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Abstract

We propose an unsupervised framework for analyz-
ing audio patterns in musical loops using deep fea-
ture extraction and anomaly detection. Unlike prior
methods limited by fixed input lengths, handcrafted
features, or domain constraints, our approach com-
bines a pre-trained Hierarchical Token-semantic
Audio Transformer (HTS-AT) and Feature Fusion
Mechanism (FFM) to generate representations from
variable-length audio. These embeddings are an-
alyzed by Deep Support Vector Data Description
(Deep SVDD), which models normative patterns
in a compact latent space. Experiments on bass
and guitar datasets show our Deep SVDD models—
especially with residual autoencoders—outperform
baselines like Isolation Forest and PCA, achieving
better anomaly separation. Our work provides a
flexible, unsupervised method for effective pattern
discovery in diverse audio samples.

1 Introduction

Musical loops are essential in modern music pro-
duction, particularly in genres such as hip-hop and
Electronic music [1, 2]. These repeatable audio seg-
ments provide rhythmic, melodic, or harmonic foun-
dations [3]. Producers and DJs often search libraries
or sample existing tracks for loops that match their
artistic goals [4, 5]. Effective pattern analysis within
loops is crucial for selecting compatible elements [6,
7] and identifying variations or inconsistencies in
large or generated music collections.

AT’s growing role in music requires tools that
emphasize user control. As highlighted in broader
discussions on Al-driven music generation systems
(MGS) [8, 9], there is a demand for technologies
that move beyond ’black-box’ paradigms [10]. Users
(creators) seek systems customizable to their work-
flows, effective with private data, and transparent
in operation Civit et al. [11]. Our unsupervised
pattern analysis approach addresses these demands.
We hypothesize unsupervised methods will adapt
to user collections and styles without pre-labeled
datasets (Section 7.1).

In Music Information Retrieval (MIR) [12, 13],
loop detection constitutes a specialized audio pattern
recognition task [14]. This encompasses subtasks like
classification and tagging [15—-17], as well as extract-
ing features to identify and categorize signals [18].

Leveraging deep learning (DL) advancements, par-
ticularly pre-trained encoders that generalize across
datasets [19], supports our hypothesis that such
models can underpin loop analysis by capturing
temporal and hierarchical details. Despite progress
in DL for audio pattern recognition [14, 19], loop
analysis methods often face limitations.

Traditional signal processing and structural analy-
sis techniques [20-23] can struggle with the complex-
ity of real-world music and often require heuristic
adjustments. Neural networks may require fixed-
length inputs [7, 24], restrict variable-duration loops,
or need iterative feedback or labeled data [25], which
limits scalability. These challenges define three core
design criteria: variable-length support, unsuper-
vised learning, and structural flexibility. Solutions
should enable variable-length analysis, accommodate
diverse structures, and work unsupervised without
domain constraints.

In this direction, this paper poses three research
questions: (1) How can unsupervised anomaly detec-
tion frameworks support adaptable, variable-length
audio loop pattern analysis for user-specific music
collections? (2) To what extent can such frameworks
learn 'normative’ patterns and identify meaningful
deviations? (3) How do architectural choices in-
fluence performance in unsupervised audio pattern
analysis?

To address this, we propose framing loop pattern
analysis as an unsupervised anomaly detection prob-
lem. The insight is that normative patterns in a
dataset or style can be learned from unlabeled data,
enabling personalized adaptation without labeled
sets. Anomalies—deviations from norms—offer in-
sights into variations, errors for quality control, or
stylistic elements fostering creative discovery (elab-
orated in Section 7). Our method integrates a pre-
trained Hierarchical Token-semantic Audio Trans-
former (HTS-AT) [26], selected for capturing both lo-
cal and global temporal dependencies, with a Feature
Fusion Mechanism (FFM) [19] to produce a fixed-
dimensional embedding for variable inputs. A Deep
Support Vector Data Description (Deep SVDD) net-
work [27] trains on these to learn a hypersphere
enclosing normal instances.

In response to research questions, this work makes
the following contributions:

e We introduce and implement an unsupervised
framework for audio loop pattern analysis, com-
bining HTS-AT with FFM for flexible feature
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extraction, and Deep SVDD for anomaly-based
identification directly from the learned audio
embeddings. This approach offers a pathway
to data-driven insights from user-specific collec-
tions, aligning with the need for more adaptable
AT tools.

e We demonstrate the system’s capability to pro-
cess variable-length audio inputs through the
FEFM, thereby overcoming a limitation of many
prior fixed-length approaches and enhancing
practical applicability.

e We provide an empirical evaluation on curated
datasets of bass and guitar loops, showcasing
the model’s proficiency in learning represen-
tations of normative patterns and effectively
identifying meaningful deviations.

e We conduct a comparative analysis of different
Deep SVDD encoder architectures (a standard
autoencoder versus a residual autoencoder), of-
fering insights into architectural choices that
benefit the modeling of diverse and larger audio
data.

e We benchmark our proposed method against
standard unsupervised anomaly detection tech-
niques (Isolation Forest (IF) and PCA-based
reconstruction error), demonstrating the en-
hanced representational power and discrimina-
tive ability of the Deep SVDD approach when
operating on HTS-AT embeddings.

The remainder of this paper is structured as fol-
lows: Section 2 reviews relevant prior work. Sec-
tion 3 details the proposed architecture and its com-
ponents. Section 4 describes the datasets, prepro-
cessing steps, and training procedures. Section 5
outlines the evaluation and baseline methods. Sec-
tion 6 presents the experimental results. Section 7
discusses the findings and their implications, fol-
lowed by Sections 8 and 9, which address limitations
and outlines future research directions. Finally, Sec-
tion 10 concludes this paper.

