
COACH: Collaborative Agents for Contextual Highlighting
A Multi-Agent Framework for Sports Video Analysis

Tsz-To Wong1, Ching-Chun Huang1* Hong-Han Shuai1*

1National Yang Ming Chiao Tung University
No. 1001, Daxue Rd., East Dist., Hsinchu City 300, Taiwan

tsztowong.cs13@nycu.edu.tw, chingchun@cs.nycu.edu.tw, hhshuai@nycu.edu.tw

Abstract

Intelligent sports video analysis demands a comprehensive
understanding of temporal context, from micro-level actions
to macro-level game strategies. Existing end-to-end models
often struggle with this temporal hierarchy, offering solutions
that lack generalization, incur high development costs for
new tasks, and suffer from poor interpretability. To overcome
these limitations, we propose a reconfigurable Multi-Agent
System (MAS) as a foundational framework for sports video
understanding. In our system, each agent functions as a dis-
tinct ”cognitive tool” specializing in a specific aspect of anal-
ysis. The system’s architecture is not confined to a single tem-
poral dimension or task. By leveraging iterative invocation
and flexible composition of these agents, our framework can
construct adaptive pipelines for both short-term analytic rea-
soning (e.g., Rally QA) and long-term generative summariza-
tion (e.g., match summaries). We demonstrate the adaptabil-
ity of this framework using two representative tasks in bad-
minton analysis, showcasing its ability to bridge fine-grained
event detection and global semantic organization. This work
presents a paradigm shift towards a flexible, scalable, and in-
terpretable system for robust, cross-task sports video intelli-
gence.

Project Homepage —
https://aiden1020.github.io/COACH-project-page

Introduction
Sports video analysis goes beyond recognizing actions or
detecting events. It aims to understand what happened, why
it happened, and how it developed over time. (Xiao et al.
2021)

Games like badminton, with their fast-paced rallies and
continuous player interactions, naturally form a multi-level
timeline: micro-level (strokes and rallies), mid-level (sets),
and macro-level (complete matches and overall tactics). (Li
et al. 2025) Such temporal complexity requires a system
capable of multi-scale reasoning. A good analysis system
therefore needs both detailed accuracy for local actions and
global understanding of long-term strategies and flow.

Most existing systems rely on end-to-end single-model
training (Li et al. 2023a; Lin et al. 2023; Li et al. 2023b),
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where each model is built for one specific task, such as Video
Question Answering or Video Summarization. This design
leads to three key problems:
1. High Redundant Cost: Each application requires a sep-

arate model and training pipeline, since components can-
not be reused across different objectives, reducing scala-
bility.

2. Locked to a Single Temporal Scale: End-to-end models
are trained for one granularity (e.g., rally-level) and can-
not transfer knowledge to other scales (e.g., game-level),
limiting cross-level understanding.

3. Opaque Reasoning: The decision process is hidden,
making it difficult to interpret, verify, or integrate new
reasoning modules.

To address these limitations, we propose a Multi-Agent
System as a flexible foundation for sports video understand-
ing. Each agent functions as an independent cognitive tool,
responsible for a specific type of reasoning, such as player
tracking, stroke recognition, rally segmentation, or tactical
inference. This modular design allows the system to adapt
and expand without rebuilding everything from scratch.

Our system is not tied to any single time scale or task type.
It can perform both short-term reasoning (like answering
a question about one rally) and long-term integration (like
summarizing an entire match). This adaptability is achieved
through iterative coordination and composable workflows,
repeatedly invoking agents and combining their outputs into
customized pipelines. In this way, the framework can flexi-
bly switch between analytic reasoning and generative sum-
marization as needed.

The research demonstrates a composable framework built
around multi-agent collaboration. We validate the frame-
work through two complementary applications: (1) Video
QA, which focuses on fine-grained analytical understand-
ing for single rally, and (2) Video Summarization, which
focuses on global integration and narrative generation. To-
gether, these tasks demonstrate the framework’s adaptability
across different temporal levels and task objectives.

