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Abstract001

We propose an unsupervised framework for analyz-002

ing audio patterns in musical loops using deep fea-003

ture extraction and anomaly detection. Unlike prior004

methods limited by fixed input lengths, handcrafted005

features, or domain constraints, our approach com-006

bines a pre-trained Hierarchical Token-semantic007

Audio Transformer (HTS-AT) and Feature Fusion008

Mechanism (FFM) to generate representations from009

variable-length audio. These embeddings are an-010

alyzed by Deep Support Vector Data Description011

(Deep SVDD), which models normative patterns012

in a compact latent space. Experiments on bass013

and guitar datasets show our Deep SVDD models—014

especially with residual autoencoders—outperform015

baselines like Isolation Forest and PCA, achieving016

better anomaly separation. Our work provides a017

flexible, unsupervised method for effective pattern018

discovery in diverse audio samples.019

1 Introduction020

Musical loops are essential in modern music pro-021

duction, particularly in genres such as hip-hop and022

Electronic music [1, 2]. These repeatable audio seg-023

ments provide rhythmic, melodic, or harmonic foun-024

dations [3]. Producers and DJs often search libraries025

or sample existing tracks for loops that match their026

artistic goals [4, 5]. Effective pattern analysis within027

loops is crucial for selecting compatible elements [6,028

7] and identifying variations or inconsistencies in029

large or generated music collections.030

AI’s growing role in music requires tools that031

emphasize user control. As highlighted in broader032

discussions on AI-driven music generation systems033

(MGS) [8, 9], there is a demand for technologies034

that move beyond ’black-box’ paradigms [10]. Users035

(creators) seek systems customizable to their work-036

flows, effective with private data, and transparent037

in operation Civit et al. [11]. Our unsupervised038

pattern analysis approach addresses these demands.039

We hypothesize unsupervised methods will adapt040

to user collections and styles without pre-labeled041

datasets (Section 7.1).042

In Music Information Retrieval (MIR) [12, 13],043

loop detection constitutes a specialized audio pattern044

recognition task [14]. This encompasses subtasks like045

classification and tagging [15–17], as well as extract-046

ing features to identify and categorize signals [18].047

Leveraging deep learning (DL) advancements, par- 048

ticularly pre-trained encoders that generalize across 049

datasets [19], supports our hypothesis that such 050

models can underpin loop analysis by capturing 051

temporal and hierarchical details. Despite progress 052

in DL for audio pattern recognition [14, 19], loop 053

analysis methods often face limitations. 054

Traditional signal processing and structural analy- 055

sis techniques [20–23] can struggle with the complex- 056

ity of real-world music and often require heuristic 057

adjustments. Neural networks may require fixed- 058

length inputs [7, 24], restrict variable-duration loops, 059

or need iterative feedback or labeled data [25], which 060

limits scalability. These challenges define three core 061

design criteria: variable-length support, unsuper- 062

vised learning, and structural flexibility. Solutions 063

should enable variable-length analysis, accommodate 064

diverse structures, and work unsupervised without 065

domain constraints. 066

In this direction, this paper poses three research 067

questions: (1) How can unsupervised anomaly detec- 068

tion frameworks support adaptable, variable-length 069

audio loop pattern analysis for user-specific music 070

collections? (2) To what extent can such frameworks 071

learn ’normative’ patterns and identify meaningful 072

deviations? (3) How do architectural choices in- 073

fluence performance in unsupervised audio pattern 074

analysis? 075

To address this, we propose framing loop pattern 076

analysis as an unsupervised anomaly detection prob- 077

lem. The insight is that normative patterns in a 078

dataset or style can be learned from unlabeled data, 079

enabling personalized adaptation without labeled 080

sets. Anomalies—deviations from norms—offer in- 081

sights into variations, errors for quality control, or 082

stylistic elements fostering creative discovery (elab- 083

orated in Section 7). Our method integrates a pre- 084

trained Hierarchical Token-semantic Audio Trans- 085

former (HTS-AT) [26], selected for capturing both lo- 086

cal and global temporal dependencies, with a Feature 087

Fusion Mechanism (FFM) [19] to produce a fixed- 088

dimensional embedding for variable inputs. A Deep 089

Support Vector Data Description (Deep SVDD) net- 090

work [27] trains on these to learn a hypersphere 091

enclosing normal instances. 092

In response to research questions, this work makes 093

the following contributions: 094

• We introduce and implement an unsupervised 095

framework for audio loop pattern analysis, com- 096

bining HTS-AT with FFM for flexible feature 097
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extraction, and Deep SVDD for anomaly-based098

