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Abstract

Many of the recent advances in the field of artificial intelligence have been fueled by the
highly successful backpropagation of error (BP) algorithm, which efficiently solves the
credit assignment problem in artificial neural networks. However, it is unlikely that BP is
implemented in its usual form within biological neural networks, because of its reliance on
non-local information in propagating error gradients. Since biological neural networks are
capable of highly efficient learning and responses from BP trained models can be related
to neural responses, it seems reasonable that a biologically viable approximation of BP
underlies synaptic plasticity in the brain. Gradient Adjusted Incremental Target Propagation
(GAIT-prop) has recently been derived directly from BP and has been shown to successfully
train networks in a more biologically plausible manner. However, so far, GAIT-prop has
only been shown to work on relatively low-dimensional problems, such as handwritten-digit
recognition. This work addresses some of the scaling issues in GAIT-prop and shows it
to achieve performance comparable to BP on the much more challenging CIFAR10 and
ImageNet datasets.

1 Introduction

Backpropagation of error (BP) is a learning algorithm that solves the credit assignment problem in deep
neural networks, allowing for the formation of task-relevant internal representations and high performance
in applications (Rumelhart, Hinton, and RJ, 1986; LeCun, Bengio, and Hinton, 2015; Schmidhuber, 2014).
Despite its efficacy, the default construction of BP does not appear a likely candidate for the computational
steps involved in the learning algorithm of real neural systems. Early criticisms of BP’s biological plausibility
have already been put forward by Grossberg (1987) and Crick (1989) in the late 1980’s. A recent review
by Lillicrap et al. (2020) provides a modern summary of the mechanisms that make BP biologically implausible.
These include issues of symmetric synaptic weight matrices, error propagation machinery and more. In
particular, these issues all pertain to the use of non-local information for the propagation and computation
of error signals to update individual synaptic connections deep within a network. Therefore, biologically
plausible learning algorithms are required to provide sensible methods for the assignment of credit deep
within a neural network model using local-only information.

Several lines of previous work have attempted to address the biological implausibilities inherent to BP.
Lillicrap et al. (2016) report the counter-intuitive result that a fixed random matrix of feedback weights can
support learning in neural networks. This learning is presumed to take place as a result of the forward weight
matrices adapting themselves to act as local pseudoinverses of the feedback matrices around the error manifold.
This approach is called Feedback Alignment (FA) and it does away with the necessity of symmetric weight
matrices. Direct Feedback Alignment (DFA) was proposed by Nø kland (2016) and works by connecting
random feedback weights from the output layer directly to each hidden layer. This approach has been used to
train modern deep learning architectures (Launay et al., 2020), but its performance compared to regular FA
on challenging datasets actually seems to be slightly worse (Bartunov et al., 2018). This may have to do with
the relatively simplistic way of performing credit assignment, which does not fully exploit the expressiveness
of multi-layer architectures.
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Guerguiev et al. (2017) propose a multi-compartment neuronal model that is able to handle feedforward and
feedback neural activity separately, drawing inspiration from neuroscience, specifically pyramidal neurons and
their distal and apical dendrites. This resolves the implausibility of requiring symmetric feedback weights.
Because learning occurs through local updates and requires no separate feedback pathways, the weight
transport problem is also addressed. It is shown that networks built with these more complex neurons can
perform multi-layer credit assignment, as evidenced by the fact that adding a hidden layer to the network
leads to better performance on the MNIST dataset.

Predictive coding (Whittington & Bogacz, 2017), alternatively, handles error signals by assuming the existence
of separate error neurons for each value neuron. These neurons compute differences between predicted and
observed activations and these prediction errors can be used to inform local weight updates. The presence of
an error neuron for each value neuron, however, is a rather strong assumption without any neurobiological
evidence supporting it. Ideally, a biologically plausible algorithm would learn directly from changes in
activities of neurons.

