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ABSTRACT

Pruning and decomposition are two important techniques to compress deep neural
network (DNN) models. To date, these two popular yet distinct approaches are typi-
cally used in a separate way; while their efficient integration for better compression
performance is little explored. In this paper, we perform systematic co-exploration
on pruning and decomposition toward compact DNN models. We first investigate
and analyze several important design factors for joint pruning and decomposition,
including operational sequence, decomposition format, and optimization procedure.
Based on the observations from our analysis, we then propose CEPD, a unified
DNN compression framework that can simultaneously capture the benefits of prun-
ing and decomposition in an efficient way. Empirical experiments demonstrate the
promising performance of our proposed solution. Notably, on CIFAR-10 dataset,
CEPD brings 0.72% and 0.45% accuracy increase over the baseline ResNet-56 and
MobileNetV2 models, respectively, and meanwhile the computational costs are
reduced by 43.0% and 44.2%, respectively. On the ImageNet dataset, our approach
can enable 0.10% and 1.39% accuracy increase over the baseline ResNet-18 and
ResNet-50 models with 59.4% and 54.6% fewer parameters, respectively.

1 INTRODUCTION

Deep neural network (DNN) has served as the backbone machine learning technique in many modern
intelligent systems. To facilitate the low-cost deployment of DNN on the resource-constrained
platforms, model compression, as a powerful strategy that can efficiently reduce DNN model size,
has been extensively studied in recent years. Among various types of model compression techniques,
sparsification (a.k.a., pruning) and low-rank decomposition are two representative and popular
solutions (Wang et al. (2021); Gao et al. (2021); Li et al. (2021a); Xu et al. (2020)). As revealed by
their names, the low-rank and sparse methods aim to explore and leverage the potential low-rankness
and sparsity of the uncompressed DNNs, respectively.

Co-exploring Low-rankness & Sparsity: Motivation. Considering the current prosperity of these
two methods and their very distinct structural assumptions, an interesting and promising research
topic is to explore the efficient integration of low-rank and sparse approaches towards a better model
compression solution. As indicated and observed by (Yu et al. (2017)), DNN models tend to exhibit
both low-rankness and sparsity simultaneously. For instance, the smooth components in the weight
filters can be represented in the low-rank space, and meanwhile some other important information is
sparsely scattered. Evidently, fully leveraging such co-existence of these structure-level patterns can
potentially bring a powerful compression solution with attractive performance.

Existing works. Unlike the current extensive research activities on individual low-rank and sparse
methods, the investigations on integrating these two approaches, in an efficient and non-trivial way,
are little explored. To date, only very few efforts study the joint exploration of low-rankness and
sparsity for DNN model compression. As the pioneering work in this direction, (Yu et al. (2017))
develops a singular value decomposition (SVD)-free approach to closely approximate original
DNN model via combining sparse representation and low-rank matrix factorization. Built on the
interesting connection between filter decomposition and filter pruning, (Li et al. (2020)) interprets the
decomposition and pruning of convolutional filters in a unified perspective. (Idelbayev & Carreira-
Perpinán (2021)) combines low-rank, sparse and quantized matrices into an additive framework
with the learning-compression algorithm. Most recently, (Li et al. (2021b)) proposes a collaborative
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Figure 1: Different operational sequences for joint low-rank decomposition and structured pruning.
Here L and S represent low-rank decomposition and sparsification, respectively.

compression scheme to integrate SVD into model sparsification. By adopting a multi-step heuristic
removal strategy, this post-training approach achieves promising task and compression performance.

Unanswered Questions. Although these prior works have demonstrated the huge potential and
attractive benefits of jointly decomposing and pruning, the systematic investigation of their efficient
integration is still missing. To be specific, several fundamental and critical questions, whose answers
will directly impact the integration scheme and overall compression performance, have not been
comprehensively explored yet. For instance, because pruning and decomposition can be jointly
performed in several different ways, such as in parallel (Yu et al. (2017); Idelbayev & Carreira-
Perpinán (2021)) or in sequence (Li et al. (2021b)), which collaborative strategy is more suitable for
the target DNN compression task? Also, considering low-rankness can be exploited from different
perspectives, which type of low-rank approach should be adopted? The matrix factorization used in
(Li et al. (2020; 2021b))? Or even high-order tensor decomposition? In addition, to achieve promising
compression performance, what is the most suitable optimization objective that the integration scheme
should aim for? The approximation error focused in (Yu et al. (2017))? The low-rankness/sparsity
regularized loss in (Yang et al. (2020))? Or some other new alternatives?

Technical Preview and Contributions. To answer these questions and develop an efficient integrated
model compression solution, in this paper we perform systematic co-exploration on the model
low-rankness and sparsity towards compact neural networks. To be specific, we first review and
analyze several important design factors for the joint low-rank decomposition and structured pruning.
Based on the observations and outcomes from our analysis, we then propose CEPD, a unified DNN
compression framework that can simultaneously capture model low-rankness and structured sparsity
in an efficient way. Overall, the contributions of this paper are summarized as follows:

• We systematically investigate and analyze the critical design knobs when co-exploring
model low-rankness and sparsity, including operational sequence, low-rank format, and
optimization objective. Based on our qualitative and quantitative analysis, we propose
several recommended design options for efficient joint low-rank decomposition and pruning.

• We develop a unified framework that formulates the integration of low-rank decomposition
and pruning to an optimization problem with low-tensor-rank and sparse constraints. We
then derive a training-aware approach to solve this challenging non-convex high-order
tensor-format problem, and thereby leading to efficient exploration of rich low-rankness and
sparsity in the model.

• We empirically evaluate our proposed co-exploration solution for various DNN models on
different datasets, and the experimental results demonstrate its promising performance.

2 RELATED WORK

Pruning. Network pruning, which explores the sparse property, has been extensively studied
for model compression. Existing pruning methods can be performed with different granularity.
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Unstrcutured pruning prunes weights individually based on a certain criterion (Han et al. (2015)). It
usually brings outstanding performance but requires complicated hardware design or dedicated sparse
matrix operation library to be deployed in practice. Structured pruning prunes weights in groups,
either removing the entire convolutional filters or feature map channels (Liebenwein et al. (2019);
Lin et al. (2020); Tang et al. (2020); Sui et al. (2021); Ganjdanesh et al. (2022)). In this paper, we
focus on co-exploring low rankness and the sparsity brought by structured pruning.

Low-rank Decomposition. Low-rank decomposition is another popular DNN compression approach
that captures the low-rankness of the model. Based on different interpretation of DNNs, this method
can be categorized to matrix decomposition and tensor decomposition. Matrix decomposition views
the 4-D weight tensor as the folded matrix, and hence it flattens the 4-D objective to 2-D format and
decomposes the reshaped matrix to the product of two small matrices (Tai et al. (2016); Li & Shi
(2018); Xu et al. (2020); Idelbayev & Carreira-Perpinán (2020); Liebenwein et al. (2021)). However,
the existing matrix decomposition-based works suffer the loss of important spatial information
incurred by inevitable tensor flatten operations. On the other aspect, tensor decomposition directly
factorizes the 4-D weight tensor to multiple small tensor cores without flatten operations. Such
explicit high-order processing, by its nature, can better preserve the important spatial information
and correlation that existed in the weight tensors. To date several tensor decomposition techniques,
such as Tucker/CP, tensor train, and tensor ring etc., have been used for DNN model compression
(Denton et al. (2014); Kim et al. (2016); Novikov et al. (2015); Wang et al. (2018); Kossaifi et al.
(2019; 2020); Phan et al. (2020); Li et al. (2021a)).

Joint Pruning and Decomposition. As observed by (Yu et al. (2017)), a well-trained DNN tends
to exhibit both sparsity and low-rankness simultaneously. Motivated by this observation, some
prior efforts propose to co-explore these two complementary properties for model compression.
As the pioneering work, (Yu et al. (2017)) decomposes the weight tensors of a pre-trained DNN
model into independent low-rank and sparse parts and minimizes the reconstruction error. Similarly,
(Ma et al. (2019)) focus on optimizing the approximation error of the original model via ADMM.
Different from this parallel scheme, (Dubey et al. (2018); Li et al. (2021b)) adopt a sequential
compression strategy via performing matrix factorization on a pruned model. In addition, (Li et al.
(2020)) proposes to use the sparse/low-rank regularization term, instead of reconstruction error, to
enforce the desired structural patterns. (Idelbayev & Carreira-Perpinán (2021)) proposes a general
additive combination framework with learning-compression algorithm. Also, notice that all of the
existing works focus on using either SVD-based or SVD-free matrix decomposition to exploit the
low-rankness of DNN model. However, as analyzed in Section 3 of our paper, high-order tensor
decomposition is a more suitable low-rank methods for CNN compression; while this important
technique has not been explored by the existing additive compression efforts yet. Besides, they
adopt either approximation-centered or regularization-based optimization methods. We believe such
decomposition and optimization solutions have limitations and cannot achieve optimal performance,
since the task goal is to generate a compressed model instead of close approximation to the original
model. Different from these existing works, our approach is built on tensor decomposition with
constrained formulation as the optimization objective, demonstrating better performance.