identification directly from the learned audio099

embeddings. This approach offers a pathway100

to data-driven insights from user-specific collec-101

tions, aligning with the need for more adaptable102

AI tools.103

• We demonstrate the system’s capability to pro-104

cess variable-length audio inputs through the105

FFM, thereby overcoming a limitation of many106

prior fixed-length approaches and enhancing107

practical applicability.108

• We provide an empirical evaluation on curated109

datasets of bass and guitar loops, showcasing110

the model’s proficiency in learning represen-111

tations of normative patterns and effectively112

identifying meaningful deviations.113

• We conduct a comparative analysis of different114

Deep SVDD encoder architectures (a standard115

autoencoder versus a residual autoencoder), of-116

fering insights into architectural choices that117

benefit the modeling of diverse and larger audio118

data.119

• We benchmark our proposed method against120

standard unsupervised anomaly detection tech-121

niques (Isolation Forest (IF) and PCA-based122

reconstruction error), demonstrating the en-123

hanced representational power and discrimina-124

tive ability of the Deep SVDD approach when125

operating on HTS-AT embeddings.126

The remainder of this paper is structured as fol-127

lows: Section 2 reviews relevant prior work. Sec-128

tion 3 details the proposed architecture and its com-129

ponents. Section 4 describes the datasets, prepro-130

cessing steps, and training procedures. Section 5131

outlines the evaluation and baseline methods. Sec-132

tion 6 presents the experimental results. Section 7133

discusses the findings and their implications, fol-134

lowed by Sections 8 and 9, which address limitations135

and outlines future research directions. Finally, Sec-136

tion 10 concludes this paper.137

2 Related Works138

2.1 Audio Pattern Recognition139

Recent deep learning advances have significantly140

improved audio pattern recognition. Pretrained141

Audio Neural Networks (PANNs) [14], trained on142

large datasets such as AudioSet [16], provide robust143

features for tasks like audio tagging, scene classifi-144

cation, and event detection [28]. CNNs, ResNets145

[29], and MobileNets [30] are commonly used, typ-146

ically processing Mel-spectrograms [14]. Although147

1D CNNs on waveforms (e.g., DaiNet, LeeNet) have148

been explored, spectrogram-based models remain149

superior due to their ability to capture frequency 150

patterns [14]. Wavegram-Logmel-CNN [14] inte- 151

grates learned and hand-crafted time-frequency fea- 152

tures, achieving state-of-the-art AudioSet tagging. 153

Methods like FFM address variable-length inputs, 154

showing promise for loop detection [19]. Newer mod- 155

els such as HTS-AT [19] further enhance sequential 156

audio data modeling, outperforming earlier PANNs. 157

2.2 Loop Selection and Extraction 158

Early research on music loop identification relied 159

on signal processing and rule-based methods, using 160

handcrafted features (e.g., chroma, MFCCs) and 161

heuristics to detect repeating patterns and estimate 162

similarity [7, 31–36]. While approaches such as Non- 163

negative Tensor Factorization (NTF) [36] and psy- 164

choacoustic modeling [33, 34] were explored, these 165

techniques required extensive tuning and struggled 166

with the complexity of real-world music [7]. Re- 167

cent advances address these limitations with neural 168

network-based solutions. 169

Building on the shift toward neural network ap- 170

proaches, Chen et al. [7] proposed NN models for 171

estimating compatibility in large libraries. Their ap- 172

proach included a CNN on combined time-frequency 173

representations of loop pairs and a Siamese Neu- 174

ral Network (SNN) comparing separate embeddings. 175

The models were trained on Hip-Hop pairs from 176

the Free Music Archive (FMA) dataset [37]. Loops 177

were time-stretched to 2 seconds and converted to 178

log mel-spectrograms. These models outperformed 179

AutoMashUpper in subjective tests [7]. However, 180

their use of fixed-length inputs limits handling of 181

variable durations. 182

In a related line of inquiry, Jakubik [25] devel- 183

oped an active learning system for retrieving inter- 184

esting loops and samples in electronic tracks. The 185

system refined results via user interaction from an 186

example. It compared MFCCs with unsupervised 187

features from autoencoders and Bootstrap Your 188

Own Latent (BYOL) contrastive learning [38], using 189

sampleswap1 data. Feature learning enhanced re- 190

call over MFCCs, especially on representative data; 191

however, performance varied by genre (e.g., Dubstep 192

challenges) and relied on user feedback. This lim- 193

ited automation, and as authors reported, distinct 194

samples were harder to find than repeating loops 195

[25]. 196

Shifting focus from audio features, Han et al. [24] 197

addressed symbolic MIDI loop generation for 8-bar 198

bass and drum loops via a two-stage process. First, 199

a Vector Quantized Variational Autoencoder (VQ- 200

VAE) compressed input into latent codes. Then, 201

an autoregressive generator produced new mate- 202

rial. A cross-domain loop detector, trained on 203

1https://www.sampleswap.org/
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Figure 1. The illustrated system comprises an Audio
Encoder and a Deep SVDD module. Within the Audio
Encoder, short clips (≤ 10 seconds) are padded and pro-
cessed via Mel-FilterBank and Conv2D layers, while long
clips (> 10 seconds) are sampled and processed with
additional MergeConv2D and AFF layers. Both paths
merge at the pre-trained HTS-AT, which extracts the
embeddings. The Deep SVDD module encodes features,
maps them in latent space, and computes distance-based
anomaly scores. See Appendix A for the detailed archi-
tecture diagram.

