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Abstract
We propose AtoMAE (Atomistic Transformer
with Masked Autoencoder) for deciphering three-
dimensional protein structures using limited bi-
ological prior knowledge. Rather than relying
on amino acid identifiers or backbone markers,
the model uses voxelized protein structures with
atom types as its sole input. These atomic vox-
els allow for the use of a Vision Transformer ar-
chitecture pre-trained via Masked Autoencoder
framework. Through its self-supervised recon-
struction approach, AtoMAE preserves spatial
context while achieving superior performance
and scalability without strong inductive biases or
complicated modules. In structural classification,
AtoMAE outperforms both protein language mod-
eling and graph neural networks by effectively
capturing both short- and long-range relationships.
Furthermore, AtoMAE can predict residue iden-
tities from backbone structures alone, achieving
accuracy comparable to inverse folding models
while preserving architectural simplicity. These
results encourage a design shift towards models
that autonomously learn multi-level biological un-
derstanding, from structure to residue, instead of
relying on architectures with deeply encoded do-
main knowledge.

1. Introduction
Are the extensive biological priors we embed in protein mod-
els necessary? Recent neural network approaches typically
hard-wire biological knowledge into architectures by assum-
ing it is essential for performance. Graph representations
for protein structures serve as a canonical example. Nodes
typically encode spatial coordinates of alpha carbon atoms
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(Cα) alongside amino acid identities (Ingraham et al., 2019;
Zhang et al., 2023) and are sometimes augmented with
physicochemical properties (Xia et al., 2021), while edges
represent covalent bonds or spatial proximity (Gligorijević
et al., 2021; Zhang et al., 2023). This paradigm inherently
incorporates multiple biological premises, including the
prioritization of backbone atoms and residue interactions.
Though apparently natural, this approach steers architec-
tures toward constrained components, e.g., message-passing
and graph convolutional frameworks, that may limit repre-
sentational expressivity. Appendix A further discusses how
prior works have approached protein structure encoding.

Lessons from modern deep learning challenge this approach.
Extensive prior domain knowledge in neural networks can
sometimes prove not only unnecessary but detrimental to
performance and scaling (Tay et al., 2023; Dehghani et al.,
2023). While appropriate inductive biases ideally benefit
both small and large models and data regimes (Park & Kim,
2022), even seemingly appropriate biases may become coun-
terproductive because neural networks can learn to internal-
ize these principles naturally (Gruver et al., 2023).

This work demonstrates that protein structural understand-
ing can emerge from models with minimal embedded priors.
In particular, we address three questions:

• What information should inform our data represen-
tation? We use only atomic types, deliberately omitting
conventional biological priors such as amino acid type,
backbone identifiers such as Cα, Cβ , sidechain labels,
distance metrics, surface curvature, and dihedral an-
gles (Zhang et al., 2023; Dauparas et al., 2022; Hayes
et al., 2025; Yuan et al., 2023). Neural networks learn
structural characteristics during training.

• Which architectural frameworks should be used?
We employ Vision Transformers (ViTs) (Dosovitskiy
et al., 2021) for their weak inductive bias, pre-trained
using Masked Autoencoders (MAEs) (He et al., 2022)
that offer simplicity, scalability, and exceptional per-
formance while preserving spatial context.

• How should we represent three-dimensional protein
structures? Our models use voxelized featurization of
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protein structures, in line with prior work (Ragoza
et al., 2017; Derevyanko et al., 2018; Bhadra-Lobo
et al., 2023). This voxel featurization seamlessly inte-
grates with ViTs, captures rich structural information,
and sidesteps atom-count assumptions (Pinheiro et al.,
2023; 2024).

Rather than explicitly introducing biological knowledge
through multiple features and architectural constraints, we
minimize prior biases while allowing models to discover
relevant biological principles as detailed in Section 2.

The proposed AtoMAE (Atomistic Transformer with
Masked Autoencoder) model extracts hierarchical infor-
mation from protein structures, revealing insights at both
macromolecular and residue-specific levels. To provide a
multifaceted assessment of protein understanding, we inves-
tigate two complementary tasks: protein structure classifica-
tion and residue-type identification.