An algorithm which aims to do just that is target propagation (TP) (Bengio, 2014; Lee, Zhang, Fischer, and
Bengio, 2015). The key principle is to combine a desired network output with an (approximate) inverse model
of a network in order to produce desired outputs for each layer of a network. These computed layer-wise
target activities can then be taken as local supervised labels and used for learning. TP addresses the weight
transport problem, because it uses only local activity targets to achieve multi-layer learning. However, there
is no explicit theoretical relationship between TP and BP. Furthermore, it has been shown that the efficacy
of TP in deep networks that are trained to solve difficult tasks is questionable (Bartunov et al., 2018).

Bartunov et al. (2018) show that biologically plausible algorithms like TP, FA and DFA perform reasonably
well, though still worse than BP, on MNIST (Deng, 2012) and CIFAR10 (Krizhevsky, 2012) when applied to
fully connected architectures. However, in locally connected architectures and on the ImageNet (Russakovsky
et al., 2014) dataset, a significant performance gap appears between all biologically inspired algorithms and
BP. Particularly, TP and its variations fail to learn almost completely on ImageNet. FA learns the task to an
extent, but its final top-1 test accuracy is about one fourth that of BP.

A common shortcoming among the above approaches is that no theoretical guarantees are made that their
updates closely approximate the error gradient as computed by BP. Biologically plausible approaches tend
to use local learning rules to avoid the weight transport problem. These local targets often provide useful
feedback information in relatively shallow networks, but when multi-layer credit assignment is required,
compounding errors drive the updates away from those computed by BP. This failure to accurately track
the error gradient likely explains why no biologically plausible learning algorithm has so far managed to
scale to ImageNet and remain competitive with BP in terms of performance. Scaling biologically plausible
learning to real world problems calls for a learning rule that works based on local information but somehow
still guarantees a close correspondence to BP.

Though TP in its original formulation does not track BP’s weight updates very accurately, Ahmad et al.
(2020) recently found that there exists a direct correspondence between target-based learning and BP, though
this relationship only exists locally and under specific network constraints. This method is referred to as
Gradient Adjusted Incremental Target Propagation (GAIT-prop). GAIT-prop was derived specifically to
maintain exact correspondence to BP. This was accomplished by computing those layer-wise targets which
would produce weight updates equivalent to BP. These updates also happen to take a biologically plausible
form under some constraints. In practice, GAIT-prop was shown to match the performance of BP on the
MNIST, FMNIST and KMNIST datasets for relatively shallow networks. However, deeper networks and
more challenging tasks were not explored.

The current paper shows that GAIT-prop in its standard form can diverge from BP due to issues of precision
and proposes a solution to these issues. In particular, we propose a layer-wise target normalisation procedure
that stabilizes learning with GAIT-prop in deeper networks. We also describe an easy to implement procedure
for inverting convolutional neural network layers in order to efficiently extend GAIT-prop’s utility to problems
like the ImageNet classification task (Russakovsky et al., 2014).
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2 Methods

2.1 Target propagation and GAIT propagation

GAIT-prop is based on the idea of target propagation (Bengio, 2014; Lee et al., 2015). The key idea is that
layer-wise activity targets, rather than error gradients, are propagated backwards through the network. The
difference between the current activity and target activity acts as a local error signal to compute weight
updates. An inverse mapping from layer l to layer l − 1 can be used to determine which activation vector in
layer l − 1 would have produced this more desirable activation in layer l, which then becomes the target for
layer l − 1, and so on. As discussed, though elegant, this method does not produce weight updates that are
similar to those produced by BP. The first reason why TP yields different weight updates from BP, is simply
because TP uses either learned or exact matrix inverses to propagate its activity targets, while BP uses the
transpose of the forward matrix to propagate its errors backwards. For non-orthogonal weight matrices, the
inverse differs from the transpose. Furthermore, TP does not account for local gradients when perturbing the
current activities in the direction of target activities.

GAIT-prop seeks to address both of these problems. In order to ensure that matrix inverses produce the
same transformation as matrix transposes, it constrains weight matrices to be orthogonal. This is achieved by
orthogonal initialization of weights, followed by regularization during each weight update. GAIT-prop also
accounts for local gradients by adjusting its activity perturbations, multiplying them by the square of the
local gradient. Under the constraint of square orthogonal weight matrices, GAIT-prop follows the gradient as
computed by BP arbitrarily closely and performs competitively with BP on datasets on the scale of MNIST.
In this paper, we find that when scaling up GAIT-prop to more complex datasets, and thus larger networks,
numerical instability issues occur. The resolution of this scaling issue is the first major subject of this paper.

