Do Language Models Understand Human Needs on Text Summarization?

Anonymous ACL submission

Abstract

With the popularity of large language models
and their high-quality text generation capabil-
ities, researchers are using them as auxiliary
tools for text summary writing. Although sum-
maries generated by these large language mod-
els are smooth and capture key information suf-
ficiently, the quality of their output depends on
the prompt and the generated text is somewhat
procedural to a certain extent. In order to un-
derstand whether large language models truly
understand human needs, we construct Lec-
Summ, in which we recruit 200 college students
to write summaries for lecture notes on ten
different machine learning topics, and analyze
real-world human summary needs in the di-
mensions of summary length structure, modal-
ity and content depth. We further evaluate
fine-tuned and prompt-based language mod-
els on LecSumm and show that the commer-
cial GPT models showed better performance
in summary coherence, fluency and relevance,
but still fall shot in faithfulness and can bet-
ter capture human needs even with advanced
prompt design while fine-tuned models do not
effectively learn human needs from the data.
Our LecSumm dataset brings new challenges to
both fine-tuned models and prompt-based large
language models on the task of human-centered
text summarization.

1 Instruction

With the huge amount of training data, the devel-
opment of large language models (LLMs), such
as the GPT series (OpenAl, 2024), the PalLM se-
ries (Aakanksha Chowdhery, 2022), Mistral (Jiang
et al., 2023) and LLaMA (Al@Meta, 2024), have
achieved remarkable success by unifying the gener-
ative paradigm with different NLP tasks(Wei et al.,
2024a,c; Wan et al., 2023; Wang et al., 2023a; Qin
et al., 2023; tse Huang et al., 2024). In certain NLP
fields, such as text summarization, LLLMs achieve
decent performance without additional training

data and even surpass traditional models supervised
fine-tuned models (Zhang et al., 2024). Recent
studies employ LLMs as auxiliary tools for human-
centered NLP (Passali et al., 2021; Hu et al., 2023),
ranging from human-centered design to human-in-
the-loop interaction with LL.Ms.

When generating human-centered summaries
with LLMs, specific human needs can be incor-
porated through two different approaches : (i) Ex-
plicitly, add external constraints to the summariza-
tion model, such as prompt design and different
hyper-parameter settings. (ii) Implicitly, construct
specific source-target summary datasets that reflect
human needs to finetune the language model, en-
abling it to learn the hidden need from the data.
Our research question is: Do language models
really understand human needs on text summa-
rization?

To answer this question, we first design a lecture
note summarization task to discover human needs
in real-world data and construct a dataset contain-
ing human-centered summaries, the framework of
the task is shown in Figure 1. We recruited 200
university students and designed a task of writing
lecture note summaries: 10 different topics related
to machine learning were given to the annotators,
together with the corresponding lecture notes, and
the participants were required to write summaries
based on the lecture notes. There is no hard limita-
tion (e.g. length, structure) on the summary written
process, participants are allowed to use related ma-
terials to equip the lecture notes, the only limitation
is it has to be written by the participants and can-
not be returned by machines. What we observe is
that different annotators utilize a combination of
various dimensions to reflect their individual needs
when writing summaries, these human needs range
in four dimensions: structure, modality, length, and
content depth.

Then, we construct the LecSumm dataset which
includes the provided lecture notes and human writ-



Open Souces

i

Structure enothy

Collectioiﬂased Topics

Lecture Notes

Summary
Analysis

Modality

Content
Depth

~
;’ /

\ Human-written Summaries
College Students

SUMMARY!

/

Figure 1: The framework of our work is divided into three stages:

Data
Clean ™~

Data

Data Process Extraction Lecture Notes

Input
"\ summary /
*  Check
\ —7
Human-written
\ Summaries

LecSumm Target

Summary

We designed a

summary collection task and recruited annotators online. They were asked to write summaries based on the provided
lecture notes gathered from open-source data on specific topics.
Human-written summaries were analyzed from four dimensions: length, structure, modality, and content depth to

discover human needs.

. The dataset was constructed after summary checking and data

processing, with lecture notes as input sources, and human-written summaries as target summaries.

ten summaries, by which are we experiment with
fine-tuned supervised models, and prompt-based
zero-shot LLMs. We find that zero-shot LLM
can better understand human needs given proper
prompting design. Our main contribution is pre-
sented as follows:

* We design a human-centered text summa-
rization task to collect human-guided sum-
maries for lecture notes, and propose a Lec-
Summ dataset containing human-centered
summaries.

* Based on LecSumm, we analyze the human
need bias for text summarization in four dif-
ferent dimensions: structure, modality, length,
and content depth. We show that over half
of the human written summaries tend to be
unstructured, text-only and general.

* We experiment the human-centered text sum-
marization modeling capability with fine-
tuned and prompt-based zero-shot LLMs, and
find that prompt-based zero-shot LLMs can
better capture human needs while fine-tuned
models do not effectively learn human needs
from the data.

2 Lecture Note Summary Collection and
Analysis

2.1 Human-centered Summary Collection

Data Collection We collected machine learn-
ing lecture notes which cover ten major topics, as
shown in Table 2, the lecture notes are all open
source and can be found on the Internet, most of
them are released by public universities. Addition-
ally, we recruited 200 university students from IT
department and asked them to write summaries for
the ten topics after reading the lecture notes. Apart
from the lecture notes, these expert annotators can
acquire additional material from the Internet, these
additional material are regarded as specific human
needs. An example of an annotator-written sum-
mary is shown in Appendix A.

Annotator Statistic Recruited annotators are
students from university IT departments, while
recruiting student participants, we also asked the
annotators to provide the following information:
gender, first language, qualification, and machine
learning working experience. Table 1 shows that
82% of the annotators are native English speakers
and 65% of them indicate that they have machine
learning related working experience. This shows
the high quality of the annotator group and will
guarantee the real human needs in the annotation



Annotator Percentage
Gender 53% Male / 47% Female
First Language 82% Native English
Qualification 30% B.S / 70% M.S
ML Experience | 65% experienced / 35% non-exp

Table 1: Annotator statistics

i HHHHHHHHWHWW H

o 250 500 750 1000 1250 1500 1750 2000

Figure 2: The length distribution of annotators-written
summaries.

process.