1,000 looperman2 audio loops using One-Class Deep204

SVDD [27], identified domain-invariant patterns in205

bar-to-bar correlation matrices. The same detector206

was used to extract MIDI loops from the Lakh MIDI207

Dataset3. Limitations include fixed 8-bar windows208

restricting flexibility. Focusing on bar-to-bar corre-209

lation may miss higher-level audio nuances, similar210

to [7].211

3 Methodology212

This section presents our methodology for identify-213

ing repetitive patterns in audio loops by framing the214

task as anomaly detection. We learn a representa-215

tion of ’normal’ loop structures, enabling analysis of216

deviations as ’anomalies’. As shown in Figure 1, our217

system consists of two stages: an Audio Encoder218

and a Deep SVDD module. The Audio Encoder219

generates embeddings from input audio using FFM220

and HTS-AT models, which are then processed by221

the Deep SVDD. A detailed architecture illustration222

is available in Appendix A.223

The Audio Encoder uses a dual-path strategy224

2https://www.looperman.com/
3https://colinraffel.com/projects/lmd/

based on input duration to handle variable lengths 225

and capture both local and global details. Inputs 226

≤ 10 seconds are repeated and padded for consis- 227

tency; longer inputs are split into three 10-second 228

segments for local analysis and a downsampled 229

global segment. All audio is converted to Mel- 230

spectrograms, processed by initial Conv2D layers, 231

and, for longer inputs, local features are merged and 232

fused with global features via Attention Feature Fu- 233

sion (AFF; see Section 3.1). The resulting features, 234

either from padded short inputs or fused long inputs, 235

are passed to the HTS-AT model (Section 3.2). The 236

Audio Encoder’s output forms the embedding for 237

the Deep SVDD module. 238

These embeddings are then processed by the Deep 239

SVDDmodule (Section 3.3), which consists of five en- 240

coder layers that map them into a lower-dimensional 241

latent space. In this space, a hypersphere is learned 242

to enclose ’normal’ audio patterns, with anomalies 243

lying outside. The embedding’s distance from the 244

center serves as a score for anomaly detection. Im- 245

plementation details of each component follow in 246

the next subsections. 247

3.1 Feature Fusion Mechanism 248

To address variable audio input lengths—a limita- 249

tion in prior work (Section 2)—we implement the 250

FFM, following Wu et al. [19]. This mechanism 251

manages differing audio clip lengths in the Audio 252

Encoder by ensuring consistent processing dimen- 253

sions and integrating multi-scale information. Clips 254

of d-seconds or less are repeated and padded to 255

d-seconds; longer clips use a dual representation: 256

1. Global: Downsample the whole clip to d- 257

seconds. 258

2. Local: Three d-second segments are randomly 259

sliced from the beginning (first 1/3), middle 260

(second 1/3), and end (final 1/3) of the clip. 261

Conv2D layers extract features from Mel- 262

spectrograms. For long clips, features from the local 263

segments are further consolidated via an additional 264

Conv2D layer. Long-clip fusion uses the Attention 265

Feature Fusion (AFF) module from Dai et al. [39]. 266

Let Flocal denote the consolidated local features and 267

Fglobal the global features. The AFF module fuses 268

these inputs by computing a dynamic, content-aware 269

weighted average. The final fused feature map, Z, 270

is calculated as: 271

Z = M
(
Flocal + Fglobal

)
⊗ Flocal

+
(
1−M

(
Flocal + Fglobal

))
⊗ Fglobal

(1) 272

where ⊗ represents element-wise multiplication. 273

The attention map M(·) is generated by a Multi- 274

Scale Channel Attention Module (MS-CAM) [39], 275
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which combines both local and global channel con-276

texts to adaptively determine the fusion weights.277

This allows the model to prioritize the most rele-278

vant information from the dual representations. The279

fused map is then input to the HTS-AT module.280

3.2 Hierarchical Token-semantic Au-281

dio Transformer282

We employ HTS-AT [26] as our audio feature ex-283

tractor due to its ability to efficiently model hi-284

erarchical audio structures. Its design integrates285

windowed attention, limiting self-attention to local286

M ×M regions for computational efficiency, and287

patch-merging, which reduces sequence length in288

deeper layers. For an input of ft patch tokens with289

latent dimension D, windowed attention achieves290

linear complexity in sequence length:291

Ω(WA) = O(ftD2 +M2ftD) (2)292

This approach avoids the quadratic complexity293

of global attention, which is a bottleneck for long294

sequences:295

Ω(GA) = O(ftD2 + ft2D) (3)296

Patch-merging follows groups of transformer297

blocks, merging adjacent patches (e.g., down-298

sampling a T
P ×

F
P token map with dimension D299

to T
2P ×

F
2P and projecting to 2D), which further300

reduces sequence length and computation [26].301

Instead of using the HTS-AT classification head,302

we use the model as a feature extractor, aggregating303

output tokens from the transformer blocks into a sin-304

gle audio embedding vector. We employ pre-trained305

HTS-AT weights, trained on a combination of music,306

Audioset, and LAION-Audio-630k datasets, from307

the LAION-CLAP model (HuggingFace) 4. For more308

details of the HTS-AT’s internal workings, please309

refer to Chen et al. [26].310

3.3 Deep Support Vector Data De-311

scription312

The final stage of our system uses Deep SVDD [27],313

an unsupervised anomaly detection method based314

on classical SVDD [40]. We frame audio loop pattern315

analysis as anomaly detection: common or struc-316

turally coherent loop patterns are ’normal,’ while317

novel or divergent ones are ’anomalies.’318

Deep SVDD is well-suited for our task because319

its unsupervised approach enables direct learning320

from large, unlabeled audio loop collections. This321

supports our aim for adaptable systems without322

manual annotation. Deep SVDD also learns a com-323

pact, data-driven boundary of normality by mapping324

4https://huggingface.co/lukewys/laion_clap/tree/

main

audio embeddings into a minimal hypersphere via 325

neural network encoder layers (see Figure A.1). This 326

approach lets the network capture the shared charac- 327

teristics of ’normal’ loop data and adapt to diverse 328

musical characteristics, as demonstrated in related 329

work [24]. 330

The Deep SVDD module receives audio embed- 331

dings z from the encoder and maps them via a 332

network ϕ(·;W ) to a latent space. The objective 333

is to minimize the hypersphere volume (center c, 334

radius R), enclosing most ’normal’ patterns. As 335

shown by [27], this can be formulated as: 336

min
W

1

N

N∑
i=1

∥ϕ(zi;W )− c∥2 + λ

2

L∑
l=1

∥Wl∥2F (4) 337

where the first term penalizes distances from the 338

center c for N normal training samples, and the 339

second term is a network weight decay regularizer 340

(with L layers and Frobenius norm | · |F ). The center 341

c is often fixed as the mean of initial network outputs 342

for the training data or can be learned. 343

During training on representative ’normal’ loop 344

patterns, the network ϕ is optimized to learn the 345

common factors of variation, effectively pulling their 346

latent representations towards the hypersphere’s cen- 347

ter c. Consequently, loop patterns that deviate sig- 348

nificantly from these learned commonalities will be 349

mapped further from c in the latent space. The 350

anomaly score S(x) for a given input loop x (which 351

yields embedding z) is then its squared Euclidean 352

distance to the center c: 353

S(x) = ∥ϕ(x)− c∥2 (5) 354

A lower score indicates that the loop’s character- 355

istics closely resemble the ’normal’ patterns learned 356

during training, while a higher score signifies a devi- 357

ation, marking it as ’anomalous’ or distinct. This 358

score is the final output of the Deep SVDD module, 359

providing a quantifiable measure to identify poten- 360

tially interesting, unusual, or structurally divergent 361

audio loops within a collection. 362

4 Experimental Setup 363

4.1 Data 364

We curated a dataset of 6110 royalty-free guitar and 365

bass WAV samples (2.34 hours bass, 5.92 hours gui- 366

tar) from MusicRadar [41]. Due to redistribution 367

restrictions, the dataset cannot be shared. Metadata 368

(genre, key, BPM) was extracted from file and folder 369

names; BPM was refined using deeprhythm [42] 370

when differing by over 10. Durations were calcu- 371

lated with librosa5. Most samples lack reliable 372

5https://librosa.org/doc/latest/index.html

4
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genre/key labels due to metadata inconsistencies,373