Let us define the function F as the forward-pass mapping between layers in a neural network such that for
layer l + 1,

al+1 = Fl (al) = f (Wlal + bl) (1)

where al is the activation vector, Wl is the weight matrix and bl is a bias vector for layer l. The function f(·)
represents an activation function. In TP, layer-wise targets, ttp are propagated backwards from layer l to
layer l − 1, by taking the targets of layer l and applying a (learned) inverse function to them:

ttp
l−1 = Gl

(
ttp
l

)
(2)

where Gl is the (learned) inverse mapping from layer l to layer l − 1 so that with a perfect inverse mapping,
Gl(Fl(al)) = al. Exact inverses require an equal number of neurons in each layer, however, this constraint
can be relaxed by using auxiliary units which can be interpreted as a form of perceptual memory Ahmad
et al. (2020). In this work (and in the original GAIT-prop work), the inverse function Gl is defined exactly
such that

al = F −1
l (al+1) = Gl (al+1) = Wl

−1(f−1 (al+1) − bl) (3)

In order to enable this exact inversion, weight matrices are square and initialized as orthogonal and the
Leaky-ReLU activation function (invertible for all real-valued outputs) was used.

GAIT-prop proposes a modification to the targets being inverted. The inverted targets were modified such
that they constitute a small perturbation from the forward-pass activity toward the target activity. The
perturbation is also multiplied by the square of the activation function derivative at the forward-pass activity.
Given this definition, the GAIT-prop targets, tgp, are computed after a transformation such that:

tgp
l−1 = Gl−1 ((1 − ϵl) al + ϵl tgp

l ) (4)

where ϵl = γlD (al)2 is a perturbation parameter with γl a constant with very small magnitude and D (al) a
diagonal square matrix with the derivatives dFl

dal
of the forward mapping Fl on its main diagonal. This target

adjustment is constructed in order to obtain updates equivalent to BP under the condition of orthogonal
weight matrices Ahmad et al. (2020).
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Figure 1: A depiction of the activation and target vectors. a) Targets and activations are normalized to be
at a specific distance. b) Targets and activations become too close such that floating point precision issues
occur. c) Targets and activations diverge, weakening the correspondence between GAIT-prop and BP.

2.2 Scaling GAIT-prop to ImageNet

Scaling GAIT-prop to problems like ImageNet requires us to address the numerical instability that arises in
GAIT-prop when it is applied to deeper networks, as described in the next section. In addition, it requires
the implementation of local connectivity to make parameter estimation feasible. Recall that it was the
application of deep convolutional neural networks (CNNs) to the ImageNet challenge in 2012 that sparked
the revival of neural networks for image classification (Krizhevsky et al., 2012). To our knowledge, there
are no practical methods for achieving high performance on ImageNet without using local connectivity. To
address these challenges, we propose a method of normalizing target-activation distances and a method to
utilize an invertible convolution operation using GAIT-prop.

2.2.1 Normalized targets

We find empirically that when inverting targets deep in a network, precision errors in the inversion can
occur when the target versus activity difference becomes very small. Repeated inversion with fixed layer-wise
incremental factors γl can result in a net increase or decrease (explosion or vanishing) of the target-activation
distance, which is the key error term used for learning. To alleviate the problem of target-activation differences
becoming susceptible to precision errors (or increasing beyond the limits of our linear approximation), we
propose a local normalization of the incremental factors γl based upon the target-activation difference
(Figure 1). For each layer independently, we divide the incremental factor by the L2-norm of the target-
activation difference γl. This ensures that our ‘distance to target’ is fixed on a layer-wise basis, ensuring
robust error propagation. Specifically, the value of the incremental factor for layer l is computed as

γl = η

∥al − tgp
l ∥2 (5)

where η is a normalization constant determining the desired Euclidean distance between targets and activations.