2.2 Human Needs Analysis on Summaries

Upon receipt of the summaries from the annotators,
we proceeded to examine the summaries in their en-
tirety and identify the individual differences needs
in real-world summaries across four dimensions:
length, structure, modality, and content depth.

Length The length distribution of summaries,
as shown in Figure 2. The average tokens in the
note summaries are 500 tokens, and the longest one
could be up to 6406 tokens. However, it could be
observed that the majority of returned summaries
had a length of less than 1000 tokens.

Structure In terms of structure, our primary fo-
cus was on the usage of headings in the summaries.
Therefore, we designed four metrics to analyze this
dimension: No structure: There are no headings in
the summary. Primary Heading: This is the highest
level of heading in a document. It is typically used
to introduce the main content or theme and is the
most prominent and important heading. Secondary
Heading: This is a subheading under the primary
heading, used to divide the main content further.
Secondary headings help organize and structure in-
formation, making it easier for readers to find spe-
cific sections or subtopics. Tertiary Heading: This
is a further subdivision under a secondary heading,
used to classify information in more detail. Tertiary
headings are typically used to introduce more spe-
cific content or sub-items, making the document’s

Topic
1 Machine Learning Overview
2 Data Wrangling
3 Clustering Algorithms
4 Principal Component Analysis (PCA)
5 A supervised learning algorithm
6 Linear regression
7  Support Vector Machine(SVM)
8  Decision tree algorithms
9 Ensemble learning
10  Neural Networks and Deep Learning

Table 2: These are ten topics covered by the machine
learning lecture notes we collected.

structure more detailed and hierarchical. It could
be observed that approximately 90% of annotators
have indicated a preference for the use of a simpler
summary structure, yet it is evident that a small
minority of individuals continue to employ tertiary
Heading in their summaries from Table 3.

Modality Additionally, we noticed that the writ-
ten summaries contained both text and image
modalities. Consequently, we conducted an analy-
sis of the proportion of summaries that contained
solely text and those that contained both text and
images. The result presented in Table 3 shows that
summaries comprising a combination of text and
images accounted for 22.90% of the total. These
summaries serve to complement or emphasize the
textual content with images, thereby enhancing the
intuition and clarity of the conveyed information.

Content Depth The in-depth details of the con-
tent were considered. We referred to the previous
researchers’ criteria for the details of the content
of the summary and redefined them as either Gen-
eral or Detailed. General: Only including material
titles or summarize materials or learning process.
Detailed: Include material contents and knowledge
details. As shown in Table 3 demonstrated, 37.8%
annotators were inclined to describe the details of
their knowledge when writing their summaries. We
further analyzed the detailed summary content and
observed that only 5% of the students elaborated on
formulas, principles, etc. when writing their sum-
maries, and the remaining described the definition
and framework of knowledge. At the same time,
we analyzed the 10 summaries written by individ-
uals and found that each individual had a different
focus when writing them. For example, some indi-



Dimensions Metrics Percentage
No structure 60.80%
Primary Heading 30.10%
Structure Secondary Head- | 8.00%

ing

Tertiary Heading 1.20%
. Only text 77.10%
Modality Text+image 22.90%
General 62.20%
Content Depth | nyeajjeq 37.80%

Table 3: We analyzed three dimensions of the sum-
maries: structure, modality, and content depth. For each
dimension, we designed different metrics to visually
present the varying preferences of different annotators
when writing summaries.

viduals tended to focus on model principles while
others preferred to systematize knowledge under a
specific topic.

Summary Each annotator has different needs
when writing summaries. From the analysis above,
it can be seen that some annotators prefer a con-
cise and straightforward structure with general con-
tent, while others like to use a combination of text
and images to enhance understanding. Combin-
ing different human needs, we can design different
prompts for large language models, e.g. Please
generate a summary containing tertiary Heading
headings, details information and formulas about
this source text.

3 LecSumm

3.1 Summary Quality Control

In this section, we invited two university profes-
sors as expert annotators to evaluate the summaries
written by annotators based on the following four
dimensions to ensure the quality of the data:

Coherence: The overall quality of all sentences.
"The summary should be well-structured and well-
organized. It should not just be a collection of
related information, but should build coherent in-
formation about a topic from one sentence to the
next."

Consistency: The factual consistency between
the summary and its source. A factually consistent
summary only contains statements that are present
in the source document.

Fluency: The quality of individual sentences.

95
90
85
80
75
70
65

60
60 65 70 75 80 85 920 95 100

Figure 3: The relationship between two expert anno-
tators’ scores. It can seen there is a strong positive
correlation between the two annotators.

The sentences in the summary "should not have for-
matting issues, capitalization errors, or obviously
ungrammatical sentences (e.g., fragments, missing
parts), which would make the text difficult to read."

Relevance: The selection of important content
from the source. The summary should only include
important information from the source document.
Annotators were instructed to penalize summaries
containing redundant and superfluous information.

We randomly selected 100 summary samples.
Experts were required to score the summaries based
on the above four dimensions, with a maximum of
25 points for each dimension, and calculate the to-
tal score. To assess inter-annotator agreement, we
calculated Krippendorff’s alpha coefficient (Krip-
pendorff, 2011).

The Krippendorff’s alpha score is 75.82%, in-
dicating that the experts showed very high consis-
tency in their annotations. Figure 3 confirms this,
showing that most of the annotation scores for the
summaries are between 75 and 95. These results
collectively indicate that the quality of the sum-
maries is high and that the experts exhibited a high
level of consistency in their evaluations.

3.2 Dataset Construction

The data including the provided lecture notes and
human-written summaries was extracted into plain
text, removing all external information besides
summaries. A total of 200 samples were obtained
after cleansing and filtering, including the ten lec-
ture notes as fixed input together with 2,000 human
written summaries as targets. | The average input

!"The dataset will be released for the research community.



document length of LecSumm is 6.5k, about one-
third of the documents are over 9k, and the topics
are in Table 2. We split our dataset into the train
(1,600, 80%), validation (200, 10%), and test (200,
10%) subsets.

