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Abstract

The success of large language models has inspired the
computer vision community to explore image segmenta-
tion foundation model that is able to zero/few-shot general-
ize through prompt engineering. Segment-Anything (SAM),
among others, is the state-of-the-art image segmentation
foundation model demonstrating strong zero/few-shot gen-
eralization. Despite the success, recent studies reveal the
weakness of SAM under strong distribution shift. In particu-
lar, SAM performs awkwardly on corrupted natural images,
camouflaged images, medical images, etc. Motivated by the
observations, we aim to develop a self-training based strat-
egy to adapt SAM to target distribution. Given the unique
challenges of large source dataset, high computation cost
and incorrect pseudo label, we propose a weakly super-
vised self-training architecture with anchor regularization
and low-rank finetuning to improve the robustness and com-
putation efficiency of adaptation. We validate the effective-
ness on 5 types of downstream segmentation tasks includ-
ing natural clean/corrupted images, medical images, cam-
ouflaged images and robotic images. Our proposed method
is task-agnostic in nature and outperforms pre-trained SAM
and state-of-the-art domain adaptation methods on almost
all downstream tasks with the same testing prompt inputs.

1. Introduction
The success of large language models is partially attributed
to the strong capability of zero-shot generalization. This
has called for numerous attention into developing founda-
tion model for computer vision tasks where one of the key
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Figure 1. Segment Anything Model was pre-trained on a large-
scale dataset but exhibits awkward performance on diverse down-
stream segmentation tasks. We adapt SAM through weak supervi-
sion to enhance its generalization capabilities.

concern also lies in the generalization ability [26, 44, 48]. In
particular, as a promptable image segmentation foundation
model with strong zero-shot generalization, the Segment-
Anything model (SAM) [27] was developed by training on
billions of annotated masks. Despite the overwhelming size
of dataset used for training, SAM was found to behave awk-
wardly on certain out-of-distribution downstream tasks, in-
cluding camouflaged segmentation, medical segmentation,
adversarial attacks, visual corruptions, etc. [5, 21]. This is
likely caused by the distribution shift between the training
data, i.e. the SA-1B dataset [27], and the challenging testing
datasets. These observations motivate us to explore tangible
solutions to make SAM more robust against real-world and
more diverse downstream tasks.

Traditional paradigm towards improving model robust-
ness and generalization often involves costly re-training.
Methods are frequently customized to combat specific do-
main shifts. For example, domain randomization was de-
veloped to improve generalization across real testing do-
mains [6], while adversarial training is commonly used to
enhance robustness against attacks [58]. Applying these



techniques to large foundation model is nonetheless imprac-
tical due to the enormous computing resources required for
training the model on the web-scale training data. There-
fore, instead of re-training the model, we opt for a more
computation friendly paradigm by adapting or finetuning a
pre-trained foundation model to downstream dataset.

We specify three major challenges when adapting pre-
trained foundation model to a new data distribution. First,
traditional unsupervised domain adaptation [15] paradigm
requires access to both source and target datasets which
may not be feasible due to privacy issue and computation
cost [34]. Second, updating all model weights for adap-
tation is often superior in performance, however, is con-
strained by the prohibitive memory cost due to the large
model size [20]. Finally, unsupervised adaptation could be
still very challenging due to the absence of label informa-
tion on the target domain [60, 72, 75].

To tackle the above challenges, we propose a self-
training based adaptation approach to synergize the ex-
ploitation of weak supervision and unlabeled data on tar-
get domain. Specifically, we first alleviate the dependence
on source domain data by adopting a self-training based
source-free domain adaptation strategy. The self-training
approach first make segmentation predictions, a.k.a. pseudo
labels, on the target domain data. The pseudo labels are
used for supervising the update of segmentation model. As
self-training is fragile due to incorrect pseudo labels, a.k.a.
confirmation bias [2], we introduce a frozen source model
as the anchor network to regularize the update of segmen-
tation model. To further mitigate the high computation cost
of updating the full model weights, we apply a low-rank
weight decomposition to encoder weights and the back-
propagation flows through the low-rank shortcut only. Fi-
nally, to further improve the effectiveness of source-free
domain adaptation, weak supervisions, e.g. sparse point-
wise annotation, on the target domain are introduced to pro-
vide stronger cues for domain adaptation. We reveal that
the weak supervisions are naturally compatible with the
prompt encoder within SAM. With the weak supervisions as
prompt, we are endowed with more localized and less am-
biguous pseudo predictions for self-training. The adapted
model has demonstrated much stronger generalization ca-
pability on multiple downstream tasks.