Related Work
Video Understanding
Recent advances in Video-Language Models (VLMs), such
as BLIP-2 (Li et al. 2023a), Video-LLaVA (Lin et al. 2023),



Figure 1: A high-level conceptual diagram illustrating the
collaborative interaction between agents.

Figure 2: Shared components library

and VideoChat (Li et al. 2023b), have shown remarkable
progress in bridging visual and textual semantics for video
understanding tasks. Although some recent models incorpo-
rate temporal fusion, most still process videos through fixed-
length clips and lack explicit hierarchical temporal mod-
eling. As a result, they struggle to capture the multi-level
structure of long-form content such as sports matches, which
unfold from strokes to rallies to sets (Li et al. 2025; Liu
et al. 2025). Consequently, their reasoning remains confined
to local event recognition rather than global narrative un-
derstanding. This imbalance is highlighted by sports video
understanding datasets (Shao et al. 2020; Xiao et al. 2021),
showing that models capable of describing what happens of-
ten fail to explain why it happens due to missing causal and
temporal dependencies. These limitations motivate a more
structured, system-level approach to temporal reasoning.

Modular and Multi-Agent Frameworks
Beyond temporal scalability, the monolithic design of end-
to-end models restricts their reusability and coordination
across applications. To overcome this issue, modular and
multi-agent frameworks have emerged as promising alter-
natives. In the language domain, systems such as Hugging-
GPT (Shen et al. 2023) employ a large language model
(LLM) as a central controller to delegate tasks to special-
ized sub-models, while MetaGPT (Hong et al. 2023) intro-
duces role-based agents coordinated through Standard Op-
erating Procedures (SOPs). In the vision domain, Agen-

tOrchestra (Zhang et al. 2025) demonstrates hierarchical
orchestration and dynamic workflow composition, improv-
ing generalization and plug-and-play capabilities. However,
these frameworks mainly focus on static task coordination
and lack temporal reasoning across multiple levels of ab-
straction.

Instruction Tuning and Role Specialization
Instruction tuning offers another path toward control-
lable and interpretable agent behavior. Early multimodal
works (Dai et al. 2023; Liu et al. 2023) established in-
structions as a universal interface for cross-modal reason-
ing. Later studies introduced role-based prompting and self-
refinement (Madaan et al. 2023; Zhou et al. 2023), allowing
a single model to simulate collaborative reasoning among
roles. More recent approaches, such as AgentTuning (Zeng
et al. 2023) and AgentBank (Song et al. 2024), extend this
concept by fine-tuning agents on role-specific instructional
data, embedding skills such as planning or tool use. While
these frameworks enable role specialization, they still train
each agent independently, without mechanisms for joint op-
timization or shared feedback. Our work builds upon this
direction by proposing a framework in which agents, such
as the Orchestrator, Grounder, and Critic, are not only fine-
tuned for specific roles but also learn to coordinate explicitly
to form a verifiable and composable system for sports video
understanding.

Method
This section details our COACH: COllaborative Agents
for Contextual Highlighting framework. The methodology
is presented as follows: We first introduce our core ar-
chitectural foundation—a single shared backbone—and its
system-level motivation. We then describe how this back-
bone operates at a macro-level (Orchestration) and a micro-
level (Tuning), and finally define the components involved.

Architectural Foundation: A Shared Backbone for
Scalable Deployment
Our methodology is built upon a foundational design choice:
a single shared backbone model for all agents. This de-
cision is motivated by system-level scalability and effi-
ciency. A unified backbone, deployed via multi-GPU paral-
lelism, can concurrently serve high-throughput batch infer-
ence (e.g., summarization) and high-concurrency requests
(e.g., QA). This design also inherently provides global
knowledge alignment by ensuring all agents operate within
a unified representation space. The following sections detail
the orchestration and specialization mechanisms that enable
this single model to perform its diverse, multi-role functions.

