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ABSTRACT

Computational topology recently started to emerge as an overarching paradigm
for characterising the ‘shape’ of high-dimensional data, leading to powerful
algorithms in (un)supervised representation learning. While capable of capturing
prominent features at multiple scales, topological methods cannot readily quantify
the uncertainty of their respective descriptors. We develop a novel approach that
bridges this gap, making it possible to employ topology-based loss functions
to perform parameter estimation with Bayesian uncertainty quantification. Our
method affords easy integration into topological machine learning algorithms. We
demonstrate its efficacy for parameter estimation in different simulation settings.

1 INTRODUCTION

Topological machine learning methods enable describing the ‘shape’ of data at multiple scales while
remaining impervious to many different types of noise. This led to strong hybrid models that combine
geometry and topology in different domains, including computer vision (Hu et al., 2019; Waibel et al.,
2022), graph learning (Horn et al., 2022; Yan et al., 2022; Zhao et al., 2020), time series analysis (Zeng
et al., 2021), and unsupervised representation learning (Carrière et al., 2020; Moor et al., 2020).
However, despite the advantageous properties of such integrations, topological methods cannot
readily perform uncertainty quantification. Such scenarios are common occurrences in real-world
data analysis tasks, and are frequently handled with methods from Bayesian statistics. For instance,
assuming a known prior distribution p(θ) and real-world data y, one could employ Bayes’ formula
to obtain the posterior distribution p(θ|y) = p(y | θ)

p(y) p(θ). The posterior distribution allows for a
comprehensive description of parameter uncertainties. Regrettably, the application of this formulation
to complex generative processes presents substantial challenges. In these instances, the likelihood
function p(y | θ), and consequently, the marginal likelihood p(y) =

∫
p(y | θ)p(θ)dθ, frequently

become intractable. The enormous complexity in such systems often requires methods that capture
structural properties of the underlying process that are invariant to isometries (such as rotations and
translations), making computational topology a well-suited tool. Consequently, this necessitates an
alternative framework for uncertainty quantification that satisfies two key requirements:

(i) It must effectively utilise topological information in the observed data y.
(ii) It should offer a theoretically sound notion of posterior beliefs.

Both criteria are critical to overcoming the limitations of topological machine learning methods
in complex scenarios and enhancing their applicability to real-world data analysis tasks where
uncertainty quantification is important. To effectively articulate our posterior beliefs, it is essential
to establish the pertinent constraints. Primarily, in the absence of a likelihood function, we posit
that access to information on the parameter θ is solely available through samples from generative
simulation models, which we denote by x ∼ p(x | θ). Additionally, we assume that we have access to
a loss function of the form (x, y) 7→ ℓ(x, y), which measures to what extent a generated sample x is
‘close’ to the observed data y. In the general setting as outlined above, we endeavour to demonstrate
that the distribution π(θ | y) =

∫
exp(−ℓ(y,x))p(x | θ)p(θ)dx∫∫
exp(−ℓ(y,x))p(x | θ)p(θ)dxdθ offers an alternative for encapsulating

the inherent uncertainty in such generative models. As the central contributions of this paper,
we thus (i) leverage Bayesian inference and topology via efficient geometrical–topological loss
terms that are capable of handling different modalities (point clouds and images), (ii) demonstrate
how sampling algorithms can leverage topologically informed loss functions to perform Bayesian
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inference, and (iii) demonstrate the utility of our approach to uncertainty quantification on several
complex generative models. As a main limiting factor we would like to point out that although
computational topology seems to be the appropriate tool for certain complex models, the resulting
performance for parameter estimation highly depends on the setting. A careful assessment of the
given scenario is recommended beforehand. Moreover, we do not claim that our methodology
outperforms benchmark Bayesian approaches under the assumption of a known likelihood function.

2 BACKGROUND: COMPUTATIONAL TOPOLOGY

(a) (b)

Figure 1: Given a point cloud (a),
persistent homology lets us obtain
shape descriptors known as
persistence diagrams (b).

Before we introduce our approach for Bayesian uncertainty
quantification, we first provide a brief overview of relevant
methods from computational topology. Such methods recently
emerged, making use of geometrical–topological properties of
data to describe their overall ‘shape.’ The concept of persistent
homology is of particular interest in the context of machine
learning since it leads to efficient descriptors of structured and
unstructured data while at the same time satisfying invariance
and robustness guarantees (Hensel et al., 2021). In the context
of analysing complex generative models, invariance to isomet-
ries, for instance, is of particular interest. Persistent homology
obtains multi-scale geometrical–topological shape descriptors
of data by means of combinatorial data structures. Given a
metric such as the Euclidean distance, persistent homology assigns a family of shape descriptors, the
persistence diagrams, to point clouds (Edelsbrunner & Harer, 2010); the process can be extended to
other modalities. The calculation of persistence diagrams turns out to be stable with respect to the
Hausdorff distance between point clouds, making this method highly robust in practice (Cohen-Steiner
et al., 2007). See Fig. 1 for an overview of this process.