We summarize the contributions of this work as follows.

• We are motivated by the generalization issue of segment-
anything (SAM) model to diverse downstream segmenta-
tion tasks and propose a task-agnostic solution to adapt
SAM through self-training with no access to source
dataset.

• We exploit weak supervisions, including bounding box,
point-wise annotation and coarse segmentation masks, to
improve the effectiveness of adaptation. The weak super-
vision are fully compatible with the prompt encoder of

SAM.
• Extensive experiments on 5 types of downstream instance

segmentation tasks demonstrate the effectiveness of the
proposed weakly supervised adaptation approach.

2. Related Work
Image Segmentation Foundation Model: The success of
deep learning is attributed to the increasing size and neu-
ral networks and huge amount of training data. Recent
successful computer vision models, e.g. image segmenta-
tion and object detection, follow a practice of finetuning
from encoder network pre-trained on large image dataset,
e.g. ImageNet [10]. Despite achieving impressive results
on standard benchmark datasets, e.g. Psacal VOC [13]
and COCO [37], the zero-shot and few-shot generaliza-
tion ability is often limited. Inspired by the revolutionizing
language/vision-language foundation model pre-trained on
web-scale datasets [4, 48, 74], a new opportunity awaits for
developing a generalizable vision foundation model. This
motivates the emergence of vision foundation model pre-
trained on huge dataset. SAM [27] and DINO v2 [44], to
name a few. Among these foundation models, SAM stands
out for its ability to enable zero-shot segmentation using
prompt engineering. Therefore, we pay particular attention
to SAM in this work. Since the inception of SAM, numer-
ous attempts are made to validate the robustness of SAM
under more challenging scenarios, such as medical images
[42] [71], camouflaged objects [59], glass (transparent ob-
jects and mirrors) [18] and pose estimation [36]. Despite
these early attempts to discover the weakness, there are very
few matured solutions [5] to improve the generalization of
SAM to challenging downstream tasks. In this work, we
aim to fill this gap by proposing principled solutions to en-
hance the robustness of SAM against downstream tasks sub-
ject to significant distribution shift.
Source-Free Domain Adaptation: Unsupervised Domain
Adaptation (UDA)[15, 24, 41, 61, 73] has emerged as a
means to address the domain shift between source train-
ing data and target testing data. This enables models to be
trained on cost-effective and easily annotated data, facilitat-
ing the transfer to more valuable but challenging-to-label
datasets. However, UDA methods face limitations when
source domain data is inaccessible due to privacy concerns
or storage constraints. In response to this, Source-Free Do-
main Adaptation (SFDA)[28, 33, 34, 39, 65, 68] has been
proposed to reduce the reliance on source data in domain
adaptation (DA) methods. SHOT [34] represents an early
effort to alleviate domain shift without access to source
data, achieved through self-training on unlabeled target
data. Numerous prior works [1, 7, 11, 26, 35, 47, 50] have
explored the effectiveness of a teacher-student like self-
training architecture in domain shift mitigation. The sim-
ilar self-training framework [22] simultaneously trains on
multiple sets of augmented data, utilizing teacher-student
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Figure 2. The proposed self-training architecture with anchor network regularization and contrastive loss regularization. Red arrows
indicates the backpropagation flow.

cycle consistency for mutual learning of the two networks.
Other methods generate source-like samples [30, 40, 46],
construct intermediate domains [65, 69], or perturb target
domains [25, 32, 66, 70] to enhance model generalization.
Recent approaches [46, 64] leverage contrast loss between
target samples and source domain prototypes. Recent at-
tempts to source-free domain adaptation for image segmen-
tation aims to minimize feature discrepancy between source
and target domains [3, 29, 40]. In this work, we aim to
adapt SAM to downstream tasks without accessing to the
source domain data to avoid the high computation overhead
and potential privacy issues for foundation models to be re-
leased in the future.
Weakly Supervised Domain Adaptive Segmentation:
Unsupervised domain adaptation often follows a self-
training paradigm [34], which is limited by the quality of
pseudo labels. Instead of relying on the pseudo predic-
tions, weakly supervised domain adaptive semantic seg-
mentation (WDASS) exploits limited weak supervisions
in the form of bounding box, points or coarse segmenta-
tion masks [8, 9, 45, 63]. Among these works, [45] em-
ploys both image and point labels, suggesting an adver-
sarial alignment of features at the pixel level to address
WDASS. In contrast, [63] relies on bounding boxes as weak
labels and employs adversarial learning to achieve domain-
invariant features. Additionally, [9] utilizes self-training
and a boundary loss to enhance performance in WDASS
with coarse labels. More recently, [8] utilizes weak la-
bel for aligning the source-target features and outperforms
previous methods to achieve competitive performance com-
pared to supervised learning. We observe that the common
weak supervisions are inherently compatible with the SAM
model as prompt input. Therefore, we propose to adapt
SAM with weak supervisions in a seamless way.