3.3 Dataset Properties

In this section, we use four indicators to evalu-
ate the intrinsic characteristics of datasets: cover-
age, density, redundancy and n-gram overlap. We
choose five commonly used English long docu-
ment datasets for comparison. CNN-DM (Nalla-
pati et al., 2016) are news corpus from CNN and
Daily Mail websites. PubMed and arXiv (Nalla-
pati et al., 2016) are from scientific papers. Big-
Patent (Sharma et al., 2019) consists of records of
U.S. patent documents. GovReport (Huang et al.,
2021) is a collection of reports published by the
U.S. Government Countability Office and Congres-
sional Research Service.

Coverage (Grusky et al., 2018) quantifies the pro-
portion of words in a summary that originate from
an extractive fragment within the document. Its
calculation method is as follows:

1
52 Mo

fEF(D,S)

Coverage(D, S) =

where D and S represent the document and its sum-
mary respectively. F'(D, S) is the set that includes
all extractive fragments. | e | signifies the length
of a token sequence. A higher coverage score indi-
cates that more content is directly copied from the
document when generating the summary.

Density (Grusky et al., 2018) is similar to coverage,
where the sum of fragment lengths is changed to
the sum of squares of lengths:

1
5L Mo

fEF(D,S)

Density(D, S) =

In the event that the length of each fragment is rela-
tively brief, the density value will be comparatively
low. This implies that if two summaries share the
same coverage value, the one with a lower density
might exhibit greater variability, due to the fact that
its fragments are relatively short and discontinuous.
Redundancy (Bommasani and Cardie, 2020) is
used to evaluate whether sentences in a summary
are similar to each other.

Redundancy(S) = Rp(7,y)

3)

mean
(a,b)eM x M,a=b

where M is sentence set of summary S, (a,b)
is a sentence pair. Ry is ROUGE-L F1-score.
Redundancy can be utilized to measure the degree
to which sentences in a summary repeat infor-
mation unnecessarily. In essence, a high-quality
summary ought to strive for maximum conciseness.

Table 4 shows coverage, density, redundancy
and n-gram overlap scores of several datasets. To
be specific, LecSumm achieves highest scores on
coverage and redundancy, which means that fewer
summary contents in the datasets are extracted from
documents, and every summary has less repeated
information, which further shows that human-
centered summaries vary significantly. LecSumm’s
performance on the density metric is moderate due
to the presence of numerous specific terms, defi-
nitions, and concepts in lecture notes. These token
sequences tend to be long and difficult to rephrase,
necessitating their retention in the human-written
summaries, which leads to a decrease in the density
score. Nevertheless, the coverage metric indicates
that LecSumm’s summaries still possess the highest
level of abstraction. Taking these three metrics into
consideration, it is evident that LecSumm performs
best in terms of abstractiveness and conciseness.

In addition to the aforementioned metrics, we
further evaluate the abstractiveness of datasets.
Specifically, we quantified it by calculating the
percentage of novel n-grams in the summaries that
didn’t appear in the source text. Table 4 displays
high percentages of novel tri-grams and 4-grams
(Phang et al., 2023a). Combining the scores of
coverage, density, and novel n-grams, it can be
concluded that LecSumm possesses the best ab-
stractiveness, making it more suitable for evaluat-
ing human-centered text summarization.

4 Experiments

We conducted a series of experiments on LecSumm
to answer the question "Do Language Models Un-
derstand Human Needs on Text Summarization?"

4.1 Baseline

We use LED (Beltagy et al., 2020), PEGASUS-
X (Phang et al., 2023b), and LongT5 (Guo et al.,
2022) as baselines. LED is based on Longformer,
it combines local windowed attention and task-
motivated global attention. PEGASUS-X uses a
staggered block-local Transformer with global en-
coder tokens. LongT5 integrates attention ideas



% of novel n-grams

Dataset ~ Coverage#rank Density#rank Redundancy#rank i bie i 4
CNN-DM 0.89#3 3.6#2 0.157#5 19.5 56.8 744 828
PubMed 0.893#4 5.6#5 0.146#4 124 44 653 76

arXiv 0.920#5 3.7#3 0.144#3 95 41 664 79.6
BigPatent 0.861#2 2.1#1 0.223#6 13.5 526 783 895
GovReport 0.942#6 7.7#6 0.124#2 57 327 563 689
LecSumm 0.860#1 5.5#4 0.122#1 133 533 774 856

Table 4: Intrinsic evaluations of different summarization datasets, including values and rankings, calculated on test
sets only. Smaller coverage, density and redundancy values are deemed preferable. Percentages of novel n-grams in

summaries of different datasets are also provided.

Prompt

L Please generate a summary with
a maximum length of 300 words
about source text.

L+C Please generate a summary con-
taining detailed information with
a maximum length of 300 words
about the source text.
L+C+S Please generate a summary con-

taining tertiary headings with a
maximum length of 300 words
about the source text.

Table 5: These are prompts containing human needs,
and we can only restrict the output length, due to the
limitations of the model API. Abbreviations are for L
(Length), C (Content), and S (Structure).

from ETC and adopts pre-training strategies from
PEGASUS. These models support long input at
most 16k tokens. More details are in Appendix
C.1.

In addition, we evaluate large language models
under zero-shot settings. We choose GPT-3-turbo,
GPT-4-turbo and GPT-40%, which support long
inputs. These models are proprietary to OpenAl
and have been finetuned on extensive datasets.

4.2 Settings

For pre-trained language models, we used the
led-large-16384°, pegasus-x-large*, and long-t5-
tglobal-large® models to summarize. We use an

https://openai.com/

*https://huggingface.co/allenai/led-large- 16384

*https://huggingface.co/google/pegasus-x-large

https://huggingface.co/google/
long-t5-tglobal-large

NVIDIA A100 80GB PClIe GPU for experiments.
Models are used transformers4.35.2° to finetune
for 10 epochs. We set the input token 8k, output
token 1024, batch_size 2, the remaining parameters
are default argument values.

For zero-shot LLMs, we use GPT-3.5-turbo’,
GPT-4-turbo® and GPT-40° for implementation.
We put the lecture notes as the source input and re-
moved the figures. We designed the LLM prompts
using these tertiary headings and content details as
key elements of "human needs." The prompt design
is shown in the table 5.

4.3 Evaluation

We utilized some automated evaluation metrics to
assess the summaries generated by the models.

Rouge We use F1-score of ROUGE-1, ROUGE-
2 and ROUGE-L!?, taking into account the com-
pleteness, readability and order of summary.

