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Abstract
Extracting rich molecular representation is a crucial
prerequisite for accurate drug discovery. Recent
molecular representation learning methods achieve
impressive progress, but the paradigm of learning
from a single modality gradually encounters the bot-
tleneck of limited representation capabilities. In this
work, we fully consider the rich visual information
contained in 3D conformation molecular images
(i.e., texture, shadow, color and planar spatial in-
formation) and distill graph-based models for more
discriminative drug discovery. Specifically, we pro-
pose an image-enhanced molecular graph represen-
tation learning framework (called IEM) that lever-
ages multi-view molecular images rendered from
3D conformations to boost molecular graph repre-
sentations. To extract useful auxiliary knowledge
from multi-view images, we design a teacher, which
is pre-trained on 2 million molecules with confor-
mations through five meticulously designed pre-
training tasks. To transfer knowledge from teacher
to graph-based students, we pose an efficient cross-
modal knowledge distillation strategy with knowl-
edge enhancer and task enhancer. It is worth noting
that the distillation architecture of IEM can be di-
rectly integrated into existing graph-based models,
and significantly improves the capabilities of these
models (e.g. GIN, EdgePred, GraphMVP, Mole-
BERT) for molecular representation learning. In par-
ticular, GraphMVP and MoleBERT equipped with
IEM achieve new state-of-the-art performance on
MoleculeNet benchmark, achieving average 73.89%
and 73.81% ROC-AUC, respectively. Code is avail-
able at https://github.com/HongxinXiang/IEM.

1 Introduction
The molecular representation learning plays an import role
in high-precision drug discovery (such as molecular prop-
erty prediction, target activity prediction) [Hu et al., 2020a;
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Zeng et al., 2022; Zhang et al., 2023]. As the most direct
representation of molecules, graphs treat atoms and bonds
in molecule as nodes and edges in graph and have been
widely studied and applied [Hu et al., 2020a; Liu et al., 2021;
Xia et al., 2023]. In view of the objective existence of
molecules in nature, molecules can also be represented as
images, allowing us to directly observe the morphology and
internal structure of molecules through an electron microscope
[Shen et al., 2022] or a rendering tool [Landrum, 2013].

Limited by a single modality [Hu et al., 2020a; Sun et al.,
2020], the GraphMVP [Liu et al., 2021] and 3D InfoMax
[Stärk et al., 2021] try to leverage 2 modalities (2D and 3D
graphs) to enhance features but the performance improvements
are still limited. There are two reasons: (1) similar modalities
(2D graphs and 3D graphs) and encoding ways (graph neural
network-based encoder [Wu et al., 2020]) and (2) weak fea-
ture extraction ability, resulting in insufficient complementary
information between modalities [Tumer and Ghosh, 1995].
Image is a modality that is significantly different from graph
in terms of modality and encoding way (convolutional neural
network-based encoder [Li et al., 2021b]). We empirically
prove that 2D graph has high pearson correlation [Cohen et
al., 2009] with 3D graph and has significantly low pearson
correlation with image, as shown above in Figure 1(a) (See Ap-
pendix A for more details1). Unlike graph, images understand
molecules from a visual perspective, which contains texture
information of molecules and allows for direct visualization
of spatial arrangements without introducing any conformation,
such as chiral changes of molecules. We further illustrate the
advantages of images in basic prior knowledge, as shown be-
low in Figure 1(a) (See Appendix B for more details). Given
the popularity of graph neural networks in drug discovery, a
meaningful question is raised: can we exploit the rich informa-
tion in molecular images to facilitate representation learning
of molecular graphs?

Considering that the simplest multi-modal learning frame-
work [Song et al., 2022; Wang et al., 2020] requires additional
computational costs in the training and inference stages, in-
spired by knowledge distillation (KD) [Hinton et al., 2015;
Hou et al., 2021], we describe the process of information

1Appendix is available at https://github.com/HongxinXiang/IEM/
blob/main/assets/appendix.pdf
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Figure 1: (a) Correlation coefficients for different molecular representation are described above. The RMSE performance of different molecular
representation on chemical property Sprop is described below. (b) The proposed general cross-modal knowledge distillation framework based
on multi-view molecular images (called IEM). It only introduces the prior of the image into the graph-based model during the training phase
without modifying any baseline model. (c) Average ROC-AUC performance (%) on 8 classification-based property prediction tasks by using or
not using the proposed IEM framework. Noticeable improvements can be observed after using the proposed IEM framework.

