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Abstract

With the popularity of large language models001
and their high-quality text generation capabil-002
ities, researchers are using them as auxiliary003
tools for text summary writing. Although sum-004
maries generated by these large language mod-005
els are smooth and capture key information suf-006
ficiently, the quality of their output depends on007
the prompt and the generated text is somewhat008
procedural to a certain extent. In order to un-009
derstand whether large language models truly010
understand human needs, we construct Lec-011
Summ, in which we recruit 200 college students012
to write summaries for lecture notes on ten013
different machine learning topics, and analyze014
real-world human summary needs in the di-015
mensions of summary length structure, modal-016
ity and content depth. We further evaluate017
fine-tuned and prompt-based language mod-018
els on LecSumm and show that the commer-019
cial GPT models showed better performance020
in summary coherence, fluency and relevance,021
but still fall shot in faithfulness and can bet-022
ter capture human needs even with advanced023
prompt design while fine-tuned models do not024
effectively learn human needs from the data.025
Our LecSumm dataset brings new challenges to026
both fine-tuned models and prompt-based large027
language models on the task of human-centered028
text summarization.029

1 Instruction030

With the huge amount of training data, the devel-031

opment of large language models (LLMs), such032

as the GPT series (OpenAI, 2024), the PaLM se-033

ries (Aakanksha Chowdhery, 2022), Mistral (Jiang034

et al., 2023) and LLaMA (AI@Meta, 2024), have035

achieved remarkable success by unifying the gener-036

ative paradigm with different NLP tasks(Wei et al.,037

2024a,c; Wan et al., 2023; Wang et al., 2023a; Qin038

et al., 2023; tse Huang et al., 2024). In certain NLP039

fields, such as text summarization, LLMs achieve040

decent performance without additional training041

data and even surpass traditional models supervised 042

fine-tuned models (Zhang et al., 2024). Recent 043

studies employ LLMs as auxiliary tools for human- 044

centered NLP (Passali et al., 2021; Hu et al., 2023), 045

ranging from human-centered design to human-in- 046

the-loop interaction with LLMs. 047

When generating human-centered summaries 048

with LLMs, specific human needs can be incor- 049

porated through two different approaches : (i) Ex- 050

plicitly, add external constraints to the summariza- 051

tion model, such as prompt design and different 052

hyper-parameter settings. (ii) Implicitly, construct 053

specific source-target summary datasets that reflect 054

human needs to finetune the language model, en- 055

abling it to learn the hidden need from the data. 056

Our research question is: Do language models 057

really understand human needs on text summa- 058

rization? 059

To answer this question, we first design a lecture 060

note summarization task to discover human needs 061

in real-world data and construct a dataset contain- 062

ing human-centered summaries, the framework of 063

the task is shown in Figure 1. We recruited 200 064

university students and designed a task of writing 065

lecture note summaries: 10 different topics related 066

to machine learning were given to the annotators, 067

together with the corresponding lecture notes, and 068

the participants were required to write summaries 069

based on the lecture notes. There is no hard limita- 070

tion (e.g. length, structure) on the summary written 071

process, participants are allowed to use related ma- 072

terials to equip the lecture notes, the only limitation 073

is it has to be written by the participants and can- 074

not be returned by machines. What we observe is 075

that different annotators utilize a combination of 076

various dimensions to reflect their individual needs 077

when writing summaries, these human needs range 078

in four dimensions: structure, modality, length, and 079

content depth. 080

Then, we construct the LecSumm dataset which 081

includes the provided lecture notes and human writ- 082
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Figure 1: The framework of our work is divided into three stages: (a) Summary Collection. We designed a
summary collection task and recruited annotators online. They were asked to write summaries based on the provided
lecture notes gathered from open-source data on specific topics. (b) Human Needs Analysis on Summaries.
Human-written summaries were analyzed from four dimensions: length, structure, modality, and content depth to
discover human needs. (c) Dataset Construction. The dataset was constructed after summary checking and data
processing, with lecture notes as input sources, and human-written summaries as target summaries.

