
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Scaling Off-Policy Reinforcement Learning
with Batch and Weight Normalization

Anonymous Authors1

Abstract

Reinforcement learning has achieved significant
milestones, but sample efficiency remains a bot-
tleneck for real-world applications. Recently,
CrossQ has demonstrated state-of-the-art sample
efficiency with a low update-to-data (UTD) ratio
of 1. In this work, we explore CrossQ’s scaling
behavior with higher UTD ratios. We identify chal-
lenges in the training dynamics, which are empha-
sized by higher UTD ratios. To address these, we
integrate weight normalization into the CrossQ
framework, a solution that stabilizes training, has
been shown to prevent potential loss of plasticity
and keeps the effective learning rate constant. Our
proposed approach reliably scales with increasing
UTD ratios, achieving competitive performance
across 25 challenging continuous control tasks on
the DeepMind Control Suite and Myosuite bench-
marks, notably the complex dog and humanoid
environments. This work eliminates the need for
drastic interventions, such as network resets, and
offers a simple yet robust pathway for improving
sample efficiency and scalability in model-free
reinforcement learning.

1. Introduction
Reinforcement Learning (RL) has shown great successes in
recent years, achieving breakthroughs in diverse areas. De-
spite these advancements, a fundamental challenge that re-
mains in RL is enhancing the sample efficiency of algorithms.
Indeed, in real-world applications, such as robotics, collect-
ing large amounts of data can be time-consuming, costly,
and sometimes impractical due to physical constraints or
safety concerns. Thus, addressing this is crucial to make RL
methods more accessible and scalable.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

0 1

Env Steps
×106

0.0

0.5

1.0

Dog & Humanoid
(7 tasks)

0 1

Env Steps
×106

DeepMind Control
(15 tasks)

0 1

Env Steps
×106

Myo Suite
(10 tasks)

CrossQ + WN UTD=5
CrossQ + WN UTD=1
SR-SAC UTD=32

CrossQ UTD=5
CrossQ UTD=1

BRO UTD=10
BRO UTD=2

Figure 1. CrossQ + WN UTD=5 is competitive to BRO UTD=10.
In comparison, our proposed CrossQ + WN is a simple algorithm
that does not require extra exploration policies or full parameter
resets. We present results for 25 complex continuous control tasks
from the DMC and MyoSuite benchmarking suites. 1.0 marks the
maximum score achievable on the respective benchmarks (DMC

return up to 1000 / Myosuite up to 100% success rate).

Different approaches have been explored to address the prob-
lem of low sample efficiency in RL. Model-based RL, on the
one hand, attempts to increase sample efficiency by learning
dynamic models that reduce the need for collecting real
data, a process often expensive and time-consuming (Sut-
ton, 1990; Janner et al., 2019; Feinberg et al., 2018; Heess
et al., 2015). Model-free RL approaches, on the other hand,
have explored increasing the number of gradient updates on
the available data, referred to as the update-to-data (UTD)
ratio (Nikishin et al., 2022; D’Oro et al., 2022), modifying
network architectures (Bhatt et al., 2024), or both (Chen
et al., 2021; Hiraoka et al., 2021; Hussing et al., 2024; Nau-
man et al., 2024).

In this work, we build upon CrossQ (Bhatt et al., 2024), a
recent model-free RL algorithm that recently showed state-
of-the-art sample efficiency on the MuJoCo (Todorov et al.,
2012) continuous control benchmarking tasks. Notably, the
authors achieved this by carefully utilizing Batch Normal-
ization (BN, Ioffe (2015)) within the actor-critic architecture.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

A technique previously thought not to work in RL, as fa-
mously reported by Hiraoka et al. (2021) and others. The
insight that Bhatt et al. (2024) offered is that one needs
to carefully consider the different state-action distributions
within the Bellman equation and handle them correctly to
succeed. This novelty allowed CrossQ at a low UTD of 1 to
outperform the then state-of-the-art algorithms that scaled
their UTD ratios up to 20. Even though higher UTD ratios
are more computationally expensive, they allow for larger
policy improvements using the same amount of data.

This naturally raises the question: How can we extend the
sample efficiency benefits of CrossQ and BN to the high UTD
training regime? Which we address in this manuscript.

Contributions. In this work, we show that the vanilla
CrossQ algorithm is brittle to tune on DeepMind Con-
trol (DMC) and Myosuite environments and can fail to scale
reliably with increased compute. To address these limita-
tions, we propose the addition of weight normalization (WN),
which we show to be a simple yet effective enhancement
that stabilizes CrossQ. We motivate the combined use of WN
and BN on insights from the continual learning and loss of
plasticity literature and connections to the effective learning
rate. Our experiments show that incorporating WN not only
improves the stability of CrossQ but also allows us to scale
its UTD, thereby significantly enhancing sample efficiency.

2. Preliminaries
This section briefly outlines the required background knowl-
edge for this paper.

Reinforcement learning. A Markov Decision Process
(MDP) (Puterman, 2014) is a tuple M = ⟨S,A,P, r, µ0, γ⟩,
with state space S ⊆ Rn, action space A ⊆ Rm, transi-
tion probability P : S × A → ∆(S), the reward function
r : S × A → R, initial state distribution µ0 and discount
factor γ. We define the RL problem according to Sutton &
Barto (2018). A policy π : S → ∆(A) is a behavior plan,
which maps a state s to a distribution over actions a. The
discounted cumulative return is defined as

R(s,a) =
∑∞

t=0 γ
tr(st,at),

where s0 = s and a0 = a. Further, st+1 ∼ P(· |st,at)
and at ∼ π(· |st). The Q-function of a policy π is the
expected discounted return Qπ(s,a) = Eπ,P [R(s,a)].

The goal of an RL agent is to find an optimal policy π∗

that maximizes the expected return from the initial state
distribution

π∗ = argmaxπ Es∼µ0 [Q
π(s,a)] .

Soft Actor-Critic (SAC, Haarnoja et al. (2018)) addresses
this optimization problem by jointly learning neural network

representations for the Q-function and the policy. The policy
network is optimized to maximize the Q-values, while the
Q-function is optimized to minimize the Bellmann error

L = E
D

[
1

2

(
Qθ(st,at)−

(
r(st,at) + γ E

P
[V (st+1)]

))2
]
,

where the value function is computed by taking an expecta-
tion over the learned Q function

V (st+1) = EP,πθ
[Qθ̄(st+1,at+1)] . (1)

To stabilize the Q-function learning, Haarnoja et al. (2018)
found it necessary to use a target Q-network in the computa-
tion of the value function instead of the regular Q-network.
The target Q-network is structurally equal to the regular
Q-network, and its parameters θ̄ are obtained via Polyak
Averaging over the learned parameters θ. While this scheme
ensures stability during training by explicitly delaying value
function updates, it also arguably slows down online learn-
ing (Plappert et al., 2018; Kim et al., 2019; Morales, 2020).

Instead of relying on target networks, CrossQ (Bhatt et al.,
2024) addresses training stability issues by introducing
Batch Normalization (BN, Ioffe (2015)) in its Q-function and
achieves substantial improvements in sample and computa-
tional efficiency over SAC. A central challenge when using
BN in Q networks is distribution mismatch: during training,
the Q-function is optimized with samples st,at from the
replay buffer. However, when the Q-function is evaluated
to compute the target values (Equation (1)), it receives ac-
tions sampled from the current policy at+1 ∼ πθ(· |st+1).
Those samples have no guarantee of lying within the training
distribution of the Q-function. BN is known to struggle with
out-of-distribution samples, as such, training can become un-
stable if the distribution mismatch is not correctly accounted
for (Bhatt et al., 2024). To deal with this issue, CrossQ re-
moves the separate target Q-function and evaluates both
Q values during the critic update in a single forward pass,
which causes the BN layers to compute shared statistics over
the samples from the replay buffer and the current policy.
This scheme effectively tackles distribution mismatch prob-
lems, ensuring that all inputs and intermediate activations
are effectively forced to lie within the training distribution.

Normalization techniques in RL. Normalization tech-
niques are widely recognized for improving the training
of neural networks, as they generally accelerate training
and improve generalization (Huang et al., 2023). There are
many ways of introducing different types of normalizations
into the RL framework. Most commonly, authors have used
Layer Normalization (LN) within the network architectures
to stabilize training (Hiraoka et al., 2021; Lyle et al., 2024).
Recently, CrossQ has been the first algorithm to successfully
use BN layers in RL (Bhatt et al., 2024). The addition of BN
leads to substantial gains in sample efficiency. In contrast to

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

LN, however, one needs to carefully consider the different
state-action distributions within the critic loss when integrat-
ing BN. In a different line of work, Hussing et al. (2024)
proposed the integration of unit ball normalization and pro-
jected the output features of the penultimate layer onto the
unit ball in order to reduce Q-function overestimation.

Increasing update-to-data ratios. Although scaling up
the UTD ratio is an intuitive approach to increase the sam-
ple efficiency, in practice, it comes with several challenges.
Nikishin et al. (2022) demonstrated that overfitting on early
training data can inhibit the agent from learning anything
later in the training. The authors dub this phenomenon the
primacy bias. To address the primacy bias, they suggest to
periodically reset the network parameters while retraining
the replay buffer. Many works that followed have adapted
this intervention (D’Oro et al., 2022; Nauman et al., 2024).
While often effective, regularly resetting is a very drastic
intervention and by design induces regular drops in perfor-
mance. Since the agent has to start learning from scratch
repeatedly, it is also not very computing efficient. Finally,
the exact reasons why parameter resets work well in prac-
tice are not yet well understood (Li et al., 2023). Instead
of resetting there have also been other types of regulariza-
tion that allowed practitioners to train stably with high UTD
ratios. Janner et al. (2019) generate additional modeled
data, by virtually increasing the UTD. In REDQ, Chen et al.
(2021) leverage ensembles of Q-functions, while Hiraoka
et al. (2021) use dropout and LN to effectively scale to higher
UTD ratios.

3. CrossQ fails to scale up stably
Bhatt et al. (2024) demonstrated CrossQ’s state-of-the-art
sample efficiency on the MuJoCo task suite (Todorov et al.,
2012), while at the same time also being very computation-
ally efficient. However, on the more extensive DMC and
Myosuite task suites, we find that CrossQ requires tuning.
We further find that it works on some, but not all, environ-
ments stably and reliably.

Mixed performance of CrossQ. Figure 2 shows CrossQ
training performance on a subset of DMC tasks. Namely,
the dog-stand, dog-trot and humanoid-walk, se-
lected for their varying difficulty levels to demonstrate a
wide range of behaviors, including both successful learn-
ing and challenges encountered during training. The figure
compares a SAC baseline with standard hyperparameters
against tuned CrossQ agents with UTD ratios of 1 and 5,
where the hyperparameters were identified through a grid
search over learning rates and network sizes, as detailed in
Table 1. The first row of the figure shows the IQM training
performance and 95% confidence intervals for each agent
across 10 seeds. Here, we identify three different train-

0

500

1000

R
et

ur
n

dog-stand dog-trot humanoid-walk

0

1

2

Q
-b

ia
s

St
d

0.0 0.5 1.0

Env Steps
×106

102

103

W
ei

gh
tN

or
m

0.0 0.5 1.0

Env Steps
×106

0.0 0.5 1.0

Env Steps
×106

SAC CrossQ UTD=1 CrossQ UTD=5

Figure 2. Q-bias and weight norms. CrossQ critic weight norms
increase significantly with increasing UTD ratios.

ing behaviors. On dog-stand CrossQ trains stably at
UTD= 1, but increasing the UTD to 5 introduces instabilities
and decreases performance. On dog-trot, both UTD ra-
tios perform very similarly. Finally, on humanoid-walk,
UTD=5 outperforms UTD=1, although it merely manages
to catch up to the SAC baseline in this case. Overall, for all
CrossQ runs we notice very large confidence intervals.

Q-function bias analysis. The second row in Figure 2
shows the standard deviation of the normalized Q-function
bias. This bias measures how much the Q-function is over-
estimating or underestimating the true expected return of
the current policy.

To compute the normalized Q-function bias, we follow the
protocol of Chen et al. (2021). We gather 5 trajectories
in the environment using the current policy and use each
trajectory’s first 350 state-action pairs to calculate the bias.
For this, we compare the cumulative discounted rewards for
each state-action pair with its Q-value predicted by the Q-
function. This bias is then normalized using the cumulative
discounted rewards. The mean over these normalized Q-
function biases measures the expected bias. Even if the
mean is high, as long as the bias is consistent, the selected
actions of the policy do not change and, therefore, it is not a
problem (Van Hasselt et al., 2016). If the standard deviation
is high, the change in bias is high, which might hinder
learning. Thus, following the work of Chen et al. (2021);

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

Bhatt et al. (2024), we focus on the standard deviation.

We find large fluctuations for the Q-function bias standard
deviation with all three agents across environments. And
even on dog-stand, where CrossQ UTD=5 does not learn
reliably, it maintains a small Q-function bias standard devia-
tion. From these mixed results, we conclude that we cannot
directly link the standard deviation of the Q-function bias
to the learning performance. While this does not mean that
for larger UTD ratios, the Q-bias would not explode. Rather,
it means that, in our case, the Q-bias is not at fault, and the
root cause for unstable training lies elsewhere.

Growing network parameter norms. The third row of
Figure 2 displays the sum over the L2 norms of the dense
layers in the critic network. This includes three dense layers,
each with a hidden dimension of 512.

All three baselines exhibit growing network weights over
the course of training. We find that the effect is particularly
pronounced for CrossQ with increasing UTD ratios. We
further find that in the second training phase, the spread of
network weight norms increases for the dog runs with large
confidence intervals. This is visualized by the large spread
of the shaded areas, which show the 95% inter percentile
ranges for the weight norms.

Growing network weights have been linked to a loss of plas-
ticity, a phenomenon where networks become increasingly
resistant to parameter update, which can lead to premature
convergence (Elsayed et al., 2024). Additionally, the grow-
ing magnitudes pose a challenge for optimization, connected
to the issue of growing activations, which has recently been
analyzed by Hussing et al. (2024). Further, growing net-
work weights decrease the effective learning rate when the
networks contain normalization layers (Van Hasselt et al.,
2019; Lyle et al., 2024).

In summary, the scaling results for vanilla CrossQ are mixed.
While increasing UTD ratios is known to yield increased
sample efficiency, if careful regularization is used (Janner
et al., 2019; Chen et al., 2021; Nikishin et al., 2022), CrossQ
alone with BN cannot benefit from it. We notice that with
increasing UTD ratios, CrossQ’s weight layer norms grow
significantly faster and overall larger. This observation mo-
tivates us to further study the weight norms in CrossQ to
increase UTD ratios.

4. Combining batch normalization and weight
normalization for scaling up

Inspired by the combined insights of Van Hasselt et al.
(2019) and Lyle et al. (2024), we propose to integrate
CrossQ with Weight Normalization (WN) as a means of
counteracting the rapid growth of weight norms we observe
with increasing update-to-data (UTD) ratios.

Our approach is based on the following reasoning: Due to
the use of BN in CrossQ, the critic network exhibits scale
invariance, as previously noted by Van Laarhoven (2017).

Theorem 4.1 (Van Laarhoven (2017)). Let f(X;w, b, γ, β)
be a function, with inputs X and parameters w and b and γ
and β batch normalization parameters. When f is normal-
ized with batch normalization, f becomes scale-invariant
with respect to its parameters, i.e.,

f(X; cw, cb, γ, β) = f(X;w, b, γ, β),

with scaling factor c > 0.

Proof. Appendix A

This property allows us to introduce WN as a mechanism to
regulate the growth of weight norms in CrossQ without af-
fecting the critic’s outputs. Further, it can be shown, that for
such a scale invariant function, the gradient scales inversely
proportionally to the scaling factor c > 0.

Theorem 4.2 (Van Laarhoven (2017)). Let f(X;w, b, γ, β)
be a scale-invariant function. Then, the gradients of f scale
inversely proportional to the scaling factor c ∈ R of its
parameters w,

∇f(X; cw, cb, γ, β) = ∇f(X;w, b, γ, β)/c.

Proof. Appendix B

Recently, Lyle et al. (2024) demonstrated that the combina-
tion of LN and WN can help mitigate loss of plasticity. Since
the gradient scale is inversely proportional to c, keeping
norms constant helps to maintain a stable effective learn-
ing rate (ELR,Van Hasselt et al. (2019)), further enhancing
training stability.

We conjecture that maintaining a stable ELR could also be
beneficial when increasing the UTD ratios in continuous
control RL. As the UTD ratio increases, the networks are
updated more frequently with each environment interaction.
Empirically, we find that the network norms tend to grow
quicker with increased UTD ratios (Figure 2), which in turn
decreases the ELR even quicker and could be the case for
instabilities and low training performance. As such, we em-
pirically investigate the effectiveness of combining CrossQ
with WN with increasing UTD ratios.

Implementation details. We apply WN to the first two
linear layers, ensuring that their weights remain unit norm
after each gradient step by projecting them onto the unit ball,
similar to Lyle et al. (2024). Since this constraint effectively
stabilizes the ELR in these layers, we found it beneficial to
slightly reduce the learning rate from 1e−3 to 1e−4. While
we could employ a learning rate schedule (Lyle et al., 2024)
we did not investigate this here. Additionally, we impose

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

weight decay on all parameters that remain unbounded—
specifically the final dense output layer. In practice, we
use AdamW (Loshchilov, 2017) with a decay of 0 (which
falls back to vanilla Adam (Kingma, 2014)) for the normal-
ized intermediate dense layers and 1e−2 otherwise. We
chose a maximum UTD of 5 for our experiments due to our
computational budget and good strong in sample efficiency.

Target networks. CrossQ famously removed the target
networks from the actor-critic framework and showed that
using BN training remains stable even without them (Bhatt
et al., 2024). While we find this to be true in many cases,
we find that especially in DMC, the re-integration of target
networks can help stabilize training overall (see Section 5.4).
However, not surprisingly, we find that the integration of
target networks with BN requires careful consideration of
the different state-action distributions between the s,a and
s′,a′ ∼ π(s′) exactly as proposed by Bhatt et al. (2024).
To satisfy this, we keep the joined forward pass through both
the critic network as well as the target critic network. We
evaluate both networks in training mode, i.e., they calculate
the joined state-action batch statistics on the current batches.
As is common, we use Polyak-averaging with a τ = 0.005
from the critic network to the target network.

5. Experiments
To evaluate the effectiveness of our proposed CrossQ + WN
method, we conduct a comprehensive set of experiments
on the DeepMind Control Suite (Tassa et al., 2018) and
MyoSuite (Caggiano et al., 2022) benchmarks. Our primary
goal is to investigate the scalability of CrossQ + WN with
increasing UTD ratios and to assess the stabilizing effects of
combining CrossQ with WN. We compare our approach to
several baselines, including the recent BRO (Nauman et al.,
2024), CrossQ (Bhatt et al., 2024) and SR-SAC (D’Oro et al.,
2022) a version of SAC (Haarnoja et al., 2018) with high
UTD ratios and network resets.

5.1. Experimental setup

Our implementation is based on the SAC implementation of
jaxrl codebase (Kostrikov, 2021). We implement CrossQ
following the author’s original codebase and add the archi-
tectural modifications introduced by (Bhatt et al., 2024),
incorporating batch normalization in the actor and critic
networks. We extend this approach by introducing WN to
regulate the growth of weight norms and prevent loss of
plasticity and add target networks. We perform a grid search
to focus on learning rate selection and layer width.

We evaluate 25 diverse continuous control tasks, 15 from
DMC and 10 from MyoSuite. These tasks vary significantly
in complexity, requiring different levels of fine motor control
and policy adaptation with high dimensional state spaces up

to R223.

Each experiment is run for 1 million environment steps
and across 10 random seeds to ensure statistical robustness.
We evaluate agents every 25, 000 environment steps for 5
trajectories. As proposed by Agarwal et al. (2021), we report
the interquartile mean (IQM) and 95% stratified bootstrap
confidence intervals (CIs) of the return, if not otherwise
stated.

For the BRO baseline results, for computational reasons, we
take the official evaluation data the authors provide. The
official BRO codebase is also based on jaxrl, and the
authors followed the same evaluation protocol, making it a
fair comparison.

5.2. Weight normalization allows CrossQ to scale
effectively

We provide empirical evidence for our hypothesis that con-
trolling the weight norm and, thereby, the ELR can stabilize
training. We show that through the addition of WN, CrossQ
+ WN shows stable training and can stably scale with increas-
ing UTD ratios.

Figure 3 shows per environment results of our experiments
encompassing all 25 tasks evaluated across 10 seeds each.
Based on that, Figure 1 shows aggregated performance over
all environments from Figure 3 per task suite, with a separate
aggregation for the most complex dog and humanoid
environments.

These results show that CrossQ + WN UTD=5 is compet-
itive to the BRO baseline on both DMC and Myosuite, es-
pecially on the more complex dog and humanoid tasks.
Notably, CrossQ + WN UTD=5 uses only half the UTD of
BRO and does not require any parameter resets and no ad-
ditional exploration policy. Further, it uses ∼ 90% fewer
network parameters—BRO reports ∼ 5M , while our pro-
posed CrossQ + WN uses only ∼ 600k (these numbers vary
slightly per environment, depending on the state and action
dimensionalities).

In contrast, vanilla CrossQ UTD=1 exhibits much slower
learning on most tasks and, in some environments, fails
to learn performant policies. Moreover, the instability of
vanilla CrossQ at UTD=5 is particularly notable, as it does
not reliably converge across environments.

These findings highlight the necessity of incorporating addi-
tional normalization techniques to sustain effective training
at higher UTD ratios. This leads us to conclude that CrossQ
benefits from the addition of WN, which results in stable
training and scales well with higher UTD ratios. The re-
sulting algorithm can match or outperform state-of-the-art
baselines on the continuous control DMC and Myosuite
benchmarks while being much simpler algorithmically.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

0

500

1000

R
et

ur
n

dog-stand dog-walk dog-trot dog-run hopper-stand

0

500

1000

R
et

ur
n

humanoid-stand humanoid-walk humanoid-run fish-swim hopper-hop

0

500

1000

R
et

ur
n

finger-turn hard quadruped-run walker-run cheetah-run pendulum-swingup

0.0

0.5

1.0

Su
cc

es
s

R
at

e

myo-key-turn myo-pen-twirl myo-obj-hold myo-pose myo-reach

0.0 0.5 1.0

Env Steps×106

0.0

0.5

1.0

Su
cc

es
s

R
at

e

myo-key-turn-hard

0.0 0.5 1.0

Env Steps×106

myo-pen-twirl-hard

0.0 0.5 1.0

Env Steps×106

myo-obj-hold-hard

0.0 0.5 1.0

Env Steps×106

myo-pose-hard

0.0 0.5 1.0

Env Steps×106

myo-reach-hard

CrossQ + WN UTD=5
CrossQ + WN UTD=1

CrossQ UTD=5
CrossQ UTD=1

BRO UTD=10
BRO UTD=2

Figure 3. CrossQ WN + UTD=5 against baselines. We compare our proposed CrossQ + WN UTD=5 against two baselines, BRO (Nauman
et al., 2024) and SR-SAC UTD=32. Results are reported on all 15 DMC and 10 Myosuite tasks. We plot the IQM and 95% CIs over 10
random random seeds. Our proposed approach proves competitive to BRO and outperforms the CrossQ baseline. We want to note that our
approach achieves this performance without requiring any parameter resetting or additional exploration policies.

5.3. Stable scaling of CrossQ + WN with UTD ratios

To visualize the stable scaling behavior of CrossQ + WN
we ablate across three different UTD ratios ∈ {1, 2, 5}. Fig-
ure 4 shows training curves aggregated over all 15 DMC
tasks. As expected, CrossQ + WN shows reliable scaling be-
havior, with the learning curves ordered in increasing order
accordance to their respective UTD ratio.

5.4. Hyperparameter ablation studies

We also ablate the different hyperparameters of CrossQ +
WN UTD=5, by changing each one at a time. Figure 5 shows
aggregated results of the final performances of each ablation.
We will briefly discuss each ablation individually.

Removing weight normalization. Not performing weight
normalization results in the biggest drop in performance
across all our ablations. This loss is most drastic on the
Myosuite tasks and often results in no meaningful learning.
Showing that, as hypothesized, the inclusion of WN into the
CrossQ framework yields great improvements in terms of
sample efficiency and training stability, especially for larger
UTD ratios.

Update-to-data ratio. As expected, decreasing the UTD
ratio decreases the performance of CrossQ + WN, as demon-
strated in the previous section. Aggregated over all DMC
environments, this effect is the smallest, since this aggre-
gation includes easier environments as well. Looking at
the harder dog and humanoid tasks, as well as Myosuite,

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

0.0 0.2 0.4 0.6 0.8 1.0

Env Steps ×106

0.0

0.2

0.4

0.6

0.8
R

et
ur

n

15 DMC Envs

UTD = 5
UTD = 2
UTD = 1

Figure 4. CrossQ WN UTD scaling behavior. We plot the IQM

return and 95% confidence intervals for different UTD ratios ∈
{1, 2, 5}. The results are aggregated over 15 DMC environments
and 10 random seeds each according to Agarwal et al. (2021). The
sample efficiency scales reliably with increasing UTD ratios.

the effect is more pronounced. However, lower UTDs are
already reasonably competitive in overall performance.

Target networks. Ablating the target networks shows that
on Myosuite, there is no significant difference between us-
ing a target network and or no target network. Results on
DMC differ significantly. There, removing target networks
leads to a significant drop in performance, nearly as large as
removing weight normalization. This finding is interesting,
as it suggests that CrossQ + WN without target networks
is not inherently unstable. But there are situations where
the inclusion of target networks is required. Further investi-
gating the role and necessity of target networks in RL is an
interesting direction for future research.

6. Related work
RL has demonstrated remarkable success across various do-
mains, yet sample efficiency remains a significant challenge,
especially in real-world applications where data collection
is expensive or impractical. Various approaches have been
explored to address this issue, including model-based RL,
UTD ratio scaling, and architectural modifications.

Model-based RL methods enhance sample efficiency by
constructing predictive models of the environment to re-
duce reliance on real data collection (Sutton, 1990; Jan-
ner et al., 2019; Feinberg et al., 2018; Heess et al., 2015).
However, such methods introduce additional complexity,
computational overhead, and potential biases due to model
inaccuracies.

0.0

0.5

1.0

Dog & Humanoid
(7 tasks)

DeepMind Control
(15 tasks)

Myo Suite
(10 tasks)

CrossQ + WN UTD=5
CrossQ + WN UTD=2
CrossQ + WN UTD=1

no target network
no WN

Figure 5. Hyperparameter ablations. We ablate CrossQ + WN with
respect to the WN, target networks and different UTD.

Update-to-data ratio scaling. Model-free RL methods,
including those utilizing higher UTD ratios, focus on in-
creasing the number of gradient updates per collected sam-
ple to maximize learning from available data. High UTD
training introduces several challenges, such as overfitting
to early training data, a phenomenon known as primacy
bias (Nikishin et al., 2022). This can be counteracted by pe-
riodically resetting the network parameters (Nikishin et al.,
2022; D’Oro et al., 2022). However, network resets intro-
duce abrupt performance drops. Alternative approaches use
techniques such as Q-function ensembles (Chen et al., 2021;
Hiraoka et al., 2021) and architectural changes (Nauman
et al., 2024).

Normalization techniques in RL. Normalization tech-
niques have long been recognized for their impact on neural
network training. LN (Ba et al., 2016) and other architectural
modifications have been used to stabilize learning in RL (Hi-
raoka et al., 2021; Nauman et al., 2024). Yet BN has only
recently been successfully applied in this context (Bhatt
et al., 2024), challenging previous findings, where BN in
critics caused training to fail (Hiraoka et al., 2021). WN
has been shown to keep ELRs stable and prevent loss of
plasticity (Lyle et al., 2024), when combined with LN, mak-
ing it a promising candidate for integration into existing RL
frameworks.

7. Limitations & future work
In this work, we only consider continuous state-action
benchmarking tasks. While our proposed CrossQ + WN
performs competitively on these tasks, its performance on
discrete state-action spaces or vision-based tasks remains
unexplored. We plan to investigate this in future work.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

8. Conclusion
In this work, we have addressed the instability and scala-
bility limitations of CrossQ in RL by integrating WN. Our
empirical results demonstrate that WN effectively stabilizes
training and allows CrossQ to scale reliably with higher
UTD ratios. The proposed CrossQ + WN approach achieves
competitive or superior performance compared to state-of-
the-art baselines across a diverse set of 25 complex con-
tinuous control tasks from the DMC and Myosuite bench-
marks. These tasks include complex and high-dimensional
humanoid and dog environments. This extension preserves
simplicity while enhancing robustness and scalability by
eliminating the need for drastic interventions such as net-
work resets.

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. Advances in neural in-
formation processing systems, 2021.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bhatt, A., Palenicek, D., Belousov, B., Argus, M., Ami-
ranashvili, A., Brox, T., and Peters, J. CrossQ: Batch
normalization in deep reinforcement learning for greater
sample efficiency and simplicity. In International confer-
ence on learning representations, 2024.

Caggiano, V., Wang, H., Durandau, G., Sartori, M., and
Kumar, V. Myosuite–a contact-rich simulation suite
for musculoskeletal motor control. arXiv preprint
arXiv:2205.13600, 2022.

Chen, X., Wang, C., Zhou, Z., and Ross, K. Randomized
ensembled double Q-learning: Learning fast without a
model. In International conference on learning represen-
tations, 2021.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier.
In International conference on learning representations,
2022.

Elsayed, M., Lan, Q., Lyle, C., and Mahmood, A. R. Weight
clipping for deep continual and reinforcement learning.
In Reinforcement Learning Conference, 2024.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez,
J. E., and Levine, S. Model-based value estimation for
efficient model-free reinforcement learning. In Interna-
tional Conference on Machine Learning, 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,
Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and
Levine, S. Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905, 2018.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., and
Tassa, Y. Learning continuous control policies by stochas-
tic value gradients. In Advances in neural information
processing systems, 2015.

Hiraoka, T., Imagawa, T., Hashimoto, T., Onishi, T., and
Tsuruoka, Y. Dropout q-functions for doubly efficient
reinforcement learning. In International conference on
learning representations, 2021.

Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., and Shao, L.
Normalization techniques in training dnns: Methodology,
analysis and application. IEEE transactions on pattern
analysis and machine intelligence, 2023.

Hussing, M., Voelcker, C., Gilitschenski, I., Farahmand,
A.-m., and Eaton, E. Dissecting deep rl with high update
ratios: Combatting value overestimation and divergence.
arXiv preprint arXiv:2403.05996, 2024.

Ioffe, S. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Advances in neural information processing systems, 2019.

Kim, S., Asadi, K., Littman, M., and Konidaris, G. Deep-
mellow: Removing the need for a target network in
deep q-learning. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence,
IJCAI-19, pp. 2733–2739. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/379. URL https://doi.org/
10.24963/ijcai.2019/379.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Kostrikov, I. JAXRL: Implementations of Reinforcement
Learning algorithms in JAX, 2021. URL https://
github.com/ikostrikov/jaxrl.

Li, Q., Kumar, A., Kostrikov, I., and Levine, S. Efficient
deep reinforcement learning requires regulating overfit-
ting. In International conference on learning representa-
tions, 2023.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

8

https://doi.org/10.24963/ijcai.2019/379
https://doi.org/10.24963/ijcai.2019/379
https://github.com/ikostrikov/jaxrl
https://github.com/ikostrikov/jaxrl

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

Lyle, C., Zheng, Z., Khetarpal, K., Martens, J., van Hasselt,
H., Pascanu, R., and Dabney, s. W. Normalization and
effective learning rates in reinforcement learning. In
Neural information processing systems, 2024.

Morales, M. Grokking deep reinforcement learning. 2020.

Nauman, M., Ostaszewski, M., Jankowski, K., Miłoś, P.,
and Cygan, M. Bigger, regularized, optimistic: scaling
for compute and sample-efficient continuous control. In
Advances in neural information processing systems, 2024.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In International conference on machine learn-
ing, 2022.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B.,
Baker, B., Powell, G., Schneider, J., Tobin, J., Chociej,
M., Welinder, P., Kumar, V., and Zaremba, W. Multi-goal
reinforcement learning: Challenging robotics environ-
ments and request for research, 2018. URL https:
//arxiv.org/abs/1802.09464.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Sutton, R. S. Integrated architectures for learning, planning,
and reacting based on approximating dynamic program-
ming. Machine learning, 1990.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, 2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In International conference
on intelligent robots and systems, 2012.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, 2016.

Van Hasselt, H. P., Hessel, M., and Aslanides, J. When to
use parametric models in reinforcement learning? In Ad-
vances in Neural Information Processing Systems, 2019.

Van Laarhoven, T. L2 regularization versus batch and weight
normalization. arXiv preprint arXiv:1706.05350, 2017.

9

https://arxiv.org/abs/1802.09464
https://arxiv.org/abs/1802.09464

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

A. Proof Scale Invariance
Proof of Theorem 4.1.

f(X; cw, cb, γ, β) =
g(cXw + cb)− µ(g(cXw + cb))

σ(g(cXw + cb))
γ + β

=
cg(Xw + b)− cµ(g(Xw + b))

|c|σ(g(Xw + b))
γ + β

=
g(Xw + b)− µ(g(Xw + b))

σ(g(Xw + b))
γ + β = f(X;w, b, γ, β)

B. Proof Inverse Proportional Gradients
To show that the gradients scale inversely proportional to the parameter norm, we can first write

f(X; cw, cb, γ, β) =
g(cXw + cb)− µ(g(cXw + cb))

σ(g(cXw + cb))
γ + β

=
g(cXw + cb)

σ(g(cXw + cb))
γ − µ(g(cXw + cb))

σ(g(cXw + cb))
γ + β.

As the gradient of the weights is not backpropagated through the mean and standard deviation, we have

∇wf(X; cw, cb, γ, β) =
g′(cXw + cb)X

|c|σ(g(Xw + b))
γ.

The gradient of the bias can be computed analogously

∇bf(X; cw, cb, γ, β) =
g′(cXw + cb)

|c|σ(g(Xw + b))
γ.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

C. Hyperparameters
Table 1 gives an overview of the hyperparameters that were used for each algorithm that was considered in this work.

Table 1. Hyperparameters
Hyperparameter CrossQ CrossQ + WN SAC SR-SAC BRO
Critic learning rate 0.0001 0.0001 0.0003 0.0003 0.0003
Critic hidden dim 512 512 256 256 512
Actor learning rate 0.0001 0.0001 0.0003 0.0003 0.0003
Actor hidden dim 256 256 256 256 256
Initial temperature 1.0 1.0 1.0 1.0 1.0
Temperature learning rate 0.0001 0.0001 0.0003 0.0003 0.0003
Target entropy |A| |A| |A| |A| |A|
Target network momentum 0.005 0.005 0.005 0.005 0.005
UTD 1,5 1,5 1 32 10
Number of critics 2 2 2 2 1
Action repeat 2 2 2 2 1

Discount
0.99 (DMC)
0.95 (Myo)

0.99 (DMC)
0.95 (Myo)

0.99 (DMC)
0.95 (Myo)

0.99 (DMC)
0.95 (Myo)

0.99 (DMC)
0.99 (Myo)

Optimizer Adam AdamW Adam Adam AdamW
Optimizer momentum (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Policy delay 3 3 1 1 1
Warmup transitions 5000 5000 10000 10000 10000
AdamW weight decay critic 0.0 0.01 0.0 0.0 0.0001
AdamW weight decay actor 0.0 0.01 0.0 0.0 0.0001
AdamW weight decay temperature 0.0 0.0 0.0 0.0 0.0
Batch Normalization momentum 0.99 0.99 N/A N/A N/A

Reset Interval of networks N/A N/A N/A every 80k steps
at 15k, 50k, 250k,
500k and 750k steps

Batch Size 256 256 256 256 128

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

D. Individual training curves for ablation results
Here, we provide detailed individual training curves for each ablation experiment conducted in our study. Figure 6 shows
experiments with no WN, no target network, CrossQ with WN and UTD=1, and CrossQ with WN and UTD=5.

0

500

1000

R
et

ur
n

dog-stand dog-walk dog-trot dog-run hopper-stand

0

500

1000

R
et

ur
n

humanoid-stand humanoid-walk humanoid-run fish-swim hopper-hop

0

500

1000

R
et

ur
n

finger-turn hard quadruped-run walker-run cheetah-run pendulum-swingup

0.0

0.5

1.0

Su
cc

es
s

R
at

e

myo-key-turn myo-pen-twirl myo-obj-hold myo-pose myo-reach

0.0 0.5 1.0

Env Steps×106

0.0

0.5

1.0

Su
cc

es
s

R
at

e

myo-key-turn-hard

0.0 0.5 1.0

Env Steps×106

myo-pen-twirl-hard

0.0 0.5 1.0

Env Steps×106

myo-obj-hold-hard

0.0 0.5 1.0

Env Steps×106

myo-pose-hard

0.0 0.5 1.0

Env Steps×106

myo-reach-hard

CrossQ + WN UTD=5
CrossQ + WN UTD=2

CrossQ + WN UTD=1
no WN

no target network

Figure 6. Individual training curves for ablations

12

