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Abstract

The sparse-group lasso (SGL) performs both variable and group selection. It has found widespread
use in many fields, due to its sparse-group penalty, which allows it to utilize grouping information
and shrink inactive variables in active groups. However, SGL can be computationally expensive,
due to the added shrinkage complexity. This paper introduces a feature reduction approach for
SGL and the adaptive SGL, Dual Feature Reduction (DFR), which applies strong screening rules
to reduce the input space before optimization. DFR applies two layers of screening and is based
on dual norms. Through synthetic and real numerical studies, it is shown that DFR is the state-of-
the-art screening rule for SGL by drastically reducing the computational cost under many different
scenarios, outperforming other existing methods.

1. Introduction

High-dimensional datasets, where the number of features (p) is far greater than the number of
observations (n) in a matrix X € R"*P, are becoming increasingly common with the increased
rate of data collection. To handle this, shrinkage methods, such as the lasso [39], elastic-net [49],
and SLOPE [3] have been proposed and found increased use in the machine learning community
[1, 20, 25, 38]. These methods shrink estimates towards zero during optimization, enabling variable
selection, to identify which features, 8 € RP, have an association with the response y € R™.

In genetics, these methods help identify genes associated to disease outcomes. As genes are
naturally found in groups (pathways), group selection approaches have been proposed, such as the
group lasso [46], group SLOPE [4], and group SCAD [13]. Applying only group shrinkage can
harm convergence and prediction, as noise variables in active groups are retained [11, 37].

This limitation led to the development of sparse-group models, such as the Sparse-group Lasso
(SGL) [37] and Sparse-group SLOPE (SGS) [11]. These models apply shrinkage on both variables
and groups to yield concurrent variable and group selection. SGL has found increased popularity
in applications in the machine learning [41, 45] and healthcare [10, 31, 37] communities. It has
consistently outperformed the lasso and group lasso in selection and prediction tasks [11, 37].

Suppose the variables sit in a grouping structure, with disjoint sets of groups G, . . . , G, of sizes
D1, .. .,Pm. Then, SGL is a convex combination of the lasso and group lasso [37]:

Begt(X) = arﬁge@in{ﬂm + M| Bllsgt}, where [|Bllsg = allBlli+ (1 —a)>  Bgll B2, (1)

g=1

such that f is a differentiable and convex loss function, A > 0 defines the level of shrinkage,
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B9 e RPs is the vector of coefficients in group g, and o € [0, 1]. SGL has been extended to have
adaptive shrinkage through the adaptive sparse-group lasso (aSGL) [24, 32] (Appendix B.1).

1.1. Feature reduction approaches for the sparse-group lasso

The benefits of SGL come with increased computational cost, due to the additional shrinkage and the
tuning of two hyper-parameters. Typically, « is set subjectively (Simon et al. [37] suggest a = 0.95)
and ) is tuned using cross-validation along a path A\; > ... > )\; > 0. Feature reduction techniques,
including screening rules, help ease the cost by discarding inactive features before optimization.

Feature reduction techniques are either exact or heuristic. Exact methods strictly discard only
inactive features but are conservative, while heuristic methods discard more features at the risk of
violations. These violations are countered by checking the Karush-Kuhn-Tucker (KKT) optimality
conditions [17] and adding any offending features back into the optimization. Heuristic rules discard
significantly more variables than exact rules, providing large computational savings [40].

Most exact methods follow the seminal Safe Feature Elimination (SAFE) framework [7], but
other exact methods include the dome test [44] and Dual Polytope Projections (DPP) [43]. The
strong rule by Tibshirani et al. [40] provides a framework for applying heuristic reduction with
single separable norms, which has been extended to non-separable [19] and sparse-group norms
[12]. Other examples include Sure Independence Screening (SIS) [9] and the Hessian rule [18].

An exact reduction method for SGL, called GAP safe rules, was proposed by Ndiaye et al. [27]
using the SAFE framework. GAP safe uses the duality gap to create feasible regions for active
variables and applies reduction on the groups and variables. Other reduction methods for SGL
include Two-layer Feature Reduction (TLFre) (exact) [42], though it was shown not to be exact
[26], and sparsegl (heuristic) [23], which applies only group-level reduction. Additional speed-up
attempts include using approximate bounds for inactive conditions [15] and a heuristic screening
rule limited to multi-response Cox modeling [22].

1.2. Contributions

In this manuscript, we propose a new dual feature reduction method for SGL and aSGL, Dual
Feature Reduction (DFR), which is based on the strong rule [40] and the bi-level framework for
SGS [12]. DFR introduces the first bi-level strong (heuristic) screening rules for SGL and the
first screening rules for aSGL. It applies two layers of screening, discarding inactive groups and
inactive variables within active groups. Reducing input dimensionality before optimization enables
broader tuning regimes, such as concurrent tuning of A and a.. The computational efficiency of DFR
increases the accessibility of SGL and aSGL models, encouraging wider adoption across fields.
The GAP safe rules for SGL require computation of safe regions, which includes a radius and
center, and the dual norm. In contrast, DFR only needs the dual norm, making it significantly less
expensive, as evidenced by our results. Applied to synthetic and real data, DFR consistently delivers
robust computational and input dimensionality improvements, outperforming other methods.

2. Theory

2.1. Problem statement

SGL is fit along a path of parameters A\; > ... > A; > 0. The objective is to use the solution at
Ak to generate a set of candidate variables C,(Ai+1) C [p] := {1,...,p}, that is a superset of the
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(unknown) set of active variables, A,(Apy1) = {i € [p] : Bi(Aes1) # 0}. The optimization at

Ak+1 (Equation 1) is then performed using only C, (Ax+1), leading to large computational savings.
DEFR starts by first generating a candidate group set (Section 2.2.1), which is then used to con-

struct a candidate variable set (Section 2.2.2). DFR requires evaluating the dual norm of SGL,

[2]l5g = sup{z "z : ||z||sa < 1}, and this is found through the e-norm [27] (Definition 3):
m m
1Bllser = D (a+ (1= ) BIBDIE, =D 1897, where 75 =a + (1 —a)yby. ()
g=1 g=1

2.2. Dual feature reduction

DFR is first derived for SGL (Sections 2.2.1 and 2.2.2) and is subsequently expanded to aSGL
(Appendix B.2), where DFR-aSGL requires the norm to be rewritten so that it can also be expressed
as the e-norm. The screening rules for DFR are summarised for reference in Table A1l.

2.2.1. GROUP REDUCTION

To generate a candidate group set, the KKT stationarity conditions [17] are used, providing condi-
tions for an inactive group. For SGL, for a group ¢ at Ax.1 (using Equations 1 and 2), we have

0 € Vyf(B(Met1)) + TgAk410) 41, where ©) ;) = ooy, = {z e RP7 : |z, <1} (3)

is the subgradient of the dual norm of the e-norm for an inactive group (at zero) [36]. Applying the
e-norm, the subgradient can be canceled out, so the KKT conditions can be written as

[ -lle .
_vgf(ﬁ()‘k—&-l)) € 7_g)‘k’-i-l@(g]7k—1-1 = ||ng(5()\k+1))Heg = Tg)‘k—l—ln@g,k-i-lueg < TgAkt1-
“)
If the gradient were available, it would be possible to identify the support at A\;, 1 (Proposition 4).
However, as this is not possible in practice, an approximation that allows for screening, using the
gradient at A\; and a Lipschitz assumption, is constructed instead, described in Proposition 1 (the
derivation is provided in Appendix A.1.1).

Proposition 1 (DFR-SGL group screening) For any A\;11,k € [l — 1], assuming that

IVgf (B+1)) = Vo (B ey < TolArir = Ael,

A~

the candidate set Cq(Ap11) = {g € [m] : [[Vgf(B(AK)) e, > Tg(2Ak41 — M)} is a superset of the
set of active groups for SGL. That is, Ag(Ag+1) C Cg(Apt1)-

2.2.2. VARIABLE REDUCTION

Further reduction is possible by applying a second layer of screening to the variables in the candidate
groups. For an inactive variable, i ¢ A, (Ag+1), the KKT conditions are (the subgradient of the /o
norm vanishes for an inactive variable)

0c Vif(B(Ak+1)) + )\k+1a<1>?7k+1, where <I>?7k+1 ={zeR:|z| <1} 5)

is the subgradients of the /1 norm at zero (leading to Proposition 5). The derivation is similar to
that for the group screening (it is described in Appendix A.1.2), culminating in Proposition 2. To
derive Equation 5, knowledge of Ay(Ay41) is required, but this is unknown. By Proposition I,
Ag(Mit+1) C Cy(Ag+1), and so the candidate set is used in practice for applying Proposition 2.
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Proposition 2 (DFR-SGL variable screening) For any \i11,k € [l — 1], assuming that

A~ ~

IVif(B(Ak+1)) = Vif (B(A))| < alAe — A1),

the candidate set Cy(Ay11) = {i € Gy for g € Ag(Mi+1) : |Vif(B(Ak))| > a(2Xk41 — M)} isa
superset of the set of active variables for SGL. That is, Ay, (Ag+1) C Cy(Agt1)-

2.3. Algorithm

The DFR algorithm (Algorithm A1) is based on the strong sparse-group screening framework, pro-
posed by Feser and Evangelou [12]. The algorithm has the following key steps (for Ag41):

1. Group screening: find Cy4(Ax+1) using Proposition 1.
2. Variable screening: find C, (A1) using Proposition 2 for i € Gy, g € Cg(Ap41)-

3. Compute B0, (Aj41) using the optimization set O, = Cy(Aps1) U Ay(Ag), with the active
set included due to models being nested. Perform KKT checks to identify any violations
(Appendix A.2) and add offending variables into O,.. Repeat this step until no violations.