Persistent homology originated from simplicial homology, a combinatorial method to obtain simple
shape descriptors from a simplicial complex K, i.e. from a high-dimensional generalisation of a
graph. Although simplicial homology is a powerful topological tool that captures the shape of the
underlying object of interest, a single simplicial complex often does not provide sufficient insight
into complex data. The main idea is thus to obtain a nested sequence of simplicial complexes from
the given data that encodes topological information about the data on multiple scales. The notion
of ‘scale’ and how to define such a sequence in practice depends on the given problem; we will
describe two constructions that are relevant in the context of this paper. Given a point cloud X,
the Vietoris-Rips complex at stage ϵ associated to X is the abstract simplicial complex in which
a k-simplex is defined for every subset of X, consisting of k + 1 points in X that have diameter
at most 2ϵ. By varying ϵ one obtains a sequence of nested simplicial complexes associated to X.
The second construction is given by cubical complexes. Since we only use cubical complexes for
greyscale images, we restrict ourselves to this particular setting, and refer to the literature for a more
comprehensive introduction (Rieck et al., 2020b; Wagner et al., 2012). Any greyscale image A can
be interpreted as a graph, where the nodes are given by the non-zero pixels, such that there is an edge
between two nodes if and only if the two nodes correspond to neighbouring pixels. For a threshold
ϵ, we obtain a new image from A by setting all pixels in A to zero, which admit a pixel value less
than ϵ. Varying ϵ leads to a nested sequence of the graphs corresponding to the respective images,
and therefore we obtain a nested sequence corresponding to A. Subsequently, we explain how to
derive multi-scale topological features from such a nested sequence, also known as a filtration:1 Let
∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K be a nested sequence of simplicial or cubical complexes.
The main idea of persistent homology involves tracking topological features, measured by means
of homology groups, alongside this filtration. The family of boundary operators ∂(·), together with
the inclusion homomorphism, induces a homomorphism between corresponding homology groups
of the filtration, i.e. ιi,jd : Hd(Ki) → Hd(Kj). This homomorphism yields a sequence of homology
groups for every dimension d. Given indices i ≤ j, the dth persistent homology group is then defined
as Hi,j

d := ker ∂d(Ki)/ (im ∂d+1(Kj) ∩ ker ∂d(Ki)). It can be seen as the homology group that
contains all homology classes created in Ki that are still present in Kj . Typically, the filtration

1For a more in-depth discussion of computational topology, in particular in the context of machine learning,
we refer the reader to Hensel et al. (2021).
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of K has associated values a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am (such as edge weights of a graph or
pairwise distances of a point cloud). This permits us to summarise multi-scale topological activity in
a persistence diagram: for each dimension d and each pair i ≤ j, we store the pair (ai, aj) ∈ R2 with
multiplicity µ

(d)
i,j :=

(
βi,j−1
d − βi,j

d

)
−
(
βi−1,j−1
d − βi−1,j

d

)
in a set (in practice, µ(d)

i,j = 0 for many
pairs). The resulting set of points is called the dth persistence diagram Dd. Given a point (x, y) ∈ Dd,
the quantity pers(x, y) := |y − x| is referred to as its persistence. High persistence is commonly
considered to correspond to features, while low persistence is seen to indicate noise Edelsbrunner &
Harer (2010), but recent work shows that in many data sets, low persistence values rather indicate
‘low reliability,’ which may still play an important role for downstream analyses (Bendich et al., 2016;
Rieck et al., 2020b).

3 METHODS

Numerous theoretical justifications have been proposed for employing probability distributions as a
measure of uncertainty, including seminal arguments such as the ‘Dutch Book’ theorem (De Finetti
et al., 1937). While these justifications provide compelling reasons for probabilistic approaches to
uncertainty quantification, within the scope of this paper, we will assert that probability distributions
represent a cogent, effective means for quantifying uncertainty. Our focus is not to debate the
philosophical underpinnings of this stance, but rather to leverage its practical utility.

3.1 BAYESIAN INFERENCE

Within the Bayesian framework, unknown quantities, such as parameters denoted by θ, are furnished
with a probability distribution p(θ), referred to as the prior distribution. Subsequent inference about
the parameters θ given observed data y is performed via the Bayesian update procedure. This process
involves adjusting the prior distribution p(θ) through the multiplication by the ratio of the likelihood
to the evidence, i.e. p(θ|y) = p(y|θ)

p(y) p(θ). However, applying this procedure in our particular context
presents notable challenges. The primary issue stems from the fact that the likelihood function
p(y | θ) is typically unknown and poses considerable difficulties for estimation, particularly when
the data exhibits intricate geometrical–topological properties. To circumvent this problem, recent
research has shown that the use of the likelihood function of the data can be avoided, producing
so-called generalised Bayesian posteriors (Bissiri et al., 2016). One approach to construct such a
generalisation to the Bayesian posterior can be found through the lens of viewing Bayesian inference
as the solution to an optimisation problem (Csiszár, 1975; Donsker & Varadhan, 1975; Zellner, 1988).
Specifically, it can be seen as finding a distribution, q, that balances prior information as measured
by the Kullback–Leibler (KL) divergence between the prior and the posterior candidate q (which
we want to minimise) and the expected log-likelihood of new observations y (which we want to
maximise):

argminq∈P(Θ) {Eq[− log p(y|θ)] + KL(q(θ), p(θ))} . (1)

The solution to this problem is the traditional Bayesian posterior q∗(θ) = p(θ|y). Recently, general-
isations of this approach have been suggested, demonstrating that coherent belief updates can also
occur if instead of the negative log-likelihood loss, − log p(y | θ) any loss l(y, θ) is taken (Bissiri
et al., 2016; Knoblauch et al., 2022). The solution to the concomitant optimisation problem

argminq∈P(Θ) {Eq[l(y, θ)] + KL(q(θ), p(θ))} (2)

is given by

q∗(θ) =
exp(−l(y, θ))p(θ)∫
exp(−l(y, θ))p(θ)dθ

=: πGBI(θ | y). (3)

However, the problem is that even in this general formulation, the loss formally scores observed data
y with respect to a parameter θ. A common approach is to use expectations over samples from a
generative model, i.e. simulate x ∼ f(x | θ) and approximate

l(y, θ) := Ep(x | θ) [ℓ(y, x)] ≈
1

N

N∑
i=1

ℓ(y, xi), (4)

3



Under review as a conference paper at ICLR 2024

with xi ∼ p(x | θ). Replacing the loss l(y, θ) = Ep(x | θ) [ℓ(y, x)] with a sample average, however,
changes2 the posterior from Eq. (3). We will demonstrate in the following that we can directly
construct a valid posterior from the loss function ℓ(y, x).

