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Abstract

We propose an unsupervised framework for detect-
ing audio patterns in musical loops using deep fea-
ture extraction and anomaly detection. Unlike prior
methods limited by fixed input lengths, handcrafted
features, or domain constraints, our approach com-
bines a pre-trained Hierarchical Token-semantic
Audio Transformer (HTS-AT) and Feature Fusion
Mechanism (FFM) to generate representations from
variable-length audio. These embeddings are an-
alyzed by Deep Support Vector Data Description
(Deep SVDD), which models normative patterns
in a compact latent space. Experiments on bass
and guitar datasets show our Deep SVDD models—
especially with residual autoencoders—outperform
baselines like Isolation Forest and PCA, achieving
better anomaly separation. Our work provides a
flexible, unsupervised method for effective pattern
discovery in diverse audio samples.

1 Introduction

Musical loops are essential in modern music pro-
duction, particularly in genres such as hip-hop and
Electronic music [1, 2]. These repeatable audio seg-
ments provide rhythmic, melodic, or harmonic foun-
dations [3]. Producers and DJs often search libraries
or sample existing tracks for loops that match their
artistic goals [4, 5]. Effective pattern analysis within
loops is crucial for selecting compatible elements [6,
7] and identifying variations or inconsistencies in
large or generated music collections.

AT’s growing role in music requires interactive
tools that emphasize user control. As highlighted in
broader discussions on Al-driven music generation
systems (MGS) [8, 9], there is a demand for technolo-
gies that move beyond ’black-box’ paradigms [10].
Creators seek systems customizable to their work-
flows, effective with private data, and transparent
in operation Civit et al. [11]. Our unsupervised pat-
tern detection approach addresses these demands.
We hypothesize unsupervised methods will adapt
to user collections and styles without pre-labeled
datasets (Section 7.1).
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In Music Information Retrieval (MIR) [12, 13],
loop detection constitutes a specialized audio pattern
recognition task [14]. This encompasses subtasks like
classification and tagging [15-17], as well as extract-
ing features to identify and categorize signals [18].
Leveraging deep learning (DL) advancements, par-
ticularly pre-trained encoders that generalize across
datasets [19], supports our hypothesis that such
models can underpin loop analysis by capturing
temporal and hierarchical details. Despite progress
in DL for audio pattern recognition [14, 19], loop
analysis methods often face limitations.

Traditional signal processing and structural analy-
sis techniques [20-23] can struggle with the complex-
ity of real-world music and often require heuristic
adjustments. Neural networks may require fixed-
length inputs [7, 24], restrict variable-duration loops,
or need iterative feedback or labeled data [25], which
limits scalability. These challenges define three core
design criteria: variable-length support, unsuper-
vised learning, and structural flexibility. Solutions
should enable variable-length analysis, accommodate
diverse structures, and work unsupervised without
domain constraints.

To address these challenges, this paper poses
three research questions: (1) How can unsupervised
anomaly detection frameworks support adaptable,
variable-length audio loop pattern analysis for user-
specific music collections? (2) To what extent can
such frameworks learn 'normative’ patterns and iden-
tify meaningful deviations? (3) How do architectural
choices influence performance in unsupervised audio
pattern detection?

To address this, we propose framing loop pat-
tern detection as an unsupervised anomaly detec-
tion problem. The insight is that normative pat-
terns in a dataset or style can be learned from
unlabeled data, enabling personalized adaptation
without labeled sets. Anomalies—deviations from
norms—offer insights into variations, errors for qual-
ity control, or stylistic elements fostering creative
discovery (elaborated in Section 7). Our method
integrates a pre-trained Hierarchical Token-semantic
Audio Transformer (HTS-AT) [26], selected for cap-
turing both local and global temporal dependencies,
with a Feature Fusion Mechanism (FFM) [19] to
produce a fixed-dimensional embedding for variable
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inputs. A Deep Support Vector Data Description
(Deep SVDD) network [27] trains on these, learning
a hypersphere enclosing normal instances.

In response to RQs, this work makes the following
contributions:

e We introduce and implement an unsupervised
framework for audio loop pattern detection,
combining HTS-AT with FFM for flexible fea-
ture extraction, and Deep SVDD for anomaly-
based identification directly from the learned
audio embeddings. This approach offers a path-
way to data-driven insights from user-specific
collections, aligning with the need for more
adaptable Al tools.

e We demonstrate the system’s capability to pro-
cess variable-length audio inputs through the
FFM, thereby overcoming a limitation of many
prior fixed-length approaches and enhancing
practical applicability.

e We provide an empirical evaluation on curated
datasets of bass and guitar loops, showcasing
the model’s proficiency in learning represen-
tations of normative patterns and effectively
identifying meaningful deviations.

e We conduct a comparative analysis of different
Deep SVDD encoder architectures (a standard
Autoencoder versus an Autoencoder with Resid-
ual Connections), offering insights into archi-
tectural choices that benefit the modeling of
diverse and larger audio data.

e We benchmark our proposed method against
standard unsupervised anomaly detection tech-
niques (Isolation Forest (IF) and PCA-based
reconstruction error), demonstrating the en-
hanced representational power and discrimina-
tive ability of the Deep SVDD approach when
operating on HT'S-AT embeddings.

We position this work as a foundational proof-of-
concept, demonstrating the framework’s viability on
string instruments (bass and guitar) to pave the way
for future application to diverse musical timbres.

The remainder of this paper is structured as fol-
lows: Section 2 reviews relevant prior work. Sec-
tion 3 details the proposed architecture and its com-
ponents. Section 4 describes the datasets, prepro-
cessing steps, and training procedures. Section 5
outlines the evaluation and baseline methods. Sec-
tion 6 presents the experimental results. Section 7
discusses the findings and their implications, fol-
lowed by Sections 8 and 9, which addresses limita-
tions and outlines future research directions. Finally,
Section 10 concludes this paper.