BertScore (Zhang et al., 2020) computes a simi-
larity score for each token in the candidate sentence
with each token in the reference sentence. It corre-
lates better with human judgments.

SummaC (Summary Consistency; Laban et al.,
2022) is focused on evaluating factual consistency
in summarization. They use NLI for detecting in-
consistencies by splitting the document and sum-
mary into sentences and computing the entailment
probabilities on all document/summary sentence
pairs, where the premise is a document sentence

Shttps://huggingface.co/docs/transformers/index

"https://platform.openai.com/docs/models/
gpt-3-5-turbo

8https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

https:/ /platform.openai.com/docs/models/gpt-40

https://huggingface.co/docs/datasets/how to
metrics


https://openai.com/
https://huggingface.co/allenai/led-large-16384
https://huggingface.co/google/pegasus-x-large
https://huggingface.co/google/long-t5-tglobal-large
https://huggingface.co/google/long-t5-tglobal-large
https://huggingface.co/docs/transformers/index
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4o
https://huggingface.co/docs/datasets/how_to_metrics
https://huggingface.co/docs/datasets/how_to_metrics

ROUGE Bertscore UniEval
Model R-1 R2 RL P R L SummaC | coherence fluency relevance
Fine-tuned Models
LED 1583 4.04 1038 | 80.70 79.25 79.90 68.21 49.59 76.08 50.13
PEGASUS-X | 21.67 4.72 13.21 | 78.50 79.40 78.92 80.10 73.98 74.51 72.72
LongT5 21.67 474 1322 | 7850 79.41 7891 80.02 73.98 74.51 72.73
Zero-shot LLM-Prompt (L)
GPT-3.5-turbo | 32.75 7.63 1643 | 82.89 7742 80.05 76.81 94.11 94.93 86.55
GPT-4-turbo 3811 930 18.10 | 81.45 78.89 80.14 65.87 96.22 95.40 93.34
GPT-40 38.01 933 17.14 | 80.13 79.22 79.66 75.31 97.83 91.97 95.18
Zero-shot LLM-Prompt (L+C)
GPT-3.5-turbo | 34.01 7.14 16.61 | 82.79 77.60 80.10 68.26 95.62 95.03 86.01
GPT-4-turbo 3379 834 1648 | 79.16 78.93 79.06 70.49 97.60 94.40 94.19
GPT-40 3449 734 1525 | 7894 78.66 78.79 67.25 96.62 95.01 92.11
Zero-shot LLM-Prompt (L+C+S)
GPT-3.5-turbo | 37.23 8.66 18.23 | 82.17 78.46 80.25 78.63 94.50 91.33 89.16
GPT-4-turbo 37.62 9.31 1639 | 79.21 78.93 79.06 67.79 96.54 93.45 94.28
GPT-40 3031 8.76 1535 | 77.55 78.45 77.99 73.54 92.57 89.28 90.94

Table 6: It presents evaluation results of automatic summary metrics for LecSumm on pre-trained and zero-shot

LLM.

and the hypothesis is a summary sentence. They
aggregate the NLI scores for all pairs by either tak-
ing the maximum score per summary sentence and
averaging (SCZS) or by training a convolutional
neural network to aggregate the scores (SCConv).
We report SCConv score and use the publicly avail-
able for implementation'!.

UniEval (Zhong et al., 2022) is a unified multi-
dimensional evaluator which re-frames NLG evalu-
ation as a Boolean Question Answering (QA) task,
and by guiding the model with different questions
to evaluate from multiple dimensions. We report
coherence score, fluency score, relevance score
computed by UniEval'?.

4.4 Do Language Models Understand Human
Needs on Text Summarization?

Fine-tuned Model See Table 6, fine-tuned mod-
els perform relatively well in Summac scores and
demonstrate good factual consistency. However,
its Rouge and Unieval scores are lower, espe-
cially with Rouge not exceeding 30%, which dif-
fers significantly from its performance on common
datasets like CNN/DM and Government(Phang
etal., 2023b; Guo et al., 2022). We also analyze the
summaries generated by fine-tuned models. While

"https://github.com/tingofurro/summac
Phttps://github.com/maszhongming/UniEval

we observe some structure in the summaries gen-
erated by LongT5 and PEGASUS-X, they do not
fully cover subsequent content, which may lead to
vocabulary repetition and affect the model’s evalu-
ation. Overall, this indicates that during the train-
ing phase, the fine-tuned language models do not
effectively learn the relationship between source
documents and target summaries, nor accurately
capture the human needs present in target sum-
maries.

Zero-shot LLM We conduct automated metric
evaluations on scenarios with and without the in-
clusion of human needs. Apart from SummaC
score, the evaluation metrics for the GPT series
are higher than those for the pre-trained language
model, thanks to their robust performance and ex-
tensive pre-training data. As human needs continue
to evolve and expand, different models show slight
improvements across various metrics. Moreover,
the generated summaries visually align with target
summaries to an extent of 85%. However, we do
not analyze the human needs of linguistic features
in the target summaries, which results in slightly
lower Rouge scores. Overall, language models can
comprehend and generate summaries that align ap-
propriately when provided with human needs.


https://github.com/tingofurro/summac
https://github.com/maszhongming/UniEval

5 Related Work

Large language model for text summarization
Most LLMs adopt an autoregressive structure sim-
ilar to GPT, capable of automatic text summariza-
tion (ATS) (Houlsby et al., 2019). However, as
the model size increased, full parameter training
became costly. Research gradually shifted towards
more cost-effective and efficient methods, includ-
ing fine-tuning and prompt engineering. Prompt
engineering for LLMs involves exploring and for-
mulating strategies to maximize the use of spe-
cific functions inherent in large language models
(LLMSs). This process requires optimizing the input
text string to more effectively leverage the LLM’s
intrinsic knowledge, thereby enhancing the inter-
pretation of the input text (Liu et al., 2023). This
significantly improves the quality of the generated
summaries. Notably, prompt engineering is ad-
vantageous because it does not require extensive
training or relies only on a small number of sam-
ples (Narayan et al., 2021), thus reducing resource
expenditure. The implementation of prompt en-
gineering is based on methods such as template
engineering, chain of thought (CoT’), and agent in-
teraction. Template engineering is another natural
way to create prompts by manually creating intu-
itive templates based on human introspection (Zhao
et al., 2023). Chain of thought (Wei et al., 2024b)
is a series of intermediate reasoning steps that can
significantly enhance the LLM’s ability to per-
form complex reasoning tasks. To address issues
of factual hallucinations and information redun-
dancy in ATS, a summarization chain of thought
(SumCoT) (Wang et al., 2023b) technique was pro-
posed to guide LLMs in gradually generating sum-
maries, helping them integrate finer-grained details
from the source document into the final summary.
Agents are artificial entities that perceive the en-
vironment, make decisions, and take actions (Xi
et al., 2023). A three-agent generation pipeline,
consisting of a generator, a lecturer, and an editor,
can enhance the customization of LLM-generated
summaries to better meet user expectations.