3.2 COMPARISON-BASED POSTERIORS

Uncertainty estimates predicated on distance functions have a long-standing history in Bayesian
statistics as a means of approximating posterior distributions, with notable use in the realm of
approximate Bayesian computation (ABC, (Tavaré et al., 1997; Pritchard et al., 1999; Beaumont
et al., 2002)). In the ensuing discussion, we will illustrate that a modification of the aforementioned
approach, specifically, a generalised posterior from approximate Bayesian computation such as
Schmon et al. (2021), can furnish us with a theoretically sound form of posterior update. The
proposed approach involves using a loss function (x, y) 7→ ℓ(y, x) to construct a joint posterior
involving simulated data x ∼ p(x | θ) and real data y in the form

π(θ, x | y) ∝ exp (−ℓ(y, x)) p(x | θ)p(θ). (5)

This approach, however, encounters several obstacles. Firstly, it is not clear that Eq. (5) defines a
reasonable notion of uncertainty. In addition, since x is just simulated data, not observed data, we
need to average over possible values, leading to

π(θ | y) =
∫
X
exp (−ℓ(y, x)) p(x | θ)p(θ)dx∫∫

X×Θ
exp (−ℓ(y, x)) p(x | θ)p(θ)dxdθ

. (6)

It turns out that this is is a valid (generalised) posterior under the loss associated with the topological
properties of our data, namely:
Proposition 3.1. The comparison-based posterior

π(θ, x | y) = exp (−ℓ(y, x)) p(x | θ)p(θ)∫
X

∫
Θ
exp (−ℓ(y, x)) p(x | θ)p(θ)dθdx

(7)

is the solution q∗(θ, x) = π(θ, x | y) to the optimisation problem

q∗ = argminq∈P(Θ×X) {Eq[ℓ(y, x)] + KL (q(θ, x), p(x|θ)π(θ))} . (8)

The calculations follow usual arguments and can be found in the appendix. In Eq. (8), the first term
in the objective function measures the expected loss under the posterior, where the loss function
ℓ(y, x) quantifies the discrepancy between the observed data y and the simulated data x. This
is precisely where we can use improved inductive biases or expert knowledge in employing loss
functions such as the topological losses introduced in Section 3.4. The second term encourages the
posterior to stay close to the prior, as in the traditional Bayesian setting, however, with a significant
difference: the prior distribution p(θ) over the parameters θ together with the simulation model
p(x | θ) naturally implies prior beliefs over what the data should look like. Thus, it is sensible to
consider the KL-divergence between the joint beliefs p(x | θ)p(θ) and q(x, θ).

Our approach can be seen as a generalisation of the traditional Bayesian posterior in the sense that
it allows for a more flexible modelling of the data generation process. Instead of assuming that the
observed data is generated exactly according to the model p(y | θ), we allow for the possibility that
the data is generated from a distribution that produces data close to y in terms of the loss function ℓ.
This makes our approach potentially more robust to model misspecification and more suitable for
complex data with intricate topological properties.

3.3 INFERENCE FOR COMPARISON-BASED POSTERIORS

Evaluating posteriors such as those given by Eq. (6) analytically is typically infeasible. An alternative
approach may involve direct targeting of a variational distribution as shown in Eq. (8). However,
this strategy encounters two main difficulties: firstly, the distribution p(x | θ) is often intractable,
rendering the computation of the KL divergence term non-trivial. Secondly, in order to compute

2This occurs even in the case where the estimator is unbiased since this property is lost under the non-
linear (exponential) transformation by virtue of Jensen’s inequality.
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Algorithm 1 Importance sampling estimation of the mean

Require: Observed data y, test function h
1: for i = 1 : n do
2: Sample θi ∼ p(θ)
3: Sample xi ∼ p(x | θi)
4: end for
5: return

ĥ(θ) =

∑n
i=1 h(θi)e

−wℓ(y,xi)∑n
i=1 e

−wℓ(y,xi)

the gradients, we must propagate them through the simulation models. This poses a challenge as
p(x | θ) often represents a ‘black-box’ model, not necessarily implemented within a framework that
supports automatic differentiation. Consequently, this typically precludes the practical application
of gradient-based optimisation techniques. However, it turns out that Monte Carlo algorithms,
such as self-normalised importance sampling or so-called pseudo-marginal Markov chain Monte
Carlo (Andrieu & Roberts, 2009) are able to compute expectations with respect to posteriors of the
form in Eq. (6).

Algorithm 1 shows a self-normalised importance sampling procedure. Almost-sure convergence can
be shown under mild regularity conditions (e.g. Owen, 2013, Theorem 9.2) for a test function of
interest h, i.e.∑n

i=1 h(θi)e
−ℓ(y,xi)∑n

i=1 e
−ℓ(y,xi)

n→∞−→
∫∫

h(θ)e−ℓ(y,x)p(x | θ)p(θ)dxdθ∫∫
e−ℓ(y,x)p(x | θ)p(θ)dxdθ

= Eπ(θ | y)[h(θ)]. (9)

An alternative is to use Markov chain Monte Carlo (MCMC), where we produce a Markov chain
converging to the distribution (6); see Algorithm 2 in the appendix. Such algorithms indeed converge
to the desired target distribution (Andrieu & Roberts, 2009, Theorem 1) under mild assumptions.

