .aAna

} where na is the number of all audio data and aAi represents the CLAP
feature of i-th audio. Similarly, there are tAi , tIi , vI

i , vU
i , oU

i in TA, TI , VI , VU , PU respectively.

In Ex-MCR, freezing base space allows us to maintain the original alignment of base space but also
implies that the modality gap within base space is preserved. Consequently, it becomes necessary
to map the leaf space to more suitable positions within the base space. To this end, we enhance the
entire alignment learning pipeline from perspectives of data, architecture, and learning objectives.

3.2.1 Various Modality-centric Data

C-MCR only uses data of overlapping modality to retrieve semantically similar embeddings of other
modalities and treats these generated embeddings as pseudo pairs (we call single modality-centric
data). However, it is difficult to fully represent one modality with another, and retrieved embeddings
by one modality often ignore some semantics of other modalities. For example, images about
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“mushrooms" tend to be absent when retrieving embeddings by audio, and audio of “wind noise" may
be ignored in embeddings aggregated by images. Therefore, aggregating embeddings from only a
single modality struggles to capture the entire representation space of different modalities.

To tackle the above problem, we propose various modality-centric data strategy. By ensembling
semantic consistent embeddings aggregated by multiple modalities, the final embeddings can reflect
the representation space of different modalities in different MCRs more comprehensively. As
depicted in Fig.1 (b), all modalities in two spaces are iteratively employed as queries to aggregate
corresponding semantic consistent embeddings. Take aligning audio-text space to text-image space
as an example, the consistent embeddings based on overlapping modality (e.g., text) are aggregated
as follows:

t̃Ai = tAi ; ãAi = softmax((t̃Ai ·TA)/τ1) · (AA)T

t̃Ii = tIi ; ṽI
i = softmax((t̃Ii ·VI)/τ1) · (VI)T

(1)

where the τ1 is the temperature parameter of softmax, and the softmax is over all the samples in used
datasets. The tilde symbols mean the features are processed to be semantically consistent. The t̃Ai
and t̃Ii are derived from the same text data, and their semantics are natively consistent. Benefiting
from the modality semantic alignment within each pre-trained space, the generated ãAi and ṽI

i are
also semantically relevant to the t̃Ai and t̃Ii .

To capture the representation space of non-overlapping modality more comprehensively, we further
aggregate semantic consistent embeddings via data of non-overlapping modality (e.g., audio and
image). The process of generating embeddings based on audio can be expressed as:

ãAi = aAi ; ṽI
i = softmax((t̃Ii ·VI)/τ1) · (VI)T

t̃Ai = softmax((ãAi ·TA)/τ1) · (TA)T ; t̃Ii = softmax((ãAi ·TA)/τ1) · (TI)T
(2)

Since the embeddings of TA and TI of overlapping modality are one-to-one matched, the similarity
weights between ãAi and TA can be naturally transferred to TI .

Based on the aforementioned formulas, when extending audio-text to text-image, we iteratively em-
ploy texts, audios, and images as queries to aggregate corresponding semantic consistent embeddings.
During training, semantic consistent embeddings from different sources are shuffled together and the
final data pool of various modality-centric data can be represented as {ãAi , ṽI

i , t̃
A
i , t̃

I
i }ni=0.

3.2.2 Decoupled Projector

The main network structure of Ex-MCR is a projector, and it serves two purposes: 1) Learning
the intra-space alignment to close the modality gaps within leaf space and prompt more stable
alignment between spaces. 2) Learning the inter-space alignment for extending leaf space to base
space. Considering these two different purposes, we propose a decoupled projector to alleviate the
potential conflict between distinct optimization objectives and explore a more reasonable mapping
layer design for these two purposes. As shown in Fig.1, the projector is decoupled into a linear layer
fl(·) for intra-space alignment and a multi-layer perceptron layer fm(·) for inter-space alignment.
For extending CLAP to CLIP, we first use fl to align ãAi to t̃Ai , the loss function is defined as:

Lintra =
1

2

1

B

B∑
i=1

∥fl(ãAi )− t̃Ai )∥2 (3)

With the intra-space alignment loss, fl(·) learns the mapping between audio subspace and text
subspace within the CLAP, thereby effectively closing the modality gap. Since the subspaces of
different modalities within pre-trained spaces are very similar, linear mapping is enough to bridge the
modality gap. Moreover, our experiments even found that activation layers hurt bridging the modality
gap.