transfer as how to use a knowledgeable teacher (image) to
teach an excellent student (graph). The success of KD de-
pends on good teacher and KD strategies (See Section 3.6
for proof). In order to obtain a knowledgeable image-based
teacher, we propose a novel multi-view molecular image rep-
resentation learning method with 3D conformation to enrich
the representation with 5 pre-training strategies. Considering
that naive feature alignment between cross-modal features will
lead to limited gain or even negative transfer [Yang et al., 2021;
Yan et al., 2022] in the cross-modal KD (CMKD) stage, we
design a novel CMKD framework (called IEM) to enrich the
features of graph, which alleviates knowledge enhancer and
task enhancer to align graph and image in logit space to avoid
modality gaps in feature space [Liang et al., 2022]. As shown
in Figure 1(b), IEM distills features from images into graph
representations. It is worth noting that compared with multi-
modal learning methods, the proposed IEM has the following
advantages: (1) Universality: IEM can be integrated with any
graph-based method. (2) Effectiveness: IEM significantly
improves the performance of several graph-based baselines,
such as Figure 1 (c). (3) Efficiency: As low as 5% of train-
ing images can still improve performance; (4) Compatibility:
IEM is compatible with both 2D and 3D molecular images
and different rendering strategies.

In summary, the main contributions of this paper are sum-
maried as follows:

• To the best of our knowledge, we are the first to recon-
struct the graph-based molecular representation learning
into image-based cross-modal distillation paradigm.

• We propose the 3D conformational molecular image rep-
resentation method to train a knowledgeable teacher,
achieving a one-time pre-training on 2 million molecules
that enables the use of multi-view features to enhance
existing graph-based baseline models.

• We propose an image-enhanced molecular graph repre-
sentation learning framework, called IEM, which equips
with knowledge enhancer and task enhancer to improve
the performance of a large number of graph-based mod-
els. In addition, we also demonstrate the effectiveness of
our framework theoretically.

• We show that our method achieves significantly better

performance on 12 MoleculeNet benchmarks and can
substantially enhance the performance of existing molec-
ular graph representation models.

2 Related Work
Graph-based Molecular Representation Learning. Graph
neural networks have achieved remarkable success in drug dis-
covery tasks. In view of the high cost of annotating molecules,
recent studies mainly learn from large-scale label-free molec-
ular databases by designing pre-training strategies. [Hu et al.,
2020a; Li et al., 2021a; Guo et al., 2021] consider both node-
level and graph-level pre-training strategies to capture the local
and the global information in graph. GPT-GNN [Hu et al.,
2020b] uses two generative pre-training tasks, including at-
tribute generation and edge generation, to extract fine-grained
information of molecules. GROVER [Rong et al., 2020] and
MGSSL [Zhang et al., 2021] propose a motif-based prediction
or generation tasks to capture the information of molecular
motifs. Mole-BERT [Xia et al., 2023] proposed masked atoms
modeling and triplet masked contrastive learning to further
optimize mask-based GNN. Considering the importance of 3D
geometric information in drug discovery tasks, GraphMVP
[Rong et al., 2020] and 3D Infomax [Stärk et al., 2021] pre-
trained GNN on molecules with 3D geometric information. In
the paper, we still follow the graph-based paradigm for drug
discovery tasks and try to improve all graph-based models.
Image-based Molecular Representation Learning. Because
graphs are discrete and unordered, some researchers con-
sider representing molecules as images and utilizing mature
computer vision techniques to extract features. Chemception
[Goh et al., 2017], 2DConvNet [Fernandez et al., 2018] and
DenseNet121 [Zhong et al., 2021] use molecular images to
predict chemical properties, toxicity of compounds and con-
taminant reactivity, respectively. With the explosion of self-
supervised learning in computer vision [Arnab et al., 2021;
Likhosherstov et al., 2021], the first pre-training model based
on molecular images (called ImageMol) is proposed for learn-
ing representation from 10 million molecules with 5 well-
designed pre-training tasks [Zeng et al., 2022]. CGIP is fur-
ther proposed to extract fine-grained image representations via
carefully designed intra- and inter-modal contrastive learning
between graph and image [Xiang et al., 2023]. Different from
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the images used by previous methods, which are 2D images
generated by RDKit, we propose a clearer and more informa-
tive 3D conformation-based multi-view image representation.
Cross-Modal Knowledge Distillation. As an important
branch of knowledge distillation [Hinton et al., 2015], cross-
modal knowledge distillation (CMKD) is still a relatively
emerging field, which refers to using a teacher from another
modality to supervise the learning model of the current modal-
ity and improve the performance of the student during in-
ference. For example, [Gupta et al., 2016] transfer supervi-
sion from labeled RGB images to unlabeled depth and opti-
cal flow images and [Sun et al., 2021] learns TIR (Thermal
Infrared)-specific target representations transferred from the
RGB modality. Pri3D [Hou et al., 2021] distills 3D point
cloud information into 2D images and improves performance
of image encoder in semantic segmentation, object detection,
and instance segmentation. PointCMT [Yan et al., 2022] and
UniDistill [Zhou et al., 2023] utilize images as teachers to
guide point cloud-based students and airbornelidar-based stu-
dents for improving point cloud-related tasks and 3D object
detection in bird’s-eye view, respectively. VGSR [Jin et al.,
2023] distills the knowledge of face image into audio to im-
prove the performance of speaker recognition. Different from
previous works, this is the first image-to-graph cross-modal
knowledge distillation framework to our best knowledge.