3.4 LOSSES BASED ON GEOMETRY & TOPOLOGY

Having introduced multiple inference algorithms and explained how to obtain topological features,
we now discuss how to derive topology-based loss functions. We start with discussing metrics in
computational topology. It turns out that persistence diagrams can be endowed with a metric by using
optimal transport. Given two diagrams D and D′ containing features of the same dimensionality,
their pth Wasserstein distance is defined as

Wp(D,D′) :=

(
inf

η : D→D′

∑
x∈D

∥x− η(x)∥p∞

) 1
p

, (10)

where η(·) denotes a bijection. Since D and D′ generally have different cardinalities, we consider
them to contain an infinite number of points of the form (τ, τ), i.e. tuples of zero persistence; this is
akin to requiring each diagram to contain the projections of points to the diagonal, originating from
the other diagram. A suitable η(·) can thus always be found. Solving Eq. (10) is practically feasible
using modern optimal transport algorithms Flamary et al. (2021). While this is the most ‘principled’
approach—in the sense that such a loss formulation forms a proper metric in the mathematical
sense—alternative formulations to Eq. (10) exist, and our framework is fundamentally compatible
with all of them. Along these lines, other topological descriptors, such as Betti curves Rieck et al.
(2020a) or persistence images Adams et al. (2017), might be used instead of persistence diagrams.
These descriptors are often easier to compute and afford the use of fast L1 or L2 distances as proxies
for Eq. (10). For instance, the L2 distance between persistence images is known to share some
advantageous properties with the Wasserstein distance Adams et al. (2017) but it only handles a
‘discretised’ version of the data, so some information is invariably lost (or, to briefly consider an
optimistic point of view, the persistence image is smoother than a persistence diagram). As another
alternative to the previously-described descriptors, we could also employ a kernel, i.e. a similarity
measure between persistence diagrams. These similarity measures are not metrics in the mathematical
sense, lacking the requirement of the identity of indiscernibles, but are easier to compute (unlike
the persistence images, they do not require vectorisations) and require fewer parameters Kwitt et al.
(2015); Reininghaus et al. (2015).
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A loss function based on the Wasserstein distance. To leverage the power of computational
topology and Bayesian inference, we propose combining the Bayesian framework for updating
posterior probability estimates with a topological loss function. Given observed data y and simulated
data x sampled from p(x | θ), let Dx and Dy be the persistence diagrams corresponding to x and y,
respectively. We then define a topological loss function ℓT : Y × X → R, by setting

ℓT (y, x) := Wp(Dy,Dx). (11)

This formulation applies to different data modalities. If the data can be represented as a point cloud,
we calculate persistence diagrams from the Vietoris–Rips complex. For (greyscale) image data, we
obtain persistence diagrams via cubical complexes, enabling topological feature calculations for more
complicated modalities such as MRI data Rieck et al. (2020b). As we outlined above, other choices
for the loss function would be possible, and we may now continue with our Bayesian updating
procedure. Note that unless otherwise mentioned, we use p = 2 to compute the topological loss.

Properties. The Wasserstein distance between persistence diagrams is stable in the sense that the
geometric distance constitutes an upper bound of the topological distance. Given two point clouds
Y,X of the same cardinality, we have Wp(Dy,Dx) ≤ Cp Wp(Y,X), where Cp refers to a constant
that only depends on p and Wp(Y,X) is defined similarly to Eq. (10), but calculated on the point
clouds themselves Skraba & Turner (2022). Since Wp(·, ·) ≤ Wp′(·, ·) for p′ ≤ p, low values of
p are desirable in terms of stronger stability; we find that p = 2 provides a suitable compromise
solution. Moreover, our loss function ℓT is invariant under isometries (Edelsbrunner & Harer, 2010)
and stable under subsampling (Moor et al., 2020).

A loss function based on the Hausdorff distance. As a baseline and computationally simpler
comparison partner, we also define a geometry-based loss function based on the Hausdorff distance
between point clouds X and Y. Given a metric space (M,d) and two non-empty subsets X,Y ⊆ M ,
we define our loss as

ℓG(X,Y) := inf{ϵ ≥ 0 |X ⊂ Yϵ,Y ⊂ Yϵ}, (12)

where Xϵ = ∪x∈X{m ∈ M ; d(m,x) ≤ ϵ} denotes the ϵ-thickening of X in M . While this loss does
not satisfy invariance properties, it is more efficient to compute in practice. However, as we will see
in the experimental section, its utility in complex data generation scenarios is limited.

3.5 RELATED WORK

A range of Bayesian inference methods have been developed to address the challenges involved with
uncertainty quantification when dealing with complex models whose likelihoods are analytically
intractable. While each of these approaches offers a distinct solution, they also present their own
unique sets of challenges and limitations.

Approximate Bayesian computation (ABC) is a well-established approach (Tavaré et al., 1997;
Pritchard et al., 1999; Beaumont et al., 2002). ABC employs a pre-defined threshold to accept
parameters that yield a small enough distance between the simulated and observed data. More
recently, Wasserstein ABC (Bernton et al., 2019) has capitalised on optimal transport theory to define
a distance function between simulated and observed data. This form of rejection-based ABC comes
with several potential problems such as the choice of the rejection threshold: a small threshold will
lead to high numerical costs whereas a threshold too large can result in incorrect coverage of credible
regions (Frazier et al., 2018). To make matters worse, rejection ABC algorithms are known to exhibit
non-standard asymptotic behaviour in case of model misspecification (Frazier et al., 2019).

Several authors have suggested constructing a generalised posterior along the lines of Eq. (3) using
distance functions, such as maximum mean discrepancy (MMD, Park et al. (2015); Chérief-Abdellatif
& Alquier (2020)). However, these methods, in contrast to our approach, use a theoretical loss,
for instance, l(y, θ) = Ep(x|θ)[ℓ(y, x)], which is then approximated using empirical averages, thus
potentially introducing a source of bias or instability. By contrast, our approach, is more related
to (particle) filtering (e.g. Doucet et al., 2009), where inference is carried out over the latent state
simultaneously. Miller & Dunson (2018) introduced a discrepancy-based Bayesian procedure they
termed ‘coarsening,’ where the observed data is considered as a coarsened version of latent data,
thereby enhancing robustness. The work that aligns most closely with our approach to uncertainty
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quantification is that of Schmon et al. (2021), which introduces (5) as a generalised version of ABC,
although not in the context of topological data analysis.