Human-centered text summarization Human-
centered text summarization approach emphasizes
designing and developing summarization models
that align with the needs and preferences of human
users. This approach primarily involves human-
computer interaction for building the summariza-
tion models and leverages large language models
(LLMs) as evaluators to assist in assessing the qual-

ity metrics such as fluency and factual consistency
of the summaries (Cheng et al., 2022; Sottana et al.,
2023). Additionally, this approach is applied to the
construction of text summarization datasets, which
involves two stages: data collection and data an-
notation. Existing research predominantly focuses
on the data annotation stage, accomplished through
human interaction (Gururangan et al., 2018). In
contrast, human-centered data collection should
prioritize simulating real-use scenarios so that the
data reflects actual human needs. However, com-
mon datasets like CNN/DM, Xsum and govern-
ment datasets (Narayan et al., 2018; Yasunaga et al.,
2019; Koupaee and Wang, 2018) do not simulate
real scenarios in their summary collection pro-
cess and therefore fail to adequately reflect human
needs.

6 Conclusion

We design a lecture note summarization task,
which aims at obtaining human-centered sum-
maries and analyzes the human preferences exist-
ing in the summaries from four dimensions: length,
structure, modality, and content depth. Meanwhile,
we build a new dataset LecSumm that, compared
to publicly available datasets, exhibits higher levels
of human-specific needs. By conducting automatic
and manual evaluations of benchmark models, we
find that prompt-based LLMs show better perfor-
mance than capturing the human needs than fine-
tuned models. We hope that our analysis results can
provide insights for better prompt design, and our
dataset can contribute to the research in human-
centered text summarization.

Limitation

There are few limitations to our work: The topics
of lecture notes are only limited to machine learn-
ing; We only recruited 200 participants due to the
expensive annotation cost; The prompts that we try
are also limited, automatic prompt design may be
considered in future work.

Ethics Statement

Data collection approval was received from an
ethics review board. No identified personal infor-
mation is collected in the data collection process.
All codes and data used in this paper comply with
the license for use.



References

Sharan Narang Aakanksha Chowdhery. 2022. Palm:
Scaling language modeling with pathways. Preprint,
arXiv:2204.02311.

Al@Meta. 2024. Llama 3 model card.

1z Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
Preprint, arXiv:2004.05150.

Rishi Bommasani and Claire Cardie. 2020. Intrinsic
evaluation of summarization datasets. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8075-8096, Online. Association for Computational
Linguistics.

Ruijia Cheng, Alison Smith-Renner, Ke Zhang, Joel R.
Tetreault, and Alejandro Jaimes. 2022. Mapping the
design space of human-ai interaction in text summa-
rization. Preprint, arXiv:2206.14863.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries with
diverse extractive strategies. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 708-719, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago
Ontanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei
Yang. 2022. LongT5: Efficient text-to-text trans-
former for long sequences. In Findings of the Asso-
ciation for Computational Linguistics: NAACL 2022,
pages 724-736, Seattle, United States. Association
for Computational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel R. Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural language
inference data. Preprint, arXiv:1803.02324.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceed-
ings of Machine Learning Research, pages 2790—
2799. PMLR.

Yebowen Hu, Kaigiang Song, Sangwoo Cho, Xiaoyang
Wang, Hassan Foroosh, and Fei Liu. 2023. Decipher-
pref: Analyzing influential factors in human prefer-
ence judgments via gpt-4. Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage ....

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the

2021 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 1419-1436,
Online. Association for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Tim-
othée Lacroix, and William El Sayed. 2023. Mistral
7b. Preprint, arXiv:2310.06825.

Mahnaz Koupaee and William Yang Wang. 2018. Wik-
ihow: A large scale text summarization dataset.
Preprint, arXiv:1810.09305.

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and
Marti A. Hearst. 2022. SummaC: Re-visiting NLI-
based models for inconsistency detection in summa-
rization. Transactions of the Association for Compu-
tational Linguistics, 10:163-177.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing order into text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing, pages 404—411, Barcelona, Spain. Asso-
ciation for Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulgehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280-290, Berlin, Germany.
Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797-1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Shashi Narayan, Yao Zhao, Joshua Maynez, Gongalo
Simoes, Vitaly Nikolaev, and Ryan McDonald. 2021.
Planning with learned entity prompts for abstractive
summarization. Transactions of the Association for
Computational Linguistics, 9:1475-1492.

OpenAl. 2024. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Tatiana Passali, Alexios Gidiotis, Efstathios Chatzikyr-
iakidis, and Grigorios Tsoumakas. 2021. Towards
human-centered summarization: A case study on fi-
nancial news. In Proceedings of the First Workshop
on Bridging Human—Computer Interaction and Nat-
ural Language Processing, pages 21-27.


https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2004.05150
https://doi.org/10.18653/v1/2020.emnlp-main.649
https://doi.org/10.18653/v1/2020.emnlp-main.649
https://doi.org/10.18653/v1/2020.emnlp-main.649
https://arxiv.org/abs/2206.14863
https://arxiv.org/abs/2206.14863
https://arxiv.org/abs/2206.14863
https://arxiv.org/abs/2206.14863
https://arxiv.org/abs/2206.14863
https://doi.org/10.18653/v1/N18-1065
https://doi.org/10.18653/v1/N18-1065
https://doi.org/10.18653/v1/N18-1065
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://arxiv.org/abs/1803.02324
https://arxiv.org/abs/1803.02324
https://arxiv.org/abs/1803.02324
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1810.09305
https://arxiv.org/abs/1810.09305
https://arxiv.org/abs/1810.09305
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.1162/tacl_a_00438
https://doi.org/10.1162/tacl_a_00438
https://doi.org/10.1162/tacl_a_00438
https://arxiv.org/abs/2303.08774

Jason Phang, Yao Zhao, and Peter Liu. 2023a. Inves-
tigating efficiently extending transformers for long
input summarization. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3946-3961, Singapore. As-
sociation for Computational Linguistics.