2.2.2 Application of GAIT-prop to CNN architectures

GAIT-prop requires network layers to be invertible. Because inverting large sparse matrices in memory
is prohibitively expensive, we introduce a way to invert convolutional layers in a patch by patch manner,
greatly reducing computational cost. The output of a convolutional layer is inverted by running a transposed
convolution that takes as its input the layer’s output and as its weight matrix the same kernel as used in the
forward pass, but inverted. For these four-dimensional kernels to be inverted, they first need to be reshaped
to be square, then transposed, then inverted, then reshaped back to their original format. See Figure 2 for a
graphical depiction. Note that if these kernels were always perfectly orthogonal, simply taking the transpose
would be equivalent to inversion. However, since our regularizer does not ensure perfect orthogonality, we
take the exact inverse.

The above method correctly inverts a convolutional layer’s output only in the case where receptive fields
do not overlap. When receptive fields do overlap, those parts of the input image that are in the scope of
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Figure 2: The process of invertible convolution illustrated for a single image patch. The convolution operation
results in an output vector for each image patch. This output vector can contain auxiliary units to satisfy the
requirement that weight matrices need to be square (and invertible). To invert an image patch, the kernel
is reshaped to be square, inverted and then reshaped back to its H × W × Cin × Cout format. Finally, a
transposed convolution is run using this inverted filter, restoring the input image

multiple receptive fields will be reconstructed multiple times, requiring a renormalization. An easy way to
accomplish this, is to divide each pixel in the reconstruction by the number of receptive fields it is a part of.
This will correctly reconstruct any input image.

However, this process will also divide error information flowing through the pixel by the same number, causing
a reduction in the error signal. To remedy this in the context of GAIT-prop, we use a different method:
the input reconstruction is corrected by removing from it the forward signal (rather than feedback signal)
equivalent to the number of reconstructions (minus one). This allows the layer to reconstruct its input exactly
once. Importantly, any error information coming from higher layers will be preserved in this way such that
error information is fed back and integrated from multiple overlapping receptive fields.

2.2.3 Additional constraints

Exact inverses can only be computed for full-rank square matrices in which there is no loss of dimensionality.
This means that, at minimum, the number of output channels of a filter must be equal to the input
dimensionality, that is, the number of output channels must be equivalent to the kernel height times kernel
width times number of input channels (Cout = Cin × H × W ).

In order to achieve a change in network width, auxiliary output channels can be used (akin to the auxilliary
units used by Ahmad et al. (Ahmad et al., 2020)). This amounts to slicing off a number of channels from the
output of a convolutional layer, before feeding the result into the next layer. When inverting the convolutional
layer, its entire output, including the auxiliary units, should be used as input to the inversion operation. The
auxiliary outputs should therefore not be discarded after the forward pass, but kept in memory.

2.3 Network Models and Training

To investigate the above two proposed improvements, together referred to as normalized GAIT-prop, we
trained and tested several deep neural network models with the CIFAR10 and ImageNet datasets. We trained
two fully connected networks on CIFAR10 using either BP, FA, GAIT-prop or normalized GAIT-prop; one
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Figure 3: Architectures used to train on CIFAR10 shallow (left), CIFAR10 deep (middle) and ImageNet
(right). Fully connected layers are indicated with FC, convolutional layers with Conv. For FC layers, the
number indicates the number of units. For Conv layers, the numbers represent the kernel size, stride and
output channels, respectively.

shallow (three hidden layers) and one deep (six hidden layers). We further trained a convolutional network
on ImageNet using only normalized GAIT-prop, FA or BP. FA was chosen as an additional bio-plausible
benchmark because it performed the best of all bio-plausible algorithms in Bartunov et al. (2018), though it
still lagged significantly behind BP. The convolutional architecture and hyper parameters were also adapted
from Bartunov et al. (2018). Due to memory constraints, we reduced the number of filters by half when
training ImageNet. This likely impacts performance, however we desired to investigate whether GAIT-prop
can perform competitively with BP on a large dataset in a deep convolutional network, rather than to
maximize peak performance.