The two main computational costs of Algorithm A1l are calculating the solution and the e-norm.
The former depends on the fitting algorithm, with proximal and descent algorithms typically having
complexities of O(tp?), for ¢ iterations [48]. The latter has a worst-case cost of O(pg log py) [27].

3. Numerical results

This section evaluates the efficiency and robustness of DFR using synthetic and real data with
varying characteristics. Two metrics are used to measure reductions in dimensionality and cost:

» Improvement factor = no screen time / screen time, which measures the reduction in compu-
tational fitting time due to screening.

e Input proportion = O, /p, which measures the proportion of the input space used for fitting.

DFR is compared with the existing SGL screening rules sparsegl [23] and GAP safe [27] (see
Appendix C for descriptions). Table A1 summarizes all the rules considered. For DFR and sparsegl,
optimization is performed using the Adaptive Three Operator Splitting (ATOS) [29] algorithm, but
DFR works with any fitting algorithm. In Sections 3.1 and 3.2 we present the main results, with
additional commentary and results presented in Appendices D and E.

3.1. Synthetic data analysis

The data for this section is generated using the linear model y = X + ¢, where X ~ N(0,X) €
R200x1000 8~ A/(0,4), and € ~ N(0,1). Correlation in X is applied within each group, with
2;; = p = 0.3 for i and j in the same group. Variables are grouped into m = 22 uneven groups of
sizes in [3, 100], with a 0.2 active group proportion and a 0.2 active proportion for variables in an
active group. Models were fit along a 50-length path from \; (chosen to generate the null model, see
Appendices A.4 and B.2.3) to A59 = 0.1A;. Each simulation was repeated 100 times, with results
averaged across the repeats, unless stated otherwise. Detailed setup information is in Appendix D.2.
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Comparison to GAP safe. The improvement factor for DFR is significantly superior to that of
the GAP safe rules (Figure 1). Although the input proportion of DFR and GAP safe are of similar
levels (Figure A2), the cost of calculating safe regions appears to nullify any gain in dimensionality
reduction. This shows that the two reduction approaches (heuristic vs exact) arrive at very similar
results (the screened sets), but DFR achieves this with significantly greater computational efficiency.

DFR, through bi-level screening, shows a tangible benefit under increasing dimensionality (Fig-
ure 1). This is further illustrated in the analysis of interaction data (Appendix D.3.4), where DFR
also provided large computational savings, making it more feasible for SGL and aSGL to be applied
to problems such as gene-gene and gene-environment interaction detection [6, 47].
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Figure 1: The improvement factor for strong
against safe rules, applied to synthetic data un-
der even groups of sizes 20, as a function of p,

Figure 2: The input proportion for the screening
methods applied to synthetic data, as a function
of the data correlation (top) and « (below), with

with 95% confidence intervals. 95% confidence intervals.

Robustness. DEFR is found to be robust under various scenarios. Under all considered values
of group correlation in X, DFR is more effective at reducing the input space when compared to
sparsegl, especially under minor correlation (Figures 2 and AS). Under higher correlation, the
models become less sparse, resulting in reduced screening importance. Across different o values,
DFR also efficiently reduces the input space (Figure 2), with the screening efficiency decreasing
linearly, showing that DFR can be used to tune a hyperparameter grid (\, ). As « — 0, SGL is
forced to select more variables in a group, limiting reduction potential. In such scenarios, the second
layer of screening is not as important, as shown by the similar performances of DFR and sparsegl.

DFR was also found to be robust under varying signal sparsity and strength, and varying weight
hyperparameters for aSGL (Appendix D.3.3). Additionally, DFR provided strong benefits when
applied to cross-validation (Appendix D.3.5) and logistic models (Appendix D.4).

3.2. Real data analysis

The efficiency of DFR is further evaluated through the analysis of six real datasets with different
characteristics, including continuous and binary response variables, and low- and high-dimensional
data (see Appendix E for details). Models were fit along a 100-length path, terminating at 0.2);.
For all datasets considered, DFR outperforms sparsegl for improving computational cost and
reducing input proportion (Figure 3), keeping the proportion low across the full path (Figure A13).
DFR-aSGL in particular was found to be very effective for the scheetz and adenoma datasets. As
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sparsegl only screens groups, sparsegl is forced to fit with full groups, which is a limitation when
there are large groups present (see Table A39). Through bi-level screening, DFR overcomes this
restriction.

S
|

Improvement factor (logio)

]
|

Input proportion (log1o)
s

1] 1]

T T T T T T T T T T T T
brcal scheetz trust-experts adenoma celiac tumour brcal scheetz trust-experts adenoma celiac tumour
Linear Logistic Linear Logistic
DFR-SGL DFR-aSGL sparsegl

Figure 3: The improvement factor (high is best) and input proportion (low is best) (log,, scale) of
the screening methods applied to six real datasets, split by model type.

4. Discussion

In this paper, a new feature reduction approach for the sparse-group lasso and adaptive sparse-group
lasso is introduced, called Dual Feature Reduction (DFR). DFR establishes the first bi-level strong
screening rules for SGL and the first screening rules for aSGL.

DFR applies two layers of reduction using the dual norm of SGL with strong screening rules
to efficiently reduce the input dimensionality for optimization and is computationally simpler than
the GAP safe rules. By discarding variables that would have been inactive at the optimal solution,
DFR achieves significant computational savings, allowing the SGL family of models to be more
efficiently implemented and applied to larger and more complex datasets. This gain comes at no
cost, as the optimal solution is still achieved (Appendices D.3.6, D.4, and E.3). In fact, by reducing
the input dimensionality, instances were observed where DFR helped SGL overcome convergence
issues that would have occurred otherwise (Table A42).

DFR proved robust across different data and model parameters, achieving drastic feature reduc-
tion under all scenarios tested. This consistently translated into large computational savings across
both real and synthetic data. DFR also outperformed other screening approaches for SGL, under all
considered situations, showing the benefit of applying two layers of strong screening.

Limitations. Several assumptions were required to perform two layers of feature reduction for
DFR. For both variable and group screening, Propositions 1 and 2 use Lipschitz assumptions which
are consistent with the general strong framework [40]. Any breach of assumptions are guarded
against using KKT checks. Only a single KKT violation occurred for SGL across all our simulations
and only very infrequently for aSGL (Appendix D.3.1). However, there may be scenarios that we
did not consider where the assumptions break down. This is a limitation of any strong screening
rule, although DFR, in particular, carries additional assumptions over other strong rules, which are
necessary when applying the second layer of screening.
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Appendix

Appendix A. Sparse-group lasso
A.1. Theory

Definition 3 (e-norm) The e-norm,
solution q of the equation [5]

||c,, applied to SGL is defined as the unique nonnegative

Pg

Z(’$z| -(1- eg)Q)?&- = (EQQ)27 where €5 =
=1

Tg—OL

(0)
Tg
Using Definition 3 and Ndiaye et al. [27], the dual norm of SGL applied to a group g can be

formulated as
* -1
||£(g)Hsgl - g:Hll%?fng Hg(g)”eg- (7)

A.1.1. GROUP REDUCTION

From Equation 4 we obtain

IVgf (BOw+1))lle, < ToAk41- (8)
Now if the gradient at ;1 were available, screening would be possible (Proposition 4). Instead,
we seek an approximation M, such that

vaf(ﬁ()‘k-&-l))neg < Mg- (9)

Then, the screening rule tests whether M, < 7,A;41. If this is found to be true, it can be con-
cluded that Equation 4 holds and so the group must be inactive. An approximation can be found by
assuming that the gradient is a Lipschitz function of Ay with respect to the e-norm,

~ ~

IVgf(BOAk41)) = Vo (B lleg < Tgl M1 = Al (10)

which is a similar assumption to the lasso strong rule [40]. Using the reverse triangle inequality, we
have

IV f B+ lley < Vg F B ey + 79k = k1) = My, (11
yielding a suitable approximation M. Therefore, the strong group screening rule for SGL can be
formulated by plugging the approximation from Equation 11 into Equation 9: discard a group ¢ if

Vg FBA ey + 79k = A1) < Tghipr <= [V f (B e, < 79(2Ak41 — M), (12)

which leads to Proposition 1.