but the dataset’s diversity enables evaluation of the374

model’s ability to distinguish typical from anoma-375

lous patterns. Appendix B details tempo, duration,376

and distribution statistics. We split the data into377

bass-only and guitar-only subsets with an 80/20378

training/validation split for hyperparameter tuning379

and early stopping. No test set was reserved, as380

the focus was unsupervised learning. Instruments381

were analyzed separately to account for their distinct382

characteristics and to evaluate the impact of feature383

sets on Deep SVDD training.384

4.2 Data Preprocessing385

Audio samples were resampled to 48 kHz and con-386

verted to Mel-spectrograms using STFT (window387

size 1024, hop size 480, 64 Mel filter banks), follow-388

ing Wu et al. [19]. This yields (T = 1024, F = 64)389

spectral representations for 10-second segments, as390

input to the Audio Encoder described in Section 3.391

Variable-length inputs were accommodated by the392

dual-path strategy (Section 3.1). A pre-trained,393

frozen HTS-AT encoder (Section 3.2) was used in394

inference mode, producing (1, 1024) embeddings pre-395

computed for all samples and fed directly to Deep396

SVDD (Section 3.3).397

4.3 Hyperparameters and Training398

Details399

We implemented Deep SVDD using two neural net-400

work architectures: a standard autoencoder (AE)401

(similar to the one utilized by [24]) and an autoen-402

coder with residual connections (AEwRES). Both403

architectures comprise multiple fully connected lay-404

ers with ELU activations [43]. We employed dropout405

regularization and batch normalization. Training406

used two phases. In AE pre-training, the autoen-407

coder learned a compressed data representation by408

training on pre-computed embeddings with a Mean409

Squared Error (MSE) reconstruction loss. For Deep410

SVDD fine-tuning, we discarded the decoder and411

fine-tuned the encoder using the Deep SVDD ob-412

jective [27]. This minimized the volume of the hy-413

persphere enclosing normal data embeddings. Both414

phases utilized the AdamW optimizer [44] with an415

initial learning rate of 1 × 10−3 and weight decay416

of 1× 10−5. We paired this with a Cosine Anneal-417

ing scheduler [45] and a minimum learning rate of418

5 × 10−6. Models trained for 1000 epochs with a419

batch size of 32. We applied early stopping with a420

patience of 20 by monitoring the validation loss. The421

implementation utilized PyTorch, and experiments422

were tracked using Weights & Biases 6.423

6https://wandb.ai/site/

5 Evaluation 424

Evaluating anomaly detection without ground-truth 425

labels necessitates focusing on representation qual- 426

ity and model behavior. We assess our proposed 427

Deep SVDD models (AE, AEwRES) and baseline 428

models, all using HTS-AT extracted embeddings. 429

Our evaluation centers on analyzing their learned la- 430

tent spaces and output anomaly scores to determine 431

which architecture is more effective at distinguishing 432

between normal and anomalous audio loops. 433

Baseline Models We benchmark against two 434

baselines: Isolation Forest (IF) [46] and PCA-based 435

reconstruction error [47]. IF provides a general- 436

purpose, non-parametric anomaly detection compar- 437

ison, while PCA reconstruction error offers a simple 438

linear alternative. This contextualizes the benefits 439

of our deep feature learning approach. PCA-based 440

reconstruction error evaluates whether non-linear 441

feature learning (Deep SVDD) outperforms linear 442

modeling. PCA is trained on normal data, and 443

reconstruction error serves as the anomaly score, 444

contrasting linear and non-linear approaches. All 445

models and baselines use the same embeddings ex- 446

tracted by the Audio Encoder module. 447

PCA Projection Visualization We use PCA 448

to visualize latent spaces in 2D. For Deep SVDD, 449

PCA is applied to final latent representations; for 450

baselines, to Audio Encoder outputs. Scatter plots 451

show the first two components, with points color- 452

coded as normal or anomalous based on anomaly 453

score thresholds (95th percentile from training data). 454

Explained Variance Ratio (EVR) is reported also. 455

Latent Representation Inspection To inter- 456

pret AE and AEwRES representations, we analyze 457

their latent dimension distributions using density 458

histograms. These histograms show the distribution 459

and scale of each dimension. We also generate latent 460

activation heatmaps to visualize activation patterns 461

and consistency across samples and latent dimen- 462

sions. These visualizations offer insights into the 463

structure and characteristics of the learned features. 464

Anomaly Score Distribution We plot anomaly 465

score distributions for all models: Deep SVDD scores 466

use Euclidean distance from the hypersphere center; 467

baselines use their respective metrics. Overlaid his- 468

tograms (training and validation) use a log frequency 469

scale. The 95th percentile of training scores sets the 470

anomaly threshold, shown as a vertical line and used 471

for color-coding and defining normal/anomalous re- 472

gions. 473

Dimensionality reduction (PCA) and baseline 474

modeling (IF, PCA reconstruction error) are per- 475

formed using scikit-learn. Appendix D presents 476

5
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Figure 2. Anomaly score histograms for the bass
dataset. Top row: proposed models (AE, AEwRES);
bottom row: baselines (Section 5). Each plot shows
score distributions for training (yellow) and validation
(blue) data. Red dashed lines mark the 95th percentile
anomaly threshold for training data, labeled per model:
0.005 (AE, AEwRES), 0.575 (IF), 136.316 (PCA Recon-
struction).