Jason Phang, Yao Zhao, and Peter Liu. 2023b. Inves-
tigating efficiently extending transformers for long
input summarization. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3946-3961, Singapore. As-
sociation for Computational Linguistics.

Libo Qin, Qiguang Chen, Fuxuan Wei, Shijue Huang,
and Wanxiang Che. 2023. Cross-lingual prompt-
ing: Improving zero-shot chain-of-thought reasoning
across languages. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2695-2709, Singapore. Associa-
tion for Computational Linguistics.

Eva Sharma, Chen Li, and Lu Wang. 2019. BIG-
PATENT: A large-scale dataset for abstractive and
coherent summarization. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2204-2213, Florence, Italy. Asso-
ciation for Computational Linguistics.

Andrea Sottana, Bin Liang, Kai Zou, and Zheng Yuan.
2023. Evaluation metrics in the era of gpt-4: Reli-
ably evaluating large language models on sequence
to sequence tasks. Preprint, arXiv:2310.13800.

Jen tse Huang, Man Ho Lam, Eric John Li, Shujie Ren,
Wenxuan Wang, Wenxiang Jiao, Zhaopeng Tu, and
Michael R. Lyu. 2024. Emotionally numb or empa-
thetic? evaluating how 1lms feel using emotionbench.
Preprint, arXiv:2308.03656.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu,
Haiyue Song, Jiwei Li, and Sadao Kurohashi. 2023.
GPT-RE: In-context learning for relation extraction
using large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 3534-3547, Singapore.
Association for Computational Linguistics.

Jiaan Wang, Yunlong Liang, Fandong Meng, Beiqi Zou,
Zhixu Li, Jianfeng Qu, and Jie Zhou. 2023a. Zero-
shot cross-lingual summarization via large language
models. In Proceedings of the 4th New Frontiers in
Summarization Workshop, pages 12-23, Singapore.
Association for Computational Linguistics.

Yiming Wang, Zhuosheng Zhang, and Rui Wang.
2023b. Element-aware summarization with large lan-
guage models: Expert-aligned evaluation and chain-
of-thought method. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8640—
8665, Toronto, Canada. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,

and Denny Zhou. 2024a. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS 22,
Red Hook, NY, USA. Curran Associates Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2024b. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS 22,
Red Hook, NY, USA. Curran Associates Inc.

Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang,
Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
Yufeng Chen, Meishan Zhang, Yong Jiang, and
Wenjuan Han. 2024c. Chatie: Zero-shot informa-
tion extraction via chatting with chatgpt. Preprint,
arXiv:2302.10205.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. Preprint, arXiv:2309.07864.

Michihiro Yasunaga, Jungo Kasai, Rui Zhang, Alexan-
der R. Fabbri, Irene Li, Dan Friedman, and
Dragomir R. Radev. 2019. Scisummnet: A large
annotated corpus and content-impact models for sci-
entific paper summarization with citation networks.
Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):7386-7393.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:
Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy
Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. 2024. Benchmarking large language
models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39—

57.

Jinming Zhao, Ming Liu, Longxiang Gao, Yuan Jin,
Lan Du, He Zhao, He Zhang, and Gholamreza Haf-
fari. 2020. Summpip: Unsupervised multi-document
summarization with sentence graph compression. In
Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 20, page 19491952, New
York, NY, USA. Association for Computing Machin-
ery.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,


https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.18653/v1/2023.emnlp-main.163
https://doi.org/10.18653/v1/2023.emnlp-main.163
https://doi.org/10.18653/v1/2023.emnlp-main.163
https://doi.org/10.18653/v1/2023.emnlp-main.163
https://doi.org/10.18653/v1/2023.emnlp-main.163
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://arxiv.org/abs/2310.13800
https://arxiv.org/abs/2310.13800
https://arxiv.org/abs/2310.13800
https://arxiv.org/abs/2310.13800
https://arxiv.org/abs/2310.13800
https://arxiv.org/abs/2308.03656
https://arxiv.org/abs/2308.03656
https://arxiv.org/abs/2308.03656
https://doi.org/10.18653/v1/2023.emnlp-main.214
https://doi.org/10.18653/v1/2023.emnlp-main.214
https://doi.org/10.18653/v1/2023.emnlp-main.214
https://doi.org/10.18653/v1/2023.newsum-1.2
https://doi.org/10.18653/v1/2023.newsum-1.2
https://doi.org/10.18653/v1/2023.newsum-1.2
https://doi.org/10.18653/v1/2023.newsum-1.2
https://doi.org/10.18653/v1/2023.newsum-1.2
https://doi.org/10.18653/v1/2023.acl-long.482
https://doi.org/10.18653/v1/2023.acl-long.482
https://doi.org/10.18653/v1/2023.acl-long.482
https://doi.org/10.18653/v1/2023.acl-long.482
https://doi.org/10.18653/v1/2023.acl-long.482
https://arxiv.org/abs/2302.10205
https://arxiv.org/abs/2302.10205
https://arxiv.org/abs/2302.10205
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://doi.org/10.1609/aaai.v33i01.33017386
https://doi.org/10.1609/aaai.v33i01.33017386
https://doi.org/10.1609/aaai.v33i01.33017386
https://doi.org/10.1609/aaai.v33i01.33017386
https://doi.org/10.1609/aaai.v33i01.33017386
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://doi.org/10.1145/3397271.3401327
https://doi.org/10.1145/3397271.3401327
https://doi.org/10.1145/3397271.3401327

Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. Preprint,
arXiv:2303.18223.

Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu
Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji, and
Jiawei Han. 2022. Towards a unified multi-
dimensional evaluator for text generation. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2023—
2038, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

A Human-written Summary

In §2.1, we collect some annotator-written Sum-
Figure 4 shows the example of an
annotator-written summary, and we can observe
that it includes a lecture notes topic, primary head-
ings, and formulas.

maries.