2 Related Works

2.1 Audio Pattern Recognition

Recent deep learning advances have significantly
improved audio pattern recognition. Pretrained
Audio Neural Networks (PANNSs) [14], trained on
large datasets such as AudioSet [16], provide robust
features for tasks like audio tagging, scene classifi-
cation, and event detection [28]. CNNs, ResNets
[29], and MobileNets [30] are commonly used, typ-
ically processing Mel-spectrograms [14]. Although
1D CNNs on waveforms (e.g., DaiNet, LeeNet) have
been explored, spectrogram-based models remain

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

superior due to their ability to capture frequency
patterns [14]. Wavegram-Logmel-CNN [14] inte-
grates learned and hand-crafted time-frequency fea-
tures, achieving state-of-the-art AudioSet tagging.
Methods like FFM address variable-length inputs,
showing promise for loop detection [19]. Newer mod-
els such as HTS-AT [19] further enhance sequential
audio data modeling, outperforming earlier PANNs.

2.2 Loop Selection and Extraction

Early research on music loop identification relied
on signal processing and rule-based methods, using
handcrafted features (e.g., chroma, MFCCs) and
heuristics to detect repeating patterns and estimate
similarity [7, 31-36]. While approaches such as Non-
negative Tensor Factorization (NTF) [36] and psy-
choacoustic modeling [33, 34] were explored, these
techniques required extensive tuning and struggled
with the complexity of real-world music [7]. Re-
cent advances address these limitations with neural
network-based solutions.

Building on the shift toward neural network ap-
proaches, Chen et al. [7] proposed NN models for
estimating compatibility in large libraries. Their ap-
proach included a CNN on combined time-frequency
representations of loop pairs and a Siamese Neu-
ral Network (SNN) comparing separate embeddings.
The models were trained on Hip-Hop pairs from
the Free Music Archive (FMA) dataset [37]. Loops
were time-stretched to 2 seconds and converted to
log mel-spectrograms. These models outperformed
AutoMashUpper in subjective tests [7]. However,
their use of fixed-length inputs limits handling of
variable durations.

In a related line of inquiry, Jakubik [25] devel-
oped an active learning system for retrieving inter-
esting loops and samples in electronic tracks. The
system refined results via user interaction from an
example. It compared MFCCs with unsupervised
features from autoencoders and Bootstrap Your
Own Latent (BYOL) contrastive learning [38], using
sampleswap' data. Feature learning enhanced re-
call over MFCCs, especially on representative data,;
however, performance varied by genre (e.g., Dubstep
challenges) and relied on user feedback. This lim-
ited automation, and as authors reported, distinct
samples were harder to find than repeating loops
[25].

Shifting focus from audio features, Han et al. [24]
addressed symbolic MIDI loop generation for 8-bar
bass and drum loops via a two-stage process. First,
a Vector Quantized Variational Autoencoder (VQ-
VAE) compressed input into latent codes. Then,
an autoregressive generator produced new mate-
rial. A cross-domain loop detector, trained on

lhttps://www.sampleswap.org/
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Figure 1. The illustrated system comprises an Audio
Encoder and a Deep SVDD module. Within the Audio
Encoder, short clips (< 10 seconds) are padded and pro-
cessed via Mel-FilterBank and Conv2D layers, while long
clips (> 10 seconds) are sampled and processed with
additional MergeConv2D and AFF layers. Both paths
merge at the pre-trained HTS-AT, which extracts the
embeddings. The Deep SVDD module encodes features,
maps them in latent space, and computes distance-based
anomaly scores. See Appendix A for the detailed archi-
tecture diagram.

1,000 looperman® audio loops using One-Class Deep
SVDD [27], identified domain-invariant patterns in
bar-to-bar correlation matrices. The same detector
was used to extract MIDI loops from the Lakh MIDI
Dataset®. Limitations include fixed 8-bar windows
restricting flexibility. Focusing on bar-to-bar corre-
lation may miss higher-level audio nuances, similar
to [7].

3 Methodology

This section presents our methodology for identify-
ing repetitive patterns in audio loops by framing the
task as anomaly detection. We learn a representa-
tion of 'normal’ loop structures, enabling analysis of
deviations as ’anomalies’. As shown in Figure 1, our
system consists of two stages: an Audio Encoder
and a Deep SVDD module. The Audio Encoder
generates embeddings from input audio using FFM
and HTS-AT models, which are then processed by
the Deep SVDD. A detailed architecture illustration
is available in Appendix A.

The Audio Encoder uses a dual-path strategy

2https://www.looperman. com/
Shttps://colinraffel.com/projects/lmd/
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based on input duration to handle variable lengths
and capture both local and global details. Inputs
< 10 seconds are repeated and padded for consis-
tency; longer inputs are split into three 10-second
segments for local analysis and a downsampled
global segment. All audio is converted to Mel-
spectrograms, processed by initial Conv2D layers,
and, for longer inputs, local features are merged and
fused with global features via Attention Feature Fu-
sion (AFF; see Section 3.1). The resulting features,
either from padded short inputs or fused long inputs,
are passed to the HTS-AT model (Section 3.2). The
Audio Encoder’s output forms the embedding for
the Deep SVDD module.

These embeddings are then processed by the Deep
SVDD module (Section 3.3), which consists of five en-
coder layers that map them into a lower-dimensional
latent space. In this space, a hypersphere is learned
to enclose 'normal’ audio patterns, with anomalies
lying outside. The embedding’s distance from the
center serves as a score for anomaly detection. Im-
plementation details of each component follow in
the next subsections.

3.1 Feature Fusion Mechanism

To address variable audio input lengths—a limita-
tion in prior work (Section 2)—we implement the
FFM, following Wu et al. [19]. This mechanism
manages differing audio clip lengths in the Audio
Encoder by ensuring consistent processing dimen-
sions and integrating multi-scale information. Clips
of d-seconds or less are repeated and padded to

d-seconds; longer clips use a dual representation:
1. Global: Downsample the whole clip to d-
seconds.

2. Local: Three d-second segments are randomly
sliced from the beginning (first 1/3), middle
(second 1/3), and end (final 1/3) of the clip.

Conv2D layers extract features from Mel-
spectrograms. For long clips, features from the local
segments are further consolidated via an additional
Conv2D layer. Long-clip fusion uses the Attention
Feature Fusion (AFF) module from Dai et al. [39].
Let Fj,cq: denote the consolidated local features and
Fyiobal the global features. The AFF module fuses
these inputs by computing a dynamic, content-aware
weighted average. The final fused feature map, Z,
is calculated as:

Z = M(Eocal + quobal) & Eocal
+ (1 - M(Flocal + Fglobal)) oY Fglobal
where ® represents element-wise multiplication.

The attention map M(-) is generated by a Multi-
Scale Channel Attention Module (MS-CAM) [39],

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248

249
250
251
252
253
254
255
256

257
258

259
260
261

262

264
265
266
267
268
269
270
271

272

273
274
275

NLDL
#32


https://www.looperman.com/
https://colinraffel.com/projects/lmd/

NLDL

#32

276
277
278
279
280

281

282

283
284
285
286
287
288
289
290
291

292

293
294
295

296

297
298
299
300
301
302
303
304
305
306
307
308
309
310

311

312

313
314
315
316
317
318
319
320
321
322
323
324

NLDL 2026 Full Paper Submission #32.

which combines both local and global channel con-
texts to adaptively determine the fusion weights.
This allows the model to prioritize the most rele-
vant information from the dual representations. The
fused map is then input to the HT'S-AT module.

3.2 Hierarchical Token-semantic Au-
dio Transformer

We employ HTS-AT [26] as our audio feature ex-
tractor due to its ability to efficiently model hi-
erarchical audio structures. Its design integrates
windowed attention, limiting self-attention to local
M x M regions for computational efficiency, and
patch-merging, which reduces sequence length in
deeper layers. For an input of ft patch tokens with
latent dimension D, windowed attention achieves
linear complexity in sequence length:

Q(WA) = O(ftD* + M? ftD) (2)

This approach avoids the quadratic complexity
of global attention, which is a bottleneck for long
sequences:

Q(GA) = O(ftD? + ft*D) (3)

Patch-merging follows groups of transformer
blocks, merging adjacent patches (e.g., down-

sampling a % X % token map with dimension D
to % X % and projecting to 2D), which further

reduces sequence length and computation [26].

Instead of using the HTS-AT classification head,
we use the model as a feature extractor, aggregating
output tokens from the transformer blocks into a sin-
gle audio embedding vector. We employ pre-trained
HTS-AT weights, trained on a combination of music,
Audioset, and LAION-Audio-630k datasets, from
the LAION-CLAP model (HuggingFace) *. For more
details of the HT'S-AT’s internal workings, please
refer to Chen et al. [26].

3.3 Deep Support Vector Data De-
scription

The final stage of our system uses Deep SVDD [27],
an unsupervised anomaly detection method based
on classical SVDD [40]. We frame audio loop pattern
analysis as anomaly detection: common or struc-
turally coherent loop patterns are 'normal,” while
novel or divergent ones are ’anomalies.’

Deep SVDD is well-suited for our task because
its unsupervised approach enables direct learning
from large, unlabeled audio loop collections. This
supports our aim for adaptable systems without
manual annotation. Deep SVDD also learns a com-
pact, data-driven boundary of normality by mapping

4nttps://huggingface.co/lukewys/laion_clap/tree/
main
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audio embeddings into a minimal hypersphere via
neural network encoder layers (see Figure A.1). This
approach lets the network capture the shared charac-
teristics of ‘'normal’ loop data and adapt to diverse
musical characteristics, as demonstrated in related
work [24].

The Deep SVDD module receives audio embed-
dings z from the encoder and maps them via a
network ¢(-; W) to a latent space. The objective
is to minimize the hypersphere volume (center c,
radius R), enclosing most 'normal’ patterns. As
shown by [27], this can be formulated as:

N L
1 A
min > {6z W) = el* + 5D IWilly - (4)
i=1 =1

where the first term penalizes distances from the
center ¢ for N normal training samples, and the
second term is a network weight decay regularizer
(with L layers and Frobenius norm |- |r). The center
c is often fixed as the mean of initial network outputs
for the training data or can be learned.

During training on representative 'normal’ loop
patterns, the network ¢ is optimized to learn the
common factors of variation, effectively pulling their
latent representations towards the hypersphere’s cen-
ter c. Consequently, loop patterns that deviate sig-
nificantly from these learned commonalities will be
mapped further from ¢ in the latent space. The
anomaly score S(x) for a given input loop x (which
yields embedding z) is then its squared Euclidean
distance to the center c:

S(z) = [l¢(x) — cl® (5)

A lower score indicates that the loop’s character-
istics closely resemble the 'normal’ patterns learned
during training, while a higher score signifies a devi-
ation, marking it as ’anomalous’ or distinct. This
score is the final output of the Deep SVDD module,
providing a quantifiable measure to identify poten-
tially interesting, unusual, or structurally divergent
audio loops within a collection.

4 Experimental Setup

4.1 Data

We curated a dataset of 6110 royalty-free guitar and
bass WAV samples (2.34 hours bass, 5.92 hours gui-
tar) from MusicRadar [41]. Due to redistribution
restrictions, the dataset cannot be shared. Metadata
(genre, key, BPM) was extracted from file and folder
names; BPM was refined using deeprhythm [42]
when differing by over 10. Durations were calcu-
lated with librosa®. Most samples lack reliable

Shttps://librosa.org/doc/latest/index.html
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genre/key labels due to metadata inconsistencies,
but the dataset’s diversity enables evaluation of the
model’s ability to distinguish typical from anoma-
lous patterns. Appendix B details tempo, duration,
and distribution statistics. We split the data into
bass-only and guitar-only subsets with an 80/20
training/validation split for hyperparameter tuning
and early stopping. No test set was reserved, as
the focus was unsupervised learning. Instruments
were analyzed separately to account for their distinct
characteristics and to evaluate the impact of feature
sets on Deep SVDD training.

4.2 Data Preprocessing

Audio samples were resampled to 48 kHz and con-
verted to Mel-spectrograms using STFT (window
size 1024, hop size 480, 64 Mel filter banks), follow-
ing Wu et al. [19]. This yields (T = 1024, F' = 64)
spectral representations for 10-second segments, as
input to the Audio Encoder described in Section 3.
Variable-length inputs were accommodated by the
dual-path strategy (Section 3.1). A pre-trained,
frozen HTS-AT encoder (Section 3.2) was used in
inference mode, producing (1,1024) embeddings pre-
computed for all samples and fed directly to Deep
SVDD (Section 3.3).

4.3 Hyperparameters and Training
Details

We implemented Deep SVDD using two neural net-
work architectures: a standard autoencoder (AE)
(similar to the one utilized by [24]) and an autoen-
coder with residual connections (AEwRES). Both
architectures comprise multiple fully connected lay-
ers with ELU activations [43]. We employed dropout
regularization and batch normalization. Training
used two phases. In AE pre-training, the autoen-
coder learned a compressed data representation by
training on pre-computed embeddings with a Mean
Squared Error (MSE) reconstruction loss. For Deep
SVDD fine-tuning, we discarded the decoder and
fine-tuned the encoder using the Deep SVDD ob-
jective [27]. This minimized the volume of the hy-
persphere enclosing normal data embeddings. Both
phases utilized the AdamW optimizer [44] with an
initial learning rate of 1 x 1072 and weight decay
of 1 x 107°. We paired this with a Cosine Anneal-
ing scheduler [45] and a minimum learning rate of
5 x 1075, Models trained for 1000 epochs with a
batch size of 32. We applied early stopping with a
patience of 20 by monitoring the validation loss. The
implementation utilized PyTorch, and experiments
were tracked using Weights & Biases .

Shttps://wandb.ai/site/
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5 Evaluation

Evaluating anomaly detection without ground-truth
labels necessitates focusing on representation qual-
ity and model behavior. We assess our proposed
Deep SVDD models (AE, AEwWRES) and baseline
models, all using HTS-AT extracted embeddings.
Our evaluation centers on analyzing their learned la-
tent spaces and output anomaly scores to determine
which architecture is more effective at distinguishing
between normal and anomalous audio loops.

Baseline Models We benchmark against two
baselines: Isolation Forest (IF) [46] and PCA-based
reconstruction error [47]. IF provides a general-
purpose, non-parametric anomaly detection compar-
ison, while PCA reconstruction error offers a simple
linear alternative. This contextualizes the benefits
of our deep feature learning approach. PCA-based
reconstruction error evaluates whether non-linear
feature learning (Deep SVDD) outperforms linear
modeling. PCA is trained on normal data, and
reconstruction error serves as the anomaly score,
contrasting linear and non-linear approaches. All
models and baselines use the same embeddings ex-
tracted by the Audio Encoder module.

PCA Projection Visualization We use PCA
to visualize latent spaces in 2D. For Deep SVDD,
PCA is applied to final latent representations; for
baselines, to Audio Encoder outputs. Scatter plots
show the first two components, with points color-
coded as normal or anomalous based on anomaly
score thresholds (95th percentile from training data).
Explained Variance Ratio (EVR) is reported also.

Latent Representation Inspection To inter-
pret AE and AEwRES representations, we analyze
their latent dimension distributions using density
histograms. These histograms show the distribution
and scale of each dimension. We also generate latent
activation heatmaps to visualize activation patterns
and consistency across samples and latent dimen-
sions. These visualizations offer insights into the
structure and characteristics of the learned features.

Anomaly Score Distribution We plot anomaly
score distributions for all models: Deep SVDD scores
use Euclidean distance from the hypersphere center;
baselines use their respective metrics. Overlaid his-
tograms (training and validation) use a log frequency
scale. The 95th percentile of training scores sets the
anomaly threshold, shown as a vertical line and used
for color-coding and defining normal/anomalous re-
gions.

Dimensionality reduction (PCA) and baseline
modeling (IF, PCA reconstruction error) are per-
formed using scikit-learn. Appendix D presents
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Figure 2. Anomaly score histograms for the bass
dataset. Top row: proposed models (AE, AEwWRES);
bottom row: baselines (Section 5). Each plot shows
score distributions for training (yellow) and validation
(blue) data. Red dashed lines mark the 95th percentile
anomaly threshold for training data, labeled per model:
0.005 (AE, AEwRES), 0.575 (IF), 136.316 (PCA Recon-
struction).

the implementation details for the PCA reconstruc-
tion error. All visualizations, including scatter
plots, histograms, and heatmaps, are generated us-
ing Matplotlib and Seaborn Python libraries.

6 Results

We analyze Deep SVDD variants (AE, AEWRES)
compared to baseline methods (IF, PCA reconstruc-
tion error) on bass and guitar datasets. Variants
were selected based on preliminary experiments
demonstrating the benefits of FFM and the cho-
sen architecture. Anomalies are defined as samples
with scores above the 95th percentile of the training
set. Results are visualized in Figures 2, 3, 4, and
Appendix F. Code and materials are available in the
accompanying repository ”

6.1 Performance on Bass Dataset

On the bass dataset, Deep SVDD models achieved
effective separation at lower anomaly score ranges
than baselines. Both AE and AEwRES produced
compact score distributions (threshold =~ 0.005), re-
sulting in reduced false alarms at this cut-off and
clear separation between normal and anomalous sam-
ples. In contrast, IF and PCA reconstruction error
yielded higher and more variable scores (thresholds
~ 0.575 and =~ 136.3, respectively), indicating less
precise normalcy definitions and potentially higher
false positive rates. AEwWRES yielded tightly clus-
tered latent representations, with sharp KDE peaks
(density ~ 120), clear PCA separation, and high PC1
variance (89.6%), indicating better capture of nor-
mal bass patterns. AE showed broader distributions

"The link to the repository is not provided due to the peer
review process.
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Figure 3. Anomaly score histograms for Guitar dataset.
Top: proposed models (AE, AEWRES); bottom: base-
lines (see Section 5). Each plot shows score distributions
for training (yellow) and validation (blue); red dashed
lines mark anomaly thresholds (95th percentile of train-
ing scores). Thresholds: AE 0.001, AEwWRES 0.035, IF
0.529, PCA Reconstruction 96.044.

(peak density ~ 60), lower variance (74.7%), and
less distinct clustering, suggesting a less distinctive
latent space than AEwRES. Box plots (Figure 4)
confirm that AEwWRES and AE assign lower scores to
normal data than baselines, with AEwRES showing
the most compact distribution and strongest outlier
separation.

6.2 Performance on Guitar Dataset

On the guitar dataset, the AE model produced
tightly clustered scores (below 0.001, threshold =
0.001), while AEWRES better captured the data’s di-
versity, yielding a broader score range (0-0.2, thresh-
old ~ 0.035). AEwRES’s latent space exhibited a dis-
tinct structure: KDE plots revealed multiple peaks,
which can be interpreted as diverse playing styles
or techniques captured by the model. For instance,
these peaks might correspond to different musical
motifs, such as variations in strumming patterns
or shifts between finger-style riffs and chord-based
progressions. In essence, AEWRES is sensitive to
subtle nuances in the performance, adding depth to
its anomaly detection capabilities. PCA projections
isolated normal data from anomalies. AEwRES
explained 93.2% of variance in the first two princi-
pal components (PC1=70.1%, PC2=23.1%), versus
77.7% for AE, indicating richer latent representa-
tions. Additionally, AEwWRES heatmaps visualized
diverse, structured normal patterns, whereas AE’s
space was over-compressed, with sharply peaked
KDEs (peak =~ 160) and less separation in PCA, sug-
gesting that AE may miss subtle anomalies. Both
Deep SVDD models outperformed the baselines,
which struggled with the diversity of the guitar data
and exhibited overlap between normal and anoma-
lous representations (Appendix F). AEwRES, in
particular, maintained improved separation, with
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structured latent space and effective thresholding,
demonstrating superior suitability for the guitar
dataset.

6.3 Compartive Performance Sum-
mary

Deep SVDD models (AE, AEwRES) outperform IF
and PCA baselines across datasets, yielding lower
anomaly scores for normal data and clearer separa-
tion at detection thresholds (Figure 4). While AE
achieves high compactness on simpler data (bass), it
tends to over-compress on diverse datasets (guitar).
AEwRES enhances feature separability and general-
ization, effectively modeling complex patterns while
maintaining separation, particularly on the guitar
dataset (Appendix F). Thus, AEWRES is preferable
for loop analysis in varied musical contexts due to
its better separation and ability to capture pattern
diversity.

7 Discussion

We evaluated automated loop analysis using Deep
SVDD AE and AEwRES models (integrating FFM
and HTS-AT), benchmarking against IF and PCA-
based reconstruction error (Section 5). This compar-
ison assessed the benefits of deep feature learning
versus simpler methods. To clearly demonstrate our
contribution, we emphasized not just raw accuracy
but also evaluated how well these models captured
meaningful musical structures, which are vital in
understanding and reinforcing temporal and hierar-
chical patterns in music. Indeed, capturing these
nuances contributes to more effective loop analysis.
To isolate the impact of residual connections, we also
compared AEwWRES with a standard Autoencoder
(AE) within the Deep SVDD framework. On both
bass and guitar datasets, AEwWRES outperformed
baselines (IF, PCA reconstruction error) and the
AE variant, demonstrating effective feature learning
for loop analysis. Integrating FFM with HTS-AT
overcomes fixed-length input limitations (Section
2), with FFM effectively aggregating temporal in-
formation for HTS-AT to capture local and global
dependencies (Appendix E).

Performance varied between bass and guitar
datasets, indicating adaptability to different mu-
sic collections. Indeed, a structured representation
often provides a clearer pathway for feature iden-
tification compared to merely compact representa-
tions. On bass, both AE and AEwRES learned com-
pact representations, but AEwWRES produced a more
structured latent space. This structural advantage
became more apparent on the guitar dataset, where
AE tended to over-compress, a condition where es-
sential details might be lost, resulting in lower ex-
plained variance (77.7%) compared to AEwRES

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(93.2%). In essence, while compactness seeks to
reduce redundancy, it can inadvertently discard
valuable contextual information. Indeed, AEwWRES
adapted well to the guitar dataset by modeling its
variability with a structured latent space, albeit a
broader latent representation, as evidenced by PCA
plots and explained variance metrics. This enabled
Deep SVDD to define normality more effectively,
suggesting that such architectures, incorporating el-
ements such as residual connections, are well-suited
for complex and diverse musical audio.

Contextualizing these results, our application of
Deep SVDD directly to audio features encoded by
HTS-AT supports our hypothesis that such models
can form the basis for loop analysis, particularly
when designed to capture nuanced temporal and
hierarchical information. The effectiveness of the
learned representations aligns with findings that em-
phasize the practicality of pre-trained foundation
models for audio tasks [14, 19]. The AEwRES archi-
tecture’s performance echoes the benefits seen from
residual connections [29] in other domains.

7.1 Possible Applications

The proposed method could enable automated qual-
ity control and creative discovery in music produc-
tion. For quality control, it could flag loops with
artifacts (e.g., clicks, phase issues, noise), reduc-
ing manual auditing. Its unsupervised design could
remove the need for labeled anomalies, with perfor-
mance depending on training data representative-
ness. Creatively, proposed system could surface un-
usual loops for experimental sound design, aligning
with serendipitous retrieval [48, 49]. Producers could
use high anomaly scores to identify samples with
atypical rhythms or textures, aiding exploration.

Beyond these applications, the approach also
holds potential for integration with Digital Audio
Workstations (DAWSs), where system’s analysis could
alert artists to problematic loops (e.g., timing er-
rors, unwanted noise) before production. A more
speculative application involves style transfer and
genre adaptation. By training the model on a mu-
sic collection of a specific genre (e.g., jazz guitar),
users could detect deviations that signal potential
for cross-genre influence. Moreover, the hybrid
approach—utilizing deep audio representations with
one-class learning—eliminates the need for large, la-
beled datasets, thereby supporting individuals with
limited resources.

8 Limitations

Several limitations should be noted. Our evalua-
tion used unsupervised anomaly detection without
ground-truth labels, so anomalies are defined heuris-
tically via a 95th percentile threshold, which may
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Figure 4. Box plots of anomaly score distributions for AE, AEwWRES, and baselines (Section 5) on Bass (left)
and Guitar (right) datasets. Eight vertical box plots per panel show training and validation data for each model.
Scores are shown on a logarithmic scale, summarizing medians, quartiles, and outliers.

not be optimal or consistent across data. To ad-
dress this issue, introducing a small, curated set
of proxy-labeled or synthetic anomalies could help
in calibrating the 95th percentile threshold, mak-
ing our claims more verifiable. This validation set
could provide an evidence-based metric, allowing
us to report its precision-recall scores, thus trans-
forming the current heuristic approach into a more
robust evaluation strategy. The interpretation of
anomalies is also subjective and context-dependent.
Our experiments focused only on bass and guitar
loops from a specific dataset, limiting generalizabil-
ity to other instruments, genres, or audio types.
The dataset’s diversity may not reflect real-world
audio encountered by users. Methodologically, Deep
SVDD assumes normal data can be enclosed within
a single hypersphere in latent space, which may not
capture complex, multi-modal distributions. Using a
deep encoder mitigated this, but the HTS-AT archi-
tecture increases computational demands. Dataset
biases, such as prevalent playing styles or recording
qualities, may also affect learned representations
and performance.

9 Future Work

Building upon these findings and limitations, future
research could proceed in several directions. The-
matic areas such as generalizability, efficiency, and
usability can serve as anchors for these directions.
To enhance generalizability, it is essential to expand
the assessment to include diverse instruments, gen-
res, and audio formats. This will help evaluate the
applicability of the AEwWRES-Deep SVDD method
across various contexts. Incorporating partially an-
notated datasets or semi-supervised techniques can
enable more rigorous quantitative evaluation and
threshold refinement, thereby supporting a better

generalization. In terms of efficiency, fine-tuning
the HT'S-AT model for loop analysis or leveraging
knowledge distillation could lead to the development
of lighter, real-time-capable models. For usability,
improvements in workflow integration, such as com-
bining loop analysis with tools like transcription
and source separation, could refine audio analysis
by honing in on anomalous segments. Addition-
ally, enhancing the user interface by introducing
elements for sensitivity adjustment and facilitating
practitioner feedback will boost practical utility.

10 Conclusion

In conclusion, this work demonstrated that Deep
SVDD, coupled with an audio encoder consist of
HTS-AT with FFM, offers a viable approach for
loop analysis. The AEwRES variant, in particu-
lar, showed promise due to its ability to learn dis-
criminative latent representations that accommo-
date the diversity inherent in complex musical data,
compared to the selected baselines (IF and PCA
reconstruction error) and the AE variant. While
limitations exist regarding the evaluation method-
ology and dataset scope, the results indicate the
potential of this approach to alleviate challenges in
automated audio analysis. By providing a means
to automatically identify deviations from normative
patterns directly within the audio domain and han-
dling variable-length inputs effectively, this research
lays the groundwork for future investigations into
more nuanced, interpretable, and widely applicable
music analysis systems, as elaborated in Section 7.1.
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A System Architecture

Figure A.1 depicts the proposed loop detection
model, which couples an Audio Encoder for hi-
erarchical feature extraction with a Deep SVDD
module for anomaly detection. The Audio Encoder
employs duration-aware dual pathways with Mel-
FilterBank processing, Conv2D layers, a feature-
fusion mechanism, and a pre-trained HTS-AT back-
bone. The Deep SVDD comprises five encoder layers
that project features into a latent space, mapping
normal samples within a hypersphere and abnormal
samples outside. The system supports end-to-end,
unsupervised training. It produces distance-based
anomaly scores from the learned representation. The
Audio Encoder illustration is inspired by Wu et
al. [19].
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Figure A.1. Architectural overview of the proposed loop detection model. The model comprises two main
components: (left) an Audio Encoder module for hierarchical feature extraction from audio inputs and (right) a
Deep SVDD module for anomaly detection. The Audio Encoder processes input audio through dual pathways
based on duration, utilizing Mel-FilterBank processing, Conv2D layers, the feature fusion mechanism, and a
pre-trained HTS-AT for feature extraction. The Deep SVDD module consists of five encoder layers that transform
features into a latent space, where normal samples (orange dots) are mapped within a hypersphere and abnormal
samples (blue dots) are mapped outside. The architecture enables end-to-end training for unsupervised loop
detection and anomaly identification through distance-based scoring from the learned latent representation. The
illustration of the Audio Encoder is based on the diagram presented by Wu et al. [19].

B Dataset Statistics

Table B.1 summarizes a curated set of 1,816 bass
and 4,294 guitar samples totaling 2.337 h and 5.924
h, respectively. Tempi cover moderate ranges (bass:
64-170 BPM, mean 111.779; guitar: 73-170 BPM,
mean 108.785), with interquartile spans of 95-123
BPM (bass) and 95-120 BPM (guitar). Clips are
short (mean durations 4.633 seconds for bass and
4.967 seconds for guitar). As illustrated in Fig. B.1,
samples are distributed across musical genres and
keys.

13

C AutoEncoder Architecture

Figure C.1 presents the AEwWRES autoencoder ar-
chitecture inspired by U-Net, comprising a five-layer
encoder and five-layer decoder operating on 1024-
dimensional inputs. The encoder progressively re-
duces dimensionality, which is then reconstructed
by the decoder. Residual connections (dotted) add
the output of encoder layer i to the input of de-
coder layer 5-i; the baseline AE shares the same
architecture but omits these residual links.
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Table B.1. Statistics per instrument of the curated

unknoun _ dataset

Instrument Bass Guitar
fonk . Count 1816 4294
g Durations (hrs) — 2.337 5.924
O
joz2 I mean 111.779  108.785
std 18.854 18.000
min 64.000 73.000
25% 95.000 95.000
70s
| = BPM 50% 114.000 110.000
0 1000 2000 3000 4000 5000 75% 123000 120000
Count max 170.000  170.000
(2) mean 4.633  4.967
e std 2430 Lol
min 0.546 0.417
— Duration (sccs) 25% 3.692  4.000
ol 50% 4364 4571
75% 5.333 5.647
o-major [l max 28.346 22.700
- e-major .
emajor [ mally described in Algorithm D.1. 1139
g-major I
oo -
0 1000 2000 3000 4000
Count
(b)

Figure B.1. Distribution of curated guitar and bass
samples across (a) musical genres and (b) musical keys.
The height of the bars indicates the count of samples
for each category, with colors differentiating between
bass (blue) and guitar (green). The prevalence of the
‘unknown’ category highlights common challenges with
sample library metadata.

1 D PCA Reconstruction Error
1120 Algorithm

1121 Principal Component Analysis (PCA) based recon-
1122 struction error is a widely used technique for un-
1123 supervised anomaly detection [51, 52]. It oper-
1124 ates under the assumption that the majority of the
1125 training data represents normal behavior, and that
1126 this normal data lies predominantly within a lower-
1127 dimensional subspace of the original feature space.
1128 Anomalies, conversely, are expected to deviate from
1129 this normal subspace. PCA is employed to identify
1130 this principal subspace from the training data. The
1131 anomaly score for any given data point is then cal-
1132 culated as the error incurred when attempting to
1133 reconstruct the point after projecting it onto this
1132 learned normal subspace. Points that deviate sub-
1135 stantially from the normal patterns captured by the
1136 principal components will exhibit a high reconstruc-
1137 tion error.

1138 The complete implementation procedure is for-
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Output 1024

Linear 512->1024

Linear 32->64
BatchNorm 64
ELU
Dropout 0.2

Figure C.1. The architecture of the autoencoder (AE) network with residual connections (dotted arrows)
(AEwRES). The model follows a symmetric design (inspired by U-net architecture [50]) with an encoder (left)
and decoder (right). The input dimension of 1024 is progressively reduced through five encoder layers and then
reconstructed through five decoder layers. Each layer comprises a linear transformation followed by BatchNorm,
ELU activation (alpha=0.1), and Dropout (rate=0.2). Residual connections add the output of encoder layer ¢ to
the input of decoder layer 5 — ¢. Note that the base AE architecture is identical to that of AEwWRES, but without

any residual connections.

E Preliminary Experiments

This appendix details preliminary experiments con-
ducted to validate key design choices and select
promising model architectures for the main evalu-
ation presented in Section 6. To facilitate rapid
iteration and efficient hyperparameter exploration,
these initial tests were performed on a smaller, rep-
resentative subset of the bass dataset (described in
Section 4.1), comprising 392 bass loops from the
MusicRadar catalog . The primary objectives were
to:

1. Evaluate the effectiveness of the FFM described
in our methodology (Section 3).

2. Compare different network architectures to se-
lect the most promising candidates for the sub-
sequent evaluation in Section 6.

First, we assessed the impact of incorporating
the FFM by comparing model variants (AE and
AEwRES) trained with and without it. The results
demonstrated the benefits of FFM. Models utiliz-
ing FFM converged faster and achieved improved
representational quality. Specifically, FFM facili-
tated the models to capture underlying patterns,
as evidenced by latent space distributions (KDE
plots) and tighter clustering of normal samples in

8https://www.musicradar.com/news/tech/
sampleradar-392-free-bass-guitar-samples-537264
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PCA projections (Figure E.2) and clearer separation
in anomaly score distributions (Figure E.1) com-
pared to models without it. Consequently, FFM
was adopted for subsequent architecture compar-
isons and main experiments (Section 6).

Following FFM validation, hyperparameter tuning
was conducted for AE and AEwRES architectures
to optimize performance. The tuned AE exhibited a
negatively skewed latent distribution ranging from -
1.0 to 0.25, while AEWRES showed a more balanced,
symmetrical distribution centered around zero (-
0.4 to 0.4). Feature representation heatmaps re-
vealed higher contrast in AEwRES, suggesting more
distinct feature capture. Anomaly detection per-
formance indicated successful separation of normal
samples and potential anomalies in both architec-
tures; however, AEWRES achieved a lower anomaly
threshold (q=0.95 = 0.009) compared to AE (=
0.016), potentially indicating enhanced precision.
During tuning, AEwRES generally demonstrated
faster convergence and more stable training dynam-
ics.

In summary, the optimized AEwWRES configura-
tion showed advantages on this subset in terms of
representation balance, feature distinctiveness, po-
tential precision, and training efficiency. Nonethe-
less, given that AE also performed competently af-
ter tuning and represents a different architectural
approach, we selected both configurations for the
further evaluations on the full datasets presented in
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Algorithm D.1 PCA Reconstruction Error for Anomaly Detection

Require: Training data embeddings Xy ain € R7train X d

Require: Evaluation data embeddings Xeyal € R7evar xd

Require: Number of components neomponents (integer, float, or None)
Require: Variance threshold 6,, (default 0.95)

Require: standardize (boolean)

1: Let X{ .. = Xirain and X[} = Xeval
2: if standardize is True then
3: Compute mean p and standard deviation o from Xipain
4: Standardize: X{,.;, < (Xrain — tt)/0
5: Standardize: X[ .| < (Xeval — pt)/0
6: end if
7: if Ncomponents 15 None then
8: Fit PCA on X{,;, (full rank)
9: Compute cumulative explained variance ratios
10: k<« min{j: > ] variance; > 6y}
11: Nselected € k
12: else if Ncomponents 15 float and 0 < Ncomponents < 1 then
13: Nselected <= Mcomponents > as explained variance
14: else
15: Nselected €~ Mcomponents > as integer
16: end if
17: Fit PCA model on X, ..., with ngeectea components
18: Initialize empty lists €tyain and €eyal
19: for each x in X{ ,, do > Calculate training errors
20: Project: z < PCA_TRANSFORM(X)
21: Reconstruct: X < PCA_INVERSE_TRANSFORM(z)
22: Compute error: e + Z?Zl(xi — ;)?
23: Append e to €¢rain
24: end for
25: for each x in X/ | do > Calculate evaluation errors
26: Project: z <~ PCA_TRANSFORM(X)
27: Reconstruct: % <— PCA_INVERSE_TRANSFORM(z)
28: Compute error: e < Zle(xi — ;)2
29: Append e to egya
30: end for
31: return array of training errors €g,ain, array of evaluation errors €gya
Section 6. F Main Experiment Supple-

mentary Materials

This appendix provides additional visualizations for
the results presented in Section 6. Figures F.1 and
F.2 presented in this appendix illustrate the perfor-
mance of the models on the bass and guitar datasets,
respectively. They provide a more detailed analy-
sis of the results, discussed in Section 6. The fig-
ures show the density distributions of latent values
across multiple dimensions, PCA scatter plots, and
heatmaps of latent space representations, for train-
ing and vlidation phases. These visualizations are
useful for understanding the behavior of the models
and how they capture the underlying patterns in
the data.
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AE - Bass subset (FFM) (Threshold: 0.016) AEWRES - Bass subset (FFM) (Threshold: 0.009)
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Figure E.1. The figure displays anomaly score distribution histograms for AE and AEwRES applied to the
subset of bass dataset (392 samples). The top row (a) shows the scores obtained with FFM and the bottom row
(b) displays the scores obtained witout FFM. Each plot depicts the frequency distribution of anomaly scores for
both training data (yellow) and validation data (blue), with red dashed lines indicating the anomaly threshold set

at the 95th percentile of the training scores.
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Figure E.2. The figure presents three visualizations of latent space representations from AE and AEwRES models
applied to the subset of bass dataset (392 samples). The first and third rows (a, ¢) show the results obtained with
FFM and the second and fourth rows (b, d) display the results obtained witout FFM. For each row, the left panel
displays density distributions of latent values across multiple dimensions. The center panel shows a PCA scatter
plot projecting the latent space onto two principal components, with blue points representing normal samples
and red points indicating anomalies. The right panel features a heatmap of latent space representations across 32
dimensions (x-axis) for N samples (y-axis), with color intensity reflecting latent values.

18



NLDL
#32

Distributions of Latent Space Representations

NLDL 2026 Full Paper Submission #32.

AE - Bass Dataset

PCA of Latent Space Representations
T

T
EEE Normal

60 =
E: 0.2 mmm Anomaly
] =1
» L o1
Bl -
40 £
~ 0.0
z 2 %
2 304 z °
g i g o1
20 g _02 o
= o
10 g —0.3
£
& '
ol 0.4
—0.4 -0.2 0.0 0.2 -0.8 -0.6 -04 -02 0.0
Latent Values Principal Component 1 (EVR=0.747)
(a)
AE - Bass Dataset
Distributions of Latent Space Representations PCA of Latent Space Representations
60 o T T °
o EEE Normal x
o
= I Anomal
50 | d o021 X o®e?
L ®
J o®
40 < 01,
> o CJ ®
g H LY
5397 2 °
& é 0.0 8 o
204 8
T -0.1 P
10 4 E ®
& 02
-0.2 0.0 0.2 -0.8 0.6 -04 -0.2 0.0
Latent Values Principal Component 1 (EVR=0.702)
(b)
AEWRES - Bass Dataset
Distributions of Latent Space Representations PCA of Latent Space Representations
120 7 L.
; 0.1
7 °
100 I
i 0.0 q
80 1 o~
%‘ £ 0.1
g —0.
& s01 < @
a a
£ o2 =
40 1 [v] ' ®
2 Kl
201 2 —0.3 { EEE Normal
£ B Anomaly '.
0- T T
—-0.4 -0.2 0.0 0.2 -1.0 -08 -0.6 -04 -0.2 00
Latent Values Principal Component 1 (EVR=0.896)
(©)
AEWRES - Bass Dataset
Distributions of Latent Space Representations PCA of Latent Space Representations
1207 2 o1l & |
=
100 7 I
£ o0 e
[ L%
80 1 = i
>
E £ o1 o. 3
B 60 E e
£ e
20 - S -0.2
° °
2 »
20 A ‘© _p.3-{ EEE Normal
T mmm Anomaly ..
o I I
-0.4 -0.2 0.0 0.2 -1.0 -08 -06 -04 -0.2 0.0

Latent Values

Principal Component 1 (EVR=0.867)

(d)

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

r‘i]eatmap of Latent Space Representations

Samples

0 3 6 9 12 1518 21 24 27 30
Latent Dimensions

H“eatmap of Latent Space Representations

0 3 6 9 12 15 18 21 24 27 30
Latent Dimensions

0 3 6 9 12 1518 21 24 27 30
Latent Dimensions

I-éeatmap of Latent Space Representations

0 3 6 9 12 1518 21 24 27 30
Latent Dimensions

NLDL
#32

-0.3
0.2
0.1

0.0

-0.3
0.2

0.1

- 03
0.2
0.1

0.0

Figure F.1. Comparative analysis of (a,b) AE and (¢,d) AEWRES models using bass dataset, as described in
Section 4.1. The first two rows (a,b) show the results obtained by AE model during (a) training and (b) validatio
phases. The second two rows (c,d) displays the results obtained by AEwRES model during (c) training and
(d) validation phases. For each row, the left panel displays density distributions of latent values across multiple
dimensions. The center panel shows a PCA scatter plot projecting the latent space onto two principal components,
with blue points representing normal samples and red points indicating anomalies. The right panel features a
heatmap of latent space representations across 32 dimensions (x-axis) for N samples (y-axis), with color intensity

reflecting latent values.
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Figure F.2. Comparative analysis of (a,b) AE and (c,d) AEwRES models using guitar dataset, as described in
Section 4.1. The first two rows (a,b) show the results obtained by AE model during (a) training and (b) validatio
phases. The second two rows (c,d) displays the results obtained by AEwWRES model during (c¢) training and
(d) validatio phases. For each row, the left panel displays density distributions of latent values across multiple
dimensions. The center panel shows a PCA scatter plot projecting the latent space onto two principal components,
with blue points representing normal samples and red points indicating anomalies. The right panel features a
heatmap of latent space representations across 32 dimensions (x-axis) for N samples (y-axis), with color intensity
reflecting latent values.
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