After bridging the modality gap, the shared fm(·) are employed to map both audio and text embed-
dings of CLAP space to the CLIP space, which can be expressed as:

âAi = fm(fl(ã
A
i )); t̂Ai = fm(t̃Ai ) (4)

5



Table 1: Results of audio-image-text experiments. The best results are bolded.
Audio-Image Audio-Text Image-TextMethod FlickrNet AVE VGGSS AudioCaps COCO

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
CLAP - - - - - - 40.25 76.21 - -
CLIP - - - - - - - - 40.24 64.78
AudioCLIP 1.37 4.91 0.61 2.65 1.25 3.94 3.53 11.30 17.51 37.50
WAV2CLIP 0.82 3.41 0.95 4.23 2.51 10.472 0.88 4.22 40.24 64.78
ImageBind 7.68 20.78 18.00 40.11 14.82 35.67 9.24 27.47 57.28 79.54
C-MCRCLIP−CLAP 1.39 5.97 1.25 4.49 1.94 7.69 15.76 41.37 16.67 37.04

Ex-MCR-base 1.57 5.95 1.40 4.94 2.13 8.12 19.07 47.05 40.24 64.78
Ex-MCR-huge 1.80 6.16 1.89 7.36 3.26 11.77 26.95 59.60 57.28 79.54
Ex-MCR-huge + ImageBind 7.92 21.26 17.11 38.95 15.49 37.55 18.34 47.44 57.28 79.54

Table 2: Results of 3D-image-text experiments.

Method 3D-Text 3D-Image Image-Text
ModelNet40 Objaverse-LVIS COCO

Acc@1 Acc@3 Acc@5 R@1 R@5 R@1 R@5
CLIP - - - - - 40.24 64.78
ULIP 60.40 79.00 84.40 1.45 4.51 28.69 53.14
ULIP v2 73.06 86.39 91.50 6.00 15.63 28.69 53.14
C-MCRCLIP−ULIP 64.90 87.00 92.80 1.36 4.80 24.53 48.25

Ex-MCR-base 66.53 87.88 93.60 2.54 8.25 40.24 64.78

3.2.3 Dense Alignment Objective

Since the modality gap within the base space is still preserved, a more robust learning objective is
needed to map leaf space to the appropriate position in the base space. To this end, we propose to
learn the alignment densely among the quadruple semantic consistent embedding pairs described in
Sec.3.2.1. When extending CLAP to CLIP, the dense inter-space alignment losses are defined as:

Lavc = InfoNCE(âA, ṽI); Ltvc = InfoNCE(t̂A, ṽI)

Latc = InfoNCE(âA, t̃I); Lttc = InfoNCE(t̂A, t̃I)
(5)

where the InfoNCE(·, ·) is the standard contrastive loss function, which is defined as:

InfoNCE(x, z) = − 1

2B

B∑
i=1

[
log

exp((xi · zi)/τ2)∑B
j=1 exp((xi · zj)/τ2)

+ log
exp((zi · xi)/τ2)∑B
j=1 exp((zi · xj)/τ2)

]
(6)

where the τ2 is the temperature parameter. The overall loss is defined as a weighted combination of
the intra-space and inter-space losses:

L = λLintra +
1

4
(Lavc + Latc + Ltvc + Lttc) (7)

where λ is the hyper-parameter to balance the two terms.