Finally, topological data analysis (TDA) has already started to see some use in the context of analysing
generative models. Some works are concerned with fitting the parameters of previously-defined prior
distributions of persistence diagrams (Maroulas et al., 2022; Oballe, 2020), thus demonstrating the
expressivity of TDA for describing complex systems. We are interested in parameter estimates of
black-box models by exploiting this expressivity. Along these lines, Topaz et al. (2015) use persistent
homology for a qualitative analysis of the topological characteristics of swarming models (such as
Vicsek model). In comparison, our approach is intended to leverage topology and Bayesian inference
for quantitative studies, enabling parameter estimation. More recently, Thorne et al. (2022), used
topological statistics in combination with rejection sampling. This method constitutes the first use
of TDA in the setting of ABC; it involves numerous parameter choices (intrinsic to the definition of
such statistics) that our method does not necessitate. Moreover, the rejection sampling approach is
itself parameter-driven. Finding a suitable rejection threshold requires additional domain knowledge.
Our approach stands out by integrating a loss function to construct a posterior distribution directly,
without resorting to approximation, thereby offering a theoretically-grounded form of posterior belief.

4 EXPERIMENTS

As a consistency check, we use our proposed methods for inferring the radius parameters of two
objects, namely the 2-sphere and the 2-torus. Table 3 in the appendix depicts the results of the
inference process. For the remainder of this section, we empirically validate the utility of the
proposed method in the form of three main experiments that compare topological losses and respective
geometrical losses, by using the results from Section 3. Moreover, we provide a comparison to
standard rejection sampling procedures with respect to summary statistics, see Appendix A.

4.1 VICSEK MODEL: SWARM BEHAVIOUR

The Vicsek model is an agent-based model that is particularly useful to study collective motion
like swarming and flocking. The underlying idea is that each agent aligns at any time step with its
nearest neighbours, before the alignment is perturbed by an additional random term. The resulting
angle of the alignment determines the direction of movement for the subsequent time step, where the
movement takes place with constant speed which is independent of time and individual. Following
Vicsek et al. (1995), the formula for the alignment angle update of an individual i is given by
θ(t+1) = ⟨θ(t)⟩r+∆θ, where ⟨θ(t)⟩r denotes the average of the angles of individuals with distance
to agent i at most r, and ∆θ is uniformly sampled from the interval [−η/2, η/2] for 0 ≤ η ≤ 2π. The
new position of the agent is then determined by moving with constant speed towards the direction of
the updated angle. Although the formula for each agent is simple, collective behaviour of the system
over time is highly chaotic due to the complex dependencies between agents.

Figure 2: Left to right: simulations of the Vicsek
model for η = 0.15, 0.3 and 0.6, respectively. For
lower values of η swarming behaviour emerges,
whereas for higher values of η swarms tend to
merge and the model becomes more ergodic.

To demonstrate the utility of topological losses
for parameter inference in a setting where the
respective likelihood function is not analytically
tractable, we infer the noise parameter η after
a certain number of iterations (time steps) of
the model. We distribute 2000 agents across a
square of edge length L = 25, where oppos-
ite edges of the square are identified with the
orientation being preserved; the ‘world’ thus
constitutes the surface of 2-torus. For the in-
ference of η, we use 250 simulations for each
sampling method, aiming to infer η after 5, 10,
and 50 iterations of the model, respectively, repeating the inference 5 times. Since the Vicsek model
gives rise to point clouds, we calculate Vietoris–Rips complexes and compare the corresponding
persistence diagrams. As a baseline, we use the Hausdorff distance between the point clouds; Fig. 3
depicts the results. In our experiments, the results for the topological loss with the MCMC sampling
procedure outperforms in all of the settings, and leading to highly accurate estimates even after 50
time steps. By contrast, we note that the estimators that were calculated with the Hausdorff loss lead
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(b) MCMC sampling

Figure 3: Summary of parameter estimates for the noise parameter η of the Vicsek model, using 5
repetitions of the inference procedure. Each subplot depicts estimates for η ∈ {0.15, 0.30, 0.60},
respectively. The true parameter is shown as a solid black line. Estimates based on the geometrical
loss ℓG are less accurate than the topological loss ℓT , in particular for larger number of iterations.
Please refer to Table 4 for the raw values.

to particularly poor results in the regimes that are closer to being ergodic, i.e. for larger values of
η. Finally, we remark that our approach with the proposed topological loss outperforms standard
rejection sampling in combination with certain summary statistics, see Appendix A.

4.2 FLUID DYNAMICS: LATTICE BOLTZMANN SIMULATION

(a) low turbulence (b) medium turbulence (c) high turbulence

Figure 4: Left to right: simulations of the fluid model after 3000 iterations, for η = 0.2, 0.3 and 0.4,
respectively. For lower values of η, the fluid flow is less turbulent than for higher values of η.

The lattice Boltzmann methods (LBM) are a collection of algorithms that are used for fluid simulation.
Instead of the conservation of macroscopic properties of the dynamical system, LBM models the
fluid over a discrete lattice, by performing local propagation and collision processes, for all particles
simultaneously. For a thorough introduction, see Krüger et al. (2017). After initialising the state of
each particle equally, a portion of normally distributed noise is added to each state, independently.

Table 1: Estimating the randomness parameter of the lattice
Boltzmann model after 3000 simulation iterations, using 5
repetitions of the inference procedure. The topological loss
together with importance sampling outperforms all of the
other configurations.