3. Methodology
In this section, we first provide an overview of segment-
anything model. Then, we introduce the self-training based

adaptation framework. We elaborate how weak supervision
could help establish correspondence between pseudo pre-
dictions for effective self-training. Lastly, we introduce the
low memory footprint way of updating model weights.
3.1. Overview of Segment Anything Model
The segment-anything model consists of three major com-
ponents, the encoder network z = f(x; Θ), prompt encoder
e = g(p; Ω) and mask decoder h(z, e; Φ). The image en-
coder is pre-trained using masked autoencoder (MAE) [19].
The whole SAM model is further fine-tuned on the web-
scale labeled training set, SA-1B [27], with 1.1B labeled
masks. A combination of focal loss and dice loss are used
for training SAM. During inference, the testing image x is
first encoded by the image encoder z = f(x; Θ). Given en-
coded prompts e, a light-weight mask decoder makes three
levels of segmentation predictions. In this work, we are mo-
tivated by the challenge of deploying SAM on many down-
stream tasks and propose to adapt SAM to downstream seg-
mentation tasks with weak supervision without requiring
access to source domain training data.
3.2. Source-Free Adaptation as Self-Training
Provided an unlabeled target domain dataset DT = {xi}
and the pre-trained encoder network f(x; Θ), we adopt a
teacher-student architecture for self-training. As illustrated
in Fig. 2, we maintain three encoder networks, namely the
anchor network f(x; Θa), the student network f(x; Θs)
and the teacher network f(x; Θt), where the student and
teacher networks share the weights Θs = Θt. For each
sample xi, we apply one random weak data augmentation
Aw(xi) as the input to anchor and teacher networks, and
one random strong data augmentation As(xi) as the in-
put to student network. Through the three encoder net-
works, three feature maps are obtained respectively, as
Fa = f(Aw(xi),Θ

a), Fs = f(As(xi),Θ
s) and F t =

f(Aw(xi),Θ
t), where F ∈ RD×H×W and D refers to fea-

ture dimension. In the decoder network, given a number Np

of prompts, e.g. bounding boxes, points or coarse segmen-
tation masks, a set of foreground masks for the instance seg-



mentation results would be deduced, Ya = {yaj }j=1···Np ,
Ys = {ysj}j=1···Np , Yt = {ytj}j=1···Np , where each mask
is then normalized between 0 and 1 by sigmoid function re-
spectively, i.e. mj = Sigmoid(yj),mj ∈ [0, 1]

H×W . We
further denote a binarized segmentation mask with a thresh-
old of 0.5 as m̂j = 1(mj > 0.5), m̂j ∈ {0, 1}H×W . Based
on these notations, we elaborate three sets of adaptation ob-
jectives for self-training purpose.
Teacher-Student Self-Training Loss: We first introduce
the Self-Training loss to update student/teacher network.
Self-Training is widely used in semi-supervised learn-
ing [52] and recently is demonstrated to be very effective
for source-free domain adaptation [35]. In this work, we
continue the idea of self-training in classification task and
perform focal loss [38] and dice loss [43] for the supervision
of student’s outputs with binarized teacher’s predictions as
follows, where γ controls the focus on hard training pixels
and ϵ is a small value to avoid dividing by zero.

Lfocal
st = −

∑
j=1···Np

1

HW

∑
h,w

1(m̂t
jhw = 1) · (1−ms

jhw)
γ log(ms

jhw)

+ 1(m̂t
jhw = 0) ·ms

jhw
γ log(1−ms

jhw),

(1)

Ldice
st =

∑
j=1···Np

1−
2
∑

h,w ms
jhw · m̂t

jhw + ϵ∑
h,w ms

jhw +
∑

h,w m̂t
jhw + ϵ

, (2)

Anchored Loss for Robust Regularization: Training the
networks with self-training loss alone is vulnerable to
the accumulation of incorrect pseudo labels predicted by
teacher network, a.k.a. confirmation bias [2]. Observa-
tions are made that the performance will drop after long
iterations of self-training alone [56]. Existing source-free
domain adaptation approaches often adopt additional con-
straints to prevent the negative impact of self-training, e.g.
uniform distribution over predictions [35]. Without making
such explicit assumptions, we propose to introduce the reg-
ularization by an anchor loss which minimizes the dice loss
between an anchor network, which has frozen source model
weights, and student and teacher networks respectively in
Eq. 3. The frozen anchor network serves as the knowledge
inherited from source domain and too much deviation be-
tween the source model and self-training updated model is
discouraged to prevent the model from collapsing.