Various modality-centric data 3.2.1, decoupled projector 3.2.2, and dense alignment loss 3.2.3 are
also symmetrically employed to extend the 3D-image space to image-text space via images. As
a result, we obtain a unified 3D-image-text-audio representation. Considering audio, text, image,
and 3D point cloud inputs, we use CLAP’s audio encoder, CLIP’s text and image encoder, and
ULIP’s 3D encoder to extract corresponding features aAi , tIi , vI

i , pU
i . The tIi , vI

i , fA
m(fA

l (aAi )),
fU
m(fU

l (pU
i )) are the final audio-text-image-3D unified representation learned by Ex-MCR, where

the fA
m(·), fA

l (·); fU
m(·), fU

l (·) are the learned projectors of CLAP and ULIP respectively.

2WAV2CLIP is trained on VGG-Sound. Its retrieval results on VGGSS are supervised, while other results
are zero-shot.
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4 Experiment

4.1 Experimental Setting

Datasets For a fair comparison, we use the same unimodal datasets to C-MCR [19] for training,
totaling 2.31M texts, 1.3M images, 1.8M audio, and 0.8M 3D point clouds. More details about
training datasets are provided in the Appendix.

Implementation Details For Ex-MCR-base, We employ pre-trained frozen CLIP ViT-B/32 [20],
CLAP [27], and ULIPv2 (PointBERT version) [4] models. We also extend CLAP’s audio encoder
to OpenCLIP ViT-H [56] to build the Audio-Image-Text space Ex-MCR-huge in parallel with
ImageBind [12]. The temperature τ1 in Eq.12 for embedding aggregation is set to 0.01 following
[19], while the τ2 in Eq.6 is set to 0.05. The hyper-parameter λ in Eq.7 is set to 0.1. Following [19],
we also add Gaussian noise with a variance of 0.004 to the semantic consistent embeddings described
in Sec.3.2.1. The linear projector fl(·) is a simple linear layer, and the MLP projector fm(·) is a
2-layer MLP. We train our model with a batch size of 4096 for 36 epochs. We employ the AdamW
optimizer with an initial learning rate of 1e-3 and a cosine learning rate decay strategy.

4.2 Audio-Image-Text Results
Downstream Tasks We employ zero-shot audio-image, audio-text, and image-text retrieval tasks
to evaluate the audio-image-text representations of Ex-MCR. For audio-image retrieval, we conduct
evaluations on Flickr-SoundNet [57], VGGSS [39], and AVE [58] datasets. Due to their small dataset
sizes, we utilize all their available data, comprising 5,000, 5,000, and 4,097 samples. For audio-text
retrieval, we utilize the validation set from the AudioCaps [59] dataset, which includes 964 audio
samples, and for each audio, there are 5 corresponding captions for retrieval. Regarding image-text
retrieval, we employ the validation set of COCO [60] dataset, consisting of 5,000 images and 25,014
text captions. We calculate the cosine similarity between modalities in representation space and use
Top-1 and Top-5 metrics for performance comparison.

Performance Comparison In the upper part of Fig.1, we compare Ex-MCR-base to WAV2CLIP,
AudioCLIP, and C-MCR. Notably, even without using audio-image paired data, Ex-MCR-base
achieves significantly better performance over WAV2CLIP and AudioCLIP, which illustrates that
Ex-MCR is a more effective representation learning method when high-quality data pairs are limited.
Furthermore, compared to C-MCR, Ex-MCR not only achieves better audio-image alignment but also
inherits more audio-text alignment from CLAP, fully retaining CLIP’s image-text modal alignment,
suggesting that Ex-MCR is generally superior to C-MCR in both establishing new Spaces and
maintaining original ones. We then compare the performance of Ex-MCR-huge and data-driven
alignment-building methods in the bottom half of Fig.1. Inheriting the audio-text alignment of CLAP,
Ex-MCR-huge achieved better results on audio-text retrieval tasks, while ImageBind, trained directly
with Audio-Image pairing data, has better audio-image performance. We were pleasantly surprised
to find that using Ex-MCR and data-driven methods in parallel, with very little additional cost, can
complement each other to achieve a state-of-the-art unified audio-image-text representation.