Intent-Driven Orchestration for Policy-Guided
Collaboration
Given this single-backbone architecture, the system coordi-
nates tasks at a macro-level using policy-guided orchestra-
tion, which offers greater stability than the ”online planning”
paradigms employed in many traditional systems.



Design: Intent Routing as Policy Selection In our frame-
work, a ”policy” is not a dynamic, step-by-step decision
model. Instead, it is a pre-defined, goal-oriented collabora-
tion plan, such as a Standard Operating Procedure (SOP),
that specifies a fixed, reproducible sequence of agent and
tool invocations.

The Orchestrator’s core reasoning capability, trained via
supervised imitation, lies in performing intent-to-strategy
mapping. Given a user query (e.g., ”What happened in rally
5?” vs. ”Create a highlight reel”), its first action is to classify
the semantic intent and select the corresponding pre-defined
plan. This design is stable and reproducible because the col-
laboration flows are fixed, yet remains adaptive because the
agents *within* that plan operate dynamically based on the
context.

Pre-defined Collaboration Strategies We implement two
primary, pre-defined strategies that correspond to the main
tasks of our system (as illustrated in Fig 3).

Analytical Rally QA Strategy is designed for precise,
evidence-based factual reasoning. This flow typically in-
volves the Orchestrator first calling the Retriever to find rel-
evant evidence, then calling the Critic to verify the factual
consistency of the information, and finally synthesizing the
verified information into a conclusive answer.

Generative Video Summarization Strategy is designed
for narrative, open-ended generation. This flow involves a
more complex sequence: the Orchestrator first plans the
summary structure, then calls the Grounder (often in a batch)
to localize all required events. These events are then verified
by the Critic, synthesized into a narrative script by the Or-
chestrator, and finally compiled into a video by the Media
Composition tool.

Multi-Role Specialization via Structured CoT
Tuning
This single-backbone, multi-strategy approach introduces
the significant challenge of role conflict. We must enable
functionally distinct capabilities, such as the ’complex plan-
ning’ required by the Orchestrator and the ’suppressed rea-
soning’ demanded by the Grounder—to coexist within the
same model weights without task-level interference.

Our solution is Structured CoT Tuning. We mix multi-
ple sets of role-specific, structured Chain-of-Thought (CoT)
instruction datasets within the single shared backbone. This
induces ”multi-persona reasoning modes.” Role-switching is
achieved not by different weights, but by adhering to differ-
ent, supervised CoT structural templates during inference.

We ensure clean behavioral separation through two pri-
mary mechanisms:

Instruction Conditioning We use role-specific instruc-
tion prefixes, such as ”You are a Grounder Agent respon-
sible for temporal localization.” This guides the model into
a role-specific reasoning subspace during inference, thereby
mitigating role interference.

Role-Specific CoT Design We design distinct CoT tem-
plates (thinking patterns) for each agent, each optimized for

its specific function. This is where the model’s specialized
behaviors are learned:
• Orchestrator Agent: It is trained to be the ”strategist”

with the highest degree of reasoning freedom. Its CoT
pattern is a Conditional Routing mechanism. The tem-
plate trains the model to first analyze the query’s in-
tent: (1) For text-based tasks, it executes a single-step in-
ference to answer directly from its internal knowledge.
(2) For video-based tasks, the CoT pattern guides the
model to perform the high-level, multi-step visual rea-
soning (e.g., analyzing tactics, counting actions) required
to synthesize the final answer. (3) For video summa-
rization task, it starts to breakdown the high level query
into multiple in domain queries and pass these queries to
grounder agent for fine grained temporal localization.