3 CO-EXPLORING LOW-RANKNESS AND SPARSITY: ANALYSIS

As outlined above, some prior works have reported their exploration of joint low-rankness and
sparsity. In general, the integration of low-rank decomposition and pruning can be specified by several
important factors, including operational sequence, low-rankness format and overall optimization
objective. The existence of such a large variety of different factors and their combinations, by its
nature, calls for the systematic investigation of the best-suited co-exploration scheme. Such an
analysis framework, if being properly developed, can facilitate the optimal selection of various design
factors already proposed in the existing literature. More importantly, the outcome of this systematic
study will further guide and provide better integration choices that have not been discovered before.

Questions to be Answered. Next we analyze the critical design knobs for efficient co-exploration on
model low-rankness and sparsity. To that end, three important questions need to be answered.

Question #1: What is the more suitable operational sequence when jointly low-rank decomposing
and pruning DNN models?
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Analysis. In general, the co-existence of model low-rankness and sparsity can be explored in different
ways (see Figure 1). For instance, as adopted in (Yu et al. (2017)), a well-trained DNN can be closely
approximated as the combination of a low-rank component and a sparse component. In other words,
the two types of structure-level properties are imposed and leveraged in a spatially parallel way, and
we denote this strategy as L+S, where L and S represent low-rank decomposition and sparsification,
respectively. On the other hand, the joint use of factorization and pruning can also be performed in a
temporally sequential way. As illustrated in Figure 1, the original model can be first imposed with
low-rankness (or sparsity), and the size of the resulting partially compressed model can be further
reduced by the second-stage pruning (or low-rank decomposition). Following the similar notation,
such sequential operation can be denoted as S(L) and L(S). In practice L(S) is a preferable choice
that has been adopted in the prior works (Dubey et al. (2018); Li et al. (2021b)).
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Figure 2: The approximation error when compress-
ing the weight tensor of one layer in ResNet-20
using different operational sequences (L+S, S(L)
and L(S)). Here mean square error (MSE) is used
to measure the difference between the original un-
compressed weight tensor and the reconstruction.
SVD is adopted as the low-rank decomposition
method (L). It is seen that L+S can bring much
smaller approximation error than its counterparts
with the same compression ratio. More comprehen-
sive layer-wise results of ResNet-20 and ResNet-
56 on CIFAR-10 and ResNet-50 on ImageNet are
reported in Appendix D.1.

Our Proposal. Among the above described three
general operational schemes, we believe L+S is
the more suitable choice when considering to
integrate pruning and decomposition together
for model compression. This is because unlike
S(L) and L(S), which ultimately still produce
the compressed model in a single representation
(sparse or low-rank) space, L+S enables the si-
multaneous representation of rich information
of DNN models across different subspace, and
thereby better preserving the structural charac-
teristics and reducing the potential information
loss. To verify our hypothesis, we examine the
approximation error incurred by three integra-
tion schemes. As shown in Figure 2 and more
detailed results of Appendix D.1, with the same
compression ratio for the weight tensor of one
layer of a pre-trained ResNet-20 on CIFAR-10
dataset, L+S shows lower approximation error
than its counterparts. This experimental phe-
nomenon demonstrates that L+S scheme indeed
can capture both the low-rank and sparse char-
acteristics of DNN model in an efficient way.

Question #2: What is the more suitable low-
rank decomposition approach used when co-
exploring low-rankness and sparsity?

Analysis. From the perspective of linear alge-
bra, the low-rankness of a DNN model can be
exploited using different ways. For an exam-
ple convolutional layer, imposing the low-rank
structure can be realized by performing simple matrix factorization or high-order tensor decompo-
sition (see Figure 4 in Appendix A). Specifically, (Yu et al. (2017)) chooses SVD-free method to
factorize DNN model and obtain the low-rank component, and (Li et al. (2021b)) proposes to use
SVD-based decomposition to serve as the second-stage compression approach in its adopted L(S)
scheme. Similarly, the low-rank methods adopted in (Ma et al. (2019); Idelbayev & Carreira-Perpinán
(2021)) are also based on 2-D matrix. Notice that though the weights of convolutional layer essentially
form a 4-D tensor format, the existing works exploit the low-rankness via using matrix decomposition
– the 4-D tensor needs to be first flattened to a 2-D matrix and it is then factorized to two small
matrices.

Our Proposal. We argue that the high-order tensor decomposition, the option that has not been
explored in the integration scheme before, is the better choice than the low-order matrix decomposition
adopted in the existing works. This is because as a reshaping-free technique that can directly factorize
the tensor-format data to multiple tensor cores, tensor decomposition, such as Tensor Train (TT) and
Tucker, can naturally capture and preserve the important spatial information and correlation of the
original weight tensors in a more efficient way. Therefore, less information loss is expected after
performing low-rank tensor-based compression. To verify our hypothesis, we compare the feature
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Figure 3: Output feature maps of one layer of ResNet-20 after non-compression (Left), tensor
decomposition (Middle) and matrix decomposition (Right). The visualization shown here is based on
the information of one channel. It is seen that high-order tensor decomposition makes the feature
map of the compressed layer more similar to that of the original uncompressed layer.

maps of the compressed convolutional layer of ResNet-20 on CIFAR-10 dataset using different
low-rank methods. For SVD, we follow the same way used in (Li et al. (2021b)) to reshape the
4-D tensor weight to a 2-D weight matrix. As visualized in Figure 3, compared with the matrix
decomposition-based approach with the same compression ratio, tensor decomposition can make the
output feature map of the compressed layer much more similar to the feature map of the original
uncompressed layer. In other words, low-rank tensor method can provide better preservation of the
important feature information and thus it can bring potential higher model compression performance.
More detailed quantitative comparison results for different low-rank methods (SVD, Tucker and TT)
under different compression ratio are reported in Appendix D.2.

Question #3: What is the suitable optimization objective that the joint compression should aim for?

Analysis. To efficiently realize the joint exploration of model low-rankness and sparsity with promis-
ing compression performance, different optimization strategies have been proposed in the existing
works. For instance, (Yu et al. (2017); Ma et al. (2019)) aim to minimize the difference between the
original weight matrix/tensor and the approximated reconstruction. This type of solution essentially
applies the general sparsity/low-rankness co-exploration methods (Bouwmans et al. (2016); Richard
et al. (2013; 2012); Luo (2011)) in linear algebra and signal processing fields to DNN compression.
However, such matrix recovery/estimation-oriented strategy is not the optimal solution for DNN
model compression, since our task goal is to generate a compressed model instead of close approx-
imation to the original model. In addition, (Xu et al. (2020); Yang et al. (2020)) explore another
strategy that they consider global information via adding regularization term to the loss function.
Besides, (Ma et al. (2019); Guo et al. (2019)) also propose to explicitly add the low-rank and sparse
regularization terms to the overall objective function, which can guide the training-aware procedure
to enforce the desired structural patterns.

Our Proposal. Different from the existing approximation error-centered or regularized loss-based so-
lutions, we propose that the efficient co-exploration scheme should be interpreted as the optimization
procedure with the low-rank and sparse constraints. Our rationale lies on two observations of the
drawbacks of the prior efforts. First, the approximation strategy adopted in (Yu et al. (2017); Ma et al.
(2019)) focuses on making the reconstructed model approach the original model as close as possible.
However, since 1) the approximation error always exists; and 2) the original model is not the only
choice to achieve the desired accuracy, such a strategy inherently can only search the low-rank and
sparse components in a limited exploration space, thereby affecting the overall performance.

Second, though adding the regularization terms into the loss function indeed facilitates the extraction
of low-rank and sparse patterns, the effect of such a simple regularizing method can only approxi-
mately satisfy the hard constraint, which is still limited, especially considering the efforts of pushing
for sparsity and for low-rankness may interfere with each other, thereby potentially causing unex-
pected conflicts. Instead, by explicitly imposing the low-rank and sparse constraints on the overall
optimization problem, these two structural requirements can be simultaneously satisfied with the
proper use of optimization technique (to be discussed in Section 4). To be specific, we report the
learning curve in Appendix B to show that our proposed constrained optimization strategy can
successfully impose the desired low-rankness and sparsity onto the DNN models efficiently. We
also provide a quantitative comparison in Section 5 to show the better performance of the proposed
method over approximation-centered and regularized loss-based solutions.
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Summary of Our Analysis. ❶ Performing joint low-rank decomposition and structured pruning in a
spatially parallel way (L+S) is the preferable operational sequence. ❷ High-order tensor decomposi-
tion is the more suitable choice for the low-rank approach used in the integrated compression scheme.
❸ Imposing low-rankness and sparsity as the direct hard constraints on the loss optimization should
be adopted to better satisfy the desired structural requirement.