4.3 3D-Image-Text Results

Downstream Tasks To evaluate the performance of 3D-image-text space learned by extending
ULIP to CLIP, we conduct a zero-shot 3D object classification task to assess the alignment between
3D and text. We also perform zero-shot 3D-image and image-text retrieval tasks to evaluate the
alignment between 3D and image, as well as image and text. The zero-shot 3D object classification
task is carried on the ModelNet40 [61] validation set, and we use the same prompt strategy as [4].
Regarding the zero-shot 3D-image retrieval task, we use the Objaverse-LVIS dataset [62], which
includes 46,054 3D objects. Additionally, we continued to use the COCO dataset’s validation set for
zero-shot image-text retrieval.

It is worth noting that ULIP aligns a 3D encoder to a vision-language model called SLIP [63] (not
CLIP) through 3D-image-text data. Ex-MCR only uses the aligned 3D-image representation of ULIP
to extend it to a different vision-language model (i.e., CLIP) via the paired-data-free way. So we
are not reproducing or refining the alignment of ULIP, but building a new alignment from scratch
between the 3D representation of ULIP and CLIP.
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Performance Comparison From Tab.3.2.3, we can find the following key points:

1) Even without using any 3D-text data, Ex-MCR still outperforms the advanced models (ULIP and
ULIP v2) trained on 3D-text pairs in most performance metrics for 3D object classification.

2) For 3D-image retrieval, since the 3D-image space of ULIPv2 is treated as leaf space, it is reasonable
that Ex-MCR-base 3D-image performance is slightly lower than ULIPv2. At the same time, the
better 3D-image retrieval accuracy than ULIP and C-MCR shows that Ex-MCR effectively learns
strong 3D-image alignment.

3) Ex-MCR retains the best image-text retrieval accuracy compared to these previous state-of-the-art
models. The leading performance on all these tasks further demonstrates the superiority of Ex-MCR
in unified contrastive representation learning.
Table 3: Various modality-centric data: We re-
port the mAP metrics on all audio-visual and
audio-text retrievals. The A, I , and T repre-
sent pseudo data derived from audio, image, and
text, respectively. The “+" between A, I , and T
means combining these data for training.

FlickrNet AVE VGGSS AudioCaps

A 3.94 4.10 5.47 11.11
I 3.83 3.41 4.82 5.54
T 4.85 4.17 5.72 9.89

A+I 4.22 4.11 6.04 11.09
A+T 4.63 4.12 5.88 10.88
I+T 4.70 4.05 5.84 8.39

A+I+T 4.94 4.46 6.39 11.19

Table 4: Alignment objective. A−T , T−T , A−V ,
and T − V represent the alignment objective
between audio-text, text-text, audio-image, and
text-image, respectively. “All" means using all
above alignment losses simultaneously.

FlickrNet AVE VGGSS AudioCaps

A−T 4.01 4.00 5.70 10.82
T−T 4.56 4.15 5.68 11.30
A−V 4.30 3.97 5.91 7.49
T−V 4.77 4.18 5.43 7.68

All 4.94 4.46 6.39 11.19

Table 5: Structure of fl(·). “Linear" means sin-
gle linear layer, and “n MLP" indicates n-layer
MLP.
fl(·) FlickrNet AVE VGGSS AudioCaps

Linear 4.94 4.46 6.39 11.19
1 MLP 4.54 4.16 6.50 10.25
2 MLP 4.36 4.04 6.00 9.93

Table 6: Structure of fm(·)

fm(·) FlickrNet AVE VGGSS AudioCaps

Linear 3.62 3.70 5.40 11.15
1 MLP 4.62 4.15 5.81 10.53
2 MLP 4.94 4.46 6.39 11.19
3 MLP 4.85 4.31 6.57 11.30
4 MLP 4.95 4.35 6.55 11.07
5 MLP 4.79 4.42 6.59 10.93

4.4 Emergent 3D-Audio Alignment

In this section, we study whether the semantic alignment also emerges between the extended modali-
ties (e.g., audio and 3D). We mutually retrieve audio in AudioCaps and 3D objects in Objaverse. In
Fig. 4.4 and 3, we provide visualizations of some top-5 retrieval results, and audios are described by
their corresponding caption annotations. These cases effectively demonstrate the emergent semantic
alignment between audio-3D in Ex-MCR space. For example, the sound of a flushing toilet and
water flow can retrieve 3D objects of toilets or sinks, while a sailboat 3D object can retrieve clips
containing sounds of water vessels and wind.