• Grounder Agent: The agent is trained as a high-
precision ”executor” role. Its CoT pattern is a rigid, non-
reasoning, Observe → Report structure. The model
is trained to strictly parse the instruction (e.g., ”find all
smashes”) and report only the factual temporal locations
(e.g., ‘[stroke 3, stroke 7]‘). Crucially, the agent needs to
report an empty set if no visual evidence is found, ensur-
ing high stability and verifiability.

• Critic Agent: The agent’s thinking pattern is designed to
be evaluative and oppositional, operating in direct con-
trast to the generative nature of the Orchestrator.
Its goal is to be an interpretable, ”fact-checking en-
gine.” To achieve this, its CoT template follows a
traceable, forensic structure: ”Analyze Assertion →
Compare Evidence → Adjudicate Verdict”. Unlike
the Orchestrator, which reasons ”forward” (What
should I do?), the Critic reasons ”backward” (Is this
claim true?). It is trained to take a claim as input (e.g.,
”Stroke 5 was a smash”) and rigorously compare it
against the visual evidence before rendering a verifiable
judgment. This oppositional structure is critical for mit-
igating factual errors and ensuring the system’s overall
reliability.

Component and Tool Definitions
For clarity, we formally define the agents and tools in Fig 2
that comprise our system:
• Core Agents: Instantiated from the shared backbone.

– Orchestrator Agent: The central controller that per-
forms intent routing and task-adaptive control.

– Grounder Agent: The high-precision execution agent
for temporal localization.

– Critic Agent: The verification agent for fact-checking
and consistency.

• Foundation Modules (Tools):
– Vision Module: Converts video into semantic fea-

tures.
– Retriever Tool: Provides video or knowledge re-

trieval.
– Media Composition Tool: Assembles video clips for

summarization.



Figure 3: The multi-agent collaboration workflow in COACH. Based on the user’s prompt, the Orchestrator Agent acts
as an intent router, initiating one of two distinct collaboration policies : (Left) The Analytical Rally QA pipeline, which uses
an Orchestrator-Critic loop to verify evidence and generate a factual text answer. (Right) The Generative Video
Summarization pipeline, which uses a specialist Grounder-Critic loop to perform high-precision temporal localization,
followed by the Media Composition Tool to assemble the final video output.

Table 1: Performance on the Analytical Rally QA task. This demonstrates the superiority of the COACH pipeline over a
generalist model for complex, high-level reasoning.

Model Action Class. Action Count Summarisation Temporal Localization Knowledge QA
(EM %) ↑ (EM %) ↑ (ROUGE-L) ↑ (Hit@1 %) ↑ (EM %) ↑ (F1 %) ↑ (ROUGE-L) ↑

Main Comparison: Specialist vs. Generalist
Gemini 2.5 Pro 24.20 37.60 23.55 18.12 7.04 13.73 29.76
COACH (w/ Critic) 85.60 79.20 33.56 76.66 63.97 76.21 27.40
Ablation Studies: Impact of Architecture Choices
COACH (w/o Critic) 82.20 79.60 32.24 76.94 61.09 73.63 27.40

Experiments
Dataset Construction
We construct a training and evaluation corpus, referred to
as COACH-QA, consisting of two complementary compo-
nents: (1) a Video-Based QA set derived from the ShuttleSet
dataset (Wang et al. 2023), and (2) a Knowledge-Based QA
set generated from authoritative textual sources.

Dataset Analysis

Video-Based QA To enable video-grounded reasoning,
we construct a sub-dataset derived from the ShuttleSet. It
provides high-quality, stroke-level annotations, but it is orig-
inally designed for classification and low-level analysis. We
introduce a new task format by generating reasoning ques-
tions that require hierarchical understanding of a rally. These
questions span action classification (e.g., “What shot is
stroke 5?”), action counting (e.g., “How many smashes
occur in this rally?”), temporal localization (e.g., “When

does the player initiate the serve?”), and higher-level tacti-
cal analysis and summarization (e.g., “Summarize the up-
per player’s strategy in this rally.”). Each question is paired
with a detailed Chain-of-Thought (CoT) (Wei et al. 2023)
rationale that simulates step-by-step visual reasoning.