Proof [Proof of Proposition 1] To prove the candidate set is a superset of the active set, we need to
prove that forany g € [m]and k € [l — 1], g € Ag(Ap+1) = g € Cy(Ar41). We instead prove
the contrapositive: g ¢ Cy(Ag+1) = g ¢ Agy(Ag+1). First, we rewrite the Lipschitz assumption
as (using the reverse triangle inequality)

~ ~

IVgf BOw+))lle, = IV F (BN ley < 1V5f(BArt1)) = Vo f (BO))
b

€g S Tg|>\k+1 - )\k|

~

= IV (BOw1))lley < NVaf (B leg + gl A1 = Axl- (13)

12
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Now,as g ¢ Cy(Mesn), A
1967 (B, < 7o(2hes1 — M),

Plugging this into Equation 13 yields

IV f (B4, < 79201 = Ak) + Tl Akpr = Ai
= Vo f (BOws1))lle, < ToMss
= — ng(B(Ak+1)) IS Tg)\k_;_l@g’k_,'_l, as @S,m = {x € RPs : [z, < 1}
=0 € Vg f(B(Met1)) + TgMer10) 41y
= g ¢ Ag(Apy1), by the KKT conditions (Equation 3).
|

Proposition 4 (Theoretical SGL group screening) For any Apy1,k € [l — 1], the candidate set

Co(Mit1) = {g € [m] : [[Vof(B(Ars1))lle, > TgAry1} recovers the exact support of the active
groups for SGL. That is, Cy( A1) = Ag(M\rr1) == {g € [m] : |39 (M\rs1)|l2 # O}

Proof [Proof of Proposition 4] To prove the two sets are equivalent, we need to prove that for any
gemlandk €[l —1],9 € Ay(Ai+1) < g € Cy(Ak4+1). We instead prove the contrapositive:
g ¢ Cg()\k+1) < g ¢ Ag()\k+1). SO,

9 & Co(Mry1) = Vg f(BArs1))lle, < TgAks1, by definition of the candidate set
= —Vgf(B(Met1)) € TeMe4100 js1, a0y = {z € R« |||, <1}

= 0 Vyf(B1)) + TgM41004 1

= g ¢ Ag(Ait1), by the KKT conditions (Equation 3).
|
A.1.2. VARIABLE REDUCTION
Applying the absolute value to Equation 5 leads to
N | A~
~Vif(B(Akt1)) € Mes1a®) iy AL IVif (B(Ak+1))] < Appacv (14)

As before, if we had access to the gradient we could screen via Proposition 5. The scenario is
similar to the strong screening rule for the lasso [40], scaled by «. Therefore, using the Lipschitz
assumption

A~ ~

IVif (B(Ak+41)) = Vif (B(A))| < a(Ae = Apg),
yields the strong variable screening rule for SGL: discard a variable j in an active group g if

~

IVif (BOAR))] < a(2Ak41 — k), (15)

which leads to Proposition 2.
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Proof [Proof of Proposition 2] The proof strategy is similar to that of Proposition 1. To prove
the candidate set is a superset of the active set, we need to prove that for any ¢ € G, such that
g€ Ag,and k € [l —1],i € Ay(Ag+1) = @ € Cy(Ak+1). We instead prove the contrapositive:
i ¢ Co(Akr1) = i ¢ Ay(Agy1). First, we rewrite the Lipschitz assumption as (using the reverse
triangle inequality)

Vi f (Bes1))] < IVif (BOW))] + @ X1 — Akl (16)

Now, as i & Cy(Aga1),

IVif (BAR))| < a@Ak41 — Ag)-
Plugging this into Equation 16 yields

IVif (B(Akt1))] < @t
== - Vz‘f(B()\kH)) S a)\k+1q)?,k+1a as (I)?,kJrl ={reR:|z[ <1}
= 0€ V,;f(B(Net1)) + COVERT: Y
=1 ¢ Ay(Agt1), by the KKT conditions (Equation 3).

Proposition 5 (Theoretical SGL variable screening) Forany Ap11,k € [l —1], the candidate set

Co(Aut1) = {i € Gg for g € Ag(Mi41)  |Vif(B(Akt1))| > Agp10e} recovers the exact support of
the active variables for SGL. That is, C;,(Ak+1) = Ay (Agt1)-

Proof [Proof of Proposition 5] The proof strategy is similar to that of Proposition 4. To prove the
two sets are equivalent, we need to prove that for any i € G, such that g € Ay, and k € [l — 1],
i € Ay(Mks1) <= i € Cy(Mpr1). We instead prove the contrapositive: i & C,(A\p11) < i ¢
-Av()\k—f—l)- SO,

1 ¢ Co(Mer1) <= |Vif(B(Akt1))| < Akr1a, by definition of the candidate set
= Vol (B(Ak1)) € Mer10®fyy, as @) = {z eR: || < 1},
for i € Gy, 9 € Ag(Ait1)
= 0€ Vof(BMr1)) + M0y
— i ¢ Ay(Agr1), by the KKT conditions (Equation 5).

A.2. Karush-Kuhn-Tucker (KKT) checks

The screening rules of DFR use several Lipschitz assumptions (Propositions 1 and 2), as well as
approximating the group active set by the group candidate set for the variable screening step (Section
2.2.2). When these assumptions fail, the screening rules can make mistakes and incorrectly exclude
active variables. To protect against this, the KKT conditions are checked for each variable after
screening, and violations are added back into the optimization.

14
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To check whether a variable i € G, has been correctly discarded, the KKT optimality conditions
are checked. Equation 5 describes the condition under which a variable 7 € G, is inactive and can
be rewritten as, for a general variable (by the definition of @2 k1)

Vi f (B(Aes1)) + Mg (1 — 04)‘1’1(-?;3“\ < Ak, A7)
where \Ifl(ﬂl = {z € RVPs : ||z||z < 1} is the subgradient of the £ norm. To satisfy Equation 17,
the unknown subdifferential, \IIZ(.gk) 1- 18 taken to be its minimum possible value. For x € \I/l(ﬁzl, we
have that

Iz <1 = Vpgllll2 < vy
= ||z[[s < /Py by the inequality ||z[|; < \/pgllz[2
- ‘(L‘Z| < \/Pg-

Hence, the values in the subdifferential are bound by , /p,. We consider the following scenarios for
Equation 17:

1. Vif(B(ks1)) > Mepa (1 — @),/Pg: choose x; = —, /py.

A~

2. Vif(B(Ak41)) < —Akg1(1 — ) /Dy: choose x; = | /py.

3. Vif(B(Ak+1)) € [~ Akr1(1 — a)\/Pg, Aky1(1 — @) /Dyl: choose y; = %.

We can now rewrite Equation 17 using the soft-thresholding operator as

IS(Vif (B(Ak+1))s Akt1(1 — @) y/Pg)| < Ap1cx, (18)

where S(a,b) = sign(a)(|a| — b)4+. Therefore, a KKT violation occurs for variable ¢ € G, if
Equation 17 does not hold. A violating variable is added back into the optimization procedure (see
Section 2.3). A similar derivation can be found in Simon et al. [37] to derive conditions to check
whether a group is active for SGL.
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A.3. Algorithm

Algorithm A1 Dual Feature Reduction (DFR) for SGL

Input: (\,...,\) e RLX e R™P,y € R, € [0, 1]
compute /3’ (A1) using Equation 1
fork=1tol—1do
Cg(Ag41) + candidate groups from Proposition 1
Cy(Ag+1) < candidate variables from Proposition 2 fori € G,, g € Cy(Ak+1), and ¢ ¢ A, (k)
Oy < Cy(Apg1) U Ay(Ag) » Optimization set
compute Bi(}\k+1),i € Oy, using Equation 1
KC,, < variable KKT violations for i ¢ O,, using Equation 18 » KKT check
while card(/C,) > 0 do
O, «— O, UK, » Optimization set
compute Bi()\k+1),i € O,, using Equation 1
IC,, +— variable KKT violations for i ¢ O, using Equation 18 » KKT check
end while
end for

Output: 3Sgl(A1), A Bsg]()\l) e R?

A.4. Path start

When fitting SGL along a path of values, A\; > ... > X\; > 0, \; is often chosen to be the exact
point at which the first predictor becomes non-zero. By Ndiaye et al. [28] and using the dual norm
from Equation 7, this value is given by

M= VA0 = max 75|V, O,

A.5. Reduction to (adaptive) lasso and (adaptive) group lasso

Under a@ = 1, SGL reduces to the lasso. In this case, no group screening occurs and the variable
screening rule reduces to the lasso strong rule [40]:

IVif (B < 2Xps1 — Ak

Under o« = 0, SGL reduces to the group lasso. Under this scenario, the group variable screening
reduces to the group lasso strong rule [40]:

A~

Vg f(BAR)l2 < /Pg(2Akt1 — Ak)-

and no variable screening is performed. For aSGL (Appendix B), the rules reduce to the adaptive
lasso and adaptive group lasso:

Adaptive lasso: |V;f(B(A\x)] < vi(20es1 — M) = Bi(Mgs1) =0
Adaptive group lasso: [V f(B(M))lle, < wyy/Pg(2Aki1 — M) = B9 (A1) =0,

where 6,9 = 1 in the e-norm (Definition 3 and Equation 20).
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Appendix B. Adaptive sparse-group lasso
B.1. Definition

The Adaptive Sparse-group Lasso (aSGL) applies adaptive shrinkage in a sparse-group setting,
achieving the oracle property in a double-asymptotic framework, and has the norm [24, 32]

1 llsg —ame FA— ) uymll 89 (19)
g=1
where v; and w, are adaptive weights. aSGL has a less straightforward, but nonetheless useful,
connection to the e-norm, which allows for screening rules to be derived. The aSGL norm can be
rewritten as (with the derivation given in Appendix B.2.1)

||/8||asgl = Z'Yg”ﬁ(g)uzg, where (20)

g=1

(0% 5 —
=allo@lh === Y wilBil+ (1= e)wgy/bg, € =115 (1= a)wgy/py.