Randomness parameter η

Loss Sampling method 0.20 0.30 0.40

ℓG
Importance sampling 0.16 ± 0.02 0.22 ± 0.04 0.35 ± 0.13
MCMC 0.15 ± 0.10 0.91 ± 1.64 0.38 ± 0.25

ℓT
Importance sampling 0.21 ± 0.01 0.27 ± 0.00 0.38 ± 0.01
MCMC 2.28 ± 1.40 1.71 ± 0.81 2.35 ± 1.10

This portion of randomness is con-
trolled by a global parameter η ≥ 0,
where higher values of η correspond
to a higher portion of noise in the ini-
tialisation. The crucial observation is
that the degree of turbulence in the
system can be modelled by varying
η, as is shown in Fig. 4. Our object-
ive is therefore to infer the parameter
η, which corresponds to a given ob-
servation after a certain amount of
iterations in the model, where we
fix this number of iterations to be
t = 3000 timesteps. As the topo-
logical loss, we use the Wasserstein
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distance between the persistence diagrams of the cubical complexes corresponding to the observed
and the simulated state, respectively, while the Hausdorff distance between the states serves as a
baseline comparison. Table 1 shows the results; we observe that the topological loss together with
importance sampling outperforms the geometrical loss in both configurations, by far. Again, rejection
sampling in combination with summary statistics performs less reliably, see Appendix A.

4.3 PERCOLATION MODEL: MULTI-SCALE STRUCTURES

In statistical physics, percolation refers to the behaviour of a network when links are added to
it. Percolation can be viewed as a process of geometric phase transition since at a critical state
of the network, disconnected components merge into large connected clusters by the addition
of a small fraction of links. In our setting, the percolation model is probabilistic in the sense
that links are added randomly, with some probability p, and the goal is to infer p. We realise
such a network as a square 2D greyscale image of pixel size n2, for some positive integer n.3

Table 2: Estimating the parameter of the Percolation model,
using 5 repetitions of the inference procedure. The topological
loss together with either importance sampling or MCMC
sampling outperforms all other configurations.

Randomness parameter p

Loss Sampling method 0.15 0.30 0.60

ℓG
Importance sampling 0.18 ± 0.00 0.30 ± 0.47 0.59 ± 0.00
MCMC 3.18 ± 2.55 1.30 ± 0.47 2.18 ± 1.47

ℓT
Importance sampling 0.15 ± 0.00 0.29 ± 0.00 0.59 ± 0.01
MCMC 0.15 ± 0.02 0.29 ± 0.00 0.59 ± 0.00

We assign a value v to each pixel in
the image, where v = 0 with prob-
ability 1 − p, and v is sampled uni-
formly from the set {1, . . . , vmax}
with probability p. Here, vmax is the
maximum realisable greyscale value,
which we set to 50 for our experi-
ments. For the inference of p, we
used 250 simulations for both the im-
portance sampling and the MCMC
sampling. Since we are dealing with
greyscale images, we obtain persist-
ence diagrams via cubical complexes.
We compare our proposed topolo-
gical loss ℓT to several other losses that are commonly used in imaging processing, including
MSE, RMSE, the universal image quality index (UQI), the relative average spectral error (RASE),
the spatial correlation coefficient (SCC), and the pixel-based visual information fidelity (VIFP). Since
we find that the results of SCC and VIFP outperform other scores, and since SCC and VIFP lead
to comparable results, we only show the results for SCC (see Zhou et al. (1998) for a construction
of SCC) in comparison to the ones obtained by the topological loss. Table 2 shows the results. We
again observe that our topology-based loss ℓT , together with MCMC sampling, outperforms the other
methods by far. However, in this particular experiment rejection sampling together with a mean
statistic performs even better, we refer to Appendix A for a discussion.

5 DISCUSSION

We presented a novel approach for uncertainty estimation in topological data analysis. Our method,
which builds on the framework of generalised Bayesian inference, introduces a topology-based loss
function into the construction of the posterior distribution. This approach offers a theoretically
grounded form of posterior belief that improves upon some of the challenges inherent in existing
distance-based methods, which rely on geometrical features. We have empirically shown that our
method outperforms such geometrical approaches for parameter estimation in the setting of complex
systems, which suggests future applications in other complex scenarios such as the life sciences.

Our work contributes to the ongoing evolution of Bayesian inference methods for complex models. It
presents a new avenue of exploration that merges the advantages of both topological data analysis
and Bayesian statistics. We believe that the principles and techniques introduced in this paper have
broad applicability and offer a compelling new approach for uncertainty quantification in a wide
range of data analysis tasks. Future research will focus on further refining this method, focusing on
efficient estimates in sparse regimes. We also plan on assessing the performance arising from other
topology-based formulations, which are geared towards specific modalities such as meshes (Turner
et al., 2014) or time series (Zeng et al., 2021).

3Note that alternatively, a greyscale image can be interpreted as an undirected graph, by defining the set of
vertices to be the set of pixels, and adding edges between neighbouring pixels if both of their values are non-zero.
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A ADDITIONAL RESULTS

In the interest of reproducibility and to improve the understanding of our method, we also provide
more detailed insights into our experiments.

Synthetic data parameter estimates. As a consistency check and illustrative example, we use our
proposed methods for inferring the radius parameters of two objects, namely the 2-sphere and the
2-torus. The 2-sphere is the surface of a closed 3-dimensional ball of radius r, while the 2-torus is
constructed using an inner radius r and an outer radius R. The point clouds were sampled uniformly
from the respective surface of known parameter.

Table 3: Estimating the radius parameters of a 2D sphere (r) and a 2D torus (r,R). For the more
complex torus parameter estimation, we observe that our topological loss ℓT provides more reliable
estimates than the geometrical loss ℓG. The results show the mean of five runs for each parameter
choice.