Lanchor = λdice
stu Ldice(ms, m̂a) + λdice

tea Ldice(mt, m̂a). (3)

Contrastive Loss for Encoder Output Regularization:
The above two training objectives are performed in the out-
put space of the decoder. As we empirically revealed in the
experiment section, updating encoder network is the most
effective way to adapt SAM, it is necessary to apply reg-
ularization directly to the feature map as output from the
encoder network. Specifically, as illustrated in Fig. 3, we
first crop out each instance’s feature Ij from the feature
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Figure 3. Illustration of contrastive loss between two views.

map based on its prediction mask in anchor and teacher
branches.

Ij =

∑
h,w Fhw · m̂jhw∑

h,w m̂jhw
, (4)

where F is the L2 normalized feature map, i.e. Fhw =
Fhw

|Fhw| . We further define the instance features, which are
cropped out by the masks used the same prompt in two
branches, as positive pairs, and the instances used differ-
ent prompts as negative pairs to construct the contrast loss.
The final contrastive loss is given as below, where τ is the
temperature scaling.

Lcontrast = −log

∑
j exp(I

a
j · Itj/τ)∑

j

∑
j′ ̸=j exp(I

a
j · Itj′/τ)

(5)

Total Loss: We combine the above three loss functions as
the final source-free domain adaptation loss.

L = λfocal
st Lfocal

st + Ldice
st + Lanchor + Lcontrast. (6)

3.3. Prompt Generation for Self-Training
The SAM segmentation requires prompt inputs to disam-
biguate the granularity of segmentation. The prompt engi-
neering can be implemented in both fully automated way
and by human interaction.
Fully Automated Prompt for Self-Training: We first
densely sample grid points with a spatial distance of 16 pix-
els as point prompt input. Initial stage segmentation masks
{m̂j}j=1···Ninit

are generated by the anchor network with
the grid point prompts. We follow the fully automated seg-
mentation introduced by SAM [27] to prune out masks with
low IoU score and low stability score, followed by NMS
suppression. To enable self-training and regularization be-
tween different branches, we further generate a fixed set of
prompt {ej}j=1···Np

from {m̂j}j=1···Ninit
as input to all

three branches. As such, the segmentation outputs Ya, Ys

and Yt are of the same length with exact one-to-one corre-
spondence.
Weak Supervision as Prompt: Despite automatic segmen-
tation can be enabled by sampling a grid of point prompts
over the image and filtering out low quality and duplicated
masks, the quality of segmentation is relatively poor and
may contain many false positive predictions, making self-
training less effective. Therefore, following prior weakly
supervised domain adaptation works [9], we propose to use



three types of weak supervisions, including bounding box,
sparse point annotation and coarse segmentation mask. For-
tunately, in the context of SAM, these weak supervisions
perfect match with the prompt inputs which allow seamless
integration of weak supervision for adapting SAM.

3.4. Low-Rank Weights Update
The enormous size of backbone network prohibits updat-
ing all model weights with large batchsize. However, many
existing studies suggest the update of encoder network
weights is an effective way of adapting pre-trained mod-
els [35, 54]. To enable updating the backbone network with
larger batchsize, we opt for a computation friendly low-rank
updating approach [20]. For each weight in the encoder
network θ ∈ R

di×do , we use a low-rank approximation
ω = AB where A ∈ R

di×r and A ∈ R
r×do with r in-

dicating the rank. We can achieve a compression rate of
r(di+do)/di ·do. Only A and B are updated via backpropa-
gation during adaptation to reduce memory footprint. At in-
ference stage, the weight is reconstructed by combining the
low rank reconstruction and original weight, θ = θ +AB.