the implementation details for the PCA reconstruc-477

tion error. All visualizations, including scatter478

plots, histograms, and heatmaps, are generated us-479

ing Matplotlib and Seaborn Python libraries.480

6 Results481

We analyze Deep SVDD variants (AE, AEwRES)482

compared to baseline methods (IF, PCA reconstruc-483

tion error) on bass and guitar datasets. Variants484

were selected based on preliminary experiments485

demonstrating the benefits of FFM and the cho-486

sen architecture. Anomalies are defined as samples487

with scores above the 95th percentile of the training488

set. Results are visualized in Figures 2, 3, 4, and489

Appendix F. Code and materials are available in the490

accompanying repository 7
491

6.1 Performance on Bass Dataset492

On the bass dataset, Deep SVDD models achieved493

effective separation at lower anomaly score ranges494

than baselines. Both AE and AEwRES produced495

compact score distributions (threshold ≈ 0.005), re-496

sulting in reduced false alarms at this cut-off and497

clear separation between normal and anomalous sam-498

ples. In contrast, IF and PCA reconstruction error499

yielded higher and more variable scores (thresholds500

≈ 0.575 and ≈ 136.3, respectively), indicating less501

precise normalcy definitions and potentially higher502

false positive rates. AEwRES yielded tightly clus-503

tered latent representations, with sharp KDE peaks504

(density ≈ 120), clear PCA separation, and high PC1505

variance (89.6%), indicating better capture of nor-506

mal bass patterns. AE showed broader distributions507

7The link to the repository is not provided due to the peer
review process.

Figure 3. Anomaly score histograms for Guitar dataset.
Top: proposed models (AE, AEwRES); bottom: base-
lines (see Section 5). Each plot shows score distributions
for training (yellow) and validation (blue); red dashed
lines mark anomaly thresholds (95th percentile of train-
ing scores). Thresholds: AE 0.001, AEwRES 0.035, IF
0.529, PCA Reconstruction 96.044.

(peak density ≈ 60), lower variance (74.7%), and 508

less distinct clustering, suggesting a less distinctive 509

latent space than AEwRES. Box plots (Figure 4) 510

confirm that AEwRES and AE assign lower scores to 511

normal data than baselines, with AEwRES showing 512

the most compact distribution and strongest outlier 513

separation. 514

6.2 Performance on Guitar Dataset 515

On the guitar dataset, the AE model produced 516

tightly clustered scores (below 0.001, threshold ≈ 517

0.001), while AEwRES better captured the data’s di- 518

versity, yielding a broader score range (0–0.2, thresh- 519

old≈ 0.035). AEwRES’s latent space exhibited a dis- 520

tinct structure: KDE plots revealed multiple peaks, 521

which can be interpreted as diverse playing styles 522

or techniques captured by the model. For instance, 523

these peaks might correspond to different musical 524

motifs, such as variations in strumming patterns 525

or shifts between finger-style riffs and chord-based 526

progressions. In essence, AEwRES is sensitive to 527

subtle nuances in the performance, adding depth to 528

its anomaly detection capabilities. PCA projections 529

isolated normal data from anomalies. AEwRES 530

explained 93.2% of variance in the first two princi- 531

pal components (PC1=70.1%, PC2=23.1%), versus 532

77.7% for AE, indicating richer latent representa- 533

tions. Additionally, AEwRES heatmaps visualized 534

diverse, structured normal patterns, whereas AE’s 535

space was over-compressed, with sharply peaked 536

KDEs (peak ≈ 160) and less separation in PCA, sug- 537

gesting that AE may miss subtle anomalies. Both 538

Deep SVDD models outperformed the baselines, 539

which struggled with the diversity of the guitar data 540

and exhibited overlap between normal and anoma- 541

lous representations (Appendix F). AEwRES, in 542

particular, maintained improved separation, with 543
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structured latent space and effective thresholding,544