ten summaries, by which are we experiment with083

fine-tuned supervised models, and prompt-based084

zero-shot LLMs. We find that zero-shot LLM085

can better understand human needs given proper086

prompting design. Our main contribution is pre-087

sented as follows:088

• We design a human-centered text summa-089

rization task to collect human-guided sum-090

maries for lecture notes, and propose a Lec-091

Summ dataset containing human-centered092

summaries.093

• Based on LecSumm, we analyze the human094

need bias for text summarization in four dif-095

ferent dimensions: structure, modality, length,096

and content depth. We show that over half097

of the human written summaries tend to be098

unstructured, text-only and general.099

• We experiment the human-centered text sum-100

marization modeling capability with fine-101

tuned and prompt-based zero-shot LLMs, and102

find that prompt-based zero-shot LLMs can103

better capture human needs while fine-tuned104

models do not effectively learn human needs105

from the data.106

2 Lecture Note Summary Collection and 107

Analysis 108

2.1 Human-centered Summary Collection 109

Data Collection We collected machine learn- 110

ing lecture notes which cover ten major topics, as 111

shown in Table 2, the lecture notes are all open 112

source and can be found on the Internet, most of 113

them are released by public universities. Addition- 114

ally, we recruited 200 university students from IT 115

department and asked them to write summaries for 116

the ten topics after reading the lecture notes. Apart 117

from the lecture notes, these expert annotators can 118

acquire additional material from the Internet, these 119

additional material are regarded as specific human 120

needs. An example of an annotator-written sum- 121

mary is shown in Appendix A. 122

Annotator Statistic Recruited annotators are 123

students from university IT departments, while 124

recruiting student participants, we also asked the 125

annotators to provide the following information: 126

gender, first language, qualification, and machine 127

learning working experience. Table 1 shows that 128

82% of the annotators are native English speakers 129

and 65% of them indicate that they have machine 130

learning related working experience. This shows 131

the high quality of the annotator group and will 132

guarantee the real human needs in the annotation 133
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Annotator Percentage
Gender 53% Male / 47% Female

First Language 82% Native English
Qualification 30% B.S / 70% M.S

ML Experience 65% experienced / 35% non-exp

Table 1: Annotator statistics
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Figure 2: The length distribution of annotators-written
summaries.

process.134

2.2 Human Needs Analysis on Summaries135

Upon receipt of the summaries from the annotators,136

we proceeded to examine the summaries in their en-137

tirety and identify the individual differences needs138

in real-world summaries across four dimensions:139

length, structure, modality, and content depth.140

Length The length distribution of summaries,141

as shown in Figure 2. The average tokens in the142

note summaries are 500 tokens, and the longest one143

could be up to 6406 tokens. However, it could be144

observed that the majority of returned summaries145

had a length of less than 1000 tokens.146

Structure In terms of structure, our primary fo-147

cus was on the usage of headings in the summaries.148

Therefore, we designed four metrics to analyze this149

dimension: No structure: There are no headings in150

the summary. Primary Heading: This is the highest151

level of heading in a document. It is typically used152

to introduce the main content or theme and is the153

most prominent and important heading. Secondary154

Heading: This is a subheading under the primary155

heading, used to divide the main content further.156

Secondary headings help organize and structure in-157

formation, making it easier for readers to find spe-158

cific sections or subtopics. Tertiary Heading: This159

is a further subdivision under a secondary heading,160

used to classify information in more detail. Tertiary161

headings are typically used to introduce more spe-162

cific content or sub-items, making the document’s163

Topic

1 Machine Learning Overview
2 Data Wrangling
3 Clustering Algorithms
4 Principal Component Analysis (PCA)
5 A supervised learning algorithm
6 Linear regression
7 Support Vector Machine(SVM)
8 Decision tree algorithms
9 Ensemble learning
10 Neural Networks and Deep Learning

Table 2: These are ten topics covered by the machine
learning lecture notes we collected.

structure more detailed and hierarchical. It could 164

be observed that approximately 90% of annotators 165

have indicated a preference for the use of a simpler 166

summary structure, yet it is evident that a small 167

minority of individuals continue to employ tertiary 168

Heading in their summaries from Table 3. 169

Modality Additionally, we noticed that the writ- 170

ten summaries contained both text and image 171

modalities. Consequently, we conducted an analy- 172

sis of the proportion of summaries that contained 173

solely text and those that contained both text and 174

images. The result presented in Table 3 shows that 175

summaries comprising a combination of text and 176

images accounted for 22.90% of the total. These 177

summaries serve to complement or emphasize the 178

textual content with images, thereby enhancing the 179

intuition and clarity of the conveyed information. 180

Content Depth The in-depth details of the con- 181

tent were considered. We referred to the previous 182

researchers’ criteria for the details of the content 183

of the summary and redefined them as either Gen- 184

eral or Detailed. General: Only including material 185

titles or summarize materials or learning process. 186

Detailed: Include material contents and knowledge 187

details. As shown in Table 3 demonstrated, 37.8% 188

annotators were inclined to describe the details of 189

their knowledge when writing their summaries. We 190

further analyzed the detailed summary content and 191

observed that only 5% of the students elaborated on 192

formulas, principles, etc. when writing their sum- 193

maries, and the remaining described the definition 194

and framework of knowledge. At the same time, 195

we analyzed the 10 summaries written by individ- 196

uals and found that each individual had a different 197

focus when writing them. For example, some indi- 198
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Dimensions Metrics Percentage

Structure

No structure 60.80%
Primary Heading 30.10%
Secondary Head-
ing

8.00%

Tertiary Heading 1.20%

Modality
Only text 77.10%
Text+image 22.90%

Content Depth
General 62.20%
Detailed 37.80%

Table 3: We analyzed three dimensions of the sum-
maries: structure, modality, and content depth. For each
dimension, we designed different metrics to visually
present the varying preferences of different annotators
when writing summaries.