4. Experiment
In this section, we first introduce the experiment settings
and downstream tasks for adapting SAM model. We pro-
vide detailed comparisons to state-of-the-art methods and
qualitative results. Finally, we analyze the effectiveness of
individual components and specific designs for the network.
4.1. Datasets
The source domain training set, SA-1B, was mainly con-
structed by collecting from natural environments. In this
work, we identified five types of downstream segmentation
tasks, some of which feature a drastic distribution shift from
SA-1B, for evaluation, covering natural clean images, natu-
ral corrupted images, medical images, camouflaged images
and robotic images. We present the datasets evaluated for
each type of downstream task in Tab. 1.
Datasplit: We divide each downstream dataset into non-
overlapping training and testing sets following the ratio es-
tablished by [8]. The adaptation step is implemented on
the training set. After the model is adapted, we evaluate
the model on the held-out testing set. For adaptation to
the Camouflaged Objects, following the training protocol in
[5], we use the dataset COD10K (the training set of camou-
flaged images) for training, and use the test set of CAMO,
COD10K and the entire CHAMELEON dataset for perfor-
mance evaluation.
4.2. Experiment Details
Segment-Anything Model: We adopt ViT-B [12] as the
encoder network due to memory constraint. The standard
prompt encoder and mask decoder are adopted.
Prompt Generation: We first provide details for generat-
ing prompt at both training stages. All training prompts are

calculated from ground-truth segmentation mask, simulat-
ing the human interactions as weak supervision. Specifi-
cally, we extract the minimal bounding box that covers the
whole instance segmentation mask as box prompt. The
point prompt is created as randomly selecting 5 positive
points within ground-truth instance segmentation mask and
5 negative points outside ground-truth mask. The coarse
segmentation mask is simulated by fitting a polygon to the
ground-truth mask. We choose the number of vertices as
P/20 with P indicating the perimeter of mask. The mini-
mal number of vertices is 3. We use the same way to gener-
ate testing prompt on the testing data. This practice guaran-
tees fair evaluation of SAM model which requires prompt
input for segmentation.
Evaluation Metrics: We report the mIoU as evaluation
metrics. For each input prompt, the IoU is calculated be-
tween the ground-truth segmentation mask and predicted
mask. The mIoU averages over the IoU of all instances.
Competing Methods: We evaluate multiple source-free do-
main adaptation approaches and one state-of-the-art weakly
supervised domain adaptive segmentation approach. In spe-
cific, direct testing the pre-trained model (Direct) with fixed
prompt inputs is prone to the distribution shift and may
not perform well on target datasets with significant shift.
TENT [62] is a vanilla test-time adaptation method which
optimizes an entropy loss for adapting to target domain.
SHOT [35] employs pseudo label and applies uniform
distribution assumption for source-free domain adaptation.
Soft Teacher [67] was originally developed for semi-
supervised image segmentation. We adapt Soft Teacher
for domain adaptation by keeping the self-training compo-
nent. TRIBE [55] proposed a strong baseline for generic
test-time adaptation on continual and class imbalanced do-
main shifts. We adapt TRIBE for domain adaptive segmen-
tation by replacing the training losses. DePT [16] inserts
visual prompts into a visual Transformer and adjusts these
source-initialized prompts solely during the adaptation pro-
cess without accessing the source data. WDASS [8] de-
veloped a weakly supervised domain adaptive segmenta-
tion method. We also evaluate the upperbound of adapting
SAM by fine-tuning with ground-truth segmentation masks,
which is dubbed as Supervised. Finally, we evaluate our
weakly supervised domain adaptation method as Ours. All
the competing methods use the same backbone, i.e. the ViT-
B from SAM.
Hyperparameters: We finetune LoRA module of the ViT-
B image encoder by Adam optimizer for all experiments.
We set the batchsize to 4, distributed over four RTX3090
GPUs, and the learning rate to 0.0001 with a weight de-
cay of 0.0001. For Self-Training loss, we set the hyper-
parameters γ and ϵ of Lfocal

st and Ldice
st to 2 and 1 respec-

tively. λfocal
st is set to 20, which is the coefficients of Lfocal

st .
For Anchor loss, the coefficients of two dice losses are de-



Table 1. Dataset and datasplit used in this work.
Natural Images Corrupted Images Medical Images Camouflaged Objects Robotic Images

COCO [37] Pascal VOC [13] COCO-C kvasir-SEG [23] ISIC [17] CHAMELEON [51] CAMO [31] COD10K [14] OCID [57] OSD [49]

# Training 4246 2497 4246 834 900 4040 1972 56
# Testing 706 416 706 166 379 74 250 2026 328 55

Table 2. Adaptation results on COCO-C dataset using bounding box prompt.