demonstrating superior suitability for the guitar545

dataset.546

6.3 Compartive Performance Sum-547

mary548

Deep SVDD models (AE, AEwRES) outperform IF549

and PCA baselines across datasets, yielding lower550

anomaly scores for normal data and clearer separa-551

tion at detection thresholds (Figure 4). While AE552

achieves high compactness on simpler data (bass), it553

tends to over-compress on diverse datasets (guitar).554

AEwRES enhances feature separability and general-555

ization, effectively modeling complex patterns while556

maintaining separation, particularly on the guitar557

dataset (Appendix F). Thus, AEwRES is preferable558

for loop analysis in varied musical contexts due to559

its better separation and ability to capture pattern560

diversity.561

7 Discussion562

We evaluated automated loop analysis using Deep563

SVDD AE and AEwRES models (integrating FFM564

and HTS-AT), benchmarking against IF and PCA-565

based reconstruction error (Section 5). This compar-566

ison assessed the benefits of deep feature learning567

versus simpler methods. To clearly demonstrate our568

contribution, we emphasized not just raw accuracy569

but also evaluated how well these models captured570

meaningful musical structures, which are vital in571

understanding and reinforcing temporal and hierar-572

chical patterns in music. Indeed, capturing these573

nuances contributes to more effective loop analysis.574

To isolate the impact of residual connections, we also575

compared AEwRES with a standard Autoencoder576

(AE) within the Deep SVDD framework. On both577

bass and guitar datasets, AEwRES outperformed578

baselines (IF, PCA reconstruction error) and the579

AE variant, demonstrating effective feature learning580

for loop analysis. Integrating FFM with HTS-AT581

overcomes fixed-length input limitations (Section582

2), with FFM effectively aggregating temporal in-583

formation for HTS-AT to capture local and global584

dependencies (Appendix E).585

Performance varied between bass and guitar586

datasets, indicating adaptability to different mu-587

sic collections. Indeed, a structured representation588

often provides a clearer pathway for feature iden-589

tification compared to merely compact representa-590

tions. On bass, both AE and AEwRES learned com-591

pact representations, but AEwRES produced a more592

structured latent space. This structural advantage593

became more apparent on the guitar dataset, where594

AE tended to over-compress, a condition where es-595

sential details might be lost, resulting in lower ex-596

plained variance (77.7%) compared to AEwRES597

(93.2%). In essence, while compactness seeks to 598

reduce redundancy, it can inadvertently discard 599

valuable contextual information. Indeed, AEwRES 600

adapted well to the guitar dataset by modeling its 601

variability with a structured latent space, albeit a 602

broader latent representation, as evidenced by PCA 603

plots and explained variance metrics. This enabled 604

Deep SVDD to define normality more effectively, 605

suggesting that such architectures, incorporating el- 606

ements such as residual connections, are well-suited 607

for complex and diverse musical audio. 608

Contextualizing these results, our application of 609

Deep SVDD directly to audio features encoded by 610

HTS-AT supports our hypothesis that such models 611

can form the basis for loop analysis, particularly 612

when designed to capture nuanced temporal and 613

hierarchical information. The effectiveness of the 614

learned representations aligns with findings that em- 615

phasize the practicality of pre-trained foundation 616

models for audio tasks [14, 19]. The AEwRES archi- 617

tecture’s performance echoes the benefits seen from 618

residual connections [29] in other domains. 619

7.1 Possible Applications 620

The proposed method could enable automated qual- 621

ity control and creative discovery in music produc- 622

tion. For quality control, it could flag loops with 623

artifacts (e.g., clicks, phase issues, noise), reduc- 624

ing manual auditing. Its unsupervised design could 625

remove the need for labeled anomalies, with perfor- 626

mance depending on training data representative- 627

ness. Creatively, proposed system could surface un- 628

usual loops for experimental sound design, aligning 629

with serendipitous retrieval [48, 49]. Producers could 630

use high anomaly scores to identify samples with 631

atypical rhythms or textures, aiding exploration. 632

Beyond these applications, the approach also 633

holds potential for integration with Digital Audio 634

Workstations (DAWs), where system’s analysis could 635

alert artists to problematic loops (e.g., timing er- 636

rors, unwanted noise) before production. A more 637

speculative application involves style transfer and 638

genre adaptation. By training the model on a mu- 639

sic collection of a specific genre (e.g., jazz guitar), 640

users could detect deviations that signal potential 641

for cross-genre influence. Moreover, the hybrid 642

approach—utilizing deep audio representations with 643

one-class learning—eliminates the need for large, la- 644

beled datasets, thereby supporting individuals with 645

limited resources. 646

8 Limitations 647

Several limitations should be noted. Our evalua- 648

tion used unsupervised anomaly detection without 649

ground-truth labels, so anomalies are defined heuris- 650

tically via a 95th percentile threshold, which may 651
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Figure 4. Box plots of anomaly score distributions for AE, AEwRES, and baselines (Section 5) on Bass (left)
and Guitar (right) datasets. Eight vertical box plots per panel show training and validation data for each model.
Scores are shown on a logarithmic scale, summarizing medians, quartiles, and outliers.

not be optimal or consistent across data. To ad-652

dress this issue, introducing a small, curated set653

of proxy-labeled or synthetic anomalies could help654

in calibrating the 95th percentile threshold, mak-655

ing our claims more verifiable. This validation set656

could provide an evidence-based metric, allowing657

us to report its precision-recall scores, thus trans-658

forming the current heuristic approach into a more659

robust evaluation strategy. The interpretation of660

anomalies is also subjective and context-dependent.661

Our experiments focused only on bass and guitar662

loops from a specific dataset, limiting generalizabil-663

ity to other instruments, genres, or audio types.664

The dataset’s diversity may not reflect real-world665

audio encountered by users. Methodologically, Deep666

SVDD assumes normal data can be enclosed within667

a single hypersphere in latent space, which may not668

capture complex, multi-modal distributions. Using a669

deep encoder mitigated this, but the HTS-AT archi-670

tecture increases computational demands. Dataset671

biases, such as prevalent playing styles or recording672

qualities, may also affect learned representations673

and performance.674

9 Future Work675

Building upon these findings and limitations, future676

research could proceed in several directions. The-677

matic areas such as generalizability, efficiency, and678

usability can serve as anchors for these directions.679

To enhance generalizability, it is essential to expand680

the assessment to include diverse instruments, gen-681

res, and audio formats. This will help evaluate the682

applicability of the AEwRES-Deep SVDD method683

across various contexts. Incorporating partially an-684

notated datasets or semi-supervised techniques can685

enable more rigorous quantitative evaluation and686

threshold refinement, thereby supporting a better687

generalization. In terms of efficiency, fine-tuning 688

the HTS-AT model for loop analysis or leveraging 689

knowledge distillation could lead to the development 690

of lighter, real-time-capable models. For usability, 691

improvements in workflow integration, such as com- 692

bining loop analysis with tools like transcription 693

and source separation, could refine audio analysis 694

by honing in on anomalous segments. Addition- 695

ally, enhancing the user interface by introducing 696

elements for sensitivity adjustment and facilitating 697

practitioner feedback will boost practical utility. 698

10 Conclusion 699

In conclusion, this work demonstrated that Deep 700

SVDD, coupled with an audio encoder consist of 701

HTS-AT with FFM, offers a viable approach for 702

loop analysis. The AEwRES variant, in particu- 703

lar, showed promise due to its ability to learn dis- 704

criminative latent representations that accommo- 705

date the diversity inherent in complex musical data, 706

compared to the selected baselines (IF and PCA 707

reconstruction error) and the AE variant. While 708

limitations exist regarding the evaluation method- 709

ology and dataset scope, the results indicate the 710

potential of this approach to alleviate challenges in 711

automated audio analysis. By providing a means 712

to automatically identify deviations from normative 713

patterns directly within the audio domain and han- 714

dling variable-length inputs effectively, this research 715

lays the groundwork for future investigations into 716

more nuanced, interpretable, and widely applicable 717

music analysis systems, as elaborated in Section 7.1. 718
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Figure A.1. Architectural overview of the proposed loop detection model. The model comprises two main
components: (left) an Audio Encoder module for hierarchical feature extraction from audio inputs and (right) a
Deep SVDD module for anomaly detection. The Audio Encoder processes input audio through dual pathways
based on duration, utilizing Mel-FilterBank processing, Conv2D layers, the feature fusion mechanism, and a
pre-trained HTS-AT for feature extraction. The Deep SVDD module consists of five encoder layers that transform
features into a latent space, where normal samples (orange dots) are mapped within a hypersphere and abnormal
samples (blue dots) are mapped outside. The architecture enables end-to-end training for unsupervised loop
detection and anomaly identification through distance-based scoring from the learned latent representation. The
illustration of the Audio Encoder is based on the diagram presented by Wu et al. [19].