HB ”1 1,§€Gq,i#]

Using similar calculations as for SGL, the strong screening rules and KKT checks for aSGL are
derived in Appendix B.2. Algorithm A1 is also applicable for aSGL, using the corresponding aSGL
equations as replacement (Algorithm A2). The choice of adaptive weights is described in Appendix
B.3.

B.2. Theory
B.2.1. DERIVATION OF THE CONNECTION TO €-NORM

The aim is to link the aSGL norm (Equation 19) to the e-norm, in a similar way to SGL:

m

I81ka = 320+ (1= ) VARSI,

g=1
Splitting up the adaptive lasso term in Equation 19 yields

azvz‘ﬁz| = az Z vl‘ﬁz

g—l’Lqu
m

=a) | Dow ) Bl= D wildl
g=1 \jeG, i€gy 1,j€Gg,i7#]

Ui 17 /B’L
—a S (S0 3 - s U 5
Zz‘egng

g=1 ngg Ze(_;’g Zeg

3 o Zi:jegg,iyfj v Bil
Z Z |Bz Z Uj Ziegg |BZ‘

g= ’Legq jegg

. 1,7€Gy iz VilBi
— a3 89 (@), - itz ST
= QT
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Hence

p m
1Bllast = @ > wil Bil + (1= @) Y wgy/pgll B2
i=1

2 2
i 2ijeg, iz VilBil

:Z[<”U(g)”l_ S a8+ (- @y plE @l - @D
g=1

Further, setting

o Zijegg i#j ;| Bil
G + (1 = @)wg/py,
18@1 v

7 = allo @]l -

simplifies Equation 21 to

m —(1- 1
ngzzh@K% <7®%“%>W@M+<(ﬂw’”>mwm] @
g9=1 g

g

Further, setting

/ (1 - a)wg\/pT,

€ = - -—
g
g

allows Equation 22 to be written in terms of the e-norm

)

1Blast = 3 % [(1 = DIBO 1 + 4 1891] = S l8€1.
g=1

g=1

B.2.2. PROPERTIES OF THE DERIVATION TO THE €-NORM

An important aspect to note is that under 5(9) = 0 for a group g, the middle term in ¢ becomes

P,
- « Zz‘,jegg,iﬁ v;|Bil _ a(pg—1) zq:vi
Bl9)—0 18|y ’

so that v, still exists. This can be observed by using L’Hopital’s rule and noting that for 7 € G,

0 0
aﬁié;ihV%! > v 5z 18%
17 i#]

Pg i=1

To see how this reduces to SGL under v = 1 and w = 1, note that

Zi, ieG ,i;é'vjlﬁi‘
fyg:a<pg_ JHﬁg(Q)ﬁl + (1 —a)\/pg

—1Ig@
ZQQE_@gWgﬁ\h>+a_®¢%

=a+(1—-a)y/py =14
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To understand the cross summation term, note that for the summation we are summing over each
B term p, — 1 times, as the matching indices are removed, that is (for simplicity of notation, we
consider G so that the indexing here is reset from 1)

Y vl =1Bilva+ ..+ [Bulvp + |Balvr + .. + |Balvpy + -+ |Bp vy 1
1,7€G1,i#]
= (p1 —1)|B1] + ...+ (p1 — 1)|Bp.|, by setting v; = 1,Vj € Gy, for SGL
=(p1—1)> 18] =(p1 — D|B?]s.

1€G

Hence, €’ also reduces to €.
g g

B.2.3. PATH START

To find the path start for adaptive SGL, the dual norm can not be used, as vy, is undefined for § = 0.
A derivation can instead be found using a similar approach to that in Simon et al. [37], where the
point is found by solving the piecewise quadratic, for each g € G

HS (X(Q)Ty/n, )\gv(g)a> Hz = pgwg(l - a)2)\§ =0.

Then, choosing A\; = max, A4 gives the path start point.

B.2.4. GROUP SCREENING

To derive the group screening rule for aSGL, we compare the formulations of SGL and aSGL in
terms of the e-norm (Equations 2 and 20):

m m

1Bllsar = Y 78Nz, 11Bllasgt = D 41807 - (23)

g=1 g=1
Therefore, the derivation for the group screening rule for aSGL is identical to that of SGL (Section
2.2.1) replacing 74 with 74 and || - [|¢, with || - ||¢; . The group screening rule is given by: discard a
group g if

IVg F(BOw) ey < 79(2Ak41 = Ak), 24)

and is formalized in Propositions 6 and 7.

Proposition 6 (Theoretical aSGL group screening) For any A1,k € [l — 1], the candidate set

~

Co(Mut1) = {g € Im] + [[Vgf(B(Ae+1))lle, > YgAk+1} recovers the exact support of the active
groups for aSGL. That is, Cg(Ap41) = Ag(Akt1)-

Proof The proof is identical to that of Proposition 4 replacing 74 with 74 and || - [|¢, with [| - [|¢;
(Appendix A.1.1). |

Proposition 7 (DFR-aSGL group screening) For any A1,k € [l — 1], assuming that
Vg f (BAks1)) = Vg F B ller < vglhesr — Axl,

the candidate set Cy(\s1) = {g € [m] : [V f (BN ey > 79 (2Aess — M)} is a superset of the
set of active groups for aSGL. That is, Ag(Ak+1) C Cg(Ak+1)-
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Proof The proof is identical to that of Proposition 1 replacing 7, with 74 and || - [[¢, with [| - [|e
(Appendix A.1.1). |

B.2.5. VARIABLE SCREENING

The construction of the variable screening rule for aSGL is very similar to that of SGL (Section
2.2.2). The key difference is that the KKT stationary conditions for aSGL for an inactive variable
in an active group are given by (in comparison to Equation 14 for SGL)

~

—Vif(B(Ais1)) € Mr100;®F 4.

Therefore, the derivation of the rule is identical, replacing o with cvw;. The variable screening rule
is given by: discard a variable 7 if

~

IVif(B(A))| < avi(2Mk41 — Ak)s (25)
and is formalized in Propositions 8 and 9.

Proposition 8 (Theoretical aSGL variable screening) For any \iy1,k € [l — 1], the candidate

~

set Cy(Apt1) = {i € Gy for g € Ag(Mi+1) : [Vif(B(Ak+1))| > Aky1aw;} recovers the exact
support of the active variables for aSGL, that is, Cy,(Ag+1) = Ap(Agt1)-

Proof The proof is identical to that of Proposition 5 replacing o with av; (Appendix A.1.2). |

Proposition 9 (DFR-aSGL variable screening) For any \i11,k € [l — 1], assuming that

IVif (B(Mes1)) = Vif (BOW)| < avi(Ae — Arsa),

the candidate set Cy(Ay11) = {i € Gy for g € Ag(Mky1)  [Vif(B(AR))| > avi(2Ap41 — i)} isa
superset of the set of active variables for aSGL, that is, Ay,(Ag+1) C Cy(Agt1)-

Proof The proof is identical to that of Proposition 2 replacing o with cvv; (Appendix A.1.2). |

B.2.6. KKT CHECKS

The KKT checks for aSGL are also similar to those for SGL (Appendix A.2): a KKT violation
occurs for a variable i € G, if

1S(Vi f(B(Met1))s M1 (1 — @)wg/Dg)| < Meyrvice. (26)
B.3. Choice of adaptive weights
The adaptive weights are chosen according to Mendez-Civieta et al. [24] as

1 1

Vi = Wy = —F~5—
S dal g9

where g is the first principal component from performing principal component analysis on X and
71,72 are chosen by the user, often in the range [0, 2]. The weights are shown in Figure Al.
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Figure Al: The aSGL weights, (v, w), for p = 1000, n = 200,m = 22,p = 0.3,y = 72 = 0.1,
and a = 0.95.