viduals tended to focus on model principles while199

others preferred to systematize knowledge under a200

specific topic.201

Summary Each annotator has different needs202

when writing summaries. From the analysis above,203

it can be seen that some annotators prefer a con-204

cise and straightforward structure with general con-205

tent, while others like to use a combination of text206

and images to enhance understanding. Combin-207

ing different human needs, we can design different208

prompts for large language models, e.g. Please209

generate a summary containing tertiary Heading210

headings, details information and formulas about211

this source text.212

3 LecSumm213

3.1 Summary Quality Control214

In this section, we invited two university profes-215

sors as expert annotators to evaluate the summaries216

written by annotators based on the following four217

dimensions to ensure the quality of the data:218

Coherence: The overall quality of all sentences.219

"The summary should be well-structured and well-220

organized. It should not just be a collection of221

related information, but should build coherent in-222

formation about a topic from one sentence to the223

next."224

Consistency: The factual consistency between225

the summary and its source. A factually consistent226

summary only contains statements that are present227

in the source document.228

Fluency: The quality of individual sentences.229

Figure 3: The relationship between two expert anno-
tators’ scores. It can seen there is a strong positive
correlation between the two annotators.

The sentences in the summary "should not have for- 230

matting issues, capitalization errors, or obviously 231

ungrammatical sentences (e.g., fragments, missing 232

parts), which would make the text difficult to read." 233

Relevance: The selection of important content 234

from the source. The summary should only include 235

important information from the source document. 236

Annotators were instructed to penalize summaries 237

containing redundant and superfluous information. 238

We randomly selected 100 summary samples. 239

Experts were required to score the summaries based 240

on the above four dimensions, with a maximum of 241

25 points for each dimension, and calculate the to- 242

tal score. To assess inter-annotator agreement, we 243

calculated Krippendorff’s alpha coefficient (Krip- 244

pendorff, 2011). 245

The Krippendorff’s alpha score is 75.82%, in- 246

dicating that the experts showed very high consis- 247

tency in their annotations. Figure 3 confirms this, 248

showing that most of the annotation scores for the 249

summaries are between 75 and 95. These results 250

collectively indicate that the quality of the sum- 251

maries is high and that the experts exhibited a high 252

level of consistency in their evaluations. 253

3.2 Dataset Construction 254

The data including the provided lecture notes and 255

human-written summaries was extracted into plain 256

text, removing all external information besides 257

summaries. A total of 200 samples were obtained 258

after cleansing and filtering, including the ten lec- 259

ture notes as fixed input together with 2,000 human 260

written summaries as targets. 1 The average input 261

1The dataset will be released for the research community.
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document length of LecSumm is 6.5k, about one-262

third of the documents are over 9k, and the topics263

are in Table 2. We split our dataset into the train264

(1,600, 80%), validation (200, 10%), and test (200,265

10%) subsets.266

3.3 Dataset Properties267

In this section, we use four indicators to evalu-268

ate the intrinsic characteristics of datasets: cover-269

age, density, redundancy and n-gram overlap. We270

choose five commonly used English long docu-271

ment datasets for comparison. CNN-DM (Nalla-272

pati et al., 2016) are news corpus from CNN and273

Daily Mail websites. PubMed and arXiv (Nalla-274

pati et al., 2016) are from scientific papers. Big-275

Patent (Sharma et al., 2019) consists of records of276

U.S. patent documents. GovReport (Huang et al.,277

2021) is a collection of reports published by the278

U.S. Government Countability Office and Congres-279

sional Research Service.280

Coverage (Grusky et al., 2018) quantifies the pro-281

portion of words in a summary that originate from282

an extractive fragment within the document. Its283

calculation method is as follows:284

Coverage(D,S) =
1

|S|
∑

f∈F (D,S)

|f | (1)285

where D and S represent the document and its sum-286

mary respectively. F (D,S) is the set that includes287

all extractive fragments. | • | signifies the length288

of a token sequence. A higher coverage score indi-289

cates that more content is directly copied from the290

document when generating the summary.291

Density (Grusky et al., 2018) is similar to coverage,292

where the sum of fragment lengths is changed to293

the sum of squares of lengths:294

Density(D,S) =
1

|S|
∑

f∈F (D,S)

|f |2 (2)295

In the event that the length of each fragment is rela-296

tively brief, the density value will be comparatively297

low. This implies that if two summaries share the298

same coverage value, the one with a lower density299

might exhibit greater variability, due to the fact that300

its fragments are relatively short and discontinuous.301

Redundancy (Bommasani and Cardie, 2020) is302

used to evaluate whether sentences in a summary303

are similar to each other.304

Redundancy(S) = mean
(a,b)∈M×M,a=b

RL(x, y)