2 Related Works

2.1 Audio Pattern Recognition

Recent deep learning advances have significantly
improved audio pattern recognition. Pretrained
Audio Neural Networks (PANNSs) [14], trained on
large datasets such as AudioSet [16], provide robust
features for tasks like audio tagging, scene classifi-
cation, and event detection [28]. CNNs, ResNets
[29], and MobileNets [30] are commonly used, typ-
ically processing Mel-spectrograms [14]. Although
1D CNNs on waveforms (e.g., DaiNet, LeeNet) have
been explored, spectrogram-based models remain
superior due to their ability to capture frequency
patterns [14]. Wavegram-Logmel-CNN [14] inte-
grates learned and hand-crafted time-frequency fea-
tures, achieving state-of-the-art AudioSet tagging.
Methods like FFM address variable-length inputs,
showing promise for loop detection [19]. Newer mod-
els such as HTS-AT [19] further enhance sequential
audio data modeling, outperforming earlier PANNs.

2.2 Loop Selection and Extraction

Early research on music loop identification relied
on signal processing and rule-based methods, using
handcrafted features (e.g., chroma, MFCCs) and
heuristics to detect repeating patterns and estimate
similarity [7, 31-36]. While approaches such as Non-
negative Tensor Factorization (NTF) [36] and psy-
choacoustic modeling [33, 34] were explored, these
techniques required extensive tuning and struggled
with the complexity of real-world music [7]. Re-
cent advances address these limitations with neural
network-based solutions.

Building on the shift toward neural network ap-
proaches, Chen et al. [7] proposed NN models for
estimating compatibility in large libraries. Their ap-
proach included a CNN on combined time-frequency
representations of loop pairs and a Siamese Neu-
ral Network (SNN) comparing separate embeddings.
The models were trained on Hip-Hop pairs from
the Free Music Archive (FMA) dataset [37]. Loops
were time-stretched to 2 seconds and converted to
log mel-spectrograms. These models outperformed
AutoMashUpper in subjective tests [7]. However,
their use of fixed-length inputs limits handling of
variable durations.

In a related line of inquiry, Jakubik [25] devel-
oped an active learning system for retrieving inter-
esting loops and samples in electronic tracks. The
system refined results via user interaction from an
example. It compared MFCCs with unsupervised
features from autoencoders and Bootstrap Your
Own Latent (BYOL) contrastive learning [38], using
sampleswap' data. Feature learning enhanced re-
call over MFCCs, especially on representative data,;

lhttps://www.sampleswap.org/
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however, performance varied by genre (e.g., Dubstep
challenges) and relied on user feedback. This limited
automation. Distinct samples were harder to find
than repeating loops [25].

Shifting focus from audio features, Han et al. [24]
addressed symbolic MIDI loop generation for 8-bar
bass and drum loops via a two-stage process. First,
a Vector Quantized Variational Autoencoder (VQ-
VAE) compressed input into latent codes. Then,
an autoregressive generator produced new mate-
rial. A cross-domain loop detector, trained on
1,000 looperman® audio loops using One-Class Deep
SVDD [27], identified domain-invariant patterns in
bar-to-bar correlation matrices. The same detector
was used to extract MIDI loops from the Lakh MIDI
Dataset®. Limitations include fixed 8-bar windows
restricting flexibility. Focusing on bar-to-bar corre-
lation may miss higher-level audio nuances, similar
to [7].

3 Methodology

This section presents our methodology for identifying
repetitive patterns in audio loops by framing the task
as anomaly detection. We learn a representation
of 'normal’ loop structures, enabling detection of
deviations as 'anomalies’. As shown in Figure 1, our
system consists of two stages: an Audio Encoder
and a Deep SVDD module. The Audio Encoder
generates embeddings from input audio using FFM
and HTS-AT models, which are then processed by
the Deep SVDD. A detailed architecture illustration
is available in Appendix A.

The Audio Encoder uses a dual-path strategy
based on input duration to handle variable lengths
and capture both local and global details. Inputs
< 10 seconds are repeated and padded for consis-
tency; longer inputs are split into three 10-second
segments for local analysis and a downsampled
global segment. All audio is converted to Mel-
spectrograms, processed by initial Conv2D layers,
and, for longer inputs, local features are merged and
fused with global features via Attention Feature Fu-
sion (AFF; see Section 3.1). The resulting features,
either from padded short inputs or fused long inputs,
are passed to the HTS-AT model (Section 3.2). The
Audio Encoder’s output forms the embedding for
the Deep SVDD module.

The Audio Encoder’s embeddings are processed
by the Deep SVDD module (Section 3.3), which
consists of five encoder layers that map them into
a lower-dimensional latent space. In this space, a
hypersphere is learned to enclose 'normal’ audio
patterns, with anomalies lying outside. The embed-
ding’s distance from the center serves as a score for

2https://www.looperman. com/
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Figure 1. Overview of the loop detection pipeline.
Input audio undergoes conditional preprocessing based
on duration, followed by hierarchical feature extraction
through Mel-FilterBank and Conv2D layers, feature fu-
sion with pre-trained HTS-AT, encoding through 5 lay-
ers, latent space mapping, and distance-based scoring
to produce the final anomaly score. See Appendix A for
the detailed architecture diagram.

anomaly detection. Implementation details of each
component follow in the next subsections.