B Dataset Statistics1098

Table B.1 summarizes a curated set of 1,816 bass1099

and 4,294 guitar samples totaling 2.337 h and 5.9241100

h, respectively. Tempi cover moderate ranges (bass:1101

64–170 BPM, mean 111.779; guitar: 73–170 BPM,1102

mean 108.785), with interquartile spans of 95–1231103

BPM (bass) and 95–120 BPM (guitar). Clips are1104

short (mean durations 4.633 seconds for bass and1105

4.967 seconds for guitar). As illustrated in Fig. B.1,1106

samples are distributed across musical genres and1107

keys.1108

C AutoEncoder Architecture 1109

Figure C.1 presents the AEwRES autoencoder ar- 1110

chitecture inspired by U-Net, comprising a five-layer 1111

encoder and five-layer decoder operating on 1024- 1112

dimensional inputs. The encoder progressively re- 1113

duces dimensionality, which is then reconstructed 1114

by the decoder. Residual connections (dotted) add 1115

the output of encoder layer i to the input of de- 1116

coder layer 5-i; the baseline AE shares the same 1117

architecture but omits these residual links. 1118
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(a)

(b)

Figure B.1. Distribution of curated guitar and bass
samples across (a) musical genres and (b) musical keys.
The height of the bars indicates the count of samples
for each category, with colors differentiating between
bass (blue) and guitar (green). The prevalence of the
’unknown’ category highlights common challenges with
sample library metadata.

D PCA Reconstruction Error1119

Algorithm1120

Principal Component Analysis (PCA) based recon-1121

struction error is a widely used technique for un-1122

supervised anomaly detection [51, 52]. It oper-1123

ates under the assumption that the majority of the1124

training data represents normal behavior, and that1125

this normal data lies predominantly within a lower-1126

dimensional subspace of the original feature space.1127

Anomalies, conversely, are expected to deviate from1128

this normal subspace. PCA is employed to identify1129

this principal subspace from the training data. The1130

anomaly score for any given data point is then cal-1131

culated as the error incurred when attempting to1132

reconstruct the point after projecting it onto this1133

learned normal subspace. Points that deviate sub-1134

stantially from the normal patterns captured by the1135

principal components will exhibit a high reconstruc-1136

tion error.1137

The complete implementation procedure is for-1138

Table B.1. Statistics per instrument of the curated
dataset

Instrument Bass Guitar

Count 1816 4294
Durations (hrs) 2.337 5.924

BPM

mean 111.779 108.785
std 18.854 18.000
min 64.000 73.000
25% 95.000 95.000
50% 114.000 110.000
75% 123.000 120.000
max 170.000 170.000

Duration (secs)

mean 4.633 4.967
std 2.436 1.971
min 0.546 0.417
25% 3.692 4.000
50% 4.364 4.571
75% 5.333 5.647
max 28.346 22.700

mally described in Algorithm D.1. 1139
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Figure C.1. The architecture of the autoencoder (AE) network with residual connections (dotted arrows)
(AEwRES). The model follows a symmetric design (inspired by U-net architecture [50]) with an encoder (left)
and decoder (right). The input dimension of 1024 is progressively reduced through five encoder layers and then
reconstructed through five decoder layers. Each layer comprises a linear transformation followed by BatchNorm,
ELU activation (alpha=0.1), and Dropout (rate=0.2). Residual connections add the output of encoder layer i to
the input of decoder layer 5− i. Note that the base AE architecture is identical to that of AEwRES, but without
any residual connections.