B.4. Algorithm

Algorithm A2 Dual Feature Reduction (DFR) for aSGL

Input: (\,...,\) e RLX e R™P y € R, a0 € [0, 1]
compute 3();) using Equation 1, replacing the SGL norm with Equation 19
fork=1tol —1do
Cy(Ag41) + candidate groups from Proposition 7
Cy(Ak+1) ¢ candidate variables from Proposition 9 fori € Gy, g € Cg(Ak+1), and i ¢ A, (\g)

Oy < Cy(Apt1) U Ay(Ag) » Optimization set
compute Bi()\k+1), 1 € Oy, using Equation 1, replacing the SGL norm with Equation 19
KC,, < variable KKT violations for ¢ ¢ O,, using Equation 26 » KKT check
while card(/C,) > 0 do
O, «— O, UK, » Optimization set
compute Bi()\k+1),i € O,, using Equation 1, replacing the SGL norm with Equation 19
IC,, < variable KKT violations for ¢ ¢ O,, using Equation 26 » KKT check
end while
end for

Output: Basgl(/\l)a e a/éasgl()‘l) ERP
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Appendix C. Competitive feature reduction approaches

Table Al: A summary of the four screening rules for SGL considered in this manuscript.

Rules (discard if true)
Method Variable Group

DFR-aSGL |Vz‘f(ﬂ:()\k))| < avi(2Ak41 — M) Vg f(ﬁ:(kk))\la < Y9 (2Xet1 — M)
DFR-SGL  [Vif(B(Ak)) < aAer1 = Ak) (Vg f (Bl < 79(2Xk41 — Ak)

k
sparsegl - 1S(Vaf(B(A)), k) ll2 < wg(1 — @) (2A41 — Ak)
GAPsafe  |X 0. + 7| X2 <7 Ty < (1—a)ypy

C.1. Sparsegl

Sparsegl is a screening rule proposed by Liang et al. [23] and performs a single layer of group
screening. The rule is based on the strong screening framework [40] and the first order condition
derived in Simon et al. [37], i.e. that a group g is inactive if

IS(Vgf (B(Akr1))s Ae10)ll2 < /Bg(1 — o) Ai1. 27)

As the gradient at k + 1 is not available, the following Lipschitz assumption on the ¢2 norm is used:

IS(Vgf(B(Net1))s Ms1) — S(Vg F(BO)), Ak l2 < wg(1 — ) [Aesr — Akl (28)

This leads to the sparsegl screening rule (via the triangle inequality): discard a group g if

1S(Vgf(BOW), Aka)ll2 < wy(1 — @)(2A41 — A)- (29)

This screening rule uses a different Lipschitz assumption (Equation 28), which leads to a different
group-level rule. The DFR group Lipschitz assumption (Equation 10) is more consistent with the
work of Tibshirani et al. [40], as the assumption is with regards to the dual norm of the full SGL
norm, rather than just the group lasso component.

C.2. GAP safe

An exact feature reduction method for SGL was proposed in Ndiaye et al. [27] under linear regres-
sion. The approach makes use of the sub-differential inclusion equation of Fermat’s rule [2]:

XTOWIHe) e g - | gl( 3N llsey (30)

where © is the solution to the dual formulation of Equation 1. Using this, exact (theoretical) rules
are derived to determine which variables and groups are inactive at the optimal solution. The rules
are theoretical as they rely on Ol llset | which is not available in practice. Instead, a safe region is
constructed that contains the optimal dual solution; in Ndiaye et al. [27] it is taken as a sphere, but
other regions can also be used (such as domes). Due to these safe regions, the reduction is generally
more conservative.
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The safe sphere is defined as B(O,, ) wiAth center O and radius . An ideal region would be
such that 7 is small and the center is close to ©MII'lls, Using this safe region, the GAP safe rules at
Ak41 are derived as, for a variable 7 and group g,

Variable screening: | X;" O] + 7| X;l2 < 7 = Bi(Aeg1) =0, (31)
Group screening: 7y < (1 — a)/Dyg — B9 (\p1) =0, (32)
where
(18G4l Xl X Ol > o .
g (I1X, Oclloc + 7| Xgll — @)1, otherwise.

The center O, and the radius r are derived using the duality gap and are calculated at iteration ¢ in
an iterative algorithm as

Yy — Xﬁ(t) , (ﬁ o) ) B 2P)\k+1,a(ﬂ(t)) - D)\k+1(®t)
max(Aeer, [ X1 (y — XB)lzg) ! Y ’
(34)
where P, ,, and D) are the primal and dual objectives, and ,B(t) is the primal value at iteration ¢.
The radius and center are expensive to evaluate, so are calculated every 10 iterations [27].

The above formulation combines both dynamic and sequential screening. The method can also
be implemented using just sequential screening, in which the primal values used in the calculation
of the center and radius are from ).

For both the GAP safe rules and DFR, theoretically it would be possible to exactly identify the
active sets, but both instead require approximations. While GAP safe has different implementations,
we present the best-performing versions in our studies.

O:(Bw) =
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Appendix D. Synthetic data analysis

This section complements Section 3.1 by providing further information about the simulation set-up
and additional results generated for the synthetic data. Additional tables and figures are provided
that further showcase the effectiveness of DFR. In particular, results from applying screening to
interaction detection (Appendix D.3.4) and cross-validation (Appendix D.3.5) are presented. All
synthetic results, from the main text and the appendix, are repeated using a logistic model (Appendix
D.4).

D.1. Metrics

The following metrics are shown in the tables in the appendix:
» Ay, Ay the number of active variables/groups.
* Cy,Cy: the number of variables/groups in the candidate sets.
* O, Og4: the number of variables/groups used in the optimization process.

* K¢, Ky: the number of variable/group KKT violations. DFR only checks for group violations
and sparsegl only checks for variable violations.

* O,/ A,and Oy / Ay: the proportion of variables/groups used in the optimization against the
number active. Defines how efficient the rules are. A low number is preferred.

* O, /pand Oy / m: the variable/group input proportion, as defined in Section 3.

* /5 distance to no screen: {5 from the fitted values obtained with screening to without.
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D.2. Set up

Table A2: Default model, data, and algorithm parameters for the synthetic and real data analyses.

Category Parameter Values
Synthetic Real
Model
o 0.95 0.95
Y1 = 2 (aSGL only) 0.1 0.1
Path length () 50 100
Path termination (\;) 0.1\ 0.2)\
Path shape Log-linear Log-linear
Data
P 1000 -
n 200 -
m 22 -
Group sizes [3,100] -
B N (07 4) -
Variable sparsity 0.2 -
Group sparsity 0.2 -
P 0.3 -
€ N(0,1) -
Algorithm (ATOS)
Max iterations 5000 10000
Backtracking 0.7 0.7
Max backtracking iterations 100 100
Convergence tol 1075 1075
Standardization 0y 12
Intercept Yes for linear  Yes for linear
Warm starts Yes Yes
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D.3. Additional results and commentary
D.3.1. KKT VIOLATIONS

KKT violations for DFR are very rare. Across all experiments, DFR-SGL had only a single KKT
violation (Table A12). Violations were more common for DFR-aSGL and sparsegl, but were still
rare. In the experiment in which DFR-SGL had its only violation (Figure 2 (below)), DFR-aSGL
had a violation every 1739 fits, and sparsegl had one every 53900 fits. Note that sparsegl violations
refer to group violations and DFR-aSGL to variable ones. It is more likely for there to be a variable
violation, given that p > m. In some instances, sparsegl demonstrates more efficient group-level
screening (Table A8), while on other occasions DFR-SGL is more efficient (Table A11). However,
the elevated number of KKT violations for sparsegl suggests that the Lipschitz assumption of DFR
is more robust.

D.3.2. COMPARISON TO GAP SAFE

In Figure 1, a spike is observed around p = 800. In this case, the groups were fixed at size 20, and
so for each value of p the group sizes, as a proportion of the input, are different. It is possible that
p = 800 represents a sweet spot where the grouping structure favors bi-level screening. For small p,
the grouping structure would dominate, so that discarding one of the few discrete chunks of groups
would have a large influence on computational savings. On the other hand, as p becomes large, the
grouping structure becomes less important, as there are many small groups.

0.050
0.28
0.045 -
=l -
8 0.26
=
© 0.040 - -
<9 0.24
9
&
45 0.035 - 0.22
o
R 0.20
0.030
0.18 -
0.025 -y T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Dimensionality (p) Dimensionality (p)
DFR-SGL DFR-aSGL sparsegl GAP dynamic GAP sequential

Figure A2: The input proportion for strong against safe rules, applied to synthetic data, as a function
of the dimensionality (p), with 95% confidence intervals. sparsegl has been separated into the right
plot, using a different y-scale, so that the narrow differences between the other methods can be
observed.

D.3.3. ROBUSTNESS

A clear benefit of DFR over sparsegl is observed under very sparse signals (Figures A3 and A4).
It is clear that screening rules have an increasing impact as the signal becomes sparser. However,
when the signal saturates, screening approaches perform similarly, as their effectiveness is reduced.
DEFR is further found to be relatively unaffected by the strength of the signal and provides a benefit
regardless of the strength (Figures A3 and A4).