3 Our Method

3.1 Preliminaries

Background
We summarized three ways to obtain molecular images: (1)
Canvas-based technology, which draws molecular images by
creating a sketchpad and using pixels, such as RDKit [Lan-
drum, 2013]; (2) 3D CAD (Computer Aided Design) mod-
eling technology, which uses CAD software to create a vir-
tual three-dimensional space and build a model with three-
dimensional data or geometric configuration, such as PyMol
[DeLano and others, 2002]; (3) Physical microscopy-based
technology, including Cryo-EM and single-molecule fluo-
rescence imaging, which utilizes atomic force microscopy
(AFM), optical tweezers (OT), magnetic tweezers (MT) or
fluorescence microscopy to obtain visual representations of
molecules. See Appendix C for the visualization of molecules
in three ways. Each of these methods has its own advantages.
Canvas technology has low computational complexity and fast
processing speed, but is confusing when describing complex,
geometric molecules. Existing molecular image-based meth-
ods are all based on this imaging method [Zeng et al., 2022;
Xiang et al., 2023]. 3D CAD modeling technology retains
rich information in molecules but is slow to render. Single-
molecule fluorescence imaging technology can directly reflect
the molecular portraits of nature, but obtaining these samples
is low-throughput and resource-consuming, making it impossi-
ble to expand to large-scale data. Therefore, in this paper, we
only consider the first two imaging methods. Moreover, the
proposed method can seamlessly support samples collected by
the third technology.

Problem Formulation
Let the molecular graphs and corresponding ground-truth
labels on downstream tasks are {Gi = (Vi, Ei)}ni=1 and
{yi}ni=1 ∈ Rt respectively, where Vi ∈ Rnv

i ×dv
i with the

number of vertices is nv
i and the feature dimension of the ver-

tices is dvi and Ei ∈ Rne
i×de

i with the number of edges is ne
i

and the feature dimension of the edges is dei represent vertices
and edges in i-th molecular graph respectively. t is the number
of tasks in downstream tasks. The corresponding single-view
2D images and multi-view 3D images of molecular graphs G
can be denoted as V2D ∈ RH×W×3 and V3D ∈ RV×H×W×3

respectively, where V represents the number of views and H
and W represent the height and the width of images, respec-
tively. The single-view 2D images can be directly generated
by RDKit [Landrum, 2013] and the multi-view 3D images can
be obtained by using PyMol [DeLano and others, 2002] to
generate snapshots from different viewpoints. The features
of graphs Fg ∈ Rdg

, 2D images F2D ∈ Rdv

and 3D images
F3D ∈ Rdv

can be extracted by graph encoder Encg, 2D
encoder Enc2D and 3D encoder Enc3D, respectively. In the
proposed knowledge distillation framework, after pre-training,
both Enc2D and Enc3D from images can be chosen as teacher,
while graph encoder is considered as student. This ensures
that our proposed knowledge distillation framework remains
applicable when it is necessary to perform representation learn-
ing on molecular graphs for which 3D conformation cannot
be acquired. Considering that 3D will carry more feature
information, our experiments choose the Enc3D as the teacher.

3.2 Overview of the Method
Here, we propose the image-enhanced molecular graph rep-
resentation learning framework (IEM), which equips knowl-
edgeable teachers and distillation strategies to prevent neg-
ative transfer. In particular, we pre-train the teacher with 5
pre-tasks to ensure that the features extracted by the teacher
are better than those of the students, where 1 pre-task takes
into account the intrinsic information of molecular images
by aligning 2D and 3D images and 4 pre-tasks consider
four priors of molecule (atom Satom ∈ Rnatom