3.1 Feature Fusion Mechanism

To address variable audio input lengths—a limita-
tion in prior work (Section 2)—we implement the
FFM, following Wu et al. This mechanism manages
differing audio clip lengths in the Audio Encoder by
ensuring consistent processing dimensions and inte-
grating multi-scale information. Clips of d-seconds
or less are repeated and padded to d-seconds; longer
clips use a dual representation:

1. Global:
seconds.

Downsample the whole clip to d-

2. Local: Three d-second segments are randomly
sliced from the beginning (first 1/3), middle
(second 1/3), and end (final 1/3) of the clip.

Conv2D layers extract features from Mel-
spectrograms. For long clips, features from the local
segments are further consolidated via an additional
Conv2D layer. Long-clip fusion uses the Attention
Feature Fusion (AFF) module from Dai et al. Let
Fioeqr denote the consolidated local features and
Fyiobar the global features. The AFF module fuses
these inputs by computing a dynamic, content-aware
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weighted average. The final fused feature map, Z,
is calculated as:

Z = M(Flocal + Fglobal) ® Flocal
+ (1 — M(Flocaz + Fglobal)) ® Fgiobal

where ® represents element-wise multiplication.
The attention map M(-) is generated by a Multi-
Scale Channel Attention Module (MS-CAM) [39],
which combines both local and global channel con-
texts to adaptively determine the fusion weights.
This allows the model to prioritize the most rele-
vant information from the dual representations. The
fused map is then input to the HTS-AT module.

3.2 Hierarchical Token-semantic Au-
dio Transformer

We employ HTS-AT [26] as our audio feature ex-
tractor due to its ability to efficiently model hi-
erarchical audio structures. Its design integrates
windowed attention, limiting self-attention to local
M x M regions for computational efficiency, and
patch-merging, which reduces sequence length in
deeper layers. For an input of ft patch tokens with
latent dimension D, windowed attention achieves
linear complexity in sequence length:

Q(WA) = O(ftD* + M? ftD) (2)

This approach avoids the quadratic complexity
of global attention, which is a bottleneck for long
sequences:

Q(GA) = O(ftD?* + ft’D) (3)

Patch-merging follows groups of transformer
blocks, merging adjacent patches (e.g., down-
sampling a % X % token map with dimension D
to % X % and projecting to 2D), which further
reduces sequence length and computation.

Instead of using the HT'S-AT classification head,
we use the model as a feature extractor, aggregating
output tokens from the transformer blocks into a
single audio embedding vector. We employ pre-
trained HTS-AT weights from the LAION-CLAP
model (HuggingFace), keeping them frozen during
Deep SVDD training (see Chen et al. [26]).

3.3 Deep Support Vector Data De-
scription

The final stage of our system uses Deep SVDD [27],
an unsupervised anomaly detection method based
on classical SVDD [40]. We frame audio loop pattern
analysis as anomaly detection: common or struc-
turally coherent loop patterns are 'normal,” while
novel or divergent ones are ’anomalies.’

Deep SVDD is well-suited for our task because
its unsupervised approach enables direct learning
from large, unlabeled audio loop collections. This
supports our aim for adaptable systems without
manual annotation. Deep SVDD also learns a com-
pact, data-driven boundary of normality by mapping
audio embeddings into a minimal hypersphere via
neural network encoder layers (see Figure A.1). This
approach lets the network capture the shared charac-
teristics of 'normal’ loop data and adapt to diverse
musical characteristics, as demonstrated in related
work [24].

The Deep SVDD module receives audio embed-
dings z from the encoder and maps them via a
network ¢(-; W) to a latent space. The objective
is to minimize the hypersphere volume (center c,
radius R), enclosing most ‘normal’ patterns. This
can be formulated as:

N L
1 . 2 A 2
mvénﬁ;W(zi,W)—CH +§;HWZ”F (4)

where the first term penalizes distances from the
center ¢ for N normal training samples, and the
second term is a network weight decay regularizer
(with L layers and Frobenius norm |- |g). The center
c is often fixed as the mean of initial network outputs
for the training data or can be learned.

During training on representative 'normal’ loop
patterns, the network ¢ is optimized to learn the
common factors of variation, effectively pulling their
latent representations towards the hypersphere’s cen-
ter ¢. Consequently, loop patterns that deviate sig-
nificantly from these learned commonalities will be
mapped further from ¢ in the latent space. The
anomaly score S(x) for a given input loop x (which
yields embedding z) is then its squared Euclidean
distance to the center c:

S(z) = [l¢(x) — c|® ()

A lower score indicates that the loop’s character-
istics closely resemble the 'normal’ patterns learned
during training, while a higher score signifies a devi-
ation, marking it as ’anomalous’ or distinct. This
score is the final output of the Deep SVDD module,
providing a quantifiable measure to identify poten-
tially interesting, unusual, or structurally divergent
audio loops within a collection.

4 Experimental Setup

4.1 Data

We curated a dataset of 6110 royalty-free guitar and
bass WAV samples (2.34 hours bass, 5.92 hours gui-
tar) from MusicRadar [41]. Due to redistribution
restrictions, the dataset cannot be shared. Metadata



(genre, key, BPM) was extracted from file and folder
names; BPM was refined using deeprhythm [42]
when differing by over 10. Durations were calcu-
lated with librosa®. Most samples lack reliable
genre/key labels due to metadata inconsistencies,
but the dataset’s diversity enables evaluation of the
model’s ability to distinguish typical from anoma-
lous patterns. Appendix B details tempo, duration,
and distribution statistics. We split the data into
bass-only and guitar-only subsets with an 80/20
training/validation split for hyperparameter tuning
and early stopping. No test set was reserved, as
the focus was unsupervised learning. Instruments
were analyzed separately to account for their distinct
characteristics and to evaluate the impact of feature
sets on Deep SVDD training.