Sphere radius r Torus radii (r,R)

Loss Sampling method 1.00 5.00 10.00 (1, 2) (3, 5) (5, 10)

ℓG
Importance sampling 0.97 4.94 9.91 0.94 1.96 2.99 4.95 4.98 9.98
MCMC 1.00 4.99 10.00 0.99 2.04 2.77 4.96 5.01 10.00

ℓT
Importance sampling 1.01 5.02 9.98 1.02 1.96 3.01 5.05 4.95 10.04
MCMC 0.99 4.99 10.00 1.04 1.89 2.99 4.97 5.01 10.04

Table 3 depicts the results of the inference process. We observe that both types of losses are capable
of inferring the right parameters of these simple geometric objects, with our topology-based loss ℓT
providing slightly more reliable estimates in the case of a torus. Table 3 shows the raw values of
learning radius parameters for synthetic data sets (2D spheres and 2D tori). This experiment primarily
shows that for such simple shapes, geometry-based and topology-based losses perform equivalently.
For more complex data sets, however, we find that the improved robustness of our topology-based
loss term helps in inferring the ground truth parameters.

Swarm behaviour of the Vicsek Model. Fig. 5 shows simulations of the Vicsek model for different
noise parameters η. The higher η, the more ‘chaotic’ the behaviour of the resulting complex system.

Figure 5: Left to right: simulations of the Vicsek model for η = 0.15, 0.3 and 0.6, respectively. For
lower values of η swarming behaviour emerges, whereas for higher values of η swarms tend to merge
and the model becomes more ergodic.

Vicsek model parameter estimates. Accompanying Fig. 3, we show the raw parameter estimates
of η, the noise parameter of the model in Table 4. Moreover, we show the results of a rejection
sampling procedure with summary statistics (mean and standard deviation, respectively), in Fig. 6. In
the latter setting we used the L2 distance between the respective summary statistics as the loss that
determines the results of our method. We observe that there is no statistic that clearly discriminates
the other one, and that the performance of the results highly depends on the parameter and timestep
which is considered. We find that the overall accuracy and reliability of the respective experiments by
using topological losses is significantly higher; see Fig. 3 for a comparison.
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Table 4: Noise parameter estimation after n = {5, 10, 50} iterations of the Vicsek model. Estimates
of η based on a topological loss are always closer to the ground truth value than estimates obtained
via a geometrical loss.

True parameter η

Loss Sampling method 0.15 0.30 0.60

n = 5
Hausdorff distance Importance sampling 0.17 0.35 0.67

MCMC 0.13 0.36 1.15

Topological distance Importance sampling 0.14 0.29 0.59
MCMC 0.12 0.33 0.63

n = 10
Hausdorff distance Importance sampling 0.11 0.39 0.70

MCMC 0.18 0.41 1.95

Topological distance Importance sampling 0.18 0.27 0.65
MCMC 0.13 0.34 0.62

n = 50
Hausdorff distance Importance sampling 0.12 0.29 0.72

MCMC 0.28 1.40 2.28

Topological distance Importance sampling 0.16 0.31 0.61
MCMC estimate 0.21 0.24 0.59

n = 5 n = 10 n = 50

0.1

0.15

0.2

0.25

n = 5 n = 10 n = 50

0.2

0.3

0.4

n = 5 n = 10 n = 50

0.5

0.6

0.7

(a) Rejection sampling

Figure 6: Summary of parameter estimates for the noise parameter η of the Vicsek model with
respect to summary statistics and a standard rejection sampling procedure, using 5 repetitions of the
inference procedure. Each subplot depicts estimates for η ∈ {0.15, 0.30, 0.60}, respectively. The
true parameter is shown as a solid black line. Estimates based on the mean statistic L2 loss and
standard deviation statistic L2 loss both are significantly less accurate than the respective topological
loss, see Fig. 3b.

(a) low turbulence (b) medium turbulence (c) high turbulence

Figure 7: Left to right: simulations of the fluid model after 3000 iterations, for η = 0.2, 0.3 and 0.4,
respectively. For lower values of η the fluid flow is less turbulent than for higher values of η.

Lattice Boltzmann model for fluid dynamics. The degree of randomness in the local propagation
and collision steps in the lattice Boltzmann method (LBM) model controls the turbulent behaviour
of the global system, as is illustrated in Fig. 7. This is the parameter η that we estimate in our
experiments. The results are shown in Fig. 8 and Fig. 9, respectively. Using importance sampling, the
topological loss outperforms the geometrical loss in terms of accuracy, as can be seen from the median
and interquartile range of the boxplots in Fig. 8. Moreover, the topological loss in combination with
importance sampling also outperforms the geometrical loss with MCMC sampling, as evidenced
from Table 1. The topological loss in combination with MCMC sampling, however, is far off in
terms of accuracy. The latter indicates that the convergence rates of MCMC sampling and importance
sampling may be very different, and depend on the given setting. Finally, we note that rejection
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sampling with both the mean and standard deviation summary statistic does not perform reliably, and
its accuracy highly depends on the true parameter in the underlying observation.

t = 3000

0.16

0.18

0.2

0.22

0.24

t = 3000

0.15

0.2

0.25

0.3

0.35

t = 3000

0.25

0.3

0.35

0.4

(a) Importance sampling

t = 3000

0

2
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t = 3000

0

1
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t = 3000

0

2
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(b) MCMC sampling

Figure 8: Summary of parameter estimates for the parameter η of the fluid model, using 5 repetitions
of the inference procedure. Each subplot depicts estimates for η ∈ {0.20, 0.30, 0.40}, respectively.
The true parameter is shown as a solid black line. Estimates based on the geometrical loss ℓG are less
accurate than the topological loss ℓT .