This topic was all about the nonlinear machine learning models: _

| The following points were covered:

* Artificial Neural Networks Motivation:
o Linear models may not be sufficient for extremely complex problems
(decision boundaries are extremely nonlinear)
o SVMs can construct nonlinear functions, but only with fixed
transformations (based on the kernel)
o Whenitis unclear what kernel function should be used, and it is
preferable to learn these features from the data itself
*  System components:
o Input layer
o Hidden layer(s)
o Combiners
o Nonlinear activation functions
o Output layer
« Complexity
o Depends on number of layers and number of neurons in each layer
o Depends on how the layers are connected (i.e., dense, sparse)
* Perceptron
o Binary (classifier) that has only a single layer
o Inputs are fed into network and the weighted sum is calculated (based
on weights associated with each of the inputs. This weighted sum is then
fed into an activation function which produces the output
o Uses a sign function as the activation function
o Amulti-layer perceptron is called a neural network
e Multi-layer perceptron:
o Fordata that is not linearly-separable, a more complex architecture than
the perceptron is required (i.e., more layers are required)
o Use asigmoid (logistic) function as the activation function, which
outputs a value between 0 and 1 with a s-shaped distribution:

D=1

Figure 4: This is a section of an annotator-written sum-
mary.

B Human-written Summary Check
Guidelines

Two expert annotators score summaries indepen-
dently, they need to complete 100 subtasks, each of
which consists of the source document and human-
written summaries. We have developed a guideline
for annotators, see Fig 5.

11

C Experiments

C.1 Fine-tune Models

LED (Beltagy et al., 2020) is a Longformer vari-
ant designed to support long document genera-
tive sequence-to-sequence tasks. LED incorporates
Longformer’s attention mechanism, enabling effec-
tive handling of long sequence documents. With
its attention mechanism that scales linearly, LED
can process documents with thousands of tokens,
making it suitable for long document generation
and processing tasks.

PEGASUS-X (Phang et al., 2023b) is an ex-
tension of the PEGASUS model designed to ad-
dress the challenge of long input summarization
tasks. Through additional pretraining on long in-
puts, PEGASUS-X can handle inputs of up to 16K
tokens without requiring model parallel training.
By combining a staggered, block-local Transformer
with global encoder tokens, PEGASUS-X strikes a
good balance between performance and efficiency.

LongT5 (Guo et al., 2022) integrates attention
ideas from ETC, and adopts pre-training strate-
gies from PEGASUS into the scalable T5 archi-
tecture. It uses a new attention mechanism called
Transient Global (TGlobal), which mimics ETC’s
local/global attention mechanism, but without re-
quiring additional side inputs.

C.2 Unsupervised Models on LecSumm

Unsupervised Models We use TextRank (Mi-
halcea and Tarau, 2004), SummPip (Zhao et al.,
2020) to evaluate LecSumm. TextRank is a clas-
sical extractive summarization model. SummPip
is unsupervised multi-document Summarization-
based sentence graph compression.

Implement details We used the TextRank in
summanlp '*and SummPip!# algorithms,and pa-
rameters: nb_clusters, nb_words in SummPip are
14 and 20 respectively.

Results Analysis We also evaluate unsupervised
models using metric in §4.3. See Table 7, Tex-
trank performs excellently in SummacC scores be-
cause its summaries are extracted directly from
the original text in a proportional manner, pre-
serving the original sentence structures. This en-
sures that the generated summaries remain factually

Bhttps://github.com /summanlp/textrank
“https://github.com /mingzi151/SummPip


https://arxiv.org/abs/2303.18223
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://github.com/summanlp/textrank
https://github.com/mingzi151/SummPip

| Model

Metrics ‘ TextRank  SummPip
R-1 12.55 2591
ROUGE R-2 5.73 4.57
R-L 5.79 11.54
P 77.05 73,98
Bertscore R 80.31 79.42
L 78.61 76.59
SummaC 97.53 58.97
coherence 69.61 9.60
UniEval fluency 75.71 26.60
relevance 67.02 9.83

Table 7: These are unsupervised model evaluation re-
sults on LecSumm.

and contextually consistent with the original ma-
terial. For Summpip, its summaries are generated
through sentence clustering and compression. Con-
sequently, Summpip scores lower in fluency and
coherence in terms of linguistic features. Addi-
tionally, our manual analysis of its generated sum-
maries revealed that the extracted sentences tend to
focus more on minor details, which corroborates
the results of the automatic evaluation.

D Examples of generated Summaries by
models

See Figure 6 and Figure 7, We give some generated
summary examples. We can observe that GPT-
3.5 basically understands the human needs in the
prompt, and its generated summary better aligns
with the human needs mentioned in the prompt.

12



Human Written Summary Check Guidelines

This guideline is intended to give annotators a clear understanding of the task and
requirements before manual annotation.Be sure to read the following content

carefully.

This task is used to assess the quality of human-written summaries. You need to

complete 100 tasks, each of which will provide you with an original document and a

human-written summary. You need to score each summary based on four evaluation

dimensions, with a maximum score of 25 points for each dimension. The four
evaluation dimensions are:

» Coherence: The overall quality of all sentences. "The summary should be
well-structured and well-organized. It should not just be a collection of related
information, but should build coherent information about a topic from one
sentence to the next."

» Consistency: The factual consistency between the summary and its source. A
factually consistent summary only contains statements that are present in the
source document.

» Fluency: The quality of individual sentences. The sentences in the summary
"should not have formatting issues, capitalization errors, or obviously
ungrammatical sentences (e.g., fragments, missing parts), which would make the
text difficult to read."

» Relevance: The selection of important content from the source. The summary
should only include important information from the source document. Annotators
were instructed to penalize summaries containing redundant and superfluous

information.

Please fill in the scores for each dimension in the table below and calculate the total

Score.

Task Number | Coherence | Consistency | Fluency | Relevance | Total Score

Annotation results are only used for this study. All the information will be
anonymized and your personal preferences will not be disclosed.You do not have to

bear any responsibility for the risk caused by your annotation results.

Figure 5: This is a human-written summary check guideline for annotators.