DFR-aSGL was also found to be robust under different values of y; and -y, (Figure A6).
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10 =

Improvement factor

0.1 0.2 0.3 04 O 5 10 15 20
Sparsity proportion Signal strength
DFR-SGL DFR-aSGL sparsegl

Figure A3: The improvement factor for the screening methods applied to synthetic data, as a func-
tion of the data sparsity proportion (left) and signal strength (right), with 95% confidence intervals.

0.6
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0.1 0.2 0.3 0.4 0 5 10 15 20
Sparsity proportion Signal strength
DFR-SGL DFR-aSGL sparsegl

Figure A4: The input proportion for the screening methods applied to synthetic data, under the
linear model, as a function of the data sparsity proportion (left) and signal strength (right), with
95% confidence intervals.
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Figure AS5: The improvement factor for the screening methods applied to synthetic data, under the
linear model, as a function of the data correlation (left) and « (right), with 95% confidence intervals.
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Figure A6: Robustness of DFR-aSGL under different y; = o values for the weights, shown for
linear (left) and logistic (right) models, with 95% confidence intervals. The data was generated
using the parameters in Table A2.

D.3.4. INTERACTION DETECTION

The setup of the interaction data is as described in Section 3.1 for the marginal effects. For the
interactions, within each group, all possible interactions of order 2 and 3 were generated. DFR
is able to provide large computational savings when fitting interactions, especially compared to
sparsegl, which under order 3 interactions provides only a marginal benefit (Table A3 and Figure
AT). These savings make it more feasible for sparse-group models to be used in interaction detection
problems. Such challenges are frequently seen in the field of genetics, where gene-gene and gene-
environment relationships are useful discoveries [6, 47].

Table A3: The improvement factor for the strong rules applied to synthetic interaction data, with
standard errors. The parameters of the synthetic data were set as p = 400,n = 80, and m = 52
groups of sizes in [3,15]. The interaction input dimensionality was po, = 2111, po, = 7338 for
orders 2 and 3, with no interaction hierarchy imposed. An active proportion of 0.3 was used (using
the same signal as the marginal effects).

Interaction
Method Order 2 Order 3

DFR-aSGL 137.3£12.0 54.0£10.7
DFR-SGL 44.3+24 23.6+3.1
sparsegl 7.4+0.9 1.2£0.3
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a Order 3
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Figure A7: The input proportion for the strong rules applied to synthetic interaction data, under the
linear model, with standard errors. The parameters of the synthetic data were set as p = 400,n =
80, and m = 52 groups of sizes in [3, 15]. The interaction input dimensionality was po, =
2111, po, = 7338 for orders 2 and 3, with no interaction hierarchy imposed.

D.3.5. CROSS-VALIDATION

Cross-validation (CV) is an important tool for tuning A. However, due to its cost, « is often set
manually, rather than included in a grid optimization scheme. Using DFR with 10-fold CV yielded
computationally gains (Table A4) that enable future tuning schemes for SGL to consider both o and
A, and aSGL to include the weight hyperparameters 1, 2.

Table A4: The improvement factor for the screening methods applied to synthetic data, under the
linear and logistic models, with cross-validation (CV), with standard errors. The data was generated
using the parameters in Table A2.

Method Linear = Logistic

DFR-aSGL 39+0.2 23+0.1
DFR-SGL  4.2+£0.3 26%£0.1
sparsegl 20£02 21+0.1

D.3.6. RESULTS TABLES FOR THE LINEAR MODEL
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D.4. Results for the logistic model

The data input components X, 3, and e for the logistic model were generated as for the linear
models. The class probabilities for the response were calculated using o (X + €), where o is the
sigmoid function.

D.4.1. ROBUSTNESS
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Figure A8: The improvement factor for the screening methods applied to synthetic data, under
the logistic model, as a function of the data correlation (left) and « (right), with 95% confidence
intervals.
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Figure A9: The input proportion for the screening methods applied to synthetic data, under the lo-
gistic model, as a function of the data correlation (left) and « (right), with 95% confidence intervals.
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Figure A10: The improvement factor for the screening methods applied to synthetic data, under the
logistic model, as a function of the data sparsity proportion (left) and signal strength (right), with
95% confidence intervals.
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Figure A11: The input proportion for the screening methods applied to synthetic data, under the
logistic model, as a function of the data sparsity proportion (left) and signal strength (right), with
95% confidence intervals.

D.4.2. INTERACTION DETECTION

Table A23: The improvement factor for the strong rules applied to synthetic interaction data, under
the logistic model, with standard errors. For the interaction data, the parameters of the synthetic
data were set as p = 400,n = 80, and m = 52 groups of sizes in [3, 15]. The interaction input
dimensionality was pp, = 2111,pp, = 7338 for orders 2 and 3, with no interaction hierarchy

imposed.

Interaction
Method Order 2 Order 3
DFR-aSGL 6.7+04 122404
DFR-SGL 5.8 +0.2 8.3+04
sparsegl 1.0+0.1 21403
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Figure A12: The input proportion for the strong rules applied to synthetic interaction data, under
the logistic model, with standard errors. The parameters of the synthetic data were set as p =
400,n = 80, and m = 52 groups of sizes in [3, 15]. The interaction input dimensionality was
po, = 2111, po, = 7338 for orders 2 and 3, with no interaction hierarchy imposed.

D.4.3. RESULTS TABLES FOR THE LOGISTIC MODEL

38



DuAaL FEATURE REDUCTION

0+0 0+0 er-0T X LF (10T X€ 8¥VFCCET GIFEGHI TOF&T L'TF2E99 CVFVL6 10dS4dVvdS

0F0 0F0 c1—0I XCF 10T XC TCTF66L C9FECSYL <CO0FO07¥ SOF¥V¥C CVF VL6 TOS-d4d
0F0 0F0 11-0T XGF 0T X T 8TFEEL T'9+¢¢CEl T0+8¢ ¥'0F L1C 7'¢F 098 TOSvV-¥44d
NHHYOS  NHHIOS ON NHH¥OS ON OL NHIIOS NHHYOS ON  ¥0LOVd LNHWHAOYIW] (S) NHHYDS  (S) NHHIDS ON AOHLAN
FONIDYIANOD ATV HONVLSIA &) SNOILVIAL] SONINL],

"SIOIIQ pIepuels s umoys ‘sjutod yied pue ‘sased UOIIB[AII0D ‘SUOTIRI)
uone[UIS [[B I2A0 pageraae ‘((3J9]) 6V Pue 8y SINSL) UONB[NWIS UONB[ALIOD Yy} 03 Surpuodsariod sommowl Sumy [OpoN 97V 9[qelL

GT00°0 F ¢6.L€°0 L0€0°0 F L66E°6 — 0G°'TFLT6LE O0GTFI9T6LE 91T°0F 68°GY TDdSIVdS

70T X ¢+ T1L0°0 G000 F VP9’ T 0FO0 GG0FT01L 800 F 10°L¢ 91°0 F 68°4¥ T1OS-¥44d

=0T X CFEV90°0 <¢c00'0F L8YI'T 50T X9FGI9T0°0 020 F SE€¥9 200 F 8¢'V¢ GT'0F 8L Ty TOSVv-¥dd

d/o Vv /0 “y “0 ) 0% JOHLAN
NOILYOdO¥d LNdN] ALITYNIQEV)

"SIOLIQ pIepuels s umoys ‘sjutod yjed pue ‘sased UOIIB[ALIOD ‘SUOTIRIN
uone[nWIs [[& J9A0 pageiaae ‘((3J9]) ¢V Pue Y saInSI) UONB[NWIS UONE[ALI0d Ay} Surpuodsaliod soljaw JuruaaIds 9[qeliep STV 9[qRL

ET000F ELVED ¢ 0T XTFL960 0T X9F;,-0IXC €0FFIL €00FV9L €00F8GL TOHSAVAS

$100°0 F 92260 €100°0 F 62S0°T  — €00F 028 €00FO08 €00FQSEL  TIDS-IAA

€100°0 F#65€°0  ©100°0 F 6L€0°T  — €00FI6L €00F06L €O0FIVL TOSV-¥AA

w /0 v /%0 oy Ko ) T 0y dOHLIN
NOILJIOdOdd LNdN] ALI'TVNIQYV)

"SIOIIQ pIepuels Yim umoys ‘sjutod yjed pue ‘sased UOIB[OII0D ‘SUOTIRI)
uone[nUIS [[B I9A0 pagerdae ((1J9]) 6V pue gV saIn3I{) uone[nuils UOIB[ALIOD 3y} 0) Surpuodsariod soujaw Juruaalds dnoin) 47y 9[qel,

39



DuAaL FEATURE REDUCTION

0F0 0F0 e1-0L X9 F 0T X¥ 6CFG69T 8CF 89T ¢00F 0T CVF LT 6'TF8L0T TOHSAVCS
0F0 0F0 11-0L XV F ;0T X 6TF8ECT KVCTFYIVT CO0FLC ¥'1+ 168 6T+ 8L01 TOS-d4d
0F0 0F0 11-0T XCTF 10T XT TTFGCIT GTFLCST ¢00F3CC CTF61G T'¢c+ S 10T TOSvV-¥44d
NHHYOS  NHHIOS ON NHH¥OS ON OL NHIIOS NHHYOS ON  ¥0LOVd LNHWHAOYIW] (S) NHHYDS  (S) NHHIDS ON AOHLAN
FONIDYIANOD ATV HONVLSIA &) SNOILVIAL] SONINL],