E Preliminary Experiments1140

This appendix details preliminary experiments con-1141

ducted to validate key design choices and select1142

promising model architectures for the main evalu-1143

ation presented in Section 6. To facilitate rapid1144

iteration and efficient hyperparameter exploration,1145

these initial tests were performed on a smaller, rep-1146

resentative subset of the bass dataset (described in1147

Section 4.1), comprising 392 bass loops from the1148

MusicRadar catalog 8. The primary objectives were1149

to:1150

1. Evaluate the effectiveness of the FFM described1151

in our methodology (Section 3).1152

2. Compare different network architectures to se-1153

lect the most promising candidates for the sub-1154

sequent evaluation in Section 6.1155

First, we assessed the impact of incorporating1156

the FFM by comparing model variants (AE and1157

AEwRES) trained with and without it. The results1158

demonstrated the benefits of FFM. Models utiliz-1159

ing FFM converged faster and achieved improved1160

representational quality. Specifically, FFM facili-1161

tated the models to capture underlying patterns,1162

as evidenced by latent space distributions (KDE1163

plots) and tighter clustering of normal samples in1164

8https://www.musicradar.com/news/tech/

sampleradar-392-free-bass-guitar-samples-537264

PCA projections (Figure E.2) and clearer separation 1165

in anomaly score distributions (Figure E.1) com- 1166

pared to models without it. Consequently, FFM 1167

was adopted for subsequent architecture compar- 1168

isons and main experiments (Section 6). 1169

Following FFM validation, hyperparameter tuning 1170

was conducted for AE and AEwRES architectures 1171

to optimize performance. The tuned AE exhibited a 1172

negatively skewed latent distribution ranging from - 1173

1.0 to 0.25, while AEwRES showed a more balanced, 1174

symmetrical distribution centered around zero (- 1175

0.4 to 0.4). Feature representation heatmaps re- 1176

vealed higher contrast in AEwRES, suggesting more 1177

distinct feature capture. Anomaly detection per- 1178

formance indicated successful separation of normal 1179

samples and potential anomalies in both architec- 1180

tures; however, AEwRES achieved a lower anomaly 1181

threshold (q=0.95 ≈ 0.009) compared to AE (≈ 1182

0.016), potentially indicating enhanced precision. 1183

During tuning, AEwRES generally demonstrated 1184

faster convergence and more stable training dynam- 1185

ics. 1186

In summary, the optimized AEwRES configura- 1187

tion showed advantages on this subset in terms of 1188

representation balance, feature distinctiveness, po- 1189

tential precision, and training efficiency. Nonethe- 1190

less, given that AE also performed competently af- 1191

ter tuning and represents a different architectural 1192

approach, we selected both configurations for the 1193

further evaluations on the full datasets presented in 1194
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Algorithm D.1 PCA Reconstruction Error for Anomaly Detection

Require: Training data embeddings Xtrain ∈ Rntrain×d

Require: Evaluation data embeddings Xeval ∈ Rneval×d

Require: Number of components ncomponents (integer, float, or None)
Require: Variance threshold θvar (default 0.95)
Require: standardize (boolean)
1: Let X′

train = Xtrain and X′
eval = Xeval

2: if standardize is True then
3: Compute mean µ and standard deviation σ from Xtrain

4: Standardize: X′
train ← (Xtrain − µ)/σ

5: Standardize: X′
eval ← (Xeval − µ)/σ

6: end if
7: if ncomponents is None then
8: Fit PCA on X′

train (full rank)
9: Compute cumulative explained variance ratios

10: k ← min{j :
∑j

i=1 variancei ≥ θvar}
11: nselected ← k
12: else if ncomponents is float and 0 < ncomponents < 1 then
13: nselected ← ncomponents ▷ as explained variance
14: else
15: nselected ← ncomponents ▷ as integer
16: end if
17: Fit PCA model on X′

train with nselected components
18: Initialize empty lists etrain and eeval
19: for each x in X′

train do ▷ Calculate training errors
20: Project: z← PCA transform(x)
21: Reconstruct: x̂← PCA inverse transform(z)

22: Compute error: e←
∑d

i=1(xi − x̂i)
2

23: Append e to etrain
24: end for
25: for each x in X′

eval do ▷ Calculate evaluation errors
26: Project: z← PCA transform(x)
27: Reconstruct: x̂← PCA inverse transform(z)

28: Compute error: e←
∑d

i=1(xi − x̂i)
2

29: Append e to eeval
30: end for
31: return array of training errors etrain, array of evaluation errors eeval

Section 6.1195 F Main Experiment Supple- 1196

mentary Materials 1197

This appendix provides additional visualizations for 1198

the results presented in Section 6. Figures F.1 and 1199

F.2 presented in this appendix illustrate the perfor- 1200

mance of the models on the bass and guitar datasets, 1201

respectively. They provide a more detailed analy- 1202

sis of the results, discussed in Section 6. The fig- 1203

ures show the density distributions of latent values 1204

across multiple dimensions, PCA scatter plots, and 1205

heatmaps of latent space representations, for train- 1206

ing and vlidation phases. These visualizations are 1207

useful for understanding the behavior of the models 1208

and how they capture the underlying patterns in 1209

the data. 1210
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(a)

(b)

Figure E.1. The figure displays anomaly score distribution histograms for AE and AEwRES applied to the
subset of bass dataset (392 samples). The top row (a) shows the scores obtained with FFM and the bottom row
(b) displays the scores obtained witout FFM. Each plot depicts the frequency distribution of anomaly scores for
both training data (yellow) and validation data (blue), with red dashed lines indicating the anomaly threshold set
at the 95th percentile of the training scores.
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(a)

(b)

(c)

(d)

Figure E.2. The figure presents three visualizations of latent space representations from AE and AEwRES models
applied to the subset of bass dataset (392 samples). The first and third rows (a, c) show the results obtained with
FFM and the second and fourth rows (b, d) display the results obtained witout FFM. For each row, the left panel
displays density distributions of latent values across multiple dimensions. The center panel shows a PCA scatter
plot projecting the latent space onto two principal components, with blue points representing normal samples
and red points indicating anomalies. The right panel features a heatmap of latent space representations across 32
dimensions (x-axis) for N samples (y-axis), with color intensity reflecting latent values.
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(a)

(b)

(c)

(d)

Figure F.1. Comparative analysis of (a,b) AE and (c,d) AEwRES models using bass dataset, as described in
Section 4.1. The first two rows (a,b) show the results obtained by AE model during (a) training and (b) validatio
phases. The second two rows (c,d) displays the results obtained by AEwRES model during (c) training and
(d) validation phases. For each row, the left panel displays density distributions of latent values across multiple
dimensions. The center panel shows a PCA scatter plot projecting the latent space onto two principal components,
with blue points representing normal samples and red points indicating anomalies. The right panel features a
heatmap of latent space representations across 32 dimensions (x-axis) for N samples (y-axis), with color intensity
reflecting latent values.
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(a)

(b)

(c)

(d)

Figure F.2. Comparative analysis of (a,b) AE and (c,d) AEwRES models using guitar dataset, as described in
Section 4.1. The first two rows (a,b) show the results obtained by AE model during (a) training and (b) validatio
phases. The second two rows (c,d) displays the results obtained by AEwRES model during (c) training and
(d) validatio phases. For each row, the left panel displays density distributions of latent values across multiple
dimensions. The center panel shows a PCA scatter plot projecting the latent space onto two principal components,
with blue points representing normal samples and red points indicating anomalies. The right panel features a
heatmap of latent space representations across 32 dimensions (x-axis) for N samples (y-axis), with color intensity
reflecting latent values.
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