4 CO-EXPLORING LOW-RANKNESS AND SPARSITY: OUR METHOD

Problem Formulation. Recall that the analysis in Section 3 brings three important observations/pro-
posals: using L+S operational sequence, choosing high-order tensor decomposition, and directly
imposing hard constraints. Built on such three fundamental principles, we are now ready to formulate
the integration of pruning and tensor decomposition to a unified optimization problem. To be specific,
given an uncompressed DNN model with weight tensor W ∈ RO×I×K×K of each layer, our goal is
to find another compact model with weight tensors L+ S, which consists of low-rank component
L ∈ RO×I×K×K and structured sparse component S ∈ RO′×I′×K×K for each layer, to minimize
the following loss function:

min
L,S

f(L,S), s.t. r(L) ≤ γ0, γ1, · · · , γd︸ ︷︷ ︸
Low-tensor-rank constraint

, c(S) ≤ κ︸ ︷︷ ︸
Sparse constraint

, (1)

where f(·) is the loss over the entire training dataset, r(·) calculates the rank of a tensor , c(·) is the
number of unpruned filters, and γ0, γ1, · · · , γd and κ are the desired tensor ranks and the number of
remaining filters for L and S, respectively. Without loss of generality, we choose tensor train (TT)
decomposition as the component low-rank method and ℓ1 norm as the criterion to prune a filter in our
framework. Here d is the number of decomposed tensor cores with TT decomposition.

Method. Directly optimizing problem (1) is challenging because of the co-existence of the non-
differentiable r(·) and c(·) as well as its inherent high-order tensor format. To efficiently solve
this problem, we propose to leverage alternating direction optimization method to split these two
constraints. To be specific, after introducing two auxiliary variables L̂ and Ŝ that represent the
desired low-TT-rankness and structured sparsity in the optimization process, problem (1) can be then
rewritten as:

min
L,S,L̂∈P,Ŝ∈Q

f(L,S), s.t. L = L̂,S = Ŝ, (2)

where P = {L|r(L) ≤ γ1, · · · , γd} is the set of all tensors that satisfy the low-tensor-rank constraint,
and Q = {S|c(S) ≤ κ} is the set of all tensors that satisfy the structured sparse constraint. Then,
we further relax the hard constraints to the corresponding augmented Lagrangian form and now we
only need to optimize the following new constraint-free min-max problem:

min
L,S,L̂∈P,Ŝ∈Q

max
U ,V

f(L,S) +
λ

2
(∥L− L̂+ U∥2F + ∥S − Ŝ + V∥2F + ∥U∥2F + ∥V∥2F ), (3)

where U and V are the dual multipliers associated to L and S, respectively, and λ is the penalty
parameters. To solve this minmax problem, we can split it into three separated parts, and independently
optimize them in an iterative way.

Update L and S with SGD. The first independent optimization objective can be formulated as:

min
L,S

f(L,S) +
λ

2
(∥L− L̂+ U∥2F + ∥S − Ŝ + V∥2F ). (4)

Since there are no hard constraints on the target variables L and S, standard DNN optimizer (e.g.,
stochastic gradient descent (SGD)) can be directly applied with learning rate α as:

L← L− α[∇Lf(L,S) + λ(L− L̂+ U)], (5)

S ← S − α[∇Sf(L,S) + λ(S − Ŝ + V)]. (6)

Update L̂ with TT Decomposition. To update the introduced L̂, the optimization objective is:

min
L̂∈P

λ

2
∥L− L̂+ U∥2F . (7)
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Because L̂ is strictly constrained to stay in the low-tensor-rank set P , the desired update can be
performed using an analytical solution via TT-rank truncation, i.e.

L̂← truncP(L+ U). (8)

To realize the truncating operation, we first define a temporary tensor T = L+U and reshape it as a
new tensor T̃ ∈ R(K×K)×(O1×I1)×···×(Od×Id) with O =

∏d
k=1 Ok, I =

∏d
k=1 Ik. Then T̃ can be

decomposed to d+ 1 TT-cores as:

T̃ ((k1, k2), (oi, i1), · · · , (od, id))) = C0(k1, k2)C1(:, o1, i1, :) · · ·Cd(:, od, id, :), (9)

where C0 ∈ RK×K ,Cj ∈ RRj−1×Oj×Ij×Rj , j = 1, · · · , d. In this TT-format, the dimensions of
TT-ranks in TT-cores are truncated to the desired target, i.e., C′

j = Cj(1 : γj−1, :, :, 1 : γj). After
that we use the truncated TT-cores to recover the original tensor via:

T̃
′
((k1, k2), (oi, i1), · · · , (od, id))) = C0(k1, k2)C′

1(:, o1, i1, :) · · ·C
′
d(:, od, id, :). (10)

And finally T̃
′

is reshaped to the original shape of L̂ to serve as the updated L̂.

Update Ŝ with Projection. For updating Ŝ, the third optimization objective is:

min
Ŝ∈Q

λ

2
∥S − Ŝ + V∥2F . (11)

Similar to the low-tensor-rank L̂, the sparse-constrained Ŝ can also be analytically updated as

Ŝ ← projQ(S + V), (12)

where proj(·) is the projection that removes filters with the smallest ℓ1 values to ensure that the
updated Ŝ can satisfy the structured sparse constraint.

Update Multipliers U ,V . Upon updating L̂ and Ŝ, the dual multipliers U and V are updated as:

U ← U +L− L̂, V ← V + S − Ŝ. (13)

Notice that after the iterative update finishes, the low-rank component L is explicitly decomposed
to TT-cores {C}dj=0, and the entire compressed model consisting of TT-cores and sparse part S is
finally fine-tuned with standard SGD. The overall CEPD algorithm is summarized in Algorithm 1.

5 EXPERIMENTS

Dataset and Baseline. We evaluate our proposed approach on two image classification datasets
(CIFAR-10 and ImageNet). For experiments on CIFAR-10, four CNN models (ResNet-20, ResNet-56,
DenseNet-40 and MobileNetV2) are compressed. For experiments on ImageNet, we evaluate our
approach for ResNet-18/50 and compare it with state-of-the-art model compression methods.

Hyperparameter. All the experiments are conducted using SGD optimizer with batch size and
momentum as 128, 0.9. The weight decay is set to 0.0001 for CIFAR-10 and 0.00002 for ImageNet
respectively. The learning rates in the optimization and fine-tuning process are set as 0.1 and 0.01,
respectively, and they gradually decrease following the cosine scheduler. The entire training procedure
is performed on NVIDIA-V100 GPUs with PyTorch 1.12.

Results on CIFAR-10 Dataset. Table 1 shows the evaluation results on CIFAR-10. For each baseline
model, we compare CEPD with several types of compression methods, including decomposition-only
(L: PSTRN (Li et al. (2021a)), TRP (Xu et al. (2020)), SVDT (Yang et al. (2020)), LREL (Idelbayev &
Carreira-Perpinán (2020)), ALDS (Liebenwein et al. (2021)), CaP (Minnehan & Savakis (2019)) and
ENC-Inf (Kim et al. (2019)) ), pruning-only (S: SCOP (Tang et al. (2020)), FPGM (He et al. (2019)),
HRank (Lin et al. (2020)), CHIP (Sui et al. (2021)), CHEX (Hou et al. (2022)), ISP (Ganjdanesh
et al. (2022))), first-pruning-then-decomposition (L(S): CC (Li et al. (2021b))), and layer-wise either-
pruning-or-decomposition (S/L: Hinge (Li et al. (2020))). From this table it is seen that CEPD
consistently outperforms structured pruning and low-rank decomposition works.
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Algorithm 1 The overall CEPD algorithm
Input: Pre-trained weight tensor W , target TT-
ranks {γj}dj=0, sparse target κ, training epochs T .
Output: TT-cores {C}dj=0, sparse component S.

1: Initialize L, L̂,S, Ŝ with W ;
2: Initialize U := 0,V := 0
3: for t = 1 to T do
4: Update U ,V using Eq. 13;
5: Update L and S using Eq. 5 and Eq. 6;
6: // Update L̂ using TT-truncation
7: L̂← truncP(L+ U);
8: // Update Ŝ using projection
9: Ŝ ← projQ(S + V);

10: end for
11: Decompose L to TT-cores {C}dj=0;
12: Fine-tune model with {C}dj=0 and S.