"SIOIIQ pIepuels s umoys ‘sjutod yred pue ‘sased
0 ‘SUOTIRIAII UOIB[NWIS [[B I9A0 pageraae ‘((WYSL) gy pue gy SaIn3L]) uone[nuis » 3y} 0} Surpuodsariod sommaw 3umy [SPON 62V °IqeL

GT00°0 F 129%°0 606¢°0 F IC6T° LT — TGTF L0297 TG TF90L97 6L°0F 98°98T TOASYVdS
0T00°0 F ¢162°0 9¢00°0 F 168€°T 0T XEF 0L X¥ COTFSIT'TIGC ¥E0F<Cccl 6.°0 F 9L°981 T1OS-¥44d
e~ 0T X TF98¢C°0 62000+ TGLE'T =0 XTF 40l X6 660FK88C TI€0FP84GH9 LL0OF06°6LT TDSV-¥4d
/o Vv /"0 “y 0 ) 0 AOHLAN

NOILIO0dOdd LNdN] ALTTVNIAYV)

*SI01I9 pIepuels Yim umoys ‘syurod yied pue ‘sased o
‘SUOIIBIA)I UONB[NWIS [[€ JOAO paSe1aae ‘((1ySH) gy pue gV saing1) uonenuis 0 9y} 0 Surpuodsariod soLjow SUIUaaIds 9[qeLIeA 87V 9[qeL

40

$T00°0 F L8S7°0  TTO0FCIEET O0FO0 €00F 00T €00F Q00T €00FPL6  TOASHVS

€100°0 F 08F°0  ¢T00°0 F 8CT160 — €O0FTE6 €O0FO086 €00FEL6  T1OS-¥AA

€100°0 F 1LG8°0  €100°0 F S068°0 - CO0F 9L  €O0F9L  €OOTFIFS TOSV-MIA

w /"0 v /"0 by °0 ) by dOHLAN
NOILJIOdOdd LNdN] ALI'TVNIAYV)

"SI01I9 plepuels Yim umoys ‘syutod yred pue ‘sased 0
‘SUONBIA)I UonB[NUIS [[B I9A0 pageraAe ‘((Y3u) gV pue gy saingL]) uonenuis © ayj 03 Surpuodsariod soaw Sutuaards dnoin) /7y 9[qelL,



DuAaL FEATURE REDUCTION

0F0 0F0 z1-0T XCF 1-0I XSG F0F9€9 FOF07¥9 T0F9T 6°0Fc9v 0'TF+98% IDESAVIS

0F0 0F0 z1-0IL X E€F 10T XT FOF6Cy TOFO0OTV9 T0F6C S0+ 49V 0'TF987V TOS-¥4d
0F0 0F0 11-0L X7 F ;0T X8 FO0OF90r ¥O0F6LS T0F6C 7'0FC'IC SOFVIV TOSV-¥44d
NHIYDS  NHIYOS ON NHHIDS ON OL NATIDS NAZIOS ON  ¥OLOVA LNHWHAOYAN] (S) NHFIDS  (S) NIHIDS ON AOHLIAN
HONADYAANOD ATV HdONVLSIA &) SNOILV ¥4.L] SONINIL

"SI0119 pIepuels s umoys ‘syutod yred pue ‘sased uontodoid Asreds ‘suoneranr uone|
-nuwIs [[e J9A0 pageraar ‘((3J9]) 11V pue 01V sein3r]) uonemnuis uontodoid Ayrsreds oyj 01 Surpuodsariod soaw Sumy [OpoIN €V 9IqeL

LT00°0 F298%°0 18600 F 1€6°0l - 99'T FQI'OSF 99'T FQI'9SF 10 F6IES  TIOASAVdS

»-0T X € FTIGLO'0 22000 F 0667’ T 0F0 SCOFLOCL S00FITVe TC0OF6IES TOS-MIAA

» 0T X € F2890°0 T200°0 F¥S9¥'T 5 0T X LFTI1200 9Z0F¥L'89  L00FETe COFIO6V T1OSV-¥44dd

d/o Vv /0 “y “0 “ oy dOHLIN
NOILJOdOdd LNdN] ALT'TVNIAYV)D

"SIOLIQ pIepue)s s umoys ‘syutod yyed pue ‘sesed uontodoid Ajisreds ‘suonera) uonenuwirs
[1e 19A0 pageraae ‘((1J9]) 11V pue 01V soin31q) uoneuis uontodoid Aysreds oy 01 Surpuodsariod soLaw JUIUSAINS [QRLIBA [V 9[qQRL

GTIO00F €EPP'0  -0T X8FTPEOT O+0 €00+FGL6 €00+GL6 €00+F6E6 QISEINALN

9100°0 + €€ELV'0  €T00°0 + 8VET'T - €00FTP0T €00FTIPOT €0°0+F6E6 1DS-d44d

GT00'0 F 687%'0 TT100°0F €E0T'T - €00F 886 €00FL86 €00F606 TOSV-¥44d

w /50 ) by 50 51 5y AOHLAN
NOILJOdOdd LNdIN] ALITVNIAIV)

"SIOLIQ pIepuels pim umoys ‘syutod yred pue ‘sased uontodoid Ayisieds ‘suonera) uone[nuwis
[[e I2A0 pageraae ‘((39]) [V pue 01V sainSr]) uonenuwis uoniodoid Aysreds ayy 01 Surpuodsariod somow 3uruaards dnoin) gy 9[qel

41



DuAaL FEATURE REDUCTION

0F0 0F0 er-0T X6F 1-0T X8 G0FG€Y LO0FEIL T0OF LT L0+ 8'8€ 80 F 09% IDESAVIS

0F0 0F0 zi-0T X TF 10T X8 GO0FC9¢ LOFEI9L T'0F¢¢ 70 F 002 80 F 097 T1OS-¥4d
0F0 0F0 1-0IXGF 0T XT FOFO0OTIS 90FC89 T0FVeE G0 F 81T 0T+ 609G TOSV-¥44d
NHIYDS  NHIYOS ON NHHIDS ON OL NATIDS NAZIOS ON  ¥OLOVA LNHWHAOYAN] (S) NHFIDS  (S) NIHIDS ON AOHLIAN
HONADYAANOD ATV HdONVLSIA &) SNOILV ¥4.L] SONINIL

"SI0IIQ pIepuels YPim umoys ‘sjutod yied pue ‘sased yiuamns [euIIs ‘SUONBINT
uone[NUIS [[€ I9A0 pageraae ‘(IY3L) [V pue O]V SIn3L]) uonenuwis yi3uans [eusis ay) 0} urpuodsariod sorow Sumy [SPoJA SEV 9[qel,

11000 F €065°0  ¢S10°0 F 90659 — LOTF 62062 L0TF6806C CI'0FEELSy  1OASAVdAS

»-0T X ZF8990°0 F100°0F LL8ST 0FO0 IT0FRLO9  900F6I€C CIOFEeer TOS-¥Id

»- 0T X ZFTI90°0 FI00°0 F8ETST 5 0T XSGFIFI00 STOFOTT9  SO0F¥S0c Sr'0Feeehr 1OSV-¥44d

d/o Vv /0 “y “0 “ oy dOHLIN
NOILJOdOdd LNdN] ALT'TVNIAYV)D

"SI01IQ pIepue)s s umoys ‘syutod yred pue ‘sased yiduarls [euFIs ‘SUONRII UOTR[NWIS
I8 39a0 pasderaae ‘((WYSW) 11V pue O]V semsSy]) uonemuis ySuans Teusts oY) 03 Surpuodsarrod sommew SUIUAIDS J[qeLIBA HE€V 9[qBL

¢— 0T XTFV65C0 ¢ 0T XTF+29560 ¢ 0IXCF¢-0IXc <CO0+FILEG 2C00FTILG ¢00+F08¢G TDHSAVIS

TT00°0 + 268¢°0 ¥100°0 + 7960°T - ¢00+629 ¢00+629 <c00+08¢G 1DS-¥44d

100°0 F 97.Lc°0 ¢100°0 F ¢ve0'1 - ¢00F¥09 <cO0F¥09 <200FLLSG TOSV-¥dd

w /50 5y /60 by 50y 51 by QOHLAN
NOIL40dOdd LNdN] ALITVNIAIV)

"SIOIIQ pIepuels im umoys ‘sjutod yied pue ‘sased yiuans [euSIs ‘SUONELIT UOTJR[NUIS
[[e 19A0 paderdae ‘((YSW) [V Pue O]V SeIn3Lj) uonenuis ysuans [eusis ay) 0} Surpuodsariod somew Juruaards dnoin ¢y 9[qel,