, bound
Sbound ∈ Rnbound

, geometry Sgeom ∈ Rngeom

and basic
properties Sprop ∈ Rnprop

) by using 4 corresponding predic-
tors (Patom, Pbound, Pgeom and Pprop) to optimize molecular
features. These four predictors use the same structure: Full
Connection (FC)→Softplus→FC. During the distillation stage,
simply aligning features from different modalities dimension-
wise can easily lead to negative transfer [Yang et al., 2021;
Yan et al., 2022]. Inspired by them, we utilize knowledge en-
hancer Enhk and task enhancer Enht to align the information
of different modalities at the logit level, which preserves both
modality-specific semantics from student and logit-specific
semantics from teacher guidance. The overview of IEM is
illustrated in Figure 2(a). We summarize the main processes
in Appendix D. The process of IEM is divided into three steps:
(1) Use 5 pre-training tasks to train a knowledgeable teacher
(Section 3.3); (2) Exploit image-based teacher to enhance
graph-based student by using the knowledge enhancer and
task enhancer (Section 3.4); (3) Train IEM and inference in
downstream tasks (Section 3.5).
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Figure 2: Overview of the proposed IEM framework. (a) Multi-view molecular images rendered from 3D conformations are forward propagated
into the frozen teacher, which is the 3D image encoder pretrained in (b), to extract visual features. Knowledge enhancer and task enhancer
distill knowledge from visual features into graph-based models. The purpose of the knowledge enhancer is to enhance features relevant to the
upstream/pre-trained tasks by aligning the output distributions from the 4 predictors in (b). The purpose of the task enhancer is to enhance
information related to downstream tasks by aligning the output distribution of the task predictor. (b) The process of pre-training the teacher. (c)
Execution process of the knowledge enhancer. (d) Execution process of the task enhancer.

3.3 Pretraining Teacher
Excellent teacher are one of the keys to knowledge distilla-
tion. In this paper, as shown in Figure 2(b), we combine
low-computation cost 2D images generated by RDKit and
information-rich 3D images rendered by PyMol, both of which
can be used to enhance graph representation (See Appendix E
for details of image rendering). However, we still recommend
using a 3D image encoder as a teacher because it is more dis-
criminative. Here, we choose 4 fixed viewpoints to generate
multi-view images. The feature extraction process can be for-
malized as: F2D = Enc2D(V2D) and F3D = Enc3D(V3D).
Due to the uncertainty of downstream tasks, the teacher should
have strong knowledge generalization capabilities. Therefore,
we designed 5 pre-training tasks based on the principle that
generalized knowledge should reflect the basic attribute in-
formation of molecules, including (1) contrastive learning
between 2D and 3D images (ICL); (2) atom distribution pre-
diction task (ADP); (3) bound distribution prediction task
(BDP); (4) geometry distribution prediction task (GDP); (5)
property distribution prediction task (PDP).

The main motivation of the ICL is to extract the inherent
information in molecular images. Meanwhile, the 2D image
encoder has a perception of 3D information and the 3D image

encoder has a perception of global information to alleviate
the problem of view-occlusion. For convenience, we denote
FI = {F2D,F3D} ∈ R2×n,dv

, where n and dv represent the
number of samples and the dimension of visual features. Fol-
lowing InfoNCE [Oord et al., 2018], the contrastive learning
loss between 2D and 3D images is formalized as:

LICL = − 1

2n

2n∑
i=1

log
exp(sim(FI

i ,FI
2n+i)/τ)∑2n

j=1 Ii̸=jexp(sim(FI
i ,FI

j )/τ)
(1)

where I and τ represent indicator function and tempera-
ture, respectively. sim(·) represents cosine similarity, that
is, sim(FI

i ,FI
j ) = FI

i · FI
j / ∥ FI

i ∥2∥ FI
j ∥2.

The motivation for the ADP, BDP, GDP and PDP
tasks is to allow the teacher to acquire knowledge with
strong generalization. Therefore, we extract fundamental
prior knowledge of molecules from their atoms (Satom),
bonds (Sbound), geometry (Sgeom), and chemical proper-
ties (Sprop). For details on these priors, see Appendix F.
Subsequently, F2D and F3D are forward-propagated to 4
predictors Patom, Pbound, Pgeom, Pprop to obtain the corre-
sponding predicted logits {p2Datom, p2Dbound, p

2D
geom, p2Dprop} and

{p3Datom, p3Dbound, p
3D
geom, p3Dprop}. Finally, the losses of 2D im-
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age encoder and 3D image encoder in these 4 prediction tasks
can be formulated as follows:

L2D =
∣∣p2Datom − Satom

∣∣+ ∣∣p2Dbound − Sbound
∣∣

+
∣∣p2Dgeom − Sgeom

∣∣+ ∣∣p2Dprop − Sprop
∣∣ (2)

L3D =
∣∣p3Datom − Satom

∣∣+ ∣∣p3Dbound − Sbound
∣∣

+
∣∣p3Dgeom − Sgeom

∣∣+ ∣∣p3Dprop − Sprop
∣∣ (3)

Finally, the 2D image encoder and 3D image encoder can
be pretrained with the following total loss:

LTeacher
Pretrain = LICL + L2D + L3D (4)

See Appendix G for mode details about pretraining teacher.