Results on ImageNet Dataset. Table 2 sum-
marizes the compression performance of our
approach and other existing works for ResNet-
18/50 on ImageNet dataset. In addition to previ-
ously mentioned works, we compare our CEPD
with three other L works, MetaP (Liu et al.
(2019)), FR (Chu & Lee (2021)), and STA-
BLE (Phan et al. (2020)), and some S works,
FBS (Gao et al. (2019)), ISP (Ganjdanesh et al.
(2022)). It is seen that our CEPD solution can
bring 0.10% and 1.39% accuracy increase for
ResNet-18 and ResNet-50 over baseline models
with 59.4% and 54.6% fewer parameters, respec-
tively. When targeting for generating more com-
pact model of ResNet-50, our approach can still
achieve high performance – it only has 0.31%
accuracy drop with 63.3% model size reduction,
which outperforms the other related works.

Table 1: Experiment results on CIFAR-10. “L” denotes low-rank decomposition; “S” denotes pruning.
No prior tensor decomposition work reports performance for ResNet-56 and DenseNet-40.

Compression
Method Type Decomp.

Format
Top-1 Accuracy (%) Params. FLOPs

Baseline Comp. ∆ ↓ (%) ↓ (%)

ResNet-20

PSTRN L Tensor 91.25 90.80 -0.45 55.6 N/A
TRP L Matrix 91.74 90.88 -0.86 48.1 51.0
SVDT L Matrix 90.93 90.97 +0.04 N/A 54.5
LREL L Matrix 91.60 90.20 -1.40 N/A 66.7
ALDS L Matrix 91.39 90.92 -0.47 74.9 67.9
Hinge S/L Matrix 92.54 91.84 -0.70 55.5 54.5
SCOP S N/A 92.22 90.75 -1.47 56.3 55.7
FPGM S N/A 92.20 90.44 -1.76 51.0 54.0
CEPD (Ours) L+S Tensor 91.25 91.91 +0.66 56.6 56.2
CEPD (Ours) L+S Tensor 91.25 91.02 -0.23 76.4 68.1

ResNet-56

TRP L Matrix 93.14 92.77 -0.37 N/A 56.7
CaP L Matrix 93.51 93.22 -0.29 N/A 49.8
ENC-Inf L Matrix 93.10 93.00 -0.10 N/A 50.0
HRank S N/A 93.26 93.52 +0.26 16.8 29.3
HRank S N/A 93.26 93.17 -0.09 42.4 50.0
CC L(S) Matrix 93.33 93.87 +0.54 36.5 42.4
CC L(S) Matrix 93.33 93.64 +0.31 48.2 52.0
CEPD (Ours) L+S Tensor 93.27 93.99 +0.72 41.5 43.0
CEPD (Ours) L+S Tensor 93.27 93.70 +0.43 63.6 53.1

DenseNet-40

HRank S N/A 94.81 94.24 -0.57 36.5 40.8
HRank S N/A 94.81 93.68 -1.13 53.8 61.0
Hinge S/L Matrix 94.74 94.67 -0.07 27.5 44.4
CC L(S) Matrix 94.81 94.67 -0.14 51.9 47.0
CC L(S) Matrix 94.81 94.40 -0.41 64.4 60.4
CEPD (Ours) L+S Tensor 94.81 94.79 -0.02 52.6 50.3
CEPD (Ours) L+S Tensor 94.81 94.55 -0.26 65.3 62.1

MobilenetV2

Uniform S N/A 94.47 94.17 -0.30 23.6 26.4
DCP S N/A 94.47 94.69 +0.22 23.6 26.4
SCOP S N/A 94.48 94.24 -0.24 36.1 40.3
ISP S N/A 94.53 94.85 +0.32 N/A 44.0
CEPD (Ours) L+S Tensor 94.48 94.93 +0.45 48.6 44.2
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Table 2: Experiment results on ImageNet. “L” denotes low-rank decomposition; “S” denotes pruning.

Compression
Method Type Decomp.

Format
Top-1 Accuracy (%) Top-5 Accuracy (%) Params.FLOPs

Base. Comp. ∆ Base. Comp. ∆ ↓(%) ↓(%)

ResNet-18

TRP L Matrix 69.10 65.46 -3.64 88.94 86.48 -2.46 N/A 44.8
ALDS L Matrix 69.62 69.70 +0.08 89.08 89.26 +0.18 66.7 43.5
FR L Tensor 69.76 69.04 -0.72 N/A N/A N/A 57.9 50.5
SCOP S N/A 69.76 68.62 -1.14 89.08 88.45 -0.63 43.5 45.0
CEPD (Ours) L+S Tensor 69.76 69.86 +0.10 89.08 89.32 +0.24 59.4 51.3

ResNet-50

TRP L Matrix 75.90 74.06 -1.84 92.70 92.07 -0.63 N/A 44.4
SVDT L Matrix N/A N/A N/A 91.91 91.97 +0.06 N/A 30.6
MetaP S N/A 76.60 75.40 -1.20 N/A N/A N/A N/A 51.6
SCOP S N/A 76.15 75.95 -0.20 92.87 92.79 -0.08 42.8 45.3
CHIP S N/A 76.15 76.30 +0.15 92.87 93.02 +0.15 40.8 44.8
ISP S N/A 76.13 75.97 -0.16 92.86 92.74 -0.12 N/A 56.6
CHEX S N/A N/A 77.40 N/A N/A N/A N/A N/A 51.6
CC L(S) Matrix 76.15 75.59 -0.56 92.87 92.64 -0.23 48.4 52.9
CEPD (Ours) L+S Tensor 76.13 77.52 +1.39 92.86 94.00 +1.24 54.6 53.9
TRP L Matrix 75.90 72.69 -3.21 92.70 91.41 -1.29 N/A 56.5
STABLE L Tensor 76.15 74.68 -1.47 92.87 92.16 -0.71 60.2 62.1
HRank S N/A 76.15 71.98 -4.17 92.87 91.01 -1.86 46.0 62.1
CHIP S N/A 76.15 75.26 -0.89 92.87 92.53 -0.34 56.7 62.8
Hinge S/L Matrix 76.15 74.70 -1.45 N/A N/A N/A N/A 53.5
CC L(S) Matrix 76.15 74.54 -1.61 92.87 92.25 -0.62 58.6 62.7
CEPD (Ours) L+S Tensor 76.13 75.82 -0.31 92.86 92.84 -0.02 63.3 62.9

Table 3: Comparison with existing additive com-
pression methods on CIFAR-10.

Method Model Type Acc. (%) Params. ↓
UAF VGG

-16 L+S 91.65 77.48%
Ours 92.33 78.26%
LRSD VGGNet

-7 L+S 86.17 76.09%
Ours 86.30 76.13%

Comparison with Other Additive Compres-
sion Methods. Because existing L+S works
((LRSD (Guo et al. (2019)) and UAF (Ma et al.
(2019))) are not evaluated in the modern DNN
models on large-scale datasets (e.g., ResNet on
ImageNet), we compare them with CEPD in a
separate Table 3. It is seen that CEPD achieves
better performance with the same or even higher
compression ratio.

Inference Speedup. We evaluate the inference speedup of CEPD for compressing ResNet-50 on
FPGA and ASIC platforms, targeting to different settings of FLOPs reduction. As illustrated in Table
4, the compressed models exhibiting both sparsity and low-rankness enjoy practical speedup.

Table 4: Inference time (per image) for the compressed ResNet-50 via using CEPD.

FLOPs
Remaining

FPGA
Xilinx PYNQZ1

ASIC
Eyeriss

Baseline 100% 172.0ms (1×) 38.10ms (1×)
CEPD (Ours) 66.3% 122.0ms (1.41×) 28.26ms (1.35×)
CEPD (Ours) 46.1% 88.21ms (1.95×) 20.88ms (1.82×)
CEPD (Ours) 37.1% 67.72ms (2.54×) 15.83ms (2.41×)

6 CONCLUSION

In this paper we propose to systematically co-explore DNN low-rankness and sparsity for efficient
model compression. By performing comprehensive analysis on critical design factors, we propose
CEPD, a unified compression framework that can capture model low-rankness and sparsity simul-
taneously and efficiently. Evaluation results show that our proposed approach can bring significant
model size and computational cost reductions while still preserving high model accuracy.
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APPENDIX

A DIFFERENCE BETWEEN 2-D MATRIX DECOMPOSITION AND 4-D TENSOR
DECOMPOSITION

As illustrated in Figure 4, for an example convolutional layer, imposing the low-rank structure can be
realized by performing simple 2-D matrix factorization or advanced high-order tensor decomposition.