Knowledge-Based QA From an application perspective,
this sub-task is designed to expand COACH’s utility into a
comprehensive badminton expert. It ensures the system can
answer not only video-specific tactical questions but also
general domain knowledge queries. This requirement, how-
ever, introduces a critical design challenge: how to handle
these distinct query types efficiently. Using the full, multi-
step visual collaboration pipeline (SOP) for a simple text-
based question would be highly inefficient. Therefore, it en-
riches the shared LLM backbone with specialized domain
knowledge.

Dataset Generation Pipelines



Video-Based QA Generation Our pipeline for synthe-
sizing the Video-Based QA dataset begins by converting
the structured stroke-level annotations from ShuttleSet (e.g.,
stroke type, player position) into dense, descriptive captions.
These captions serve as the ground-truth visual context for
the model. To ensure high quality and factual grounding, we
employ an in-context learning approach. We manually au-
thored a set of high-quality (Question, CoT, Answer) exem-
plars, which act as few-shot guides to constrain the reason-
ing style and output format of a ’Teacher’ large language
model (gpt-oss-120b (OpenAI 2025)). In the final synthesis
step, the Teacher LLM is prompted with both the ground-
truth caption and the human-authored exemplars, and is in-
structed to generate both a complex tactical question and
its corresponding detailed, step-by-step Chain-of-Thought
(CoT) answer.

Knowledge-Based QA We crawled a comprehensive cor-
pus of professional badminton knowledge from authorita-
tive, publicly available web sources (e.g., BWF Statutes,
BadmintonBible, wikipedia, etc.). This corpus covers offi-
cial rules, advanced techniques, footwork, and tactical prin-
ciples. We then also used a teacher LLM to generate (Ques-
tion, Answer) pairs based only on the provided textual con-
text. All text sources were used for research purposes, ad-
hering to fair use principles.

Implementation Details
A key methodological challenge arises in establishing a fair
comparison for our Generative Video Summarization ap-
plication. This application is designed for long-form, often
hour-plus, match videos. State-of-the-art end-to-end mod-
els, such as Gemini 2.5 Pro (Anil, Borgeaud, and Alayrac
2025), are architecturally unsuited for processing such long-
duration inputs while maintaining the fine-grained, stroke-
level understanding required by our queries. Our COACH
framework is explicitly designed to solve this by ”chunk-
ing” the long-form video and dispatching these segments to
the specialist Grounder agent for batch inference.

Therefore, to create a meaningful and direct comparison
of the core capability required, our experiment is designed
to evaluate the specialist Grounder agent against the gen-
eralist Gemini 2.5 Pro on their respective performance on
these individual video chunks using low-level localization
queries.

We compare our primary framework against a strong
state-of-the-art baseline, Gemini 2.5 Pro, which represents
the current frontier of end-to-end Video-Language Models
(VLMs).

Our model adopts Flan-T5-XL (Chung, Hou, and Longpre
2022) as a single shared LLM backbone. Its vision compo-
nents are based on TC-CLIP-B/16 (Kim et al. 2024) as the
video encoder and a Q-Former module for vision-language
alignment.

Before integration, these vision modules are aligned with
the language space by captioning task. The entire framework
is fully supervised trained on our COACH-QA for 2 epochs,
using a learning rate of 2e-5 and a batch size of 16.

Evaluation Metrics
As our framework is designed as an application-focused
generative system, we evaluate all models (COACH and
baselines) on their natural language generation output. We
employ a suite of specific metrics tailored to our different
task categories to ensure a fair and rigorous comparison.

1. Factual Accuracy (EM) For tasks with a single defini-
tive factual answer (e.g., Action Classification and Action
Count), we use Exact Match (EM) Accuracy. We employ
a parsing script to extract the core answer (e.g., the stroke
name ”smash” or the number ”3”) from the model’s gener-
ated sentence and compare it to the ground truth.