3.4 Image-enhanced Distillation Strategy
During CMKD, both 2D image encoder and 3D image encoder
can be considered teachers. Here, we take a 3D image encoder
as a teacher as an example. We first use frozen teacher and
untrained GNN student to extract the corresponding features
Fv ∈ Rdv

and Fg ∈ Rdg

. Considering that the output di-
mensions of the teacher and the student may be different, we
add a fully connected layer after the student network by de-
fault to make dg = dv . Subsequently, instead of using simple
feature alignment we use knowledge enhancer Enhk and task
enhancer Enht to transfer knowledge from F3D to Fg , which
can alleviate the problem of negative transfer.

Knowledge Enhancer: The purpose of the knowledge
enhancer is to distill task-irrelevant generalized knowl-
edge from the teacher. As shown in Figure 2(c), Enhk

accepts F3D and Fg as input and uses 4 frozen pre-
dictors Patom, Pbound, Pgeom, Pprop to predict the distribu-
tion of molecules at different knowledge levels, which
can be formalized as {pvatom, pvbound, p

v
geom, pvprop} and

{pgatom, pgbound, p
g
geom, pgprop}. We use the predicted labels

of the teacher as ground-truth to supervise students with L1
loss, which can be formalized as:

LKE = |pgatom − pvatom|+ |pgbound − pvbound|
+
∣∣pggeom − pvgeom

∣∣+ ∣∣pgprop − pvprop
∣∣ (5)

It is worth noting that this paper does not use KL-based distil-
lation loss [Hinton et al., 2015] because it is difficult to apply
to single-task classification and regression tasks.

Task Enhancer: The purpose of the task enhancer is to
distill knowledge relevant to downstream tasks from teacher.
As shown in Figure 2(d), task predictor accepts F3D and Fg

and generates task-related prediction logits ȳv and ȳg . We use
ȳv from the teacher as ground-truth to supervise ȳg from the
student with smooth L1 loss [Girshick, 2015], which can be
formalized as:

LTE =

{
0.5(|ȳg − ȳv|)2 if |ȳg − ȳv| < 1

|ȳg − ȳv| − 0.5 otherwise
(6)

3.5 Training and Inference
For efficiency, we usually hope to use a single modality rather
than multiple modalities when inferring. We further use the

true ground-truth y of the downstream task to train student,
and the loss is formalized as:

LT = φ(ȳg, y) (7)

where φ represents cross-entropy loss for classification and
MSE loss for regression. The final loss is formalized as:

Ltotal = λKELKE + λTELTE + LT (8)

During inference, predicted results can be obtained by in-
putting graph data G to the student network Encg .

3.6 Theoretical Justification of IEM Effectiveness
We utilize CMKD to transfer knowledge from image-based
teachers to graph-based students to obtain image-enhanced
graph features FIE . For a useful knowledge distillation, F IE

with knowledge γ from teacher should be more informative
than F g from student only. We denote the information en-
hancement useful to the task after knowledge distillation as
Idiff = IIE − Ig, where IIE = I(FIE |V , y;Encg, γ) and
Ig = I(Fg|G, y;Encg) represent the information amount of
features enhanced by teacher and features extracted only by
student, respectively. I(•|⋆) represents the amount of informa-
tion produced by • under the conditions of given ⋆. We prove
that when negative transfer does not occur, the lower bound Ω
of the information increment Idiff depends on the informa-
tion difference between the teacher and the student, which can
be formulated as Ω = I(F3D|V , y;Enc3D)-I(Fg|G, y;Encg).
Therefore, a knowledgeable teacher and a effective distillation
strategy to prevent negative transfer are crucial for CMKD.
Please see Appendix H for detailed proof. To ensure effective-
ness of IEM, we design teacher with 5 pre-training tasks and
2 enhancers for alleviating negative transfer.

4 Experiments and Results
4.1 Experimental Settings
Datasets and evaluation protocol. For pre-training teacher
model, we sample 2 millions unlabeled molecules with 3D con-
formations from PCQM4Mv2 database [Hu et al., 2017]. In
evaluation stage, we use the widely-used 8 binary classification
datasets from MoleculeNet [Wu et al., 2018] with ROC-AUC
metric. For broader evaluation, we also test the effectiveness
of IEM on 4 regression datasets included in GraphMVP [Liu
et al., 2021] with root mean square error (RMSE) metric. See
Appendix I for more dataset details. Notably, we use strict
scaffold splitting [Hu et al., 2020a] to divide all datasets into
training set, validation set and test set according to 8:1:1.