Figure 4: Exploring low-rankness of convolutional layer via matrix decomposition (Top) and tensor
decomposition (Bottom). Here tensor train (TT) decomposition is adopted for illustration.

B EFFECT OF CO-EXPLORATION PROCEDURE

Simultaneously Obtaining Low-rankness and Sparsity. Figure 5 shows the loss curves during the
model optimization procedure. Notice that here besides overall training loss, the individual low-rank
and sparse loss component, which directly reflects the progress of enforcing low-rankness and sparsity,
respectively, is also explicitly reported in this figure. It is seen that our proposed approach indeed
successfully and simultaneously imposes the desired low-tensor-rankness and sparsity with hard
constraints onto the model, and thereby ensuring that the compressed model can fully exhibit both
low-rank and sparse characteristics after the optimization.

Figure 5: Loss curves of a ResNet-20 trained on CIFAR-10 dataset using our CEPD algorithm. Here
the curves of the individual low-rank and sparse loss components are also illustrated. It is seen that
the low-rankness and sparsity are indeed imposed on the model via using CEPD.

Effect of Optimization Procedure. We also study the benefits of using our proposed optimization
procedure described in Algorithm 1 to solve problem (2). Here we compare our approach with a direct
method that performs TT decomposition and pruning on the uncompressed model straightforwardly
with the same TT-ranks and sparsity settings. In addition, the same fine-tuning process that CEPD
adopts is also applied in this direct method. Figure 6 shows the comparison results with respect to
different compression ratios. It is seen that our proposed optimization procedure brings significant
accuracy increase.

Visualization. Figure 7 visualizes the weight tensor of one convolutional layer in a pre-trained ResNet-
20 model before and after performing our proposed compression approach. Here the visualization of
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Figure 6: The effect of optimization procedure for jointly TT decomposing and pruning ResNet-20
on CIFAR10. Here CEPD and the direct method use the same TT-rank setting and sparsity ratio.
However, the direct method does not perform optimization on original model. Instead, it first performs
TT decomposition and then prunes the difference between original model and the low-rank component
to obtain the sparse component. The two components generated by this direct method will then be
fine-tuned with the same way that CEPD uses. It is seen that our proposed optimization procedure
in CEPD brings significantly accuracy increase.

Figure 7: Visualization of one layer of ResNet-20 before and after performing our proposed CEPD
compression. Here the low-rank and sparse components of the compressed layer are also visualized.
It is seen that low-rank component preserve most of weight information, and some spatial
patterns are contained in the sparse component.

the low-rank and sparse components of the compressed layer is also illustrated in this figure. It is
seen that most of the weight information is preserved in the low-rank component, and meanwhile the
sparse component contains some spatial pattern as well.

C EMPIRICAL ANALYSIS & ABLATION STUDY

Selection of Rank Value/Sparsity Ratio. Conventionally the rank/sparsity selection is costly since
combinatorial search for all layers is required. One benefit of our proposed approach is its low-cost
determination process. This is because many or even all of the layers share the same rank value
and sparsity ratio. We report the detailed layer-wise rank and sparsity values for the models we
evaluate in Appendix E. Here the ranks of the layers in the same residual block can be simply set as
same, and the sparsity of all layers can be set as same.

Compression Ratio-vs-Model Accuracy. We study the accuracy performance of compressed model
(ResNet-20 on CIFAR-10) with different compression ratios. Here two different cases, keeping
sparsity with changing rank and keeping rank with changing sparsity, are studied and reported in
Table 13 and 14 (see Appendix F), respectively.

More Low-Rankness or More Sparsity? We also empirically study the effect of targeting higher
low-rankness or higher sparsity with the same overall compression ratio. Experimental results are
reported in Table 15 in Appendix F. It is seen that the different configurations of low-rankness and
sparsity have very similar effects on the overall accuracy, unless the sparsity is extremely high.
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D DETAILS OF ANALYSIS IN SECTION 3

D.1 MORE RESULTS FOR ANALYSIS IN QUESTION #1

Table 5,6 and 7 show the layer-wise approximation errors incurred by three operational sequences
(L+S, S(L) and L(S)). Here the baseline models include well-trained ResNet-20, ResNet-56 on
CIFAR-10, and ResNet-50 on ImageNet, and the compression ratio is set as 3.0 for all the layers. It
is seen that L+S scheme always brings the smallest approximation errors.

Table 5: Approximation errors for different layers of ResNet-20 with different operational sequences.
The compression ratio is set as 3.0 for all the layers.

Layer Name Weight Shape Approximation Errors
L+S S(L) L(S)

l1b1.conv1 (16, 16, 3, 3) 1.95 2.17 1.96
l1b1.conv2 (16, 16, 3, 3) 1.83 2.04 1.84
l1b2.conv1 (16, 16, 3, 3) 1.78 2.02 1.83
l1b2.conv2 (16, 16, 3, 3) 1.67 1.89 1.69
l1b3.conv1 (16, 16, 3, 3) 2.25 2.58 2.35
l1b3.conv2 (16, 16, 3, 3) 1.81 1.85 1.81
l2b1.conv1 (16, 32, 3, 3) 2.44 2.74 2.52
l2b1.conv2 (32, 32, 3, 3) 3.04 3.34 3.04
l2b2.conv1 (32, 32, 3, 3) 2.99 3.39 3.04
l2b2.conv2 (32, 32, 3, 3) 2.70 2.95 2.71
l2b3.conv1 (32, 32, 3, 3) 2.96 3.35 2.99
l2b3.conv2 (32, 32, 3, 3) 2.49 2.78 2.50
l3b1.conv1 (32, 64, 3, 3) 3.74 4.21 3.78
l3b1.conv2 (64, 64, 3, 3) 4.92 5.26 4.92
l3b2.conv1 (64, 64, 3, 3) 5.17 5.63 5.23
l3b2.conv2 (64, 64, 3, 3) 4.27 4.76 4.27
l3b3.conv1 (64, 64, 3, 3) 4.79 5.21 4.80
l3b3.conv2 (64, 64, 3, 3) 0.48 1.97 1.00

D.2 MORE RESULTS FOR ANALYSIS IN QUESTION #2

Table 8 shows the difference (in term of mean square error (MSE)) between the output feature maps
of original layer and the compressed one in ResNet-20 on CIFAR-10 dataset. Here SVD and tensor
train (TT) are adopted for matrix decomposition and tensor decomposition, respectively. It is seen
that, with the same or even higher compression ratio, high-order tensor decomposition always
brings smaller approximation error than the matrix decomposition..

Table 9 shows the difference between the output feature maps of one original layer and the compressed
version in ResNet-20 on CIFAR-10 dataset and the difference of the final accuracy. Here SVD, Tucker
and TT are adopted for low-rank decompositions. It is seen that high-order tensor decomposition
always brings smaller approximation error than the matrix decomposition and TT always has
the least impact on the final accuracy.
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Table 6: Approximation errors for different layers of ResNet-56 with different operational sequences.
The compression ratio is set as 3.0 for all the layers.

Layer Name Weight Shape Approximation Errors
L+S S(L) L(S)