During training, parameters were updated for all methods using the Adam optimizer (Kingma & Ba, 2014).
In addition, when using GAIT-prop, a regularizer was used to encourage orthogonality of weight matrices.
See Ahmad et al. (2020) for details. In addition to being regularized to be orthogonal, all weight matrices
were also initialized to be orthogonal, to ensure efficient training from the start of the experiment. Other
performance enhancing techniques like batch normalization, L2-regularization and dropout were not used.
All network layers implemented the leaky-ReLU activation function and categorical cross-entropy was used as
a loss function.

3 Results

3.1 CIFAR10 results for a shallow network

The correspondence between weight updates from different algorithms was measured by treating each update
as a one dimensional vector and measuring the angle between them. Figure 4A and B show the angles
between (normalized) GAIT-prop’s and FA’s weight updates and those of BP when training a relatively
shallow fully connected network on CIFAR10. The angle between the updates fluctuates around one degree
for (normalized) GAIT-prop, indicating a very high degree of correspondence between the algorithms. FA’s
updates show angles between 60 and 80 for all non-output layers. Note that a random update would produce
a 90 degree angle in expectation. Figure 4A shows that the angle is zero for the output layer for all algorithms.
This is expected, as the updates are by definition identical for that layer. Updates in earlier layers in the
network, which are arrived at after more iterations of GAIT-prop or FA, diverge very slightly in the case of
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Figure 4: Performance of BP, GAIT-prop, normalized GAIT-prop and FA on CIFAR10 for a fully connected
network with 3 hidden layers. For GAIT-prop and FA, correspondence to BP’s updates are displayed. A)
Angles between GAIT-prop’s and FA’s weight update vectors and BP’s per layer. B) Angles in degrees
between GAIT-prop’s and FA’s updates and BP’s weight updates per train step. C) Train accuracy BP,
GAIT-prop and FA per epoch. D) Test accuracy for BP, GAIT-prop and FA per epoch.

GAIT-prop and significantly in the case of FA. They are also almost identical in their performance, as can
be seen in Figure 4C and D. Note that the lines for GAIT-prop (orange) and normalized GAIT-prop (pink)
overlap almost perfectly, though both are present in the figure. There seems to be no performance gap in test
performance. In terms of train accuracy, BP does seem to converge more quickly than the other algorithms.
As this performance gap is only seen in train accuracy, it might be due to BP overfitting more on the train
data, possibly due to the lack of a regularizer being used for BP.

3.2 CIFAR10 results for a deep network

Figure 5 shows results for the same experimental setup, except with a deeper network, consisting of six
hidden layers. As can be seen in Figure 5A and B, updates for standard GAIT-prop quickly diverge from
BP’s updates, with updates for normalized GAIT-prop maintaining their correspondence to BP for all layers.
In terms of performance, standard GAIT-prop shows poor performance in this setting, while normalized
GAIT-prop remains competitive with BP. FA outperforms standard GAIT-prop in this deeper network, but
lags behind both BP and normalized GAIT-prop.

3.3 Deep convolutional networks

On the ImageNet dataset, like on CIFAR10, normalized GAIT-prop performs competitively with BP, see
Figure 6. FA almost completely fails to learn in this experiment, showing some learning only in the earliest
epochs of training, followed by a decrease in performance as training continues. Standard GAIT-prop was
not included in the ImageNet experiment, as it failed to learn well even on the much simpler CIFAR10 task.

Angles between GAIT-prop’s and BP’s updates are again consistently low, though higher than in the CIFAR10
experiments. Angles between FA’s and BP’s updates fluctuate around 90 degrees, indicating little to no
correspondence. Even for normalized GAIT-prop it can be seen that the updates slightly diverge from BP’s
in deeper layers, with the average angle at around 10 degrees, but reaching slightly over 20 degrees for the
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Figure 5: Performance of BP, GAIT-prop, normalized GAIT-prop and FA on CIFAR10 for a fully connected
network with 6 hidden layers. For GAIT-prop and FA, correspondence to BP’s updates are displayed. A)
Angles between GAIT-prop’s and FA’s weight update vectors and BP’s per layer. B) Angles in degrees
between GAIT-prop’s and FA’s updates and BP’s weight updates per train step. C) Train accuracy BP,
GAIT-prop and FA per epoch. D) Test accuracy for BP, GAIT-prop and FA per epoch.

input layer. We found this is due to the fact that even with the regularizer active, the weight matrices are
driven away from perfect orthogonality because of the task-related weight updates being applied. This was
confirmed by running the network without performing these weight updates, in which case the angles stay
near zero throughout the network. The angles between GAIT-prop’s and BP’s updates are higher in the
ImageNet than in the CIFAR10 experiment. This is likely due to the fact that a slightly lower orthogonality
regularizer strength was used in the ImageNet experiment, as setting the regularizer’s strength too high slows
down convergence on a task that already requires a significant amount of wall time to complete.