13




Reference

The supervised learning algorithms of KNN and decision tree are
discussed in machine learning. KNN compares and classifies new data points in a
training set by comparing them to the nearest neighbours. The technique of assigning
weights to data points and labelling test point same as the nearest available neighbour is
used by KNN for both classification and regression. Like KNN, the Voronoi diagram is built
on nearest neighbours.  The  nearest neighbour method known as  the
distance-weighted nearest neighbour distributes weights to neighbours based on how
far they are from the test point, such as the inverse square of distances. Any training
point may have an impact on a specific occurrence.

TextRank

The decision tree can be explained by two entities, namely decision nodes and leaves.\nThe
leaves are decisions or final outcomes, and the decision nodes are where the data is
displayed.\nSo this was a simple example of decision tree and how can we interpret a
decision tree.\nIn the next sections, you're going to learn how to construct a decision
tree.\nActivity Classification trees Classification and Regression Trees (CART) is a term
introduced by Leo Breiman to refer to decision tree algorithms that can be used for
classification or regression predictive modeling problems.\nFor a classification tree, we
assign each test instance to the majority class (mode) of the training instances in the region
where it belongs.\nYou can consider this action as a being like a data point voting itself into
a region which results in selecting the majority.\n

SummPip

a tree , you will use the code example of decision trees are called classification regression
model we can be used . shape ) output : ( 10 max depth range = range ( 1 , ' accuracy
comparison of training validation set ' ) figure : plot that results from using the overfit
approach from the plot , we can see that as the depth of the tree increases , the decision tree
starts to overfit . pyplot as plt our cleaned up dataset is in the data directory : code example #
2

LED

Decision trees are a map of the possible outcomes of a series of related choices. Decision
trees can be used to weigh possible actions against one another based on their costs, benefits
and probabilities. Decision trees can be used to weigh possible actions against one another
based on their costs, benefits and probabilities. = Decision trees can be used to weigh
possible actions against one another based on their costs, benefits and probabilities.
Decision trees typically starts with a single root node, which branches into possible
outcomes. Regression trees Classification trees are a type of decision tree algorithm that
can be used for classification or regression predictive modeling problems. Regression trees
Regression trees are a type of decision tree algorithm that can be used for classification or
regression predictive modeling problems.

PEGASUS-X

Decision trees are a popular machine learning algorithm that uses feature selection to
determine the most important classification features. DT operates by recursively segmenting
the data into subsets based on the most informative features until a stopping criterion is
reached. A criterion such as information gain or the Gini index is used to determine which
feature is the most informative. At each node of the tree, the feature with the highest score is
chosen as the splitting criterion. Feature importance of using Decision Trees (DT) Decision
trees are a popular machine learning algorithm that uses feature selection to determine the
most important classification features. DT operates by recursively segmenting the data into
subsets based on the most informative features until a stopping criterion is reached. A
criterion such as information gain or the Gini index is used to determine which feature is the
most informative.

Figure 6: These are generated summaries by unsupervised and fine-tuned models.

14



Zero-shot LLM+Pprompt(L)

Setting up Python involves downloading and installing the Anaconda distribution of Python 3,
which simplifies the process of managing editors and packages needed for coding.
Instructions are provided for Windows 10 and Mac platforms, as well as guidance on using
Jupyter Notebook for coding. The text covers importing modules, matrix operations like
addition and subtraction, and matrix multiplication using the NumPy library in Python. It
explains scalar operations on matrices, matrix multiplication, and the concept of matrix
division, which involves inverting matrices. The importance of conformability in matrix
operations is highlighted, along with the conditions for matrix inversion. Code examples
demonstrate how to perform these operations in Python using NumPy. The text emphasizes
the need for practice and experimentation with coding examples to gain confidence in
working with matrices and linear algebra operations. It encourages further exploration of the
NumPy library for advanced functionalities. Overall, the text provides a comprehensive guide
to setting up Python, working with matrices, and performing common linear algebra
operations using Python and NumPy.

Zero-shot LLM+Pprompt(L+C)

Setting up Python involves downloading and installing the Anaconda distribution of Python 3,
which simplifies the control of editors and packages needed for data science tasks.
Instructions are provided for Windows 10 and Mac platforms, including video tutorials. To
start coding, users can open Anaconda and launch Jupyter Notebook to work in a kernel and
shell environment. The text also covers importing modules and packages in Python, along
with examples of matrix addition, subtraction, multiplication, and division using the NumPy
library. Matrix operations such as scalar multiplication, matrix multiplication, and matrix
inversion are explained with code examples in Python. The importance of conformability in
matrix operations and the determinant of a matrix for determining its invertibility are
highlighted. The text emphasizes the need for experimentation with the provided Python
coding examples to gain confidence in performing basic matrix operations. Additionally, it
encourages further exploration of linear algebra operations using the NumPy library for
vectors and matrices.

Zero-shot LLM+Pprompt(L+C+S)

To start coding in Python, you need to install the Anaconda distribution of Python,
which provides data science libraries and tools. The process involves downloading and
installing Anaconda on different platforms like Windows 10 and Mac. Once installed, you can
open Anaconda Navigator to access Jupyter Notebook for coding.

Python allows you to store function definitions in files and import them as
modules in your programs. You can import specific functions or entire modules from
packages to use in your code. Popular packages like NumPy provide functions for matrix
operations and linear algebra. Using the NumPy library,
you can perform matrix operations like addition, subtraction, multiplication, and division in
Python. Matrix addition and subtraction involve adding or subtracting scalar values or
matrices element-wise. Matrix multiplication requires conformable dimensions for the
operands, and matrix division involves inverting the matrix.

NumPy library simplifies linear algebra operations in Python by providing
functions for creating vectors, matrices, and performing common linear algebra operations.
By importing NumPy and matplotlib libraries, you can automate the creation of specific types
of matrices and visualize data using plots.

Figure 7: These are generated summaries by GPT3.5.

15



	Instruction
	Lecture Note Summary Collection and Analysis
	Human-centered Summary Collection
	Human Needs Analysis on Summaries

	LecSumm
	Summary Quality Control
	Dataset Construction
	Dataset Properties

	Experiments
	Baseline
	Settings
	Evaluation
	Do Language Models Understand Human Needs on Text Summarization?

	Related Work
	Conclusion
	Human-written Summary
	Human-written Summary Check Guidelines
	Experiments
	Fine-tune Models
	Unsupervised Models on LecSumm

	Examples of generated Summaries by models