Method Brit Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg

Direct 72.83 57.34 64.47 69.36 72.39 70.50 67.20 64.43 67.65 68.23 62.72 68.60 67.44 69.02 58.80 66.73

TENT 76.02 61.51 67.48 70.88 74.89 73.88 69.01 67.10 69.28 70.25 65.45 70.81 69.96 72.37 62.59 69.43
SHOT 73.84 59.09 65.91 69.57 73.98 72.51 68.30 66.09 68.61 69.45 64.56 70.48 68.77 71.03 60.17 68.16

Soft Teacher 73.90 62.12 65.41 71.32 72.16 73.27 68.84 67.49 68.73 70.18 66.88 69.79 70.08 73.33 64.88 69.23
TRIBE 76.40 60.86 66.19 72.72 75.08 75.14 70.34 66.66 70.83 72.42 65.94 70.24 70.66 74.22 64.56 70.15
DePT 69.15 57.26 59.08 66.80 58.73 66.75 66.78 62.74 65.65 66.39 61.66 66.65 67.57 66.62 58.21 64.42

WDASS 76.21 60.57 67.07 72.34 75.97 74.63 69.84 67.88 69.92 71.36 66.25 71.99 70.32 72.25 63.61 70.01
OURS 78.50 61.05 66.99 73.93 77.09 76.10 72.02 68.21 71.29 72.77 66.33 70.90 70.28 75.07 65.33 71.05

Supervised 78.86 74.81 72.04 74.32 78.01 77.14 73.43 72.12 74.08 75.30 71.39 75.15 74.25 76.34 68.04 74.35

noted as λdice
stu and λdice

tea , both of which equal 0.5. For
Contrast loss, we set the temperature τ to 0.3. We have set
the low rank of the LoRA module for the image encoder to
4. We apply strong and weak data augmentations for self-
training and choices for augmentation follows [53, 67].

4.3. Quantitative Evaluations
In this section, we report the quantitative evaluations on the
5 types of target datasets. For each dataset, we also report
the adaptation results with weak supervision in the form of
bounding box (box), sparse points (point) and coarse seg-
mentation mask (poly).
Adaptation to Corrupted Images: Visual corruptions of-
ten occur due to sensor fault, bad weather conditions, etc.
As seen from Tab. 2, without any adaptation, Direct test-
ing is significantly worse than than the upperbound. With
weakly supervisions, all methods could improve over direct
testing, in particular, our proposed method outperforms all
competing adaptation methods on 10 out of 15 types of cor-
ruptions.
Adaptation to Natural Images: We then present the re-
sults of adapting SAM to natural images in Tab. 3. For
each type of weak supervision, we use the same type of
prompt on the testing set. Despite the distribution gap be-
tween SA-1B and the target natural images, we observe sig-
nificant performance gap between Supervised upperbound
and Direct baseline, e.g. with box level supervision, there
is 5−10% gap in IoU. When weak supervision is provided,
both state-of-the-art generic source-free domain adaptation
methods and weakly supervised domain adaptive segmen-
tation method improve the generalization on all three types
of weak supervisions. Finally, our proposed weakly super-
vised method achieves a remarkable improvement over all
competing methods. The results with box weak supervision
is even approaching the fully supervised upperbound.
Adaptation to Medical Images: Segmentation for medical
images is a major application of foundation models. Our
empirical observations in Tab. 4 on two medical segmenta-
tion datasets suggest that direct applying pre-trained SAM

Table 3. Adaptation results on natural clean image datasets.

Method COCO 2017 Pascal VOC
box point poly box point poly

Direct 74.29 55.06 65.64 69.21 69.21 60.79

TENT 78.21 52.99 71.51 80.24 74.97 65.03
SHOT 75.18 58.46 69.26 79.80 74.26 63.38

Soft Teacher 75.94 43.36 68.27 72.93 56.09 62.20
TRIBE 77.56 49.56 70.99 78.87 69.21 65.39
DePT 71.00 37.35 63.27 74.09 42.99 59.94

WDASS 77.29 60.55 70.19 80.12 76.15 66.98
OURS 80.12 62.09 72.33 80.27 74.15 66.72

Supervised 81.50 69.77 73.39 81.23 76.98 71.32

is suboptimal. With weakly supervised adaptation, the seg-
mentation accuracy is greatly improved. We observe the im-
provement to be particularly significant with point and box
which are relatively easy to obtain due to the low labeling
cost.

Table 4. Adaptation results on medical image segmentation datasets.