Structure classification (Section 3). Despite their remark-
able sequence diversity, proteins can adopt only a limited
repertoire of folds. Classifying such structural homology
has been a central focus of structural biology. AtoMAE sur-
passes conventional protein language modeling approaches
in structural classification by directly incorporating three-
dimensional spatial information, thereby enabling the cap-
ture of short- and long-range interactions crucial for accurate
structural assessment. More importantly, unlike Graph Neu-
ral Networks which face challenges with parameter scaling
(Kipf & Welling, 2017; Li et al., 2018; Oono & Suzuki,
2020; Liu et al., 2024) and global information aggregation
(Alon & Yahav, 2021; Wu et al., 2021; Dwivedi et al., 2022),
AtoMAE achieves superior performance while maintaining
computational efficiency across varying model sizes.

Residue Identification (Section 4). Inverse folding (IF),
i.e., the challenge of predicting amino acid sequences from
desired backbone structures, represents one of the corner-
stone tasks in protein design. AtoMAE also demonstrates
versatility in residue identification tasks, performing effec-
tively not only with complete side-chain information but
also with backbone-only input. In particular, AtoMAE fine-
tuned for IF approaches the performance of specialized IF
models while maintaining architectural simplicity, eliminat-
ing the need for complex components typically required
by competing approaches. This suggests that our stream-
lined approach captures key relationships between protein
structure and residue identity without relying on explicitly
encoded biological priors.

2. Method
A wide range of protein tasks—from structure classification
to protein design—primarily depend on structures. Although

protein language models can encode certain structural ele-
ments (Rao et al., 2020; Rives et al., 2021; Lin et al., 2023a),
we follow the hypothesis that incorporation of 3D struc-
tural data as input features will significantly outperform
sequence-only approaches. This intuition has driven the
increasing adoption of neural networks and pre-trained mod-
els for protein structures across the field (Gligorijević et al.,
2021; Jing et al., 2021; Zhang et al., 2023; Dauparas et al.,
2022; Watson et al., 2023). Currently, graph embedding
dominates structural featurization, representing proteins as
atomic point clouds and interaction networks. However,
our observations reveal that despite encoding spatial infor-
mation, graph neural network approaches fail to capture
the complete structural complexity of proteins, particularly
regarding computational and memory efficiency. Further-
more, these methods suffer from limitations common to
graph-based paradigms such as scaling challenges (Kipf &
Welling, 2017; Li et al., 2018; Oono & Suzuki, 2020; Liu
et al., 2024) and global information aggregation difficulties
(Alon & Yahav, 2021; Wu et al., 2021; Dwivedi et al., 2022).

We present a novel approach to protein structure modeling
that captures the richness of three-dimensional information
via voxelization. Remarkably, our approach introduces no
explicit biological inductive bias, unlike conventional pro-
tein modeling paradigms (Gligorijević et al., 2021; Zhang
et al., 2023; Lin et al., 2023b; Hayes et al., 2025; Dauparas
et al., 2022). Despite this, our experimental results demon-
strate that biological knowledge can be derived from the
pre-training process. The proposed architecture employs
vanilla Transformers with weak machine learning inductive
bias, a design choice offering scalability similar to advances
witnessed in language and vision domains (Kaplan et al.,
2020; Zhai et al., 2022). This work demonstrates that supe-
rior performance in protein-related tasks can be achieved
without relying on strong priors from either biological or
machine learning domains (see Figure 1).