(3)305

where M is sentence set of summary S, (a, b) 306

is a sentence pair. RL is ROUGE-L F1-score. 307

Redundancy can be utilized to measure the degree 308

to which sentences in a summary repeat infor- 309

mation unnecessarily. In essence, a high-quality 310

summary ought to strive for maximum conciseness. 311

312

Table 4 shows coverage, density, redundancy 313

and n-gram overlap scores of several datasets. To 314

be specific, LecSumm achieves highest scores on 315

coverage and redundancy, which means that fewer 316

summary contents in the datasets are extracted from 317

documents, and every summary has less repeated 318

information, which further shows that human- 319

centered summaries vary significantly. LecSumm’s 320

performance on the density metric is moderate due 321

to the presence of numerous specific terms, defi- 322

nitions, and concepts in lecture notes. These token 323

sequences tend to be long and difficult to rephrase, 324

necessitating their retention in the human-written 325

summaries, which leads to a decrease in the density 326

score. Nevertheless, the coverage metric indicates 327

that LecSumm’s summaries still possess the highest 328

level of abstraction. Taking these three metrics into 329

consideration, it is evident that LecSumm performs 330

best in terms of abstractiveness and conciseness. 331

In addition to the aforementioned metrics, we 332

further evaluate the abstractiveness of datasets. 333

Specifically, we quantified it by calculating the 334

percentage of novel n-grams in the summaries that 335

didn’t appear in the source text. Table 4 displays 336

high percentages of novel tri-grams and 4-grams 337

(Phang et al., 2023a). Combining the scores of 338

coverage, density, and novel n-grams, it can be 339

concluded that LecSumm possesses the best ab- 340

stractiveness, making it more suitable for evaluat- 341

ing human-centered text summarization. 342

4 Experiments 343

We conducted a series of experiments on LecSumm 344

to answer the question "Do Language Models Un- 345

derstand Human Needs on Text Summarization?" 346

4.1 Baseline 347

We use LED (Beltagy et al., 2020), PEGASUS- 348

X (Phang et al., 2023b), and LongT5 (Guo et al., 349

2022) as baselines. LED is based on Longformer, 350

it combines local windowed attention and task- 351

motivated global attention. PEGASUS-X uses a 352

staggered block-local Transformer with global en- 353

coder tokens. LongT5 integrates attention ideas 354
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Dataset Coverage#rank Density#rank Redundancy#rank
% of novel n-grams

uni- bi- tri- 4-

CNN-DM 0.89#3 3.6#2 0.157#5 19.5 56.8 74.4 82.8
PubMed 0.893#4 5.6#5 0.146#4 12.4 44 65.3 76

arXiv 0.920#5 3.7#3 0.144#3 9.5 41 66.4 79.6
BigPatent 0.861#2 2.1#1 0.223#6 13.5 52.6 78.3 89.5
GovReport 0.942#6 7.7#6 0.124#2 5.7 32.7 56.3 68.9
LecSumm 0.860#1 5.5#4 0.122#1 13.3 53.3 77.4 85.6

Table 4: Intrinsic evaluations of different summarization datasets, including values and rankings, calculated on test
sets only. Smaller coverage, density and redundancy values are deemed preferable. Percentages of novel n-grams in
summaries of different datasets are also provided.

Prompt

L Please generate a summary with
a maximum length of 300 words
about source text.

L + C Please generate a summary con-
taining detailed information with
a maximum length of 300 words
about the source text.

L + C + S Please generate a summary con-
taining tertiary headings with a
maximum length of 300 words
about the source text.

Table 5: These are prompts containing human needs,
and we can only restrict the output length, due to the
limitations of the model API. Abbreviations are for L
(Length), C (Content), and S (Structure).

from ETC and adopts pre-training strategies from355

PEGASUS. These models support long input at356

most 16k tokens. More details are in Appendix357

C.1.358

In addition, we evaluate large language models359

under zero-shot settings. We choose GPT-3-turbo,360

GPT-4-turbo and GPT-4o2, which support long361

inputs. These models are proprietary to OpenAI362

and have been finetuned on extensive datasets.363

4.2 Settings364

For pre-trained language models, we used the365

led-large-163843, pegasus-x-large4, and long-t5-366

tglobal-large5 models to summarize. We use an367

2https://openai.com/
3https://huggingface.co/allenai/led-large-16384
4https://huggingface.co/google/pegasus-x-large
5https://huggingface.co/google/

long-t5-tglobal-large

NVIDIA A100 80GB PCIe GPU for experiments. 368

Models are used transformers4.35.26 to finetune 369

for 10 epochs. We set the input token 8k, output 370

token 1024, batch_size 2, the remaining parameters 371

are default argument values. 372

For zero-shot LLMs, we use GPT-3.5-turbo7, 373

GPT-4-turbo8 and GPT-4o9 for implementation. 374

We put the lecture notes as the source input and re- 375

moved the figures. We designed the LLM prompts 376

using these tertiary headings and content details as 377

key elements of "human needs." The prompt design 378

is shown in the table 5. 379

4.3 Evaluation 380

We utilized some automated evaluation metrics to 381

assess the summaries generated by the models. 382

Rouge We use F1-score of ROUGE-1, ROUGE- 383

2 and ROUGE-L10, taking into account the com- 384

pleteness, readability and order of summary. 385

BertScore (Zhang et al., 2020) computes a simi- 386

larity score for each token in the candidate sentence 387

with each token in the reference sentence. It corre- 388

lates better with human judgments. 389

SummaC (Summary Consistency; Laban et al., 390

2022) is focused on evaluating factual consistency 391

in summarization. They use NLI for detecting in- 392

consistencies by splitting the document and sum- 393

mary into sentences and computing the entailment 394

probabilities on all document/summary sentence 395

pairs, where the premise is a document sentence 396

6https://huggingface.co/docs/transformers/index
7https://platform.openai.com/docs/models/

gpt-3-5-turbo
8https://platform.openai.com/docs/models/

gpt-4-turbo-and-gpt-4
9https://platform.openai.com/docs/models/gpt-4o

10https://huggingface.co/docs/datasets/how_to_
metrics
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Model
ROUGE Bertscore