Method kvasir-SEG ISIC
box point poly box point poly

Direct 81.59 62.30 54.03 66.74 53.42 62.82

TENT 82.47 61.84 62.97 71.76 53.46 67.12
SHOT 82.30 63.76 61.34 71.99 55.99 66.86

Soft Teacher 84.12 73.53 58.15 75.74 54.95 72.29
TRIBE 85.05 73.03 64.61 72.61 50.36 67.99
DePT 81.91 52.06 61.55 78.43 46.79 72.75

WDASS 84.01 63.78 64.78 74.23 55.63 67.84
OURS 85.47 75.23 67.40 80.01 62.12 75.36

Supervised 85.89 77.54 81.64 81.62 79.81 80.26

Adaptation to Camouflaged Objects: We further eval-
uate on adapting SAM to camouflaged object detection.
We evaluate on three camouflaged object detection datasets
with results reported in Tab. 5. Preliminary studies re-
vealed that SAM is particularly vulnerable to camouflaged
objects [59] due to the low contrast between background
and foreground. We make similar observations here that
even with the help of prompt inputs at testing stage, Di-
rect inference suffers a lot, achieving less than 66% mIoU.
When weakly labeled data are used for adaptation, we ob-
serve very significant improvements, with point prompt
only we improved by a staggering 35% in mIoU on the
CHAMELEON dataset. Our proposed method is also con-



sistently better than all competing methods on all types of
weak supervisions.

Table 5. Adaptation results on camouflaged object datasets.

Method CHAMELEON CAMO COD10K
box point poly box point poly box point poly

Direct 51.32 39.37 45.78 62.72 57.43 50.85 66.32 63.61 40.04

TENT 65.48 54.53 53.06 71.24 59.59 60.29 69.36 61.94 43.36
SHOT 68.60 62.47 54.36 71.61 62.78 58.72 69.09 65.25 42.38

Soft Teacher 65.92 44.17 46.72 62.30 48.64 51.26 66.32 50.04 32.27
TRIBE 71.00 52.80 54.99 66.00 61.97 60.54 67.84 63.62 42.75
DePT 54.48 33.46 42.47 55.44 33.07 48.63 59.32 34.06 35.51

WDASS 71.91 62.40 56.80 71.25 63.39 62.29 71.42 65.61 43.93
OURS 75.94 74.00 66.83 73.42 65.55 62.90 71.93 70.55 45.87

Supervised 78.05 85.86 68.38 79.17 77.01 67.12 78.06 78.44 64.90

Adaptation to Robotic Images: Finally, we evaluate
adapting SAM to image collected from robotic environ-
ments where segmenting out the spatial extent of individual
objects is essential for interactions. As seen from the results
in Tab. 6, adapting SAM to robotic images with weak super-
vision further increase the segmentation accuracy. The im-
provement is more noticeable with point and polygon weak
supervisions.

Table 6. Adaptation results on robotic image datasets.

Method OCID OSD
box point poly box point poly

Direct 86.35 71.41 72.81 87.62 78.86 80.77

TENT 87.77 66.61 77.53 88.10 80.53 87.85
SHOT 88.06 74.39 76.25 88.09 80.52 87.86

Soft Teacher 84.98 68.46 73.75 90.41 80.49 87.00
TRIBE 86.77 67.86 76.50 90.42 80.54 87.84
DePT 82.00 56.52 70.92 81.84 69.06 82.50

WDASS 87.68 77.13 76.70 88.07 80.52 88.19
OURS 88.09 80.14 77.41 92.11 80.51 89.72

Supervised 91.24 89.22 79.23 92.14 82.41 90.83

4.4. Qualitative Evaluations
We present the qualitative comparisons of segmentation re-
sults for selected examples in Fig. 4. We make the following
observations from the results. Evaluating pre-trained SAM
(SAM) on COCO with both box and point prompt exhibits
very fine-grained segmentation results. However, the model
is overly sensitive to the high contrast regions, e.g. the hair
for the girl and the toppings of pizza are missing from the
segmentation mask. With the proposed weakly supervised
adaptation approach, our method is able to generate more
smoothed segmentation mask and the mask better reflects
the semantic boundary. Similar observations are made from
the medical image segmentation dataset. Without adapting
the SAM model, segmentation results are either too con-
servative with low recall or expanding beyond the semantic
boundary. With our weakly supervised adaptation, SAM is
able to produce high fidelity results. We further present re-
sults on camouflaged segmentation task (CAMO). Without
adaptation, SAM fails to segment out the spider’s belly and
confuses the snow background with the harp seal in the fore-
ground. Our weakly adapted SAM successfully segments
out the spider’s belly and produces high quality mask for

Table 7. Ablation studies of the proposed weakly supervised adaptation
method on COCO dataset.