2. Localization Fidelity (F1-Score) For all tasks requir-
ing temporal localization , we evaluate the model’s ability
to precisely identify the correct event strokes. We extract
the set of predicted stroke indices from the generated text
and compare it to the ground-truth set, reporting the average
Stroke-level F1-Score (along with Precision and Recall).

3. Hallucination Mitigation (NQA) To specifically mea-
sure the Grounder agent’s robustness against hallucinations
, we use Negative Query Accuracy (NQA). This metric is
computed on the subset of localization queries where the
event is absent, measuring the model’s accuracy in correctly
identifying these as non-existent (e.g., by reporting an empty
set).

4. Generative Text Quality (ROUGE-L) For open-
ended, text-only generative tasks (Summarisation and
Knowledge QA), where semantic overlap is more important
than exact match, we report the ROUGE-L score.

Quantitative Results
We present our main quantitative results in Table 1 (Rally
Video QA) and Table 2 (Scalable Temporal Grounding). Our
analysis validates our core hypothesis: a specialist architec-
ture, trained with fully supervised, structured CoT, is neces-
sary for high-precision, domain-specific reasoning.

Comparison with Generalist SOTA Our primary finding
is the clear performance gap between our specialist COACH
framework and the Gemini 2.5 Pro generalist baseline (Ta-
ble 1).

This performance difference is most evident in high-
precision tasks. In Temporal Localization, COACH achieves
a 76.21% F1-Score, a significant +62% lead over Gem-
ini (13.73%). This result stems from our model’s special-
ized training. Gemini’s low precision (17.81%) and recall
(12.67%) suggest its reasoning is statistically unreliable and
not firmly ”grounded” in the visual evidence, likely relying
on generalized textual priors rather than the video’s specific
temporal structure.

Similarly, the +59% and +42% gains in Action Classifi-
cation and Action Count, respectively, demonstrate the ef-
ficacy of our structured CoT pipeline. The Critic agent, en-
forcing a step-by-step verification process, enables COACH
to successfully execute the discrete, factual reasoning re-
quired for these tasks—a capability that monolithic, end-to-
end models are not optimized to perform.



It is indicated in the Scalable Temporal Grounding task
(Table 2). Here, the specialist Grounder agent (84.77% F1)
substantially outperforms the generalist Gemini (24.82%
F1). It is showing that a specialized architecture, trained via
supervised CoT, is necessary for both high-level complex
reasoning and low-level scalable grounding.

Architectural Specialization vs. Model Scale The
Knowledge QA task (Table 1) provides a critical point of
analysis regarding model scale. On this text-only task, which
primarily evaluates the raw knowledge of the LLM back-
bone, COACH (27.40 ROUGE-L) performs comparably to,
but is slightly outperformed by, Gemini 2.5 Pro (29.76
ROUGE-L).

This result is consistent with our hypothesis. The perfor-
mance gap on Knowledge QA is expected, as the larger-scale
Gemini model possesses superior pre-trained textual priors.
This outcome effectively isolates the source of COACH’s su-
perior performance on all video-grounded tasks. It demon-
strates that COACH’s significant gains in temporal and fac-
tual reasoning are not a byproduct of superior model scale.
Instead, this advantage is directly attributable to our special-
ized, agent-based architecture and the fully supervised, role-
specific CoT patterns it was trained on.

Ablation Studies
Having established the necessity of a specialist framework,
we now conduct ablation studies to validate that COACH’s
high performance is a direct result of our key design deci-
sions as described in Method.

Impact of the Critic Agent To verify the importance of
the Critic agent, we evaluate a variant, COACH(w/o Critic),
on the Analytical Rally QA task. It means the answers are di-
rectly output by Orchestrator agent without verification pro-
cess.