4.2 Data Preprocessing

Audio samples were resampled to 48 kHz and con-
verted to Mel-spectrograms using STFT (window
size 1024, hop size 480, 64 Mel filter banks), follow-
ing [19]. This yields (T" = 1024, F = 64) spectral
representations for 10-second segments, as input to
the Audio Encoder described in Section 3. Variable-
length inputs were accommodated by the dual-path
strategy (Section 3.1). A pre-trained, frozen HTS-
AT encoder (Section 3.2) was used in inference mode,
producing (1,1024) embeddings pre-computed for
all samples and fed directly to Deep SVDD (Sec-
tion 3.3).

4.3 Hyperparameters and Training
Details

We implemented Deep SVDD using two neural
network architectures: a standard autoencoder
(AE) and an autoencoder with residual connections
(AEwRES). Both architectures comprise multiple
fully connected layers with ELU activations [43].
We employed dropout regularization and batch nor-
malization. Training used two phases. In AE pre-
training, the autoencoder learned a compressed data
representation by training on pre-computed embed-
dings with a Mean Squared Error (MSE) reconstruc-
tion loss. For Deep SVDD fine-tuning, we discarded
the decoder and fine-tuned the encoder using the
Deep SVDD objective [27]. This minimized the
volume of the hypersphere enclosing normal data
embeddings. Both phases utilized the AdamW opti-
mizer [44] with an initial learning rate of 1 x 10~3 and
weight decay of 1 x 107°. We paired this with a Co-
sine Annealing scheduler [45] and a minimum learn-
ing rate of 5 x 1075, Models trained for 1000 epochs
with a batch size of 32. We applied early stopping
with a patience of 20 by monitoring the validation

4https://librosa.org/doc/latest/index.html

loss. The implementation utilized PyTorch, and ex-
periments were tracked using Weights & Biases °.

5 Evaluation

Evaluating anomaly detection without ground-truth
labels necessitates focusing on representation quality
and model behavior. We assess our proposed Deep
SVDD models (standard Autoencoder - AE, and
with Residual Connections - AEWRES), both using
frozen HTS-AT embeddings. Our evaluation centers
on analyzing their learned latent spaces and output
anomaly scores to determine which architecture is
more effective at distinguishing between normal and
anomalous audio loops.

Specifically, we evaluate the models based on three
criteria: (1) clear latent space separation between
normal and anomalous samples, (2) informative fea-
ture representation (measured by Explained Vari-
ance Ratio), and (3) a distinct margin in the anomaly
score distribution.

Baseline Models We benchmark against two
baselines: Isolation Forest (IF) [46] and PCA-
based reconstruction error. IF provides a general-
purpose, non-parametric anomaly detection compar-
ison, while PCA reconstruction error offers a simple
linear alternative. This contextualizes the benefits
of our deep feature learning approach for loop detec-
tion. PCA-based reconstruction error [47] evaluates
whether non-linear feature learning (Deep SVDD)
outperforms linear modeling. PCA is trained on
normal data, and reconstruction error serves as the
anomaly score, contrasting linear and non-linear ap-
proaches. All models and baselines use the same
embeddings extracted by the Audio Encoder mod-
ule.

PCA Projection Visualization We use PCA
to visualize latent spaces in 2D. For Deep SVDD,
PCA is applied to final latent representations; for
baselines, to Audio Encoder outputs. Scatter plots
show the first two components, with points color-
coded as normal or anomalous based on anomaly
score thresholds (95th percentile from training data).
Explained Variance Ratio (EVR) is reported also.

Latent Representation Inspection To inter-
pret AE and AEwWRES representations, we analyze
their latent dimension distributions using density
histograms. These histograms show the distribution
and scale of each dimension. We also generate latent
activation heatmaps to visualize activation patterns
and consistency across samples and latent dimen-
sions. These visualizations offer insights into the
structure and characteristics of the learned features.

Shttps://wandb.ai/site/
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Figure 2. Anomaly score histograms for the bass
dataset. Top row: proposed models (AE, AEwWRES);
bottom row: baselines (Section 5). Each plot shows
score distributions for training (yellow) and validation
(blue) data. Red dashed lines mark the 95th percentile
anomaly threshold for training data, labeled per model:
0.005 (AE, AEwRES), 0.575 (IF), 136.316 (PCA Recon-
struction).

Anomaly Score Distribution We plot anomaly
score distributions for all models: Deep SVDD scores
use Euclidean distance from the hypersphere center;
baselines use their respective metrics. Overlaid his-
tograms (training and validation) use a log frequency
scale. The 95th percentile of training scores sets the
anomaly threshold, shown as a vertical line and used
for color-coding and defining normal/anomalous re-
gions.

Dimensionality reduction (PCA) and baseline
modeling (IF, PCA reconstruction error) are per-
formed using scikit-learn. Appendix D presents
the implementation details for the PCA reconstruc-
tion error. All visualizations, including scatter
plots, histograms, and heatmaps, are generated us-
ing Matplotlib and Seaborn Python libraries.

6 Results

We analyze Deep SVDD variants (AE, AEWRES)
compared to baseline methods (IF, PCA reconstruc-
tion error) on bass and guitar datasets. Variants
were selected based on preliminary experiments
demonstrating the benefits of FFM and the cho-
sen architecture. Anomalies are defined as samples
with scores above the 95th percentile of the training
set. Results are visualized in Figures 2, 3, 4, and
Appendix F. Code and materials are available in the
accompanying repository °.