Implementation details. In pre-training teacher model
stage, we use 2 independent ResNet-18 [He et al., 2016] as
the architecture for 2D and 3D image encoders. The 2D image
encoder extracts 512-dimensional visual features directly from
a single 2D molecule image, while the 3D image encoder ob-
tains 512-dimensional visual features by applying view-wise
mean-pooling to the features of multi-view 3D images. In
addition, the atom, binding, geometry, property predictors are
multi-layer perceptrons (MLPs), including a 512-dimensional
input layer, a 256-dimensional hidden layer, a softplus activa-
tion function and an output layer related to prediction. The
teacher model is pre-trained for more than 30 epochs (about
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Tox21 ToxCast Sider ClinTox MUV HIV BBBP BACE Average

#Molecules 7831 8576 1427 1478 93087 41127 2039 1513 -
#Task 12 617 27 2 17 1 1 1 -

GIN [Xu et al., 2018] 74.3(0.9) 61.5(0.8) 57.3(1.2) 57.2(4.1) 71.6(2.8) 75.2(2.0) 66.7(1.8) 69.6(5.5) 66.68
IEM-GIN 74.5(0.4) 62.5(0.8) 59.1(1.7) 62.6(4.1) 77.7(2.9) 77.9(1.3) 69.3(1.9) 77.7(3.5) 70.16

∆ ↑ 0.2 ↑ 1.0 ↑ 1.8 ↑ 5.4 ↑ 6.1 ↑ 2.7 ↑ 2.6 ↑ 8.1 ↑ 3.5

EdgePred [Hu et al., 2020a] 76.0(0.6) 64.1(0.6) 60.4(0.7) 64.1(3.7) 75.1(1.2) 76.3(1.0) 67.3(2.4) 77.3(3.5) 70.08
IEM-EdgePred 76.3(0.6) 64.6(0.6) 61.2(0.6) 67.5(2.3) 78.3(1.3) 78.3(1.3) 67.8(2.2) 84.1(0.8) 72.26

∆ ↑ 0.3 ↑ 0.5 ↑ 0.8 ↑ 3.4 ↑ 3.2 ↑ 2.0 ↑ 0.5 ↑ 6.8 ↑ 2.2

GraphMVP [Liu et al., 2021] 74.5(0.7) 63.4(0.5) 60.7(1.4) 78.4(6.4) 73.0(2.3) 75.6(1.6) 67.4(2.4) 75.8(3.0) 71.10
IEM-GraphMVP 75.9(0.7) 64.4(0.6) 61.9(1.7) 80.8(3.1) 77.3(1.2) 78.8(1.1) 68.7(1.0) 83.3(1.4) 73.89

∆ ↑ 1.4 ↑ 1.0 ↑ 1.2 ↑ 2.4 ↑ 4.3 ↑ 3.2 ↑ 1.3 ↑ 7.5 ↑ 2.8

GraphMVP-C [Liu et al., 2021] 74.6(0.4) 63.4(0.6) 60.6(1.3) 76.9(3.7) 72.8(2.4) 77.1(2.1) 69.9(1.4) 79.6(1.7) 71.86
IEM-GraphMVP-C 75.6(0.6) 64.8(0.5) 62.0(0.9) 79.2(2.9) 77.0(1.7) 78.2(1.0) 71.4(1.4) 81.9(1.6) 73.76

∆ ↑ 1.0 ↑ 1.4 ↑ 1.4 ↑ 2.3 ↑ 4.2 ↑ 1.1 ↑ 1.5 ↑ 2.3 ↑ 1.9

Mole-BERT [Xia et al., 2023] 77.0(0.3) 64.4(0.2) 63.2(0.7) 72.7(2.7) 79.2(2.0) 77.7(0.7) 65.7(2.3) 80.2(0.9) 72.51
IEM-Mole-BERT 77.8(0.4) 65.6(0.3) 65.3(0.8) 72.2(1.4) 79.7(1.8) 78.8(0.6) 68.1(1.0) 83.0(0.9) 73.81

∆ ↑ 0.8 ↑ 1.2 ↑ 2.1 -0.5 ↑ 0.5 ↑ 1.1 ↑ 2.4 ↑ 2.8 ↑ 1.3

Table 1: The ROC-AUC (%) performance of different methods on 8 classification datasets of molecular property prediction. We report the
mean (standard deviation) ROC-AUC of 10 random seeds from 0 to 9 with scaffold splitting. The best and second best results are marked
bold and underlined. IEM-baseline represents baseline equipped with IEM. ∆ represents the absolute improvement percentage calculated by
AUCw/ IEM − AUCw/o IEM.