As shown in Table 1, removing the Critic’s verification
step causes a significant 3.4% drop in ‘Action Classifica-
tion‘ accuracy (85.60% → 82.20%). This demonstrates that
the Critic’s evaluative, ”backward-reasoning” mechanism is
critical for mitigating factual errors and ensuring the relia-
bility of the final answer.

Validating Role-Specific Thinking Patterns To isolate
the effect of the specialized thinking patterns learned via
Structured CoT Tuning, we compare the performance of
the Orchestrator agent against the specialist Grounder agent.
Both agents were evaluated on the same Scalable Temporal
Grounding task.

This comparison is particularly salient because both
agents utilize the exact same shared backbone model (Flan-
T5-XL). The sole difference between them is the distinct
reasoning pattern (CoT) each was trained to follow. The Or-
chestrator employs the generalist, complex-reasoning pat-
tern it learned, while the Grounder employs the stability-
driven, ”Observe → Report” pattern it was specialized for.

The results, presented in Table 3, are conclusive. The
Grounder , by adhering to its specialized thinking pattern,
significantly outperforms the Orchestrator (which uses its
generalist pattern) on all metrics, most notably achieving a

+8.82 F1-Score gain. Furthermore, its 91.80% NQA score
is 6.3 points higher, which demonstrates that its specialist
pattern is significantly more effective at mitigating halluci-
nations by correctly identifying unanswerable queries. This
experiment thus validates that our Structured CoT Tuning
method can successfully create distinct, functionally spe-
cialized behaviors within a single model.

Table 2: Performance of the specialist COACH (Grounder
Agent) on the Scalable Temporal Grounding task (Task
2). We report metrics as percentages (%).

Metric Gemini 2.5 Pro COACH
hit@1 27.68 87.28
EM 15.53 72.31
Precision 27.49 86.95
Recall 25.16 84.65
F1-Score 24.82 84.77
NQA 21.23 91.80

Table 3: Ablation study validating the efficacy of Role-
Specific Thinking Patterns.

Metric Orchestrator Grounder
Hit@1 82.73 87.28
EM 68.12 72.31
Precision 76.75 86.95
Recall 75.22 84.65
F1-Score 75.95 84.77
NQA 85.50 91.80

Conclusion
In this paper, we proposed COACH, a composable, multi-
agent framework built on a shared backbone designed for
system scalability. We demonstrated that for specialized,
high-stakes domains like sports analysis, a specialist archi-
tecture is necessary. Our experiments showed that COACH’s
specialist agents and verification mechanisms achieve su-
perior factual accuracy and grounding fidelity compared to
state-of-the-art generalist models like Gemini 2.5 Pro. This
architecture, which combines Intent-Driven Orchestration
with Structured CoT Tuning, allows specialized agents to
achieve high factual and temporal accuracy on tasks where
generalist models fail.

Limitations Despite these promising results, our work has
several limitations. First, our COACH-QA dataset, while
comprehensive for badminton, is currently limited to a sin-
gle sport. Second, our policy-guided orchestration relies on
a fixed set of pre-defined SOPs; this ensures stability but
limits the system’s flexibility in handling completely novel,
unseen task structures that do not fit the QA or Localization
paradigms.Third, the evaluation of the Video Summariza-
tion pipeline was focused on the quantitative of temporal
localization (e.g., F1, EM) to validate our Grounder agent.
We acknowledge that a ”good” summary involves more than
just accurate localization, including qualitative aspects such



as narrative coherence, interestingness, and contextual rele-
vance.

Future Work These limitations highlight clear avenues
for future research. Our immediate next step is to address
the holistic evaluation of summarization. We plan to con-
duct a comprehensive human evaluation (user study) to
assess the end-to-end qualitative performance of the gen-
erated video summaries. Concurrently, we will leverage the
framework’s composability to add new SOPs for high-level
generative tasks, such as generating journalistic press re-
leases or in-depth tactical analysis reports for coaches.
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