These exciting results demonstrate that extending ULIP and CLAP onto CLIP following our Ex-MCR
methods derives a 3D-image-text-audio unified contrastive representation space. In addition to the
state-of-the-art performance on all possible tasks, Ex-MCR is an extremely training-efficient and
paired-data-free representation learning method, which amplifies its application value in unified
multi-modal representation learning. To further support the conclusion, we provide more audio-image
retrieval results and the original audio files in the supplementary material.

4.5 Ablation Studies

In this section, we analyze the main components of Ex-MCR. All experiments are conducted on
extending CLAP to CLIP, and we reported the average mAP of audio-visual and audio-text retrieval,
respectively. In addition, we also provide ablation results on full evaluation metrics in the Appendix.
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Figure 2: Visualization of Audio to 3D retrieval.

Figure 3: Visualization of 3D to Audio retrieval.

Various modality-centric data As described in Sec.3.2.1, we employ various modality-centric data
to train our projectors. For investigating the effect of different modality-centric data, we ablate each
modality-centric data, and the results are reported in Tab.3. The A, I, and T represent pseudo data
derived from audio, image, and text respectively. Each kind of data is beneficial for audio-visual and
audio-image alignment, and using all kinds of data simultaneously brings the best performance. In
addition, we find that pseudo-pairs from audios are critical to the performance of audio-text retrieval,
demonstrating the importance of various modality-centric data, and proving that previous single
modality-centric data really can not fully reflect the audio representation space.

Dense alignment objective To analyze the impact of different alignment objectives, we train the
model with each alignment objective. From the results reported in Tab.4, we find that directly aligning
the pseudo audio-image or audio-text embedding pairs leads to sub-optimal audio alignment, whereas
aligning spaces by overlapping text modality brings better alignment than learning alignment directly
from pseudo pairs. This observation further suggests that overlapping modalities play a key pivotal
role in aligning different spaces.

Structure of fl(·) Tab.5 demonstrates the impact of different structures of fl(·). The results prove
our hypothesis: the representation structures between different modalities within one MCR space are
similar, and a simple linear layer is enough to bridge the modality gap. Moreover, the activation layer
of the MLP introduces non-linearity, which may disrupt the spatial structure of representations.

Structure of fm(·) The ablation studies of fm(·) are summarized in Tab.6. When aligning different
MCR spaces, the nonlinear MLP structure with stronger expressivity is better than the simple linear
layer. Besides, good results are achieved no matter how many layers of MLP, which demonstrates the
robustness of our method. According to more detailed experiments in Tab.11, empirically, MLP with
2 or 3 layers achieves a good balance between expressivity and learning difficulty.
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Training hyperparameters τ2 and λ: The results of ablation experiments show that the performance
is insensitive to the τ2 in Eq6 and λ in Eq7. So the picked τ2 is 0.05 which is commonly used and the
picked λ is only to equal the absolute value of different loss terms. For detailed experimental results,
please refer to the table in Appendix C.

5 Conclusion

This paper proposes Extending Multi-modal Contrastive Representations (Ex-MCR), a novel training-
efficient and paired-data-free unified constrastive representation learning method for more than three
modalities. Ex-MCR effectively integrates the knowledge in pre-trained spaces through overlapping
modalities between these spaces. By extending ULIP and CLAP onto CLIP via the overlapping
image and text modality, respectively, we derive unified and high-quality audio-image-text-3D
representations. Additionally, Ex-MCR provides a new view to build unified representations. Even
without using paired data, Ex-MCR still achieves competitive performance, and when combined
with data-driven approaches, it complementarily enhances unified representation spaces, leading to
state-of-the-art results across various tasks.
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A Training Dataset

The details of our training dataset, which are mentioned in Sec.4.1, are shown below.