SummaC
UniEval

R-1 R-2 R-L P R L coherence fluency relevance

Fine-tuned Models

LED 15.83 4.04 10.38 80.70 79.25 79.90 68.21 49.59 76.08 50.13
PEGASUS-X 21.67 4.72 13.21 78.50 79.40 78.92 80.10 73.98 74.51 72.72
LongT5 21.67 4.74 13.22 78.50 79.41 78.91 80.02 73.98 74.51 72.73

Zero-shot LLM-Prompt (L)

GPT-3.5-turbo 32.75 7.63 16.43 82.89 77.42 80.05 76.81 94.11 94.93 86.55
GPT-4-turbo 38.11 9.30 18.10 81.45 78.89 80.14 65.87 96.22 95.40 93.34
GPT-4o 38.01 9.33 17.14 80.13 79.22 79.66 75.31 97.83 91.97 95.18

Zero-shot LLM-Prompt (L+C)

GPT-3.5-turbo 34.01 7.14 16.61 82.79 77.60 80.10 68.26 95.62 95.03 86.01
GPT-4-turbo 33.79 8.34 16.48 79.16 78.93 79.06 70.49 97.60 94.40 94.19
GPT-4o 34.49 7.34 15.25 78.94 78.66 78.79 67.25 96.62 95.01 92.11

Zero-shot LLM-Prompt (L+C+S)

GPT-3.5-turbo 37.23 8.66 18.23 82.17 78.46 80.25 78.63 94.50 91.33 89.16
GPT-4-turbo 37.62 9.31 16.39 79.21 78.93 79.06 67.79 96.54 93.45 94.28
GPT-4o 30.31 8.76 15.35 77.55 78.45 77.99 73.54 92.57 89.28 90.94

Table 6: It presents evaluation results of automatic summary metrics for LecSumm on pre-trained and zero-shot
LLM.

and the hypothesis is a summary sentence. They397

aggregate the NLI scores for all pairs by either tak-398

ing the maximum score per summary sentence and399

averaging (SCZS) or by training a convolutional400

neural network to aggregate the scores (SCConv).401

We report SCConv score and use the publicly avail-402

able for implementation11.403

UniEval (Zhong et al., 2022) is a unified multi-404

dimensional evaluator which re-frames NLG evalu-405

ation as a Boolean Question Answering (QA) task,406

and by guiding the model with different questions407

to evaluate from multiple dimensions. We report408

coherence score, fluency score, relevance score409

computed by UniEval12.410

4.4 Do Language Models Understand Human411

Needs on Text Summarization?412

Fine-tuned Model See Table 6, fine-tuned mod-413

els perform relatively well in Summac scores and414

demonstrate good factual consistency. However,415

its Rouge and Unieval scores are lower, espe-416

cially with Rouge not exceeding 30%, which dif-417

fers significantly from its performance on common418

datasets like CNN/DM and Government(Phang419

et al., 2023b; Guo et al., 2022). We also analyze the420

summaries generated by fine-tuned models. While421

11https://github.com/tingofurro/summac
12https://github.com/maszhongming/UniEval

we observe some structure in the summaries gen- 422

erated by LongT5 and PEGASUS-X, they do not 423

fully cover subsequent content, which may lead to 424

vocabulary repetition and affect the model’s evalu- 425

ation. Overall, this indicates that during the train- 426

ing phase, the fine-tuned language models do not 427

effectively learn the relationship between source 428

documents and target summaries, nor accurately 429

capture the human needs present in target sum- 430

maries. 431

Zero-shot LLM We conduct automated metric 432

evaluations on scenarios with and without the in- 433

clusion of human needs. Apart from SummaC 434

score, the evaluation metrics for the GPT series 435

are higher than those for the pre-trained language 436

model, thanks to their robust performance and ex- 437

tensive pre-training data. As human needs continue 438

to evolve and expand, different models show slight 439

improvements across various metrics. Moreover, 440

the generated summaries visually align with target 441

summaries to an extent of 85%. However, we do 442

not analyze the human needs of linguistic features 443

in the target summaries, which results in slightly 444

lower Rouge scores. Overall, language models can 445

comprehend and generate summaries that align ap- 446

propriately when provided with human needs. 447
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5 Related Work448