l1b1.conv1 (16, 16, 3, 3) 2.51 3.05 2.51
l1b1.conv2 (16, 16, 3, 3) 2.72 3.15 2.79
l1b2.conv1 (16, 16, 3, 3) 3.18 3.64 3.23
l1b2.conv2 (16, 16, 3, 3) 2.99 3.47 3.04
l1b3.conv1 (16, 16, 3, 3) 2.70 3.17 2.75
l1b3.conv2 (16, 16, 3, 3) 2.80 3.20 2.86
l1b4.conv1 (16, 16, 3, 3) 2.71 3.11 2.76
l1b4.conv2 (16, 16, 3, 3) 2.70 2.86 2.78
l1b5.conv1 (16, 16, 3, 3) 3.04 3.32 3.05
l1b5.conv2 (16, 16, 3, 3) 2.47 2.81 2.52
l1b6.conv1 (16, 16, 3, 3) 2.54 2.97 2.55
l1b6.conv2 (16, 16, 3, 3) 2.32 2.71 2.35
l1b7.conv1 (16, 16, 3, 3) 3.53 4.14 3.70
l1b7.conv2 (16, 16, 3, 3) 2.63 2.83 2.64
l1b8.conv1 (16, 16, 3, 3) 3.37 3.92 3.37
l1b8.conv2 (16, 16, 3, 3) 2.50 2.84 2.53
l1b9.conv1 (16, 16, 3, 3) 2.45 2.90 2.46
l1b9.conv2 (16, 16, 3, 3) 1.94 2.50 1.97
l2b1.conv1 (32, 16, 3, 3) 4.49 4.87 4.60
l2b1.conv2 (32, 32, 3, 3) 5.22 6.02 5.23
l2b2.conv1 (32, 32, 3, 3) 3.65 4.47 3.70
l2b2.conv2 (32, 32, 3, 3) 3.57 4.23 3.58
l2b3.conv1 (32, 32, 3, 3) 4.36 5.06 4.37
l2b3.conv2 (32, 32, 3, 3) 4.16 4.62 4.17
l2b4.conv1 (32, 32, 3, 3) 4.31 4.86 4.32
l2b4.conv2 (32, 32, 3, 3) 3.91 4.53 3.96
l2b5.conv1 (32, 32, 3, 3) 4.27 5.24 4.27
l2b5.conv2 (32, 32, 3, 3) 3.73 4.22 3.73
l2b6.conv1 (32, 32, 3, 3) 4.30 4.85 4.30
l2b6.conv2 (32, 32, 3, 3) 3.79 4.25 3.79
l2b7.conv1 (32, 32, 3, 3) 4.24 4.56 4.26
l2b7.conv2 (32, 32, 3, 3) 3.52 3.89 3.55
l2b8.conv1 (32, 32, 3, 3) 4.20 4.66 4.20
l2b8.conv2 (32, 32, 3, 3) 3.59 4.02 3.65
l2b9.conv1 (32, 32, 3, 3) 4.30 4.69 4.30
l2b9.conv2 (32, 32, 3, 3) 3.22 3.76 3.26
l3b1.conv1 (64, 32, 3, 3) 6.51 7.36 6.53
l3b1.conv2 (64, 64, 3, 3) 8.09 8.67 8.13
l3b2.conv1 (64, 64, 3, 3) 7.17 8.12 7.25
l3b2.conv2 (64, 64, 3, 3) 7.30 7.91 7.31
l3b3.conv1 (64, 64, 3, 3) 7.20 7.95 7.23
l3b3.conv2 (64, 64, 3, 3) 6.72 7.45 6.75
l3b4.conv1 (64, 64, 3, 3) 8.07 8.58 8.08
l3b4.conv2 (64, 64, 3, 3) 6.72 7.41 6.72
l3b5.conv1 (64, 64, 3, 3) 8.07 8.70 8.08
l3b5.conv2 (64, 64, 3, 3) 6.14 6.88 6.15
l3b6.conv1 (64, 64, 3, 3) 7.81 8.41 7.82
l3b6.conv2 (64, 64, 3, 3) 5.18 5.87 5.25
l3b7.conv1 (64, 64, 3, 3) 6.54 7.12 6.54
l3b7.conv2 (64, 64, 3, 3) 4.08 4.72 4.09
l3b8.conv1 (64, 64, 3, 3) 5.02 5.66 5.03
l3b8.conv2 (64, 64, 3, 3) 2.64 3.19 2.64
l3b9.conv1 (64, 64, 3, 3) 4.05 5.05 4.06
l3b9.conv2 (64, 64, 3, 3) 1.73 2.75 1.80

16



Under review as a conference paper at ICLR 2023

Table 7: Approximation errors for different layers of ResNet-50 with different operational sequences.
The compression ratio is set as 3.0 for all the layers.

Layer Name Weight Shape Approximation Errors
L+S S(L) L(S)

l1b1.conv1 (64, 64, 1, 1) 2.62 2.74 2.65
l1b1.conv2 (64, 64, 3, 3) 2.10 4.02 2.12
l1b1.conv3 (256, 64, 1, 1) 1.87 3.20 1.99
l1b2.conv1 (64, 256, 1, 1) 2.00 2.78 2.03
l1b2.conv2 (64, 64, 3, 3) 3.03 3.91 3.04
l1b2.conv3 (256, 64, 1, 1) 2.43 2.84 2.44
l1b3.conv1 (64, 256, 1, 1) 1.97 2.66 2.06
l1b3.conv2 (64, 64, 3, 3) 3.62 4.57 3.77
l1b3.conv3 (256, 64, 1, 1) 2.31 2.65 2.31
l2b1.conv1 (128, 256, 1, 1) 3.37 4.53 3.58
l2b1.conv2 (128, 128, 3, 3) 5.32 6.43 5.49
l2b1.conv3 (512, 128, 1, 1) 4.01 4.53 4.07
l2b2.conv1 (128, 512, 1, 1) 1.35 3.50 1.74
l2b2.conv2 (128, 128, 3, 3) 2.34 5.69 2.55
l2b2.conv3 (512, 128, 1, 1) 2.22 3.65 2.24
l2b3.conv1 (128, 512, 1, 1) 3.17 4.51 3.35
l2b3.conv2 (128, 128, 3, 3) 4.63 6.25 4.85
l2b3.conv3 (512, 128, 1, 1) 3.99 4.70 4.00
l2b4.conv1 (128, 512, 1, 1) 3.53 4.50 3.77
l2b4.conv2 (128, 128, 3, 3) 5.44 6.49 5.54
l2b4.conv3 (512, 128, 1, 1) 3.82 4.23 3.79
l3b1.conv1 (256, 512, 1, 1) 6.38 8.20 6.83
l3b1.conv2 (256, 256, 3, 3) 7.66 9.51 7.93
l3b1.conv3 (1024, 256, 1, 1) 7.07 8.03 7.09
l3b2.conv1 (256, 1024, 1, 1) 3.98 5.56 4.35
l3b2.conv2 (256, 256, 3, 3) 6.23 8.60 6.58
l3b2.conv3 (1024, 256, 1, 1) 6.23 7.82 6.38
l3b3.conv1 (256, 1024, 1, 1) 4.17 6.11 4.66
l3b3.conv2 (256, 256, 3, 3) 6.59 8.70 6.95
l3b3.conv3 (1024, 256, 1, 1) 5.71 6.96 5.88
l3b4.conv1 (256, 1024, 1, 1) 5.29 6.80 5.63
l3b4.conv2 (256, 256, 3, 3) 7.13 8.79 7.34
l3b4.conv3 (1024, 256, 1, 1) 5.74 6.66 5.80
l3b5.conv1 (256, 1024, 1, 1) 5.83 7.16 6.14
l3b5.conv2 (256, 256, 3, 3) 7.14 8.99 7.37
l3b5.conv3 (1024, 256, 1, 1) 5.69 6.87 5.76
l3b6.conv1 (256, 1024, 1, 1) 6.65 7.81 6.89
l3b6.conv2 (256, 256, 3, 3) 7.23 9.18 7.57
l3b6.conv3 (1024, 256, 1, 1) 6.07 7.01 6.20
l4b1.conv1 (512, 1024, 1, 1) 10.99 13.57 11.68
l4b1.conv2 (512, 512, 3, 3) 11.37 14.41 12.19
l4b1.conv3 (2048, 512, 1, 1) 10.11 11.27 10.60
l4b2.conv1 (512, 2048, 1, 1) 9.65 11.21 10.15
l4b2.conv2 (512, 512, 3, 3) 12.10 14.46 12.67
l4b2.conv3 (2048, 512, 1, 1) 9.71 11.20 10.23
l4b3.conv1 (512, 2048, 1, 1) 12.51 14.14 12.86
l4b3.conv2 (512, 512, 3, 3) 10.30 12.44 10.83
l4b3.conv3 (2048, 512, 1, 1) 8.81 9.93 9.21
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Table 8: Approximation errors for the feature maps of different layers of ResNet-20 on CIFAR-10
dataset with matrix decomposition (SVD) and tensor decomposition (TT).