Text Dataset To ensure that the texts contain sufficient information for other modalities, the data of
text is sourced from diverse perspectives in image-text datasets (COCO, CC3M), video-text datasets
(MSRVTT, MAD), and audio-text datasets (AudioCaps, Clotho). Following [19], we select 1M texts
from CC3M. There are 2.33M text samples in total. We extract their CLAP and CLIP features TA

and TI using the CLAP and CLIP encoders, respectively.

Image Dataset For another modality in base space, Image, we utilize ImageNet1K as the data source.
ImageNet1K is a large-scale image recognition dataset consisting of 1.3 million images. We extract
their features to the sets VI , and VU in CLIP and ULIP, using the CLIP Encoder and ULIP Encoder.

Audio Dataset AudioSet is a large-scale audio dataset with 2.1M audio clips from YouTube, equiva-
lent to 5.8 thousand hours of audio and encompassing over 500 sound classes. We use the CLAP
audio encoder to extract the feature set AA from the audios of the training set.

3D Point Cloud Dataset For the 3D modality, we use Objaverse, the recently released and large-scale
3D objects dataset. It has approximately 800K real-world 3D objects. All 3D data are transformed
into point clouds and extracted into the feature set PU using the ULIP 3D encoder.

It is worth noting that we do not employ any annotations provided with the datasets mentioned above
as part of our training data, which means we only use the unimodal modality of data in each dataset
we selected.

B Architecture of Projectors

Table 7: Model configurations of projectors.

Module Block Cin Cout

f1(·) Linear 512 512

fm(·)

Linear 512 1024
BatchNorm1D 1024 1024

Relu - -
Linear 1024 512

BatchNorm1D 512 512
Relu - -

Linear 512 1024
BatchNorm1D 1024 1024

Relu - -
Linear 1024 512

BatchNorm1D 512 512
Relu - -

The model configurations of our projectors are shown in Tab.7.

C Detailed Results of Ablation Study

As a supplement to Tab.3, Tab.4, Tab.5, and Tab.6, we provide detailed ablation experiment results on
more comprehensive evaluation metrics of various datasets, as shown below.
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Table 8: Detailed results of experiments on data modality-centric.

Data Perspective FlickrNet AVE VGGSS AudioCaps

mAP R@5 mAP R@5 mAP R@5 mAP R@5
A 3.94 4.77 4.10 4.66 5.47 6.95 11.11 16.39
I 3.83 4.63 3.41 3.70 4.82 5.96 5.54 7.18
T 4.85 5.96 4.17 4.61 5.72 7.23 9.89 14.47

A+I 4.22 4.96 4.11 4.71 6.01 7.78 11.09 16.91
A+T 4.63 5.56 4.12 4.64 5.88 7.57 10.88 16.23
I+T 4.70 5.82 4.05 4.34 5.84 7.36 8.39 12.09

A+I+T 4.94 5.95 4.46 4.93 6.39 8.12 11.19 16.65

Table 9: Detailed results of experiments on alignment objective.

Objective FlickrNet AVE VGGSS AudioCaps

mAP R@5 mAP R@5 mAP R@5 mAP R@5
A-T 4.01 4.78 4.00 4.56 5.70 7.28 10.82 15.87
T-T 4.56 5.33 4.15 4.54 5.68 6.86 11.30 16.93
A-V 4.30 5.34 3.97 4.51 5.91 7.30 7.49 10.35
T-V 4.77 6.03 4.18 4.92 5.43 6.93 7.68 10.36

Dense 4.94 5.95 4.46 4.93 6.39 8.12 11.19 16.65

Table 10: Detailed results of experiments on the structure of f1(·).