6.1 Performance on Bass Dataset

On the bass dataset, Deep SVDD models achieved
effective separation at lower anomaly score ranges
than baselines. Both AE and AEwWRES produced

Shttps://github.com/dadmaan/music-anomalizer.git
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Figure 3. Anomaly score histograms for Guitar dataset.
Top: proposed models (AE, AEWRES); bottom: base-
lines (see Section 5). Each plot shows score distributions
for training (yellow) and validation (blue); red dashed
lines mark anomaly thresholds (95th percentile of train-
ing scores). Thresholds: AE 0.001, AEwWRES 0.035, IF
0.529, PCA Reconstruction 96.044.

compact score distributions (threshold ~ 0.005),
resulting in virtually no false alarms expected at
this cut-off and clear separation between normal
and anomalous samples. In contrast, IF and PCA
reconstruction error yielded higher and more vari-
able scores (thresholds = 0.575 and = 136.3, respec-
tively), indicating less precise normalcy definitions
and potentially higher false positive rates. AEwRES
yielded tightly clustered latent representations, with
sharp KDE peaks (density a~ 120), clear PCA sepa-
ration, and high PC1 variance (89.6%), indicating
better capture of normal bass patterns. AE showed
broader distributions (peak density = 60), lower vari-
ance (74.7%), and less distinct clustering, suggesting
a less distinctive latent space than AEwRES. Box
plots (Figure 4) confirm that AEWRES and AE as-
sign lower scores to normal data than baselines, with
AEwRES showing the most compact distribution
and strongest outlier separation.

6.2 Performance on Guitar Dataset

On the guitar dataset, the AE model produced
tightly clustered scores (below 0.001, threshold =
0.001), while AEWRES better captured the data’s di-
versity, yielding a broader score range (0-0.2, thresh-
old ~ 0.035). AEwRES’s latent space exhibited a dis-
tinct structure: KDE plots revealed multiple peaks,
which can be interpreted as diverse playing styles
or techniques captured by the model. For instance,
these peaks might correspond to different musical
motifs, such as variations in strumming patterns
or shifts between finger-style riffs and chord-based
progressions. In essence, AEWRES is sensitive to
subtle nuances in the performance, adding depth to
its anomaly detection capabilities. PCA projections
isolated normal data from anomalies. AEwRES
explained 93.2% of variance in the first two princi-
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Figure 4. Box plots of anomaly score distributions for
AE, AEwRES, and baselines (Section 5) on Bass (left)
and Guitar (right) datasets. Eight vertical box plots per
panel show training and validation data for each model.
Scores are shown on a logarithmic scale, summarizing
medians, quartiles, and outliers.

pal components (PC1=70.1%, PC2=23.1%), versus
77.7% for AE, indicating richer latent representa-
tions. Additionally, AEwWRES heatmaps visualized
diverse, structured normal patterns, whereas AE’s
space was over-compressed, with sharply peaked
KDEs (peak ~ 160) and less separation in PCA, sug-
gesting that AE may miss subtle anomalies. Both
Deep SVDD models outperformed the baselines,
which struggled with the diversity of the guitar data
and exhibited overlap between normal and anoma-
lous representations (Appendix F). AEwRES, in
particular, maintained improved separation, with
structured latent space and effective thresholding,
demonstrating superior suitability for the guitar
dataset.

6.3 Compartive Performance Sum-
mary

Choose AEwRES when data variability is high.
Deep SVDD models (AE, AEwWRES) outperform IF
and PCA baselines across datasets, yielding lower
anomaly scores for normal data and clearer separa-
tion at detection thresholds (Figure 4). While AE
achieves high compactness on simpler data (bass), it
tends to over-compress on diverse datasets (guitar).
AEwRES enhances feature separability and general-
ization, effectively modeling complex patterns while
maintaining separation, particularly on the guitar
dataset (Appendix F). Thus, AEWRES is preferable
for loop detection in varied musical contexts due to
its better separation and ability to capture pattern
diversity.

7 Discussion

We evaluated automated loop detection using Deep
SVDD with our AEwWRES encoder (integrating FFM
and HTS-AT), benchmarking against IF and PCA-
based reconstruction error (Section 5). This compar-
ison assessed the benefits of deep feature learning
versus simpler methods. To clearly demonstrate

our contribution, we emphasized not just raw ac-
curacy but also evaluated how well these models
captured meaningful musical structures, which are
vital in understanding and reinforcing temporal and
hierarchical patterns in music. This highlights the
novelty of our approach, as capturing these nuances
contributes to more effective loop detection. To
isolate the impact of residual connections, we also
compared AEwRES with a standard Autoencoder
(AE) within the Deep SVDD framework. On both
bass and guitar datasets, AEWRES outperformed
baselines (IF, PCA reconstruction error) and the
AE variant, demonstrating effective feature learning
for loop detection. Integrating FFM with HTS-AT
overcomes fixed-length input limitations (Section
2), with FFM effectively aggregating temporal in-
formation for HT'S-AT to capture local and global
dependencies (Appendix E).

Performance varied between bass and guitar
datasets, indicating adaptability to different mu-
sic collections. In the realm of signal process-
ing, a structured representation often provides a
clearer pathway for feature identification compared
to merely compact representations. On bass, both
AE and AEwWRES learned compact representations,
but AEwRES produced a more structured latent
space. This structural advantage became more ap-
parent on the guitar dataset, where AE tended to
over-compress, a condition where essential details
might be lost in favor of reducing dimensionality,
resulting in lower explained variance (77.7%) com-
pared to AEWRES (93.2%). In essence, while com-
pactness seeks to reduce redundancy, it can inad-
vertently discard valuable contextual information.
Indeed, AEWRES adapted well to the guitar dataset
by modeling its variability with a structured latent
space, albeit a broader latent representation, as evi-
denced by PCA plots and explained variance metrics.
This enabled Deep SVDD to define normality more
effectively, suggesting that such architectures, incor-
porating elements such as residual connections, are
well-suited for complex and diverse musical audio.