Large language model for text summarization449

Most LLMs adopt an autoregressive structure sim-450

ilar to GPT, capable of automatic text summariza-451

tion (ATS) (Houlsby et al., 2019). However, as452

the model size increased, full parameter training453

became costly. Research gradually shifted towards454

more cost-effective and efficient methods, includ-455

ing fine-tuning and prompt engineering. Prompt456

engineering for LLMs involves exploring and for-457

mulating strategies to maximize the use of spe-458

cific functions inherent in large language models459

(LLMs). This process requires optimizing the input460

text string to more effectively leverage the LLM’s461

intrinsic knowledge, thereby enhancing the inter-462

pretation of the input text (Liu et al., 2023). This463

significantly improves the quality of the generated464

summaries. Notably, prompt engineering is ad-465

vantageous because it does not require extensive466

training or relies only on a small number of sam-467

ples (Narayan et al., 2021), thus reducing resource468

expenditure. The implementation of prompt en-469

gineering is based on methods such as template470

engineering, chain of thought (CoT), and agent in-471

teraction. Template engineering is another natural472

way to create prompts by manually creating intu-473

itive templates based on human introspection (Zhao474

et al., 2023). Chain of thought (Wei et al., 2024b)475

is a series of intermediate reasoning steps that can476

significantly enhance the LLM’s ability to per-477

form complex reasoning tasks. To address issues478

of factual hallucinations and information redun-479

dancy in ATS, a summarization chain of thought480

(SumCoT) (Wang et al., 2023b) technique was pro-481

posed to guide LLMs in gradually generating sum-482

maries, helping them integrate finer-grained details483

from the source document into the final summary.484

Agents are artificial entities that perceive the en-485

vironment, make decisions, and take actions (Xi486

et al., 2023). A three-agent generation pipeline,487

consisting of a generator, a lecturer, and an editor,488

can enhance the customization of LLM-generated489

summaries to better meet user expectations.490

Human-centered text summarization Human-491

centered text summarization approach emphasizes492

designing and developing summarization models493

that align with the needs and preferences of human494

users. This approach primarily involves human-495

computer interaction for building the summariza-496

tion models and leverages large language models497

(LLMs) as evaluators to assist in assessing the qual-498

ity metrics such as fluency and factual consistency 499

of the summaries (Cheng et al., 2022; Sottana et al., 500

2023). Additionally, this approach is applied to the 501

construction of text summarization datasets, which 502

involves two stages: data collection and data an- 503

notation. Existing research predominantly focuses 504

on the data annotation stage, accomplished through 505

human interaction (Gururangan et al., 2018). In 506

contrast, human-centered data collection should 507

prioritize simulating real-use scenarios so that the 508

data reflects actual human needs. However, com- 509

mon datasets like CNN/DM, Xsum and govern- 510

ment datasets (Narayan et al., 2018; Yasunaga et al., 511

2019; Koupaee and Wang, 2018) do not simulate 512

real scenarios in their summary collection pro- 513

cess and therefore fail to adequately reflect human 514

needs. 515

6 Conclusion 516

We design a lecture note summarization task, 517

which aims at obtaining human-centered sum- 518

maries and analyzes the human preferences exist- 519

ing in the summaries from four dimensions: length, 520

structure, modality, and content depth. Meanwhile, 521

we build a new dataset LecSumm that, compared 522

to publicly available datasets, exhibits higher levels 523

of human-specific needs. By conducting automatic 524

and manual evaluations of benchmark models, we 525

find that prompt-based LLMs show better perfor- 526

mance than capturing the human needs than fine- 527

tuned models. We hope that our analysis results can 528

provide insights for better prompt design, and our 529

dataset can contribute to the research in human- 530

centered text summarization. 531

Limitation 532

There are few limitations to our work: The topics 533

of lecture notes are only limited to machine learn- 534

ing; We only recruited 200 participants due to the 535

expensive annotation cost; The prompts that we try 536

are also limited, automatic prompt design may be 537

considered in future work. 538

Ethics Statement 539

Data collection approval was received from an 540

ethics review board. No identified personal infor- 541

mation is collected in the data collection process. 542

All codes and data used in this paper comply with 543

the license for use. 544
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A Human-written Summary784

In §2.1, we collect some annotator-written Sum-785

maries. Figure 4 shows the example of an786

annotator-written summary, and we can observe787

that it includes a lecture notes topic, primary head-788

ings, and formulas.

Figure 4: This is a section of an annotator-written sum-
mary.