42



0F0 0F0 11-0L XCF 10T XG EVFT19¢ C9F 78 ¢0F¢ 9GT + L9TT 16 + LLOT ¢ 49ad0 TOISYUVdS
0F0 0F0 11-0L X TF+ 40T XSG 6LIFIY <C9F7I8 7O0FS8 8F 7¢I 16 + LLOT € 49ad0 TOS-d4d
0F0 0F0 11-0T X8 F - 0T X ¢ CI F+84¢ LG+ 4E8 0T+¢1 0T + 80¢ 86T + SCVe € d4AI0  TOSV-Id4dd
0F0 0F+0 11-0T XCF 40T XTI CIF+ L6T 8T+ 92¢ TOFT 0¢ + L9¢ €1 + €4¢ T 44dd0 TOASAVdS
0F0 0F0 11-0T X TF 0T XL GF991 8T + 9¢¢ ¢0F9 ¢+ Gy €1 + €4¢ T 44dd0 TOS-¥44dd
0F0 0F0 01-0T X TF -0 X ¢ ¥+ 041 ST F+ 90¢ 7O+ 2L S+ 89 ¢C + LS¢ C¥dadQ 1HOHSV-Id4dd
NEI¥DS  NAFIOS ON NHIYOS ON OL NHIYOS  NAFIOS ON  YOLOVA INFWHAOUIW] (S) NHIUOS  (S) NITIDS ON HdAL AOHLAN
FONADYTANOD AFTIV AONVLSIA &) SNOILVYAL] SONTIIL

‘SIOIIQ pIepuels ym umoys ‘sjutod yjed pue suoneIa
uone[nuWIs [[& 19A0 pageroae ‘(Z]V 2SI pue €7V 9[qeL) UONB[NWIS UONJRIAUI ) 0) Surpuodsaiiod sommaw Sumy [9pojN :8€V 9[qeL

43

DuAaL FEATURE REDUCTION

0€00°0 F 2620 ¥S8T'0F V02 0C — GGCTFVESST CY9CFTEIRT T'TFRECY ¢ dddd0 T1OdSdvdS
F000°0 F 1€0°0 G200 F 628°¢C 0F0 8CF CVCC ST FEGPI T'TFLC8 ¢ ddAd0 T1OS-d94d
¢000°0 F €200 ¢GC0'0F <0vc 700°0 F84G0°0 0¢CF L 891 GTFLL6 OTFT¥L. ¢€dHAAO TOHSV-¥ddd
0€00°0F892¢°0 GLO0F9CO0'ET — ¢'9F 179946 ¢'9F 7999 7'0FQ0F <CTddddQ T1OdSdVvdS
70000 F8E0°0 6000F 166°T 0F0 SO0FT108 TOF 0TV 7'0F0F T dddd0 1DS-¥44d
€000°0 F7E0°0  LOOO0OF €LLT 7000 F 1800 LOFT1CL CO0FT1°€¢ 7OF 90y <CTHdAdI0 TOHSV-¥Y4dd
/o v /°0 “y 0 ) 0% qdAL QOHLAN
NOILJIOdOdd LNdNT ALTTVNIAYEV)D

‘SIOLIQ pIepuels s umoys ‘sjutod yjed pue suoneIalr
UOIR[NWIS [[8 JOAO PageIaAt ‘(7] V 2In31] puk ¢7V 9[qel) UONB[NWIS UONIBISIUI oY} 0} Surpuodsaiiod sOuaw JUTUaIdS 9[qeLIBA /€Y 9[qRL

¢00'0FG8T'0 €000FGICT 0Ll XCF3-0IXC CGOFEC6T <C¢OFE6I CTOFEGL ¢ dHAI0 T1OdSdvdS
¢00°0+8¢¢'0 9000+F¢cs1T — CO0FLEC C€0FLEC COFEGT ¢ ¥ddad0 T1OS-d44d
G000 F 06T°0 SO000F96¢eT - COFS6T CTOF66T COFIF¥L ¢ddad0 TOHSV-¥Y4dd
c00'0F10C0 €000F6ST'T - 0IXCgF3-0IXC C¢0F60¢ ¢O0F60¢c <¢OFLLI TdHAI0 T1OdSdvdS
G000 F 020 SO00FO6IVT — ¢GOF0G <C0F0G COFLLI TH¥ddd0 T1OS-d94d
6000+ c¢cc0 ¥000+F0ceT — GOFTEE COFTEC COFI9LT THHAIO TOSV-Y4dd
w /%0 v /%0 by 50 ) By qdAL QOHIAN
NOILLMOdO¥d LOdN] ALITYNIAHYD

"SIOIIS pIepuels s umoys ‘sjutod yied pue suoneIa
UONR[NWIS [[B JI9A0 pagelaAk ‘(Z[V 2InSL] pue ¢ZV 9[qeL) Uone[nuwiIs uonorIdul 3y} 0} Surpuodsariod souow Juruealds dnoin) :9ey 9[qe],



DuAaL FEATURE REDUCTION

Appendix E. Real data analysis
E.1. Data description

* brcal: Gene expression data for breast cancer tissue samples.

— Response (continuous): Gene expression measurements for the BRCA1 gene.
— Data matrix: Gene expression measurements for the other genes.

— Grouping structure: Variables are grouped via singular value decomposition.

* scheetz: Gene expression data in the mammalian eye.

— Response (continuous): Gene expression measurements for the Trim32 gene.
— Data matrix: Gene expression measurements for the other genes.
— Grouping structure: Variables are grouped via singular value decomposition.
* trust-experts: Survey response data as to how much participants trust experts (e.g. doctors,
nurses, scientists) to provide COVID-19 news and information.
— Response (continuous): The trust level of each participant.

— Data matrix: Contingency table including factors about participants (e.g. age, gender,
ethnicity).

— Grouping structure: The factor levels grouped into their original factors.

* adenoma: Transcriptome profile data to identify the formation of colorectal adenomas, which
are the predominate cause of colorectal cancers.

— Response (binary): Labels classifying whether the sample came from an adenoma or
normal mucosa.

— Data matrix: Transcriptome profile measurements.

— Grouping structure: Genes were assigned to pathways from all nine gene sets on the
Molecular Signature Database.

* celiac: Gene expression data of primary leucocytes to identify celiac disease.

— Response (binary): Labels classifying patients into whether they have celiac disease.

— Data matrix: Gene expression measurements from the primary leucocytes.

— Grouping structure: Genes were assigned to pathways from all nine gene sets on the
Molecular Signature Database.

* tumour: Gene expression data of pancreative cancer samples to identify tumorous tissue.

— Response (binary): Labels classifying whether sample is from normal of tumour tissue.

— Data matrix: Gene expression measurements.

— Grouping structure: Genes were assigned to pathways from all nine gene sets on the
Molecular Signature Database.
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Table A39: Dataset information for the six datasets used in the real data analysis.

Dataset P n m  Group sizes Type Source
brcal 17322 536 243 [1,6505] Linear [16]!
scheetz 18975 120 85  [1,6274] Linear  [35]!
trust-experts 101 9759 7 [4,51] Linear  [34]?
adenoma 18559 64 313 [1,741] Logistic  [33]°
celiac 14657 132 276 [1,617] Logistic [14]°
tumour 18559 52 313 [1,741] Logistic  [8, 21, 30]°

1. downloaded from https://iowabiostat.github.io/data-sets/
2. downloaded from https://github.com/dajmcdon/sparsegl
3. downloaded from https://www.ncbi.nlm.nih.gov/
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E.2. Additional commentary

Three of the datasets, brcal, scheetz, and trust-experts, have continuous responses, so are fit using
an SGL linear model. The former two were also analyzed with regards to screening rules in Larsson
and Wallin [18], and the later in Liang et al. [23]. The other three datasets, adenoma, celiac, and
tumour, have binary responses, so an SGL logistic model is used. The frust-experts dataset is low-
dimensional, and the other five are high-dimensional.

Even in the case of low-dimensional data (trust-experts), DFR provides a clear benefit. DFR-
aSGL performs very well for scheetz and adenoma, improving the computational cost by over 600
times. For the scheetz dataset, the aSGL model had more difficulty converging without screening
compared to SGL, so DFR-aSGL offered a greater advantage over DFR-SGL. For adenoma, the
active set for aSGL was smaller (Table A41), due to the increased penalization that comes with the
adaptivity. However, despite the advantage of a smaller active set, we do still observe that DFR-
aSGL was more efficient at reducing the optimization set, with respect to the active set.

DFR is observed to aid in mitigating convergence issues for both SGL and aSGL (Table A42).
Across all datasets, DFR encountered no failed convergences. In contrast, sparsegl did not converge
at several path points for both adenoma and scheetz. As sparsegl only screens groups, when a group
enters the optimization set, sparsegl is forced to fit with the full group, which can contain noise
variables. Applying no screening led to SGL not converging for adenoma, scheetz, and tumour. By
drastically reducing the input space, convergence issues arising from large datasets are resolved,
which not only improves computational cost, but also solution optimality.

E.3. Additional results for the real data
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Figure A13: The input proportion as a function of the shrinkage path for the screening methods
applied to the real datasets.
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