Contextualizing these results, our application of
Deep SVDD directly to audio features encoded by
HTS-AT supports our hypothesis that such models
can form the basis for loop detection and analysis,
particularly when designed to capture nuanced tem-
poral and hierarchical information. Qualitatively,
samples flagged as anomalous often contained tran-
sient irregularities (e.g., fret noise, clicks) or har-
monic structures that deviated significantly from
the standard progressions in the training set. The
effectiveness of the learned representations aligns
with findings that emphasize the practicality of pre-
trained foundation models for audio tasks [14, 19].
The AEwWRES architecture’s performance echoes the
benefits seen from residual connections [29] in other
domains.



7.1 Possible Applications

The proposed method enables automated quality
control and creative discovery in music production.
For quality control, it flags loops with artifacts (e.g.,
clicks, phase issues, noise), reducing manual auditing.
Its unsupervised design removes the need for labeled
anomalies, with performance depending on training
data representativeness. Creatively, anomaly detec-
tion surfaces unusual loops for experimental sound
design, aligning with serendipitous retrieval [48, 49].
Producers can use high anomaly scores to identify
samples with atypical rhythms or textures, aiding
exploration.

Beyond these applications, the approach also
holds potential for integration with Digital Audio
Workstations (DAWSs), where real-time loop anomaly
detection could alert artists to problematic loops
(e.g., timing errors, unwanted noise) before produc-
tion. A more speculative application involves style
transfer and genre adaptation. By training the
model on a music collection of a specific genre (e.g.,
jazz guitar), users could detect deviations that sig-
nal potential for cross-genre influence. Moreover,
the hybrid approach—utilizing deep audio repre-
sentations with one-class learning—eliminates the
need for large, labeled datasets, thereby support-
ing individuals with limited resources. Ultimately,
this functions as an assistant that flags deviations
for review, leaving the final subjective judgment of
whether an artifact is a ‘flaw’ or a ‘creative feature’
to the human producer.

8 Limitations

Several limitations should be noted. Our evalua-
tion uses unsupervised anomaly detection without
ground-truth labels, so anomalies are defined heuris-
tically via a 95th percentile threshold, which may
not be optimal or consistent across data. To ad-
dress this issue, introducing a small, curated set of
proxy-labeled or synthetic anomalies could help in
calibrating the 95th percentile threshold, making
our claims more verifiable. This validation set could
provide an evidence-based metric, allowing us to
report its precision-recall scores, thus transforming
the current heuristic approach into a more robust
evaluation strategy. The interpretation of anomalies
is also subjective and context-dependent. Our ex-
periments focus only on bass and guitar loops from
a specific dataset, limiting generalizability to other
instruments, genres, or audio types. The dataset’s
diversity may not reflect real-world audio encoun-
tered by users. Methodologically, Deep SVDD as-
sumes normal data can be enclosed within a single
hypersphere in latent space, which may not capture
complex, multi-modal distributions. Using a deep
encoder mitigates this, but the HTS-AT architecture

increases computational demands. Dataset biases,
such as prevalent playing styles or recording qual-
ities, may also affect learned representations and
detection performance.

9 Future Work

Building upon these findings and limitations, future
research could proceed in several directions. The-
matic areas such as generalizability, efficiency, and
usability can serve as anchors for these directions.
To enhance generalizability, it is essential to expand
the assessment to include diverse instruments, gen-
res, and audio formats. This will help evaluate the
applicability of the AEwRES-Deep SVDD method
across various contexts. Incorporating partially an-
notated datasets or semi-supervised techniques can
enable more rigorous quantitative evaluation and
threshold refinement, thereby supporting a more
robust generalization. In terms of efficiency, fine-
tuning the HTS-AT model for loop detection or
leveraging knowledge distillation could lead to the
development of lighter, real-time-capable models.
For usability, improvements in workflow integration,
such as combining loop detection with tools like tran-
scription and source separation, could refine audio
analysis by honing in on anomalous segments. Addi-
tionally, enhancing the user interface by introducing
elements for sensitivity adjustment and facilitating
practitioner feedback will boost practical utility.

10 Conclusion

In conclusion, this work demonstrated that Deep
SVDD, coupled with an audio encoder like HT'S-AT
with FFM, offers a viable approach for loop detec-
tion. The AEwRES variant, in particular, showed
promise due to its ability to learn discriminative la-
tent representations that accommodate the diversity
inherent in complex musical data, compared to the
selected baselines (IF and PCA reconstruction error)
and the AE variant. While limitations exist regard-
ing the evaluation methodology and dataset scope,
the results indicate the potential of this approach
to alleviate challenges in automated audio analysis.
By providing a means to automatically identify de-
viations from normative patterns directly within the
audio domain and handling variable-length inputs
effectively, this research lays the groundwork for fu-
ture investigations into more nuanced, interpretable,
and widely applicable music analysis systems, as
elaborated in Section 7.1.
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A System Architecture

Figure A.1 depicts the proposed loop detection
model, which couples an Audio Encoder for hi-
erarchical feature extraction with a Deep SVDD
module for anomaly detection. The Audio Encoder
employs duration-aware dual pathways with Mel-
FilterBank processing, Conv2D layers, a feature-
fusion mechanism, and a pre-trained HTS-AT back-
bone. The Deep SVDD comprises five encoder layers
that project features into a latent space, mapping
normal samples within a hypersphere and abnormal
samples outside. The system supports end-to-end,
unsupervised training. It produces distance-based
anomaly scores from the learned representation. The
Audio Encoder illustration is inspired by Wu et
al. [19].
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Table B.1. Statistics per instrument of the curated
dataset