789

B Human-written Summary Check790

Guidelines791

Two expert annotators score summaries indepen-792

dently, they need to complete 100 subtasks, each of793

which consists of the source document and human-794

written summaries. We have developed a guideline795

for annotators, see Fig 5.796

C Experiments 797

C.1 Fine-tune Models 798

LED (Beltagy et al., 2020) is a Longformer vari- 799

ant designed to support long document genera- 800

tive sequence-to-sequence tasks. LED incorporates 801

Longformer’s attention mechanism, enabling effec- 802

tive handling of long sequence documents. With 803

its attention mechanism that scales linearly, LED 804

can process documents with thousands of tokens, 805

making it suitable for long document generation 806

and processing tasks. 807

PEGASUS-X (Phang et al., 2023b) is an ex- 808

tension of the PEGASUS model designed to ad- 809

dress the challenge of long input summarization 810

tasks. Through additional pretraining on long in- 811

puts, PEGASUS-X can handle inputs of up to 16K 812

tokens without requiring model parallel training. 813

By combining a staggered, block-local Transformer 814

with global encoder tokens, PEGASUS-X strikes a 815

good balance between performance and efficiency. 816

LongT5 (Guo et al., 2022) integrates attention 817

ideas from ETC, and adopts pre-training strate- 818

gies from PEGASUS into the scalable T5 archi- 819

tecture. It uses a new attention mechanism called 820

Transient Global (TGlobal), which mimics ETC’s 821

local/global attention mechanism, but without re- 822

quiring additional side inputs. 823

C.2 Unsupervised Models on LecSumm 824

Unsupervised Models We use TextRank (Mi- 825

halcea and Tarau, 2004), SummPip (Zhao et al., 826

2020) to evaluate LecSumm. TextRank is a clas- 827

sical extractive summarization model. SummPip 828

is unsupervised multi-document Summarization- 829

based sentence graph compression. 830

Implement details We used the TextRank in 831

summanlp 13and SummPip14 algorithms,and pa- 832

rameters: nb_clusters, nb_words in SummPip are 833

14 and 20 respectively. 834

Results Analysis We also evaluate unsupervised 835

models using metric in §4.3. See Table 7, Tex- 836

trank performs excellently in SummaC scores be- 837

cause its summaries are extracted directly from 838

the original text in a proportional manner, pre- 839

serving the original sentence structures. This en- 840

sures that the generated summaries remain factually 841

13https://github.com/summanlp/textrank
14https://github.com/mingzi151/SummPip
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Metrics
Model

TextRank SummPip

ROUGE

R-1 12.55 25.91
R-2 5.73 4.57
R-L 5.79 11.54

Bertscore

P 77.05 73,98
R 80.31 79.42
L 78.61 76.59

SummaC 97.53 58.97

UniEval

coherence 69.61 9.60
fluency 75.71 26.60

relevance 67.02 9.83

Table 7: These are unsupervised model evaluation re-
sults on LecSumm.

and contextually consistent with the original ma-842

terial. For Summpip, its summaries are generated843

through sentence clustering and compression. Con-844

sequently, Summpip scores lower in fluency and845

coherence in terms of linguistic features. Addi-846

tionally, our manual analysis of its generated sum-847

maries revealed that the extracted sentences tend to848

focus more on minor details, which corroborates849

the results of the automatic evaluation.850

D Examples of generated Summaries by851

models852

See Figure 6 and Figure 7, We give some generated853

summary examples. We can observe that GPT-854

3.5 basically understands the human needs in the855

prompt, and its generated summary better aligns856

with the human needs mentioned in the prompt.857
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HumanWritten Summary Check Guidelines

This guideline is intended to give annotators a clear understanding of the task and
requirements before manual annotation.Be sure to read the following content
carefully.

This task is used to assess the quality of human-written summaries. You need to
complete 100 tasks, each of which will provide you with an original document and a
human-written summary. You need to score each summary based on four evaluation
dimensions, with a maximum score of 25 points for each dimension. The four
evaluation dimensions are:
 Coherence: The overall quality of all sentences. "The summary should be

well-structured and well-organized. It should not just be a collection of related
information, but should build coherent information about a topic from one
sentence to the next."

 Consistency: The factual consistency between the summary and its source. A
factually consistent summary only contains statements that are present in the
source document.

 Fluency: The quality of individual sentences. The sentences in the summary
"should not have formatting issues, capitalization errors, or obviously
ungrammatical sentences (e.g., fragments, missing parts), which would make the
text difficult to read."

 Relevance: The selection of important content from the source. The summary
should only include important information from the source document. Annotators
were instructed to penalize summaries containing redundant and superfluous
information.

Please fill in the scores for each dimension in the table below and calculate the total
score.
Task Number Coherence Consistency Fluency Relevance Total Score

Annotation results are only used for this study. All the information will be
anonymized and your personal preferences will not be disclosed.You do not have to
bear any responsibility for the risk caused by your annotation results.