Weak Sup. Self-Train. Anchor Cont. Loss box point poly

original SAM 74.29 56.36 65.42
✓ ✓ 58.88 32.51 55.03
✓ ✓ ✓ 79.65 57.25 70.49
✓ ✓ ✓ 62.95 22.87 56.91
✓ ✓ ✓ ✓ 80.12 62.09 72.33

✓ ✓ ✓ 76.18 47.63 70.44

Table 8. Adaptation results on cross-prompt testing scenarios.
Tr. Weak. Sup. box point polygon

Te. Prompt box point poly box point poly box point poly

Direct 74.29 54.76 66.75 74.29 54.64 66.75 74.29 54.76 65.64
TENT 78.21 54.83 68.82 52.99 52.99 68.58 77.08 53.90 71.51

WDASS 77.29 58.78 68.94 74.69 60.55 69.15 75.27 55.27 70.19

OURS 80.12 52.28 72.07 76.49 62.09 71.02 78.57 52.88 72.33

the harp seal. Finally, two examples from OCID dataset
suggest that the pre-trained SAM tends to over-segment,
e.g. missing the open whole for the tissue box, or confusing
adjacent objects, e.g. merging the pen with the folder la-
bel. With weakly supervised adaptation SAM picks up the
semantic meaning and produces segmentation results that
better aligns with human intention.

4.5. Ablation Study
In this section, we analyze the effectiveness of individual
components on COCO dataset. As presented in Tab. 7,
when self-training is applied alone, we observe a signifi-
cant performance drop (74.29% → 58.88% with box weak
supervision), suggesting the severity of confirmation bias.
This issue can be well remedied when the anchor loss regu-
larization is applied. Self-training with anchored regulariza-
tion already improves the performance of SAM after adap-
tation. Finally, the contrastive loss directly regularizes the
encoder network’s output and contributes with additional
improvement of segmentation accuracy. We also investi-
gate the final self-training architecture without any weak
supervision, i.e. the pseudo label masks are generated with
grid point prompt. The results after adaptation is slightly
worse than with weak supervision but consistently better
than without adaptation on both box and coarse mask test-
ing prompts. Nevertheless, the results with point prompt
performs even worse than without adaptation, suggesting
the necessity of weakly supervised adaptation.

4.6. Additional Analysis
Generalization to Cross-Prompt Testing: We further in-
vestigate the effectiveness of adaptation by testing with all
three types of prompts. Specifically, we compare with the
best (WDASS) and second best (TENT) methods with re-
sults presented in Tab. 8. Apart from using point as test-
ing prompt, our methods consistently improves the per-
formance even though the testing prompt is different from
training weak supervision.
Effectiveness of Updating Different Components: There
are many options for updating the pre-trained SAM model.
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Figure 4. qualitative results on some selected examples. Three types of prompts at testing stage are visualized for reference.

Given limited computing resources, choosing the appro-
priate components of network to update is crucial to opti-
mize the generalization performance. In this section, we
investigate several options of network components to up-
date during adaptation. Full finetune means finetuning the
whole encoder. MaskDecoder finetune the whole decoder
of SAM without additional redundant learnable parameters.
LayerNorm finetune the all layernorms of the SAM image
encoder. LoRA finetunes the encoder network in through
low-rank decomposition only. EVP use the Embedding
Tune and the HFC Tune to tune the extracted features by
image encoder. We present the investigation on the COCO
dataset with bounding boxes as weak supervision in Tab. 9.
In particular, we have also explored the impact of different
combinations of components, e.g. MaskDecoder + LoRA,
LoRA + EVP, and so on. The results suggest LoRA finetun-
ing the encoder network alone yields the best performance.

5. Conclusion
We studies the generalization of Segment-Anything model
for multiple downstream image segmentation tasks. A tan-

Table 9. Adaptation results produced by finetuning different modules.

Finetuning Module IoU

None 74.30
Full finetune 78.54

MaskDecoder 76.81
LayerNorm 79.30

Low-Rank Adaptation (LoRA) 80.12
Explicit Visual Prompt (EVP) 77.38

MaskDecoder + LoRA 77.28
MaskDecoder + EVP 76.83

LoRA + EVP 79.47
LoRA + LayerNorm 79.35

MaskDecoder + LoRA + EVP 77.31

gible solution with no access to source dataset and low
memory cost was proposed to adapt SAM to downstream
data in a source-free domain adaptation manner. The pro-
posed method is naturally compatible with weak super-
visions which could substantially improve the efficacy of
adaptation. Extensive evaluations on 10 datasets from 5
types of downstream tasks suggest the proposed adapta-
tion method can significantly improve the generalization of
SAM under various degrees of distribution shift.
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Halvorsen, Thomas de Lange, Dag Johansen, and Håvard D
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