Layer Name Weight Shape Compression Ratio Approximation Error (MSE)
SVD TT SVD TT

l1b1.conv1 (16, 16, 3, 3) 1.59 1.59 14.16 11.96
l1b1.conv2 (16, 16, 3, 3) 1.59 1.59 8.37 7.91
l1b2.conv1 (16, 16, 3, 3) 1.79 1.85 25.35 13.79
l1b2.conv2 (16, 16, 3, 3) 1.79 1.85 8.49 5.72
l1b3.conv1 (16, 16, 3, 3) 1.79 1.85 27.20 26.61
l1b3.conv2 (16, 16, 3, 3) 1.79 1.85 8.22 6.57
l2b1.conv1 (16, 32, 3, 3) 2.00 2.11 15.40 10.13
l2b1.conv2 (32, 32, 3, 3) 1.91 2.03 8.81 5.17
l2b2.conv1 (32, 32, 3, 3) 1.91 2.03 15.12 12.72
l2b2.conv2 (32, 32, 3, 3) 1.91 2.03 4.13 2.99
l2b3.conv1 (32, 32, 3, 3) 1.91 2.03 14.88 11.97
l2b3.conv2 (32, 32, 3, 3) 1.91 2.03 3.23 2.18
l3b1.conv1 (32, 64, 3, 3) 2.01 2.01 10.52 2.95
l3b1.conv2 (64, 64, 3, 3) 1.98 2.01 5.14 3.85
l3b2.conv1 (64, 64, 3, 3) 1.98 2.01 12.42 8.52
l3b2.conv2 (64, 64, 3, 3) 1.98 2.01 2.70 2.04
l3b3.conv1 (64, 64, 3, 3) 1.98 2.01 12.46 6.72
l3b3.conv2 (64, 64, 3, 3) 1.98 2.01 0.21 0.16

Table 9: Feature map approximation error of layer3.0.conv2 in ResNet-20 and the corresponding
accuracy drop with SVD, Tucker and TT in different compression ratio settings.

SVD Tucker TT
Compr.
Ratio

Approx.
Error

Acc.
∆ (%)

Compr.
Ratio

Approx.
Error

Acc.
∆ (%)

Compr.
Ratio

Approx.
Error

Acc.
∆ (%)

1.47× 4.29 -1.06 1.48× 3.72 -0.43 1.51× 3.16 -0.31
1.98× 5.60 -3.0 1.97× 4.80 -2.1 2.01× 4.16 -0.8
2.50× 6.57 -5.27 2.50× 5.41 -3.46 2.50× 5.13 -1.86
3.03× 7.35 -7.62 3.09× 6.02 -3.76 3.09× 6.06 -3.18
3.38× 7.71 -9.66 3.46× 6.42 -4.54 3.57× 6.40 -4.03
4.11× 8.31 -11.32 4.18× 6.81 -6.04 4.20× 6.94 -5.41
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E DISTRIBUTION OF TT-RANK AND SPARSITY RATIO

Table. 10, 11, and 12 list the layer-wise TT-rank and sparsity ratio of compressed models. Here
Model I and Model II in each table correspond to two reported models of each network with different
Top-1 accuracy in Table 1 and 2.

Table 10: Layer-wise distribution of TT-Rank and sparsity ratio for the compressed ResNet-20 models
on CIFAR-10 dataset.

Layer Name Weight Shape Model I with 91.02% Acc. Model II with 91.91% Acc.
TT Ranks Sparsity (%) TT Ranks Sparsity (%)

l1b1.conv1 (16, 16, 3, 3) (1, 8, 8, 1) 90.0 (1, 10, 10, 1) 90.0
l1b1.conv2 (16, 16, 3, 3) (1, 8, 8, 1) 90.0 (1, 10, 10, 1) 90.0
l1b2.conv1 (16, 16, 3, 3) (1, 8, 8, 1) 90.0 (1, 10, 10, 1) 90.0
l1b2.conv2 (16, 16, 3, 3) (1, 8, 8, 1) 90.0 (1, 8, 8, 1) 90.0
l1b3.conv1 (16, 16, 3, 3) (1, 8, 8, 1) 90.0 (1, 8, 8, 1) 90.0
l1b3.conv2 (16, 16, 3, 3) (1, 10, 10, 1) 90.0 (1, 8, 8, 1) 90.0
l2b1.conv1 (16, 32, 3, 3) (1, 10, 10, 1) 90.0 (1, 12, 12, 1) 90.0
l2b1.conv2 (32, 32, 3, 3) (1, 10, 10, 1) 90.0 (1, 12, 12, 1) 90.0
l2b2.conv1 (32, 32, 3, 3) (1, 10, 10, 1) 90.0 (1, 12, 12, 1) 90.0
l2b2.conv2 (32, 32, 3, 3) (1, 10, 10, 1) 90.0 (1, 12, 12, 1) 90.0
l2b3.conv1 (32, 32, 3, 3) (1, 10, 10, 1) 90.0 (1, 12, 12, 1) 90.0
l2b3.conv2 (32, 32, 3, 3) (1, 16, 16, 1) 90.0 (1, 20, 20, 1) 90.0
l3b1.conv1 (32, 64, 3, 3) (1, 16, 16, 1) 90.0 (1, 20, 20, 1) 90.0
l3b1.conv2 (64, 64, 3, 3) (1, 16, 16, 1) 90.0 (1, 20, 20, 1) 90.0
l3b2.conv1 (64, 64, 3, 3) (1, 16, 16, 1) 90.0 (1, 20, 20, 1) 90.0
l3b2.conv2 (64, 64, 3, 3) (1, 16, 16, 1) 90.0 (1, 20, 20, 1) 90.0
l3b3.conv1 (64, 64, 3, 3) (1, 16, 16, 1) 90.0 (1, 20, 20, 1) 90.0
l3b3.conv2 (64, 64, 3, 3) (1, 16, 16, 1) 90.0 (1, 20, 20, 1) 90.0
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Table 11: Layer-wise distribution of TT-Rank and sparsity ratio for the compressed DenseNet-40
models on CIFAR-10 dataset.

Layer Name Weight Shape Model I with 94.79% Acc. Model II with 94.55% Acc.
TT Ranks Sparsity(%) TT Ranks Sparsity(%)

b1l0.conv1 (12, 24, 3, 3) (1, 18, 16, 1) 90.0 (1, 18, 16, 1) 90.0
b1l1.conv1 (12, 36, 3, 3) (1, 20, 18, 1) 90.0 (1, 20, 18, 1) 90.0
b1l2.conv1 (12, 48, 3, 3) (1, 30, 18, 1) 90.0 (1, 20, 18, 1) 90.0
b1l3.conv1 (12, 60, 3, 3) (1, 30, 24, 1) 90.0 (1, 20, 20, 1) 90.0
b1l4.conv1 (12, 72, 3, 3) (1, 30, 25, 1) 90.0 (1, 20, 20, 1) 90.0
b1l5.conv1 (12, 84, 3, 3) (1, 15, 15, 1) 90.0 (1, 15, 15, 1) 90.0
b1l6.conv1 (12, 96, 3, 3) (1, 15, 15, 1) 90.0 (1, 15, 15, 1) 90.0
b1l7.conv1 (12, 108, 3, 3) (1, 15, 15, 1) 90.0 (1, 15, 15, 1) 90.0
b1l8.conv1 (12, 120, 3, 3) (1, 15, 15, 1) 90.0 (1, 15, 15, 1) 90.0
b1l9.conv1 (12, 132, 3, 3) (1, 15, 15, 1) 90.0 (1, 15, 15, 1) 90.0

b1l10.conv1 (12, 144, 3, 3) (1, 25, 25, 1) 90.0 (1, 10, 10, 1) 90.0
b1l11.conv1 (12, 156, 3, 3) (1, 25, 25, 1) 90.0 (1, 10, 10, 1) 90.0
b2l0.conv1 (12, 168, 3, 3) (1, 30, 30, 1) 90.0 (1, 25, 25, 1) 90.0
b2l1.conv1 (12, 180, 3, 3) (1, 30, 30, 1) 90.0 (1, 25, 25, 1) 90.0
b2l2.conv1 (12, 192, 3, 3) (1, 30, 30, 1) 90.0 (1, 20, 20, 1) 90.0
b2l3.conv1 (12, 204, 3, 3) (1, 30, 30, 1) 90.0 (1, 20, 20, 1) 90.0
b2l4.conv1 (12, 216, 3, 3) (1, 15, 15, 1) 90.0 (1, 10, 10, 1) 90.0
b2l5.conv1 (12, 228, 3, 3) (1, 15, 15, 1) 90.0 (1, 10, 10, 1) 90.0
b2l6.conv1 (12, 240, 3, 3) (1, 15, 15, 1) 90.0 (1, 10, 10, 1) 90.0
b2l7.conv1 (12, 252, 3, 3) (1, 15, 15, 1) 90.0 (1, 10, 10, 1) 90.0
b2l8.conv1 (12, 264, 3, 3) (1, 15, 15, 1) 90.0 (1, 10, 10, 1) 90.0
b2l9.conv1 (12, 276, 3, 3) (1, 20, 20, 1) 90.0 (1, 10, 10, 1) 90.0