Figure 5: This is a human-written summary check guideline for annotators.
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Reference
The supervised learning algorithms of KNN and decision tree are
discussed in machine learning. KNN compares and classifies new data points in a
training set by comparing them to the nearest neighbours. The technique of assigning
weights to data points and labelling test point same as the nearest available neighbour is
used by KNN for both classification and regression. Like KNN, the Voronoi diagram is built
on nearest neighbours. The nearest neighbour method known as the
distance-weighted nearest neighbour distributes weights to neighbours based on how
far they are from the test point, such as the inverse square of distances. Any training
point may have an impact on a specific occurrence.
TextRank
The decision tree can be explained by two entities, namely decision nodes and leaves.\nThe
leaves are decisions or final outcomes, and the decision nodes are where the data is
displayed.\nSo this was a simple example of decision tree and how can we interpret a
decision tree.\nIn the next sections, you're going to learn how to construct a decision
tree.\nActivity Classification trees Classification and Regression Trees (CART) is a term
introduced by Leo Breiman to refer to decision tree algorithms that can be used for
classification or regression predictive modeling problems.\nFor a classification tree, we
assign each test instance to the majority class (mode) of the training instances in the region
where it belongs.\nYou can consider this action as a being like a data point voting itself into
a region which results in selecting the majority.\n
SummPip
a tree , you will use the code example of decision trees are called classification regression
model we can be used . shape ) output : ( 10 max_depth_range = range ( 1 , ' accuracy
comparison of training validation set ' ) figure : plot that results from using the overfit
approach from the plot , we can see that as the depth of the tree increases , the decision tree
starts to overfit . pyplot as plt our cleaned up dataset is in the data directory : code example #
2
LED
Decision trees are a map of the possible outcomes of a series of related choices. Decision
trees can be used to weigh possible actions against one another based on their costs, benefits
and probabilities. Decision trees can be used to weigh possible actions against one another
based on their costs, benefits and probabilities. Decision trees can be used to weigh
possible actions against one another based on their costs, benefits and probabilities.
Decision trees typically starts with a single root node, which branches into possible
outcomes. Regression trees Classification trees are a type of decision tree algorithm that
can be used for classification or regression predictive modeling problems. Regression trees
Regression trees are a type of decision tree algorithm that can be used for classification or
regression predictive modeling problems.
PEGASUS-X
Decision trees are a popular machine learning algorithm that uses feature selection to
determine the most important classification features. DT operates by recursively segmenting
the data into subsets based on the most informative features until a stopping criterion is
reached. A criterion such as information gain or the Gini index is used to determine which
feature is the most informative. At each node of the tree, the feature with the highest score is
chosen as the splitting criterion. Feature importance of using Decision Trees (DT) Decision
trees are a popular machine learning algorithm that uses feature selection to determine the
most important classification features. DT operates by recursively segmenting the data into
subsets based on the most informative features until a stopping criterion is reached. A
criterion such as information gain or the Gini index is used to determine which feature is the
most informative.

Figure 6: These are generated summaries by unsupervised and fine-tuned models.
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Zero-shot LLM+Pprompt(L)
Setting up Python involves downloading and installing the Anaconda distribution of Python 3,
which simplifies the process of managing editors and packages needed for coding.
Instructions are provided for Windows 10 and Mac platforms, as well as guidance on using
Jupyter Notebook for coding. The text covers importing modules, matrix operations like
addition and subtraction, and matrix multiplication using the NumPy library in Python. It
explains scalar operations on matrices, matrix multiplication, and the concept of matrix
division, which involves inverting matrices. The importance of conformability in matrix
operations is highlighted, along with the conditions for matrix inversion. Code examples
demonstrate how to perform these operations in Python using NumPy. The text emphasizes
the need for practice and experimentation with coding examples to gain confidence in
working with matrices and linear algebra operations. It encourages further exploration of the
NumPy library for advanced functionalities. Overall, the text provides a comprehensive guide
to setting up Python, working with matrices, and performing common linear algebra
operations using Python and NumPy.
Zero-shot LLM+Pprompt(L+C)
Setting up Python involves downloading and installing the Anaconda distribution of Python 3,
which simplifies the control of editors and packages needed for data science tasks.
Instructions are provided for Windows 10 and Mac platforms, including video tutorials. To
start coding, users can open Anaconda and launch Jupyter Notebook to work in a kernel and
shell environment. The text also covers importing modules and packages in Python, along
with examples of matrix addition, subtraction, multiplication, and division using the NumPy
library. Matrix operations such as scalar multiplication, matrix multiplication, and matrix
inversion are explained with code examples in Python. The importance of conformability in
matrix operations and the determinant of a matrix for determining its invertibility are
highlighted. The text emphasizes the need for experimentation with the provided Python
coding examples to gain confidence in performing basic matrix operations. Additionally, it
encourages further exploration of linear algebra operations using the NumPy library for
vectors and matrices.
Zero-shot LLM+Pprompt(L+C+S)
### Setting up Python Instructions for downloading and installing Anaconda distribution of
Python 3\nTo start coding in Python, you need to install the Anaconda distribution of Python,
which provides data science libraries and tools. The process involves downloading and
installing Anaconda on different platforms like Windows 10 and Mac. Once installed, you can
open Anaconda Navigator to access Jupyter Notebook for coding.\n\n### Python Modules
and Packages\nPython allows you to store function definitions in files and import them as
modules in your programs. You can import specific functions or entire modules from
packages to use in your code. Popular packages like NumPy provide functions for matrix
operations and linear algebra.\n\n### Matrix Operations in Python\nUsing the NumPy library,
you can perform matrix operations like addition, subtraction, multiplication, and division in
Python. Matrix addition and subtraction involve adding or subtracting scalar values or
matrices element-wise. Matrix multiplication requires conformable dimensions for the
operands, and matrix division involves inverting the matrix.\n\n### Using NumPy for Linear
Algebra\nNumPy library simplifies linear algebra operations in Python by providing
functions for creating vectors, matrices, and performing common linear algebra operations.
By importing NumPy and matplotlib libraries, you can automate the creation of specific types
of matrices and visualize data using plots.

Figure 7: These are generated summaries by GPT3.5.
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