Featurization: Voxelized atom-level protein structures.
We propose an approach using voxel-based representations
to featurize solely atoms from protein structures, exploiting
the advantages of a 3D grid. We primarily focus on three
common protein atom types: carbon, nitrogen, and oxygen,
as including sulfur sometimes degrades the performance
due to its rareness. We use PyUUL (Orlando et al., 2022)
voxelizer at a resolution of 0.5Å to balance computational
efficiency with performance. We truncate protein structures
to 48Å×48Å×48Å volumes, yielding an input dimension-
ality of [3,96,96,96]. One problem with voxels is that
they contain many sparse regions. To address this issue, we
remove sparse tokens to boost predictive performance and
minimize both memory and computational overhead. See
the selective prompting paragraph below for more details.
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Figure 1: AtoMAE consists of a Vision Transformer that takes patchified voxelized 3D protein structures as input.
(a) After applying data augmentation to atom point clouds, including random cropping for protein truncation, the method
voxelizes the atoms and patchifies the large voxel space into small cube tokens for the ViT. A large portion of empty tokens is
excluded, and occupied tokens are primarily used. (b) MAE is applied to pre-train the ViT. After masking out 90% of tokens,
the ViT reconstructs the input protein structures to learn representations. (c) Only the encoder is used for downstream tasks.

Architecture: ViTs for 3D voxel spaces. We employ Vi-
sion Transformers (ViTs) (Dosovitskiy et al., 2021) instead
of convolutional neural networks (CNNs) (He et al., 2016;
Liu et al., 2022) as they rely on weaker inductive biases.
This choice is justified by the difficulty of predefining the
best interaction range for each biological task; consequently,
the extensive receptive field of ViTs (Dosovitskiy et al.,
2021; Raghu et al.; Park & Kim, 2022) offers a promising
path toward a robust protein structure foundation model. In
our approach, we divide protein-containing voxels into 123

subcubes, each with dimensions of 83 (43Å
3
), balancing pre-

dictive performance and computational efficiency. To accom-
modate 3D voxel data, we extend 2D cosine positional em-
beddings (Dosovitskiy et al., 2021) into three-dimensional
space (c.f. Pang et al. (2022); Hess et al. (2022)).

Pre-training: Masked Autoencoders for 3D. For pre-
training, we adapt masked autoencoders (MAEs) (He et al.,
2022) with very few modifications. Recent findings indi-
cate that masked token modeling significantly surpasses
contrastive learning methods in scalable and dense predic-
tion scenarios (Park et al., 2023), suggesting that MAEs
can effectively model biological information from local
protein geometry. During pre-training, we mask p = 90%
of all tokens, which is higher than typical vision settings
(p = 75%). Because the voxel featurization contains sub-
stantial redundant regions, this high masking ratio remains
effective (Mirza et al., 2023; Feichtenhofer et al., 2022; Tong
et al., 2022). The decoder takes both the representation to-
kens produced by the encoder and mask tokens associated
with masked-out input tokens, aiming to reconstruct these

masked tokens into their original protein structures. Depart-
ing from the vanilla MAE approach, the proposed method
omits mask tokens for the removed input tokens to improve
the performance.

Selective prompting: attention masking and sparse to-
ken removal improve the performance. A key improve-
ment over vanilla MAE is selective prompting. By recog-
nizing that not all tokens are equally informative, selective
prompting—which consists of two techniques: self-attention
masking and token removal—enables models to focus on
the most salient tokens (c.f. Rao et al. (2021); Goyal et al.
(2020)). This technique can be applied to both training and
inference without extensive modifications, and can be in-
tegrated into existing pipelines or already trained models
as an off-the-shelf method. First, we incorporate a mask,
M, into the self-attention mechanism (Vaswani et al., 2017;
Dosovitskiy et al., 2021) of ViT as follows:

Attention(Q,K, V ) = Softmax
(
QK⊤
√
dk

+M

)
V (1)

where Q, K, and V are query, key and value derived from
inputs,

√
dk is the dimensionality of the key vectors. Here,

each element of the self-attention mask M is set to −∞ (for
tokens to be disregarded) or 0 (for tokens to be preserved)
under a specified token selection algorithm (c.f. Vaswani
et al. (2017); Devlin et al. (2019)). This binary mask ex-
cludes marked tokens from the attention map by nullifying
their attention scores. The selection algorithm we employ is
rule-based random selection: This approach selects q+% of
salient tokens and q−% of non-salient empty tokens, which
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implies acknowledging the usefulness of a few non-salient
tokens. In particular, we average each token’s values and
apply a hyperparameter cutoff ε = 