b2l10.conv1 (12, 288, 3, 3) (1, 20, 20, 1) 90.0 (1, 10, 10, 1) 90.0
b2l11.conv1 (12, 300, 3, 3) (1, 20, 20, 1) 90.0 (1, 10, 10, 1) 90.0
b3l0.conv1 (12, 312, 3, 3) (1, 30, 30, 1) 90.0 (1, 20, 20, 1) 90.0
b3l1.conv1 (12, 324, 3, 3) (1, 30, 30, 1) 90.0 (1, 20, 20, 1) 90.0
b3l2.conv1 (12, 336, 3, 3) (1, 30, 30, 1) 90.0 (1, 15, 15, 1) 90.0
b3l3.conv1 (12, 348, 3, 3) (1, 30, 30, 1) 90.0 (1, 15, 15, 1) 90.0
b3l4.conv1 (12, 360, 3, 3) (1, 25, 25, 1) 90.0 (1, 15, 15, 1) 90.0
b3l5.conv1 (12, 372, 3, 3) (1, 25, 25, 1) 90.0 (1, 15, 15, 1) 90.0
b3l6.conv1 (12, 384, 3, 3) (1, 25, 25, 1) 90.0 (1, 15, 15, 1) 90.0
b3l7.conv1 (12, 396, 3, 3) (1, 25, 25, 1) 90.0 (1, 15, 15, 1) 90.0
b3l8.conv1 (12, 408, 3, 3) (1, 25, 25, 1) 90.0 (1, 15, 15, 1) 90.0
b3l9.conv1 (12, 420, 3, 3) (1, 25, 25, 1) 90.0 (1, 15, 15, 1) 90.0

b3l10.conv1 (12, 432, 3, 3) (1, 25, 25, 1) 90.0 (1, 20, 20, 1) 90.0
b3l11.conv1 (12, 444, 3, 3) (1, 25, 25, 1) 90.0 (1, 20, 20, 1) 90.0
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Table 12: Layer-wise distribution of TT-Rank and sparsity ratio for the compressed ResNet-50 models
on ImageNet dataset.

Layer Name Weight Shape Model I with 77.52% Acc. Model II with 75.82% Acc.
TT Ranks Sparsity(%) TT Ranks Sparsity(%)

l1.0.conv2 (64, 64, 3, 3 ) (1, 36, 36, 1) 90.0 (1, 24, 24, 1) 90.0
l1.1.conv2 (64, 64, 3, 3 ) (1, 36, 36, 1) 90.0 (1, 24, 24, 1) 90.0
l1.2.conv2 (64, 64, 3, 3 ) (1, 36, 36, 1) 90.0 (1, 24, 24, 1) 90.0
l2.0.conv1 (128, 256, 3, 3) (1, 48, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l2.1.conv1 (128, 512, 3, 3) (1, 48, 64, 1) 90.0 (1, 36, 36, 1) 90.0
l2.2.conv1 (128, 512, 3, 3) (1, 48, 64, 1) 90.0 (1, 36, 36, 1) 90.0
l2.3.conv1 (128, 512, 3, 3) (1, 48, 64, 1) 90.0 (1, 36, 36, 1) 90.0
l2.0.conv2 (128, 128, 3, 3) (1, 48, 48, 1) 90.0 (1, 30, 30, 1) 90.0
l2.1.conv2 (128, 128, 3, 3) (1, 48, 48, 1) 90.0 (1, 30, 30, 1) 90.0
l2.2.conv2 (128, 128, 3, 3) (1, 48, 48, 1) 90.0 (1, 30, 30, 1) 90.0
l2.3.conv2 (128, 128, 3, 3) (1, 48, 48, 1) 90.0 (1, 30, 30, 1) 90.0
l2.0.conv3 (512, 128, 3, 3) (1, 72, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l2.1.conv3 (512, 128, 3, 3) (1, 72, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l2.2.conv3 (512, 128, 3, 3) (1, 72, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l2.3.conv3 (512, 128, 3, 3) (1, 72, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l3.0.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 90.0 (1, 36, 36, 1) 90.0
l3.0.conv3 (1024, 256, 1, 1) (1, 48, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l3.1.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 90.0 (1, 36, 36, 1) 90.0
l3.1.conv3 (1024, 256, 1, 1) (1, 48, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l3.2.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 90.0 (1, 36, 36, 1) 90.0
l3.2.conv3 (1024, 256, 1, 1) (1, 48, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l3.3.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 90.0 (1, 36, 36, 1) 90.0
l3.3.conv3 (1024, 256, 1, 1) (1, 48, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l3.4.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 90.0 (1, 36, 36, 1) 90.0
l3.4.conv3 (1024, 256, 1, 1) (1, 48, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l3.5.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 90.0 (1, 36, 36, 1) 90.0
l3.5.conv3 (1024, 256, 1, 1) (1, 48, 48, 1) 90.0 (1, 36, 36, 1) 90.0
l4.0.conv1 (512, 1024, 1, 1) (1, 48, 48, 1) 90.0 (1, 48, 48, 1) 90.0
l4.0.conv2 (512, 512, 3, 3) (1, 72, 72, 1) 90.0 (1, 48, 48, 1) 90.0
l4.0.conv3 (2048, 512, 1, 1) (1, 64, 64, 1) 90.0 (1, 48, 48, 1) 90.0
l4.1.conv1 (512, 2048, 1, 1) (1, 64, 64, 1) 90.0 (1, 48, 48, 1) 90.0
l4.1.conv2 (512, 512, 3, 3) (1, 72, 72, 1) 90.0 (1, 48, 48, 1) 90.0
l4.1.conv3 (2048, 512, 1, 1) (1, 64, 64, 1) 90.0 (1, 48, 48, 1) 90.0
l4.2.conv1 (512, 2048, 1, 1) (1, 64, 64, 1) 90.0 (1, 48, 48, 1) 90.0
l4.2.conv2 (512, 512, 3, 3) (1, 72, 72, 1) 90.0 (1, 48, 48, 1) 90.0
l4.2.conv3 (2048, 512, 1, 1) (1, 64, 64, 1) 90.0 (1, 48, 48, 1) 90.0
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F OTHER EXPERIMENTAL RESULTS

Compression Ratio-vs-Model Accuracy. Table 13 and 14 show the performance of compressed
ResNet-20 on CIFAR-10 with different compression ratios. Here two different cases, keeping same
sparsity with changing rank values and keeping same ranks with changing sparsity, are evaluated and
reported.

Table 13: Experimental results on CIFAR-10 dataset with changing rank values. Here “rank ratio”
represents the “individual” compression ratio solely brought by low-rank decomposition.

Top-1 Accuracy (%) Params. Rank
Ratio Sparsity

Baseline Compressed ∆ ↓ (%)
ResNet-20

91.25 92.95 +1.70 31.3 2.0× 80%
91.25 92.47 +1.22 37.4 2.3× 80%
91.25 92.30 +1.05 44.1 2.7× 80%
91.25 92.17 +0.92 51.3 3.4× 80%
91.25 91.94 +0.69 56.2 4.1× 80%
91.25 91.78 +0.53 62.0 5.4× 80%
91.25 91.68 +0.43 67.5 7.6× 80%

Table 14: Experimental results on CIFAR-10 dataset with changing sparsity. Here “rank ratio”
represents the “individual” compression ratio solely brought by low-rank decomposition.

Top-1 Accuracy (%) Params. Rank
Ratio Sparsity

Baseline Compressed ∆ ↓ (%)
ResNet-20

91.25 93.04 +1.79 36.3 3.4× 65%
91.25 92.69 +1.44 41.4 3.4× 70%
91.25 92.31 +1.06 46.3 3.4× 75%
91.25 92.17 +0.92 51.2 3.4× 80%
91.25 92.03 +0.78 56.2 3.4× 85%
91.25 91.82 +0.57 61.3 3.4× 90%
91.25 91.77 +0.52 66.0 3.4× 95%

Changing Low-rankness and Sparsity with the Same Compression Ratio. Table 15 shows the
performance of compressing ResNet-20 on CIFAR-10 with different configurations of low-rankness
and sparsity under the same overall compression ratio. It is seen that, as long as keeping the overall
compression ratio, changing low-rankness or sparsity has negligible impact on the accuracy, unless
the sparsity is extremely high.
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Table 15: Experimental results on CIFAR-10 dataset with the same overall compression ratio. Here
“rank ratio” represents the “individual” compression ratio solely brought by low-rank decomposition.

Top-1 Accuracy (%) Params. Rank
Ratio Sparsity

Baseline Compressed ∆ ↓ (%)
ResNet-20

91.25 92.03 +0.78 55.9 10.3× 65%
91.25 91.88 +0.53 55.9 6.8× 70%
91.25 91.96 +0.71 56.0 5.1× 75%
91.25 91.84 +0.59 56.2 4.1× 80%
91.25 92.12 +0.87 55.9 3.4 × 85%
91.25 91.91 +0.70 56.6 2.9× 90%
91.25 91.53 +0.28 55.6 2.5× 95%
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