f1(·) FlickrNet AVE VGGSS AudioCaps

mAP R@5 mAP R@5 mAP R@5 mAP R@5
Linear 4.94 5.95 4.46 4.93 6.39 8.12 11.19 16.65
1 MLP 4.54 5.59 4.16 4.75 6.50 8.54 10.25 14.92
2 MLP 4.36 5.15 4.04 4.66 6.00 7.63 9.93 14.48

Table 11: Detailed results of experiments on the structure of fm(·).

fm(·) FlickrNet AVE VGGSS AudioCaps

mAP R@5 mAP R@5 mAP R@5 mAP R@5
Linear 3.62 4.50 3.70 4.03 5.40 6.82 11.15 16.37
1 MLP 4.62 5.79 4.15 4.76 5.81 7.28 10.53 15.87
2 MLP 4.94 5.95 4.46 4.93 6.39 8.12 11.19 16.65
3 MLP 4.85 5.93 4.31 4.88 6.57 8.70 11.30 17.10
4 MLP 4.95 6.20 4.35 4.84 6.55 8.57 11.07 16.23
5 MLP 4.79 6.02 4.42 5.15 6.59 8.63 10.93 16.21
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Table 12: Detailed results of experiments on the hyperparameter of τ2.

τ2 FlickrNet AVE VGGSS AudioCaps

R@5 R@5 R@5 R@5
0.01 4.35 5.41 9.02 61.34
0.02 4.82 5.31 9.91 62.73
0.03 5.46 6.06 10.79 62.02
0.04 5.83 6.51 11.14 61.12
0.05 6.16 7.36 11.77 59.60
0.06 6.10 6.47 11.22 57.66
0.07 6.11 6.67 10.89 56.27
0.08 6.21 6.31 10.60 55.10
0.09 6.05 6.51 10.44 55.09
0.10 5.93 6.40 10.41 53.68

Table 13: Detailed results of experiments on the hyperparameter of λ.

λ FlickrNet AVE VGGSS AudioCaps

R@5 R@5 R@5 R@5
0.00 6.02 5.81 10.46 58.59
0.01 6.19 6.57 11.42 60.88
0.03 6.24 6.47 11.36 59.93
0.05 6.19 6.35 11.10 59.41
0.10 6.16 7.36 11.77 59.60
0.15 5.74 6.43 11.23 59.34
0.20 5.92 6.31 11.17 58.08
0.25 5.84 6.14 11.23 58.15
0.30 5.79 6.19 11.15 57.59
0.35 5.67 6.36 10.93 56.97
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D Compute Resource

Collecting a group of pseudo datasets takes about 10 hours on a single 4090 while using 12GB GPU
memory. The training times for projectors between two spaces are approximately 1.5 hours, on a
single 4090, and it only requires 3GB of GPU memory.

E Potential Ethical Impact

This paper introduces Ex-MCR, a paired-data-free and training-efficient method for constructing
a unified multimodal representation space. While this method offers flexibility in constructing
a new unified representation space, its training process, which does not necessitate paired data,
may inadvertently create unintended associations within the constructed representation space. The
alignment of the representation space is primarily influenced by the pre-training space utilized and
the unimodal data, both of which need to be restricted to prevent potential misuse for unethical
applications.

F Limitation and Future Work

Currently, larger and more advanced models are continually emerging across various modalities,
leading to increasingly stronger alignment in pre-trained contrastive representations. Although the
experimental results indicate that Ex-MCR already demonstrates significant advantages at comparable
model scales, considering its flexibility as a general paradigm, utilizing these advanced models to
explore the upper limits of this learning approach would be an exciting research direction.
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The training and test sets used in the experiments in this paper are deterministic,
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analysis is performed.
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dence intervals, or statistical significance tests, at least for the experiments that support
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• The assumptions made should be given (e.g., Normally distributed errors).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: A description of the computational resources can be found in the appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: A description of the broader impacts can be found in appendix E.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the creators or original owners of assets used in the paper are properly
credited and the license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide detailed documentation in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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