Instrument Bass Guitar
Count 1816 4294
Durations (hrs)  2.337 5.924
mean 111.779  108.785
std 18.854 18.000
min 64.000 73.000
25% 95.000 95.000
BPM 50% 114.000 110.000
5% 123.000  120.000
max 170.000 170.000
mean 4.633 4.967
std 2.436 1.971
min 0.546 0.417
Duration (secs) 25% 3.692 4.000
50% 4.364 4.571
5% 5.333 5.647
max 28.346 22.700

B Dataset Statistics

Table B.1 summarizes a curated set of 1,816 bass
and 4,294 guitar samples totaling 2.337 h and 5.924
h, respectively. Tempi cover moderate ranges (bass:
64-170 BPM, mean 111.779; guitar: 73-170 BPM,
mean 108.785), with interquartile spans of 95-123
BPM (bass) and 95-120 BPM (guitar). Clips are
short (mean durations 4.633 seconds for bass and
4.967 seconds for guitar). As illustrated in Fig. B.1,
samples are distributed across musical genres and
keys.
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Figure A.1. Architectural overview of the proposed loop detection model. The model comprises two main
components: (left) an Audio Encoder module for hierarchical feature extraction from audio inputs and (right) a
Deep SVDD module for anomaly detection. The Audio Encoder processes input audio through dual pathways
based on duration, utilizing Mel-FilterBank processing, Conv2D layers, the feature fusion mechanism, and a
pre-trained HTS-AT for feature extraction. The Deep SVDD module consists of five encoder layers that transform
features into a latent space, where normal samples (orange dots) are mapped within a hypersphere and abnormal
samples (blue dots) are mapped outside. The architecture enables end-to-end training for unsupervised loop
detection and anomaly identification through distance-based scoring from the learned latent representation. The
illustration of the Audio Encoder is adapted from Wu et al. [19].

C AutoEncoder Architecture

Figure C.1 presents the AEwWRES autoencoder ar-
chitecture inspired by U-Net, comprising a five-layer
encoder and five-layer decoder operating on 1024-
dimensional inputs. The encoder progressively re-
duces dimensionality, which is then reconstructed
by the decoder. Residual connections (dotted) add
the output of encoder layer i to the input of de-
coder layer 5-i; the baseline AE shares the same
architecture but omits these residual links.

13

D PCA Reconstruction Error
Algorithm

Principal Component Analysis (PCA) based recon-
struction error is a widely used technique for un-
supervised anomaly detection [51, 52]. It oper-
ates under the assumption that the majority of the
training data represents normal behavior, and that
this normal data lies predominantly within a lower-
dimensional subspace of the original feature space.
Anomalies, conversely, are expected to deviate from
this normal subspace. PCA is employed to identify
this principal subspace from the training data. The
anomaly score for any given data point is then cal-
culated as the error incurred when attempting to
reconstruct the point after projecting it onto this
learned normal subspace. Points that deviate sub-
stantially from the normal patterns captured by the
principal components will exhibit a high reconstruc-
tion error.

The complete implementation procedure is for-
mally described in Algorithm D.1.



Algorithm D.1 PCA Reconstruction Error for Anomaly Detection

Require:
Require:
Require:
Require:
Require:

Variance threshold 6,, (default 0.95)
standardize (boolean)

: Let X{ i = Xirain and X[ | =
if standardize is True then

Xeval

Standardize: X{,.;, < (Xrain — tt)/0
Standardize: X[ .| < (Xeval — pt)/0

end if

if Ncomponents is None then

Fit PCA on X{ .., (full rank)

train

j .
7_, variance; > fyar }

—
=

k <+ min{j :
Nselected € k

— e
W

Nselected € TNcomponents
. else

— =
A

Nselected € Mcomponents
: end if
: Fit PCA model on X/

train

: Initialize empty lists €¢rain and €eya)
: for each x in X/ do

train

Project: z < PCA_TRANSFORM(X)

NN N = e e

Compute error: e < Z?Zl(xi — i;)?
Append e to €train

: end for

: for each x in X/ ., do

Project: z <~ PCA_TRANSFORM(X)

NN NN
I A

2

)
@

Compute error: e < Zle(xi — &)
Append e to €gyal
: end for

W W N

Training data embeddings X ain € R7train Xd
Evaluation data embeddings Xeya € R7evar xd
Number of components Neomponents (integer, float, or None)

Compute mean p and standard deviation o from Xipain

Compute cumulative explained variance ratios

. else if Neomponents 15 float and 0 < Neomponents < 1 then

> as explained variance

> as integer

With Ngelocted COMponents

> Calculate training errors

Reconstruct: X < PCA_INVERSE_TRANSFORM(z)

> Calculate evaluation errors

Reconstruct: % <— PCA_INVERSE_TRANSFORM(z)

: return array of training errors €,,in, array of evaluation errors €qya)

E Preliminary Experiments

This appendix details preliminary experiments con-
ducted to validate key design choices and select
promising model architectures for the main evalu-
ation presented in Section 6. To facilitate rapid
iteration and efficient hyperparameter exploration,
these initial tests were performed on a smaller, rep-
resentative subset of the bass dataset (described in
Section 4.1), comprising 392 bass loops from the
MusicRadar catalog 7. The primary objectives were
to:

1. Evaluate the effectiveness of the FFM described
in our methodology (Section 3).

2. Compare different network architectures to se-

"https://www.musicradar.com/news/tech/
sampleradar-392-free-bass-guitar-samples-537264

lect the most promising candidates for the sub-
sequent evaluation in Section 6.