t = 3000

0.19

0.2

0.21

0.22

t = 3000

0.26
0.28
0.3

0.32
0.34

t = 3000

0.35

0.4

Rejection sampling

Figure 9: Summary of parameter estimates for the parameter η of the fluid dynamics model with
respect to summary statistics and a standard rejection sampling procedure, using 5 repetitions of the
inference procedure. Each subplot depicts estimates for η ∈ {0.20, 0.30, 0.40}, respectively. The
true parameter is shown as a solid black line. Estimates based on the mean statistic L2 loss and on
the standard deviation statistic L2 loss tend to be less reliable than estimates based on the topological
loss, see Fig. 8.
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Multi-scale structures in percolation models. Fig. 10 shows an illustration of our proposed
percolation model. The higher the value of p, the more likely it is for a pixel to be non-zero.
Consequently, there are more non-zero pixels for higher values of p. As discussed in the main
paper, the topological distance outperforms the SCC distance significantly, with both importance
sampling and MCMC sampling. However, the rejection sampling procedure together with the mean
statistic performs even more accurate in this experiment, as can be seen by comparing Fig. 11 and
Fig. 12. This is not surprising: once the pixel size converges to infinity, the mean of the pixel values
will converge to the expected pixel value, where the latter only depends on p (since the maximum
greyscale value is fixed in our experiments, and therefore does not have any discriminative power
for inference). Therefore, at least in a large-pixel regime we can infer the true parameter of the
observation from the mean of its pixel values. Note that this is due to the additional structure in this
experiment, and does not hold for complex systems that cannot be described in such a simple way, as
has been seen in the previous experiments. Finally, rejection sampling with the standard deviation
statistic leads to highly erroneous results, as can also be seen from Fig. 12. For complex systems it is
therefore very difficult to determine the ‘right’ summary statistic which contains a sufficient amount
of information to infer the underlying parameter. This choice is not necessary when using topological
losses, which makes the latter an appropriate generic choice, in many applications.

Figure 10: Left to right: samples of the proposed percolation model for p = 0.15, 0.3 and 0.6,
respectively. All samples admit a fixed maximum greyscale value of 50. Although the geometric
distance between two samples of fixed p can be large due to the uniform sampling of pixels, the
overall topological structure (which is captured by persistent homology) for a given p is more stable
with respect to sampling.
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0.18

vmax = 50

0.29

0.3

0.31
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(a) Importance sampling
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(b) MCMC sampling

Figure 11: Summary of parameter estimates for the parameter p of the Percolation model, using 5
repetitions of the inference procedure. Each subplot depicts estimates for p ∈ {0.15, 0.30, 0.60},
respectively. The true parameter is shown as a solid black line. Estimates based on the geometrical
loss ℓG are less accurate than the topological loss ℓT , in particular for larger number of iterations.
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vmax = 50

0.15

0.15

0.16

vmax = 50

0.3

0.31

0.32

0.33

vmax = 50

0.6

0.62
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(a) Rejection sampling

Figure 12: Summary of parameter estimates for the parameter p of the Percolation model with
respect to summary statistics and a standard rejection sampling procedure, using 5 repetitions of the
inference procedure. Each subplot depicts estimates for p ∈ {0.15, 0.30, 0.60}, respectively. The
true parameter is shown as a solid black line. Estimates based on the mean statistic L2 loss are more
accurate than the standard deviation statistic L2 loss.

B FURTHER DETAILS AND PROOF

Algorithm 2 MCMC approximation of the target

Require: Observed data y, start value θ0, proposal distribution q(ϑ | θ)
1: Sample X0 ∼ p(x | θ0)
2: for i = 1 : K do
3: Sample U ∼ Unif[0, 1]
4: Sample θ′ ∼ q(· | θi−1)
5: Sample X ′ ∼ p(x | θ′)
6: Compute

a(θi−1, θ
′) =

e−ℓ(y,X′)p(θ′)

e−ℓ(y,Xi−1)p(θi−1)

q(θi−1 | θ′)
q(θ′ | θi−1)

7: if U ≤ a(θi−1, θ
′) then

8: Set θi = θ′, Xi = X ′

9: else
10: Set θi = θi−1, Xi = Xi−1

11: end if
12: end for
13: return

θ = (θ1:K).

Proof about the comparison-based posterior

Proposition B.1. The comparison-based posterior

π(θ, x | y) = exp (−ℓ(y, x)) p(x | θ)p(θ)∫
X

∫
Θ
exp (−ℓ(y, x)) p(x | θ)p(θ)dθdx

is the solution q∗(θ, x) = π(θ, x | y) to the optimisation problem

q∗ = argminq∈P(Θ×X) {Eq[ℓ(y, x)] + KL (q(θ, x), p(x|θ)π(θ))} .
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Proof.

qB = argminq {Eq [ℓ(y, x)] +KL (q(x, θ), p(x|θ)π(θ))}

= argminq

{∫∫
ℓ(y, x)q(x, θ)dxdθ +

∫∫
log

q(x, θ)

p(x|θ)π(θ)
q(x, θ)dxdθ

}
= argminq

{∫∫
log (exp ℓ(y, x)) q(x, θ)dxdθ +

∫∫
log

q(x, θ)

p(x|θ)π(θ)
q(x, θ)dxdθ

}
= argminq

{∫∫
log

(
q(x, θ)

p(x|θ)π(θ) exp (−ℓ(y, x))

)
q(x, θ)dxdθ

}
= argminq

{∫∫
log

(
q(x, θ)

p(x|θ)π(θ) exp (−ℓ(y, x))Z−1

)
q(x, θ)dxdθ

}
− logZ

= argminq KL
{
q(x, θ), p(x|θ)π(θ) exp (−ℓ(y, x))Z−1

}
.

Hence, the minimiser q is such that

q(x, θ) =
p(x | θ)π(θ) exp (−ℓ(y, x))

Z
, q(θ) =

∫
q(x, θ)dx

and
Z :=

∫∫
exp (−ℓ(y, x)) p(x | θ)π(θ)dxdθ.
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