It can be seen in Figure 6 that even with the current hyper-parameters, GAIT-prop converges slightly slower
than BP, though it eventually reaches parity in test accuracy. For train accuracy, a performance gap remains
between GAIT-prop and BP, though the algorithms seem not to have fully converged yet. As in the CIFAR10
experiments, we suspect this is likely the result of more overfitting by BP due to the lack of regularization
applied to BP.

4 Discussion

This paper set out to investigate how to scale GAIT-prop to more challenging problems. We found that
in principle, GAIT-prop scales to larger and more complex architectures than the relatively shallow fully
connected networks used in previous research. This was achieved by tackling its numerical instability issues
and adapting the algorithm to CNN architectures. Other biologically inspired learning rules either fail to
scale to problems the size of ImageNet (Bartunov et al., 2018), use non-local error information which would
not be available at the single synapse level in the brain (Akrout et al., 2019) or require specialized error
neurons to be present for every value neuron (Whittington & Bogacz, 2017).

The main limitation of GAIT-prop in terms of its performance is its reliance on invertible network architectures.
This makes it incompatible with certain activation functions, as well as non-invertible operations like max-
pooling.
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Figure 6: Performance and correspondence with BP for GAIT-prop and FA on ImageNet in a convolutional
neural network with 7 convolutional layers. A) Angles in degrees between BP’s updates and those by
GAIT-prop and FA per layer. B) Angles in degrees between BP’s updates and those by GAIT-prop and FA
per train step. C) Top 5 train accuracy for BP, GAIT-prop and FA per epoch. D) Top 5 test accuracy for
BP, GAIT-prop and FA per epoch.

Additionally, GAIT-prop, in its current implementation, runs significantly slower than BP. This is due to the
need to invert weight matrices, include auxiliary units, apply the orthogonality regularization and perform a
customized, and thus less optimized, backward pass. This slowdown relative to BP stems from the specifics
of modern computer architectures. A biologically inspired algorithm such as GAIT-prop would be expected
to run much faster on neuromorphic hardware optimized for such computations. Due to its lack of biological
realism, BP likely would not run on such hardware at all, if this hardware is subject to the same physical
constraints as the human brain, e.g. the locality of information.

Finally, the orthogonality regularizer appears to slightly slow down convergence, though the magnitude of
this effect does not seem prohibitive.

As discussed above, some of the remaining limitations may be remedied in various ways. The goal of the
current research, however, is to demonstrate that, in principle, biologically plausible learning can scale to
real-world problems. This is demonstrated by GAIT-prop’s competitive performance with BP on the complex
ImageNet problem, given some constraints on the architecture. We argue that demonstrating the efficacy of
any new learning algorithm to large-scale problems is crucial since algorithm that seemingly work well on toy
problems have a tendency to break down in more complex settings.

A reader may also ask whether the issues addressed in this work are relevant for biology. For example, the issue
overcome by normalization of the target outputs is an issue of precision of floating point numbers. However,
we would argue that in biology, any noise floor would also ensure that a sufficiently small target signal would
be drowned out amidst network activity (Faisal et al., 2008). One might also ask whether an orthogonality
regularizer is biologically plausible. Here, we would argue that lateral inhibition is a well-established
phenomenon in neuroscience that could produce a similar decorrelating effect (Békésy, 1967). Therefore we
propose that these improvements are also relevant to any biologically motivated analysis of these learning rules.

The presence of (approximately) inverse weights between layers and the need for separate forward
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and backward phases in the network seem to be the most prominent remaining departures from biological
plausibility, making the elimination of these mechanisms excellent targets for future research.
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