First, we assessed the impact of incorporating
the FFM by comparing model variants (AE and
AEwRES) trained with and without it. The results
demonstrated the benefits of FFM. Models utiliz-
ing FFM converged faster and achieved improved
representational quality. Specifically, FFM facili-
tated the models to capture underlying patterns,
as evidenced by latent space distributions (KDE
plots) and tighter clustering of normal samples in
PCA projections (Figure E.2) and clearer separation
in anomaly score distributions (Figure E.1) com-
pared to models without it. Consequently, FFM
was adopted for subsequent architecture compar-
isons and main experiments (Section 6).

Following FFM validation, hyperparameter tuning
was conducted for AE and AEwRES architectures
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Figure B.1. Distribution of curated guitar and bass
samples across (a) musical genres and (b) musical keys.
The height of the bars indicates the count of samples
for each category, with colors differentiating between
bass (blue) and guitar (green). The prevalence of the
‘unknown’ category highlights common challenges with
sample library metadata.

to optimize performance. The tuned AE exhibited a
negatively skewed latent distribution ranging from -
1.0 to 0.25, while AEwRES showed a more balanced,
symmetrical distribution centered around zero (-
0.4 to 0.4). Feature representation heatmaps re-
vealed higher contrast in A FwRES, suggesting more
distinct feature capture. Anomaly detection per-
formance indicated successful separation of normal
samples and potential anomalies in both architec-
tures; however, AEwRES achieved a lower anomaly
threshold (q=0.95 =~ 0.009) compared to AE (=
0.016), potentially indicating enhanced precision.
During tuning, AFwRES generally demonstrated
faster convergence and more stable training dynam-
ics.

In summary, the optimized AEwRES configura-
tion showed advantages on this subset in terms of
representation balance, feature distinctiveness, po-
tential precision, and training efficiency. Nonethe-
less, given that AFE also performed competently
after tuning and represents a different architectural
approach, we selected both configurations for the

further evaluations on the full datasets presented in
Section 6.
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Figure C.1. The architecture of the autoencoder (AF) network with residual connections (dotted arrows)
(AEwRES). The model follows a symmetric design (inspired by U-net architecture [50]) with an encoder (left)
and decoder (right). The input dimension of 1024 is progressively reduced through five encoder layers and then
reconstructed through five decoder layers. Each layer comprises a linear transformation followed by BatchNorm,
ELU activation (alpha=0.1), and Dropout (rate=0.2). Residual connections add the output of encoder layer ¢ to
the input of decoder layer 5 — i. Note that the base AF architecture is identical to that of AFwRES, but without

any residual connections.

F Main Experiment Supple-
mentary Materials

This appendix provides additional visualizations for
the results presented in Section 6. Figures F.1 and
F.2 presented in this appendix illustrate the perfor-
mance of the models on the bass and guitar datasets,
respectively. They provide a more detailed analy-
sis of the results, discussed in Section 6. The fig-
ures show the density distributions of latent values
across multiple dimensions, PCA scatter plots, and
heatmaps of latent space representations, for train-
ing and vlidation phases. These visualizations are
useful for understanding the behavior of the models
and how they capture the underlying patterns in
the data.
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Figure E.1. The figure displays anomaly score distribution histograms for AE and AEwRES applied to the
subset of bass dataset (392 samples). The top row (a) shows the scores obtained with FFM and the bottom row
(b) displays the scores obtained witout FFM. Each plot depicts the frequency distribution of anomaly scores for
both training data (yellow) and validation data (blue), with red dashed lines indicating the anomaly threshold set

at the 95th percentile of the training scores.
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Figure E.2. The figure presents three visualizations of latent space representations from AF and AEwRES
models applied to the subset of bass dataset (392 samples). The first and third rows (a, ¢) show the results
obtained with FFM and the second and fourth rows (b, d) display the results obtained witout FFM. For each row,
the left panel displays density distributions of latent values across multiple dimensions. The center panel shows a
PCA scatter plot projecting the latent space onto two principal components, with blue points representing normal
samples and red points indicating anomalies. The right panel features a heatmap of latent space representations
across 32 dimensions (x-axis) for NV samples (y-axis), with color intensity reflecting latent values.
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Figure F.1. Comparative analysis of (a,b) AF and (c,d) AFwRES models using bass dataset, as described in
Section 4.1. The first two rows (a,b) show the results obtained by AE model during (a) training and (b) validatio
phases. The second two rows (c,d) displays the results obtained by AEwRES model during (c) training and
(d) validation phases. For each row, the left panel displays density distributions of latent values across multiple
dimensions. The center panel shows a PCA scatter plot projecting the latent space onto two principal components,
with blue points representing normal samples and red points indicating anomalies. The right panel features a
heatmap of latent space representations across 32 dimensions (x-axis) for N samples (y-axis), with color intensity
reflecting latent values.
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Figure F.2. Comparative analysis of (a,b) AF and (c,d) AEwRES models using guitar dataset, as described in
Section 4.1. The first two rows (a,b) show the results obtained by AE model during (a) training and (b) validatio
phases. The second two rows (c,d) displays the results obtained by AFwRES model during (c¢) training and
(d) validatio phases. For each row, the left panel displays density distributions of latent values across multiple
dimensions. The center panel shows a PCA scatter plot projecting the latent space onto two principal components,
with blue points representing normal samples and red points indicating anomalies. The right panel features a
heatmap of latent space representations across 32 dimensions (x-axis) for N samples (y-axis), with color intensity
reflecting latent values.
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