450k steps) with temperature of 0.1, batch-size of 128 and
learning rate of 0.01 (see Appendix J for details of training
losses). Note that the pre-trained teacher model is able to dis-
till any graph-based model. In order to align the experimental
settings and fair comparison, we uniformly use those meth-
ods with 5-layer Graph Isomorphism Networks (GIN) [Xu et
al., 2018] and 300 hidden layer dimensions as our baseline
models for evaluation on downstream tasks. Following [Hu et
al., 2020a], we train for 100 epochs with batch-size of 32 and
learning rate of 0.001. We select hyper-parameters λKE and
λTE from {0.001, 0.01, 0.1, 1, 5} and report test scores corre-
sponding to the best validation performance. Notice that the
results of some baselines may differ from their original papers
because inconsistent evaluation settings and we reproduced
them with the same evaluation.

4.2 Main Results
We first evaluate the performance of IEM on the 8 molecular
property prediction datasets with 5 baselines (GIN, EdgePred,
GraphMVP, GraphMVP-C and Mole-BERT) and Table 1 re-
ports the main results (See Appendix K for more comparison
methods). We observe that the baselines equipped with IEM
achieve the state-of-the-art performance. It is worth noting
that all baselines obtain consistent performance improvement
after being equipped with IEM with an absolute improvement
ranging from 1.3% to 3.5% on average ROC-AUC. To verify
that the performance improvement of IEM is not caused by
the standard deviation of the baseline, we counted the results
that are higher than the α = mean+ standard deviation of the
baseline. We find that 70% (28 out of 40) results outperform
the α of the baseline. Especially for GIN, except for the Tox21,
other improvements are better than the α of the baseline.

We further evaluate on a wider range of drug discovery
tasks, which includes 4 regression benchmarks. As shown

in Table 2, we find the same conclusion as the classification
task, that is, IEM comprehensively improved all baselines
with a maximum 8.56% relative improvement and achieved
the state-of-the-art performance. Therefore, IEM is promising
as a universal plug-in to improve any graph-based model.

ESOL Lipo Malaria CEP

#Molecules 1,128 4,200 9,999 29,978
#Task 1 1 1 1

GIN 1.472(0.038) 0.832(0.025) 1.113(0.011) 1.340(0.018)
IEM-GIN 1.346(0.045) 0.817(0.019) 1.084(0.003) 1.329(0.021)
∆ ↑ 8.56% ↑ 1.80% ↑ 2.61% ↑ 0.82%

EdgePred 1.367(0.041) 0.778(0.013) 1.110(0.011) 1.362(0.025)
IEM-EdgePred 1.350(0.027) 0.769(0.006) 1.088(0.005) 1.345(0.016)
∆ ↑ 1.24% ↑ 1.16% ↑ 1.98% ↑ 1.25%

GraphMVP 1.322(0.062) 0.773(0.016) 1.128(0.019) 1.308(0.024)
IEM-GraphMVP 1.281(0.044) 0.754(0.015) 1.089(0.005) 1.294(0.020)
∆ ↑ 3.10% ↑ 2.46% ↑ 3.46% ↑ 1.07%

GraphMVP-C 1.333(0.055) 0.768(0.013) 1.114(0.008) 1.304(0.020)
IEM-GraphMVP-C 1.274(0.037) 0.761(0.017) 1.090(0.004) 1.296(0.012)
∆ ↑ 4.43% ↑ 0.91% ↑ 2.15% ↑ 0.61%

MoleBERT 1.115(0.017) 0.727(0.006) 1.137(0.021) 1.350(0.015)
IEM-MoleBERT 1.090(0.031) 0.716(0.003) 1.080(0.003) 1.343(0.013)
∆ ↑ 2.24% ↑ 1.51% ↑ 5.01% ↑ 0.52%

GraphMVP-F 1.094(0.037) 0.724(0.009) 1.106(0.013) 1.397(0.040)
IEM-GraphMVP-F 1.067(0.039) 0.716(0.010) 1.093(0.012) 1.392(0.026)
∆ ↑ 2.47% ↑ 1.10% ↑ 1.18% ↑ 0.36%

Table 2: The RMSE performance on 4 regression datasets of molec-
ular property prediction. We report the mean (standard deviation)
RMSE of 10 random seeds from 0 to 9 with scaffold splitting. IEM-
baseline represents baseline equipped with IEM. ∆ represents the
relative improvement percentage calculated by (1− w/o IEM

w/ IEM )× 100.
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4.3 Different GNN Architectures
To verify that IEM is effective on different GNN architec-
tures, we used 4 different GNN architectures, including GCN,
GIN, GAT, and GraphSAGE. The Table 3 shows the aver-
age ROC-AUC results of different GNN architectures on 8
classification datasets. We find that IEM can significantly im-
prove different GNN architectures with a relative performance
improvement of 3.92% to 5.23%. In particular, we observe
that GIN equipped with IEM is competitive with pre-trained
models such as InfoGraph, EdgePred, and 3D InfoMax. This
shows the strong generalization ability of the IEM, which is
able to achieve performance comparable to pre-training even
without any pre-training.

GCN GIN GAT GraphSAGE

w/o IEM 66.88 66.68 66.53 66.99
w/ IEM 69.81 70.16 69.76 69.61

∆ ↑ 4.39% ↑ 5.23% ↑ 4.87% ↑ 3.92%

Table 3: The average ROC-AUC (%) performance on 8 classification
datasets with different GNN architectures. w/o means baseline with-
out IEM and w/ means baseline with IEM. ∆ represents the relative
improvement percentage calculated by (1− w/o IEM

w/ IEM )× 100.

4.4 Different Image Rendering Strategies
To explore the performance of the IEM on conformation-free
molecules, we discuss the impact of different image rendering
strategies, including conformation-free 2D images rendered by
RDKit and PyMol. As shown in Table 4. We find that IEM can
improve the performance of EdgePred and GraphMVP with
an average performance improvement of more than 2% in all
rendering strategies, indicating that IEM can successfully be
compatible with conformation-free 2D images. We also find
that the performance of IEM on 2D images rendered by RDKit
and PyMol is similar (72.21% v.s. 72.00% and 73.34% v.s.
73.41%), indicating that we can use the more economical RD-
Kit to improve graph-based models under limited computing
resources.

Image rendering Method
Image type Rendering strategy EdgePred GraphMVP

× × 70.08 71.1
2D RDKit 72.21 (↑ 3.04%) 73.34 (↑ 3.15%)
2D PyMol 72.00 (↑ 2.74%) 73.41 (↑ 3.25%)
3D PyMol 72.26 (↑ 3.11%) 73.89 (↑ 3.92%)

Table 4: The average ROC-AUC (%) performance on 8 classification
datasets with different image rendering methods. The number in
bracket indicates the percentage of absolute performance improve-
ment compared to the baseline without IEM.

4.5 Image Efficiency
To verify demonstrating the image-efficiency of IEM, we use
different numbers of images to distill GraphMVP. Table 5
shows the average ROC-AUC with different number of im-
ages. We find that as the number of image samples increases,
the performance of the IEM continues to improve with a range

from 1.55% to 3.92%. In particular, using only 5% of the num-
ber of images, IEM is still able to improve the performance of
baseline with a relative improvement of 1.55%, proving that
IEM is efficient for images.

image size
0% 5% 10% 20% 50% 100%

IEM 71.10 72.20 72.26 72.95 73.38 73.89
∆ - ↑ 1.55% ↑ 1.64% ↑ 2.60% ↑ 3.20% ↑ 3.92%

Table 5: The average ROC-AUC (%) performance on 8 classification
datasets with different number of images. The image size represents
the proportion of image samples used. We use GraphMVP as baseline
model. ∆ represents the relative improvement percentage.

4.6 Ablation Study
Table 6 shows the ablation results on knowledge enhancer
and task enhancer using 4 different GNNs. We find that a
single enhancer can improve the performance of baselines
with an absolute improvement of up to 2.06%, which shows
the effectiveness of two enhancers. By combining the two
enhancers, more performance improvements can be achieved,
with absolute performance improvements ranging from 2.62%
to 3.48%. We also note that the performance improvement
of KE is always better than that of TE, indicating that the
fundamental prior knowledge (atom, bound, geometry and
property) in the teacher transfers well to the student.

Enhancer Method
KE TE GCN GIN GAT GraphSAGE

× × 66.88 66.68 66.53 66.99
× ✓ 68.07 (1.19) 68.16 (1.48) 68.48 (1.95) 68.44 (1.45)
✓ × 68.26 (1.38) 68.60 (1.92) 68.59 (2.06) 68.58 (1.59)
✓ ✓ 69.81 (2.93) 70.16 (3.48) 69.76 (3.23) 69.61 (2.62)

Table 6: Ablation results on knowledge enhancer (KE) and task
enhancer (TE). The average ROC-AUC (%) performance on 8 clas-
sification datasets is reported. The number in bracket indicates the
absolute performance improvement compared to the baseline without
KE and TE.

5 Conclusion
In this work, we propose a novel image-enhanced molecular
graph representation learning framework (called IEM), which
is the first attempt to use images to improve the performance of
graphs. Equiped with a knowledgeable image-based teacher
and 2 enhancers (knowledge enhancer and task enhancer),
our IEM can significantly improve the performance of graph-
based methods without any architectural modifications on
a large number of drug discovery benchmarks. Therefore,
IEM has the potential to leverage images to empower a wider
range of graph representation learning fields, such as grid
representation learning and skeleton representation learning.
In particular, we experimently demonstrate that performance
can be improved by cheap image rendering for microscopic
entities where image data is difficult to obtain, which will
encourage us to use IEM for more biological entities in life
sciences, such as protein and ribonucleic acid.
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