
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAQL: SPEEDING UP Q-LEARNING WITH A MODEL-
ASSIST

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning, model free methods such as Q-learning and policy gra-
dient are extremely popular due to their simplicity but require a huge amount of
data for training. Model based methods on the other hand, are proven to be sample
efficient in various environments but are unfortunately computationally expensive.
It is therefore only prudent to investigate and design algorithms that have best of
features from both these classes of algorithms. In this work, we propose MAQL, a
model-assisted Q-learning algorithm that is not only computationally inexpensive
but also offers low sample complexity. We illustrate its superior performance to
vanilla Q-learning in various RL tasks and particularly demonstrate its utility in
learning the Gittins/Whittles index in Rested/Restless Bandits respectively. We
aim to spur discussion on how model-assists can help boost the performance of
existing RL algorithms.

1 INTRODUCTION

The main goal of Reinforcement Learning (RL) is to solve sequential decision making problem
under uncertainty of the environment. There are broadly two approaches to solve the problem. In a
model-free approach one interacts with the environment over possibly multiple episodes and aims to
reach an optimal solution without building any model. In a model-based approach, one interacts with
the environment to build a probabilistic model that best represents the real environment’s dynamics
and then solves the resulting Markov decision process (MDP) using dynamic programming methods
such as value Iteration or policy iteration.

Model-based RL algorithms are useful in scenarios where data collection is expensive or time-
consuming. One such popular algorithm is Posterior Sampling for Reinforcement learning (PSRL)
Osband et al. (2013). PSRL adapts a Bayesian approach to model uncertainty and maintains a
distribution over possible transition models. It then uses these models to plan and take actions,
which allows it to effectively balance exploration and exploitation by considering a range of potential
models. A recent work Sasso et al. (2023) showcases a deep implementation of PSRL (PSDRL) with
comparable performances to state-of-the-art methods on the Atari benchmark. As one might expect,
a key drawback of such model based methods is the huge computational cost involved in solving
every interim model during the planning phase.

Model-free methods on the other hand are simple to implement and are computationally inexpensive,
making them a popular choice among practitioners. Q-learning is one of the most popular value
iteration based model-free RL algorithm and has been a topic of extensive study.Watkins & Dayan
(1992) . Theoretical guarantees for a variant of Q learning with UCB exploration in an episodic
setting have been established recently in Jin et al. (2018). Other popular model free methods include
the policy gradient method Sutton & Barto (2018) where one optimizes a policy based metric (such
as value function for a policy) by searching over the policy space using gradient ascent.

Empirical results Deisenroth & Rasmussen (2011) suggest model-free methods may require a large
number of interactions with the environment to have a reasonably good performance. A tight sample
complexity analysis of Q-learning Li et al. (2023) unveils its horizon dependence to be 1

(1−γ)4 , which
quantifies the negative impact of the widely studied overestimation bias (van Hasselt (2011)).

A natural idea to improve the sample efficiency of model-free RL algorithms is to include a model
in the learning phase. This idea can be traced back to the Dyna algorithm Sutton (1991) which pro-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

poses an integrated architecture for learning, planning and reacting. Dyna-Q builds a model from its
interaction with the environment. It generating samples from the model and then learns for free from
these additional samples, thereby improving upon the Q-learning algorithm. In the tabular setting,
empirical estimates of transition dynamics and rewards function corresponds to the maximum like-
lihood estimation Luo et al. (2022) as these are unbiased estimates of the true transition dynamics
and reward function.

Subsequently, there have been many variants of Dyna-Q such as Dyna-Q+ (with exploration bonus),
Dyna-H (a heuristic planning algorithm based on Dyna) Santos et al. (2011) that have been pro-
posed. Fitted Q-iteration Ernst et al. (2005) yields an approximation of the Q-function by inter-
acting with the environment. Further works goes into finding a better function approximator for
the Q function.Riedmiller (2005); Castelletti et al. (2012); Tosatto et al. (2017) Empirical Dynamic
programming Haskell et al. (2013) introduces a class of algorithms using empirical estimation of
Bellman operator instead of stochastic approximation and proves convergence of these new random
operators to probabilistic fixed points. Kalathil et al. (2021) develops Empirical Q-Value iteration
which estimates Q function using empirical estimates of the Bellman operator and showcases faster
rate of convergence compared to stochastic approximation based algorithms. These methods assume
access to a simulator to query any state-action pairs which is an idealistic scenario.

To address these above mentioned problems, we introduce a framework combining the best of both
model-free and model-based approaches, MAQL model-assisted Q-learning. It involves using tran-
sition estimates to boost Q-learning updates for all visited state action pairs. This allows maximum
utilization of the model’s knowledge, instead of generating new samples. Our main contributions
are summarized as follows:

• We introduce MAQL, model-assisted Q-learning algorithm which combines model-free
and model-based approaches to improve Q-learning, along with its deep counterpart model-
assisted DQN.

• We showcase empirical performance of MAQL over Q-learning in RL environments like
grid-worlds , benchmark gym environment Taxi and show how its DQN counterpart out-
performs DQN.

• Adaptive usage of MAQL in Q-learning based algorithms to improve learning Git-
tins/Whittles index in Rested/Restless bandits settings respectively.

The remainder of the paper is organized as follows , Section 2 introduces the problem setting and
Q-learning. In Section 3 we introduce Model-assisted Q-learning while Section 4 showcases Model-
assisted DQN along with their respective experiments. Section 5 elaborates the usage of MAQL in
a bandit setting.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP) is modelled by (S,A, γ, P,R) where S represents the set of
states, A represents the set of actions, γ ∈ (0, 1) is the discount factor, P : S × A × S → [0, 1]
is the transition kernel and R : S × A → R is the reward function. We restrict our discussion to
MDPs with only finite actions and states. On taking action a ∈ A from state s ∈ S, we reach a new
state s′ ∈ S with probability P (s, a, s′) and receive reward R(s, a). Value function V π(s) denotes
the expected total discounted reward from policy π starting from state s. The corresponding state
action value function for the state action pair (s, a) is denoted by Qπ(s, a). For finite MDPs, there
is always atleast one policy that is better than or equal to all other policies. These optimal values are
solutions to the Bellman optimality equation Sutton & Barto (2018).

Q∗(s, a) = max
π

Qπ(s, a)

= E
[
Rt+1 + γmax

a′
Q∗(St+1, a

′) | St = s,At = a
]

= R(s, a) + γ
∑
s′

P (s, a, s′)max
a′

Q∗(s′, a′)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 Q-LEARNING

Q-learning Watkins (1989)is one of the most famous RL algorithms applied for various control tasks
owing to its flexible nature and simplicity. Q function tells the expected return one gets starting from
state s, taking action a and following policy π. It can be seen as an asynchronous implementation
of the Robbins-Monro procedure for finding fixed points Robbins & Monro (1951). To implement
this in a online fashion for (st, at, rt, st+1), we apply the update as follows:

Qt+1(st, at) = Qt(st, at) + αt(st, at)(rt + γmax
a′∈A

Q(st+1, a
′)−Qt(st, at)) (1)

If the sequence of the algorithm (st, at, rt, st+1) visits each state, action infinitely and if the learn-
ing rate is an adaptive sequence satisfying the Robbins-Monro condition

∑∞
t=0 αt(s, a) = ∞ and∑∞

t=0 α
2
t (s, a) <∞ , then with probability 1 , Qt(s, a)→ Q∗(s, a).

3 MODEL-ASSISTED Q-LEARNING

We now lay the framework for our model-assisted Q-learning (MAQL) algorithm. We build the
model using a simple empirical estimator for the transition matrix and the reward function, hence-
forth denoted by p̂t(s, a, s

′) and r̂t(s, a) at a time step t for all (s, a, s′) ∈ S ×A× S.

p̂t(s, a, s
′) =

Nt(s, a, s
′)

Nt(s, a)
r̂t(s, a) =

∑t
i=0 ri1[(si, ai = s, a)]

Nt(s, a)
(2)

where Nt counts the visits (state action pairs (s, a) and (s, a, s′)) until time t and 1(E) returns one
if E is true otherwise zero. Now we describe the Q-iteration step similar to value iteration using the
above defined estimators,

Qt+1(s, a) = r̂t(s, a) + γ
∑
s′∈S

p̂t(s, a, s
′)max

a′∈A
Qt(s

′, a′) (3)

The idea of the algorithm is simple and can be seen as alternating between traditional Q-learning,

Algorithm 1 Model-assisted Q-learning
Input: Exploration policy ϵt , Learning rate αt

Parameter: A set of episodes C , Step k ∈ N
for tmax episodes do
at ← Select action based on ϵ-greedy policy
Get new state st+1 and reward rt from state st
Update p̂t(s, a, s

′), r̂t(s, a) following Equation 2.
Update Q(st, at) according to Equation 1
if t ∈ C then

Perform k steps of Q iteration on Q(.) acc. to Equation 3 for all visited (s, a) ∈ S ×A
end if

end for

which updates the Q values asynchronously from the samples and value iteration like Q-updates
happening synchronously over all visited state-action pairs. C contains a set of episodes when
the model-based updates should be executed. In Dyna-Q style algorithms, the built model is used
to generate additional samples to perform Q learning on the same (learning for free). It can be a
condition as once in every 40 episodes or a schedule to switch completely to value iteration style
updates. Here, the updates in true Q learning and sampled Q learning bring the same order of
change to the Q values, whereas in model-assist : as all visited (s, a) pairs are updated k times,
it will result in a better iterative scheme to reach the optimal function. C and k needs to be
appropriately set as per the model’s ability to learn the environment dynamics. Such a model-based
update would allow for a more sample-efficient way to reach the optimal Q∗.

As a preliminary example, we consider a GridWorld environment of |S| = 24 and |A| = 4
where the goal state is selected to be one of the states. We assume that obstacles have high negative
rewards(-100), the goal state has a high positive reward(+100), while other states have low negative

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

rewards(-1). The rewards and transition dynamics is not known to the agent. The transitions are
probabilistic (there is a 0.1 chance the agent doesn’t reach the desired next state). We begin by
comparing the Q(s, a) values for MAQL and Q learning in Fig.1. We also compare the relative
error in Q values for Q-learning and MAQL in Fig.1 .We use hyper-parameters k = 10 , c = 2, 10
, γ = 0.9. Jin et al. (2018) shows the advantage of using αt = H+1

H+n(s,a) in sample efficient

a) Q-values (4,0) vs Episodes b) Q-values (8,2) vs Episodes

c) Relative Error vs Episodes d) Relative Error vs Episodes

1

Figure 1: a) shows Q-values for state-action pair (3,0) vs Episodes while b) and c) shows Relative
Error |Qk − Q∗| vs Episodes for different learning rates in a GridWorld environment, the shaded
region represents the confidence interval whereas the solid line represents the mean over 20 runs

Q-learning (here H is taken as 500), where n(s, a) denotes the number of times the state action pair
(s, a) is visited. With adaptive learning rate, we see that c = 2 is better than c = 10 as more updates
occur It is clear enough that (kc |S||A|) updates occur in every episode , once the model is accurate
enough, increasing k

c would give better results. Model-assisted Q-learning clearly outperforms
Q-learning in all the cases. It is also visible that Q-learning ’s convergence rate varies greatly on
different learning rates whereas model-assisted Q-learning shows stable outperformance.

We also demonstrate the performance of our algorithm on the Gymnasium environment Taxi-
v3. This is a deterministic environment with |S| = 500 and |A| = 6. Each episode starts randomly
at one of the 300 possible states. A successful drop results in a reward of +20 , wrong pickup-drop
results in (−10) while (−1) is the return for every step taken. An episode terminates after the drop
or by using truncated lengths (maximum length of episode is set as 200). Model-assisted Q-learning
is tuned with c = 25 and k = 1 with the adaptive learning rate. We train it using ϵ-greedy
policy for 500 episodes and then test on the environment by using the greedy policy. On testing,
Q-learning with a slower learning rate attains a success rate of (56.51 ± 3.76%), Q-learning with a
faster learning rate attains (84.88 ± 3.02%), Q-learning with the adaptive attains (76.92 ± 2.18%)
whereas Model-assisted Q-learning manages to attain 100% just after the same amount of training
episodes. This clearly states, our algorithm is able to learn the environment perfectly within the
given episodes. All results are averaged over 20 runs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a) Success Rate per Episode vs Episodes b) Length of Episode vs Episodes

1

Figure 2: Performance on Benchmark environment Taxi

4 MODEL-ASSISTED DQN

DQN has enjoyed major success in learning policies for various control and RL tasks by approx-
imating the Q function with a neural network Mnih et al. (2013). However, they often require
extensive interaction with the environment and can suffer from instability and inefficiency due to
the approximation errors in value estimation. We introduce model-assisted DQN which allows the
network to learn from the traditional targets as in Q-learning and targets from the model-based
estimates.

Algorithm 2 Model-based update MBUPDATE()

Create B with targets y by performing k steps acc. to Equation 3 for all visited (s, a) ∈ S ×A
for epochs = 1, E do

Calculate loss function L,
[
(yj −Q(sj , aj ; θ))

2
]
∀yj , sj , aj ∈ B

Optimize L wrt θ on all data in B using gradient descent
end for
θ− ← θ
Return θ−, θ

Using such model-based updates help in mitigating the overestimation bias present in traditional
Q-learning by using refined Bellman targets, r̂t(s, a) + γ

∑
s′∈S p̂t(s, a, s

′)maxa′∈A Qt(s
′, a′).

The model of the environment is learnt using empirical estimates here. Other approaches to build
the model like Gaussian Processes Deisenroth & Rasmussen (2011) are quite common in literature.
The function MBUPDATE() can be implemented efficiently by using prioritized sweeping to
decide which state-action pairs need to be updated instead of the whole S ×A space.

In DQN style algorithms, the agent takes actions by a ϵ greedy policy from values approxi-
mated by Q-network. There are usually two networks, online and target to ensure stability in
learning values.A soft update is performed between the two networks after every C steps. A replay
buffer D is maintained to randomly sample mini-batches to learn Q-values, which can be guided
by a squared loss between the targets and current values. The weights of the network can be
optimized by using gradient descent. Such learning occurs iteratively over time and the Q-network
approximates the true Q-values. Now model-assisted DQN adds to DQN SWITCH , a set of
episodes deciding when model-based updates are performed along with k in the MBUPDATE()
function which decides how many steps of Q-iteration is to performed.

We consider a Windy GridWorld |S| = 100 and |A| = 4, where wind distracts the agent from
taking the desired action with some probability. The training episodes is set to be 100, meaning data
collection for both model-assisted DQN and DQN stops after 100 episodes. SWITCH is done
at episodes 25, 50 and 75. The Q-network is a simple 3 layer neural net, batch size is set as 10,
target network is copied to online Q-network after every 10 steps, trained using the same ϵt greedy

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 3 Model-assisted DQN
Initialize Q-network with random weights θ, target network with weights θ− ← θ
Initialize replay buffer D to capacity N , a set of episodes to switch updates SWITCH
for episode = 1, M do

Initialize state s0
for t = 1, T do

Select action at using ϵ-greedy policy:
Take action at, observe reward rt and next state st+1

Update estimators p̂t(s, a, s′), r̂t(s, a) following Equation 2.
Store transition tuple (st, at, rt, st+1) in replay buffer D
Sample random mini-batch of transitions (sj , aj , rj , sj+1) from D
Compute target yj for each mini-batch sample:

yj =

{
rj if sj+1 is terminal
rj + γmaxa′ Q(sj+1, a

′; θ−) otherwise

Perform a gradient descent step on loss
[
(yj −Q(sj , aj ; θ))

2
]

Every C steps, update target network: θ− ← τθ + (1− τ)θ−

end for
if episode ∈ SWITCH then

Update θ−, θ using MBUPDATE()
end if

end for

a) Average Episodic Rewards vs Episodes b) Q(97,0) vs Episodes

1

Figure 3: Comparison of Model-assisted DQN and DQN on Windy GridWorld

policy. Figure 3 a) clearly shows that model-assisted DQN performs better than DQN in learning
the optimal values faster while b) shows it helping the network mitigate the overestimation bias for
a state-action pair.

5 APPLICATION TO MARKOVIAN BANDITS

An interesting case of MDPs are the Markovian Bandit setting where each arm can be modelled as a
Markov chain governed by unknown state dynamics. They extend the classical multi-armed bandit
problem, offering more complex scenarios to model real-world applications like single-machine
scheduling, resource constraint problems. The setting where the state of a Markov chain stays
frozen unless it’s played is rested, while restless arms’ state may continue to evolve regardless of the
player’s actions.Tekin & Liu (2012)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 RESTED BANDITS

Gittins and Jones in 1974 proposed a Gittins index policy Gittins (1979) which is shown to be opti-
mal in pulling the arms that would maximize the cumulative expected discounted rewards collected.
Duff was the first to propose a Q-learning based algorithm to learn the Gittins index that uses a
novel ’restart-in-state-i’ interpretation for the problem, while the earlier work all assumed a known
setting of the transition dynamics. Recent works like QWI, QWINN converges to the gittins index
but seems to be noisy due to continuous updates for both the action values.
Dhankar et al. (2024) suggests a tabular QGI algorithm to compute the gittins index and has
shown better performance than other formulations in scheduling applications. QGI relies on a two-
timescale stochastic approximation for Q updates which eventually leads to the retirement value
converging to the gittins index. It is governed by the below equations.

Qx
n+1(sn, 1) = Qx

n(sn, 1)(1 − α(n) + α(n)
(
r(sn) + γmax {Qx

n(sn+1, 1),Mn(x)}
)

(4)

Mn+1(x) = Mn(x) + β(n) (Qx
n(x, 1)−Mn(x)) (5)

where Qx
n(sn, 1) refers to the Q function’s value at state sn at nth time step with respect to reference

state x, Mn(x) refers to the retirement value which is equal to Qx
n(sn, 0) for all S and α(n), β(n) are

their respective learning rates. Let’s introduce a tabular model-assisted QGI with hyper-parameters
para and k, i.e the model based Q-iteration step is done k times once in every para time steps and
the Q iteration step is written with respect to state x,

Qx
n+1(s, a) = R̂(s, a) +

∑
s′∈S

P̂ (s, a, s′)γmax {Qx
n(s

′, 1),Mn(x)}) (6)

We illustrate the performance of the algorithms on a slightly modified version of the restart problem
from Robledo Relaño et al. (2024). Here passive arms do not undergo state transitions. |S| = 3 and
there are 2 homogeneous arms. Reward function r(s) = (0.9)s and there is an unknown transition
dynamics in case of active action :

P (s′|s, 1) =

(
0.3 0 0.7
0.3 0.3 0.4
0.3 0.3 0.4

)
The Gittins index can be analytically computed by any of the methods given in Chakravorty &
Mahajan (2014), G(s) = (0.9, 0.8343, 0.7911). We have run experiments for QGI with different
learning rates. It seems to converge to the true Gittins value regardless of learning rate but rate of
convergence greatly depends on it. Whereas model-assisted QGI is run with para = 10 , k = 1.
Since this is a simple toy setting, performance is not greatly affected by para and k. Model-assisted
QGI seems to be robust not only in convergence also in rate of convergence to different learning
rates.

a) Gittins index vs Time step for State 1 b) Relative Error vs Time step

a)Whittles Index vs Time step for State 2 b) Relative Error vs Time step

1

Figure 4: a) compares the convergence of Gittins Index for QGI and Model-assisted QGI, b) com-
pares the Relative error |Qk − Q∗| for both the algos for the toy setting. All the plots are averaged
for 20 runs and shaded region shows the confidence interval.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Let’s consider a setting where the agent has to pull 1 out of 5 homogeneous arms and each arm is
modelled by a Markov chain of 10 states with R(s) = 0.1(1 + s) and arms are passive when not
pulled, when they are pulled it is governed by the following dynamics,

P (s′|s, 1) =



0.2 0.1 0.3 0.1 0.3 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0.2 0.3 0.25 0.15 0.0 0.0 0.0 0.0
0.0 0.0 0.15 0.15 0.25 0.15 0.3 0.0 0.0 0.0
0.0 0.0 0.0 0.1 0.3 0.3 0.25 0.05 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.25 0.05 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.3 0.1 0.3
0.3 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.1 0.1
0.25 0.05 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.3
0.15 0.25 0.3 0.0 0.0 0.0 0.0 0.0 0.15 0.15
0.3 0.2 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.1



a) Gittins index vs time for QGI b) Gittins index for Model-assisted QGI

1

Figure 5: Comparison between the convergence of Gittins Index for QGI and Model-assisted QGI

We select this setting as the true gittins values are closer for few states and one can observe in QGI,
it can lead to sub-optimal decisions before the convergence, whereas in model-assisted QGI not
only we are able to reduce the variance for the same learning rate but also the ordering of states is
achieved sooner than QGI leading to better decisions in early episodes too.

5.2 RESTLESS BANDITS

RMABs(Restless Multi-armed-Bandits) first introduced by Whittle in 1988 has found various ap-
plications in healthcare, inventory routing and networking.Whittle (1988) It is similar to the rested
setting but even in the case of passive action states undergo transition. The decision maker has to
pull K out of N arms. A relaxed version of the setting stating that the arms are indexable then the op-
timal policy is Whittle index policy that relies on calculating Whittle index for each of the arms, and
activating in every decision epoch the arms with the highest K Whittle indices. QWI introduced in
Robledo Relaño et al. (2024) seems to enjoy better performance than other RL based algorithms like
NeurWIN Nakhleh et al. (2021). It relies on a faster timescale to update the state action Q-values
and a relatively slower timescale to update the Whittle indices, explained in the below equations.

Qx
n+1(sn, an) = (1− α(n))Qn

x(sn, an) + α(n)∗
((1− an)(r0(sn) + λn(x)) + anr1(sn) + γ max

v∈{0,1}
Qn

x(sn+1, v)) (7)

λn+1(x) = λn(x) + β(n)(Qx
n(x, 1)−Qx

n(x, 0)) (8)

The Q iteration step for these are given by:

Qx
n+1(s, a) = (1− a)(r̂0(s) + λn(x)) + ar̂1(s) + γ

∑
s′∈S

P̂ (s, a, s′) max
v∈{0,1}

Qn
x(s

′, v) (9)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Now we use this Q iteration step and plug it in QWI algorithm as before in the rested case using a
switching condition C.

We take the example of circular problem introduced in Fu et al. (2019) with a state space |S| = 4.
In this problem, with an active action the process remains in its current state with probability 0.6, or
increments positively with probability 0.4. Similarly, with a passive action the process remains in
its current state with probability 0.6, or decrements negatively with probability 0.4.
The reward function does not depend on the action performed, but only on the state, being R(0) =
−1,R(1) = R(2) = 0,R(3) = 1. Using a discount parameter of γ = 0.9, the theoretical values of
Whittle index for each state are λ(0) = −0.4390,λ(1) = 0.4390, λ(2) = 0.8652, λ(3) = −0.8652.

a) α = 0.2 b) α = 0.8 c) αt =
H+1

H+n(s,a)

a) Gittins index vs Time step for State 1 b) Relative Error vs Time step

a)Whittles Index vs Time step for State 2 b) Relative Error vs Time step

1

Figure 6: a) compares the convergence of Whittles Index for QWI and model-assisted QWI, b)
compares the Relative error for both the algos for the Circular problem where one has to pick 1 out
of 3 arms. All the plots are averaged for 20 runs and shaded region shows the confidence interval.

The learning rate is taken as described by the authors of QWI for both the algorithms. We can see
that model-assisted QWI performs better than QWI by converging to the optimal Q values faster and
by reducing the number of sub-optimal episodes. The initial deviations might come due to model’s
incorrect estimates of state dynamics but later as more interaction with the environment occurs,
estimates move closer to the true dynamics, thereby causing the Q values and Whittles Index also
converge faster.

6 CONCLUSION

In this paper, we present Model-assisted Q-learning a framework combining model-free and model-
based methods to improve the sample efficiency of Q-learning on finite MDPs. We also showcase
similar success in model-assisted DQN over traditional DQN and its adaptive usage in learning
Gittins/Whittles index in rested and restless bandits setting respectively. The theme of these al-
gorithms is to improve the sample complexity of existing Q-learning methods as collecting data in
certain environments can be time-consuming and expensive. As our methods model the environment
using exact parameters empirically, it is restrictive in |S| suffering from the curse of dimensional-
ity. Using non-parametric approaches like Gaussian Processes for approximating environment or
parametric function approximators like neural networks is a direction for future work. Using such
model-assists for natural policy gradient style methods for policy evaluation instead of interacting
with the environment sounds interesting.

REFERENCES

Andrea Castelletti, Francesca Pianosi, and Marcello Restelli. Tree-based fitted q-iteration for multi-
objective markov decision problems. In The 2012 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8, 2012. doi: 10.1109/IJCNN.2012.6252759.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Jhelum Chakravorty and Aditya Mahajan. Multi-armed bandits, gittins index, and its calculation.
Methods and Applications of Statistics in Clinical Trials, 2:416–435, 06 2014. doi: 10.1002/
9781118596333.ch24.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: a model-based and data-efficient ap-
proach to policy search. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, pp. 465–472, Madison, WI, USA, 2011. Omnipress.
ISBN 9781450306195.

Harshit Dhankar, Kshitij Mishra, and Tejas Bodas. Tabular and deep reinforcement learning for
gittins index, 2024.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
J. Mach. Learn. Res., 6:503–556, dec 2005. ISSN 1532-4435.

Jing Fu, Yoni Nazarathy, Sarat Moka, and Peter G. Taylor. Towards q-learning the whittle index for
restless bandits. In 2019 Australian New Zealand Control Conference (ANZCC), pp. 249–254,
2019. doi: 10.1109/ANZCC47194.2019.8945748.

J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society. Series B (Methodological), 41(2):148–177, 1979. ISSN 00359246. URL http://
www.jstor.org/stable/2985029.

William B. Haskell, Rahul Jain, and Dileep Kalathil. Empirical dynamic programming, 2013. URL
https://arxiv.org/abs/1311.5918.

Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. Is q-learning provably effi-
cient? CoRR, abs/1807.03765, 2018. URL http://arxiv.org/abs/1807.03765.

Dileep Kalathil, Vivek S Borkar, and Rahul Jain. Empirical q-value iteration. Stochastic Systems,
11(1):1–18, 2021.

Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is q-learning minimax optimal?
a tight sample complexity analysis, 2023. URL https://arxiv.org/abs/2102.06548.

Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey
on model-based reinforcement learning, 2022. URL https://arxiv.org/abs/2206.
09328.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

Khaled Nakhleh, Santosh Ganji, Ping-Chun Hsieh, I-Hong Hou, and Srinivas Shakkottai. Neurwin:
Neural whittle index network for restless bandits via deep RL. CoRR, abs/2110.02128, 2021.
URL https://arxiv.org/abs/2110.02128.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling, 2013. URL https://arxiv.org/abs/1306.0940.

Martin Riedmiller. Neural fitted q iteration – first experiences with a data efficient neural reinforce-
ment learning method. In Proceedings of the 16th European Conference on Machine Learning,
ECML’05, pp. 317–328, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3540292438. doi:
10.1007/11564096 32. URL https://doi.org/10.1007/11564096_32.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Math-
ematical Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL https:
//doi.org/10.1214/aoms/1177729586.

Francisco Robledo Relaño, Vivek Borkar, Urtzi Ayesta, and Konstantin Avrachenkov. Tabular and
deep learning for the whittle index. ACM Transactions on Modeling and Performance Evaluation
of Computing Systems, June 2024. ISSN 2376-3647. doi: 10.1145/3670686. URL http:
//dx.doi.org/10.1145/3670686.

10

http://www.jstor.org/stable/2985029
http://www.jstor.org/stable/2985029
https://arxiv.org/abs/1311.5918
http://arxiv.org/abs/1807.03765
https://arxiv.org/abs/2102.06548
https://arxiv.org/abs/2206.09328
https://arxiv.org/abs/2206.09328
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2110.02128
https://arxiv.org/abs/1306.0940
https://doi.org/10.1007/11564096_32
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1145/3670686
http://dx.doi.org/10.1145/3670686

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Matilde Santos, Jos´e Antonio, Victoria L´opez, and Guillermo Botella. Dyna-h: A heuristic
planning reinforcement learning algorithm applied to role-playing game strategy decision sys-
tems. Knowl. Based Syst., 32:28–36, 2011. URL https://api.semanticscholar.org/
CorpusID:14165051.

Remo Sasso, Michelangelo Conserva, and Paulo Rauber. Posterior sampling for deep reinforcement
learning, 2023. URL https://arxiv.org/abs/2305.00477.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2(4):160–163, jul 1991. ISSN 0163-5719. doi: 10.1145/122344.122377. URL https:
//doi.org/10.1145/122344.122377.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Cem Tekin and Mingyan Liu. Online learning of rested and restless bandits. IEEE Transactions
on Information Theory, 58(8):5588–5611, August 2012. ISSN 1557-9654. doi: 10.1109/tit.2012.
2198613. URL http://dx.doi.org/10.1109/TIT.2012.2198613.

Samuele Tosatto, Matteo Pirotta, Carlo d’Eramo, and Marcello Restelli. Boosted fitted q-iteration.
In International Conference on Machine Learning, pp. 3434–3443. PMLR, 2017.

Hado Philip van Hasselt. Insights in Reinforcement Learning: formal analysis and empirical
evaluation of temporal-difference learning algorithms. PhD thesis, Universiteit Utrecht, Jan-
uary 2011. URL http://homepages.cwi.nl/˜hasselt/papers/Insights_in_
Reinforcement_Learning_Hado_van_Hasselt.pdf.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Oxford, 1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292, May
1992. ISSN 1573-0565. doi: 10.1007/BF00992698. URL https://doi.org/10.1007/
BF00992698.

P. Whittle. Restless bandits: activity allocation in a changing world. Journal of Applied Probability,
25(A):287–298, 1988. doi: 10.2307/3214163.

11

https://api.semanticscholar.org/CorpusID:14165051
https://api.semanticscholar.org/CorpusID:14165051
https://arxiv.org/abs/2305.00477
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://dx.doi.org/10.1109/TIT.2012.2198613
http://homepages.cwi.nl/~hasselt/papers/Insights_in_Reinforcement_Learning_Hado_van_Hasselt.pdf
http://homepages.cwi.nl/~hasselt/papers/Insights_in_Reinforcement_Learning_Hado_van_Hasselt.pdf
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

	Introduction
	Preliminaries
	Markov Decision Processes
	Q-learning

	Model-assisted Q-learning
	Model-assisted DQN
	Application to Markovian Bandits
	Rested Bandits
	Restless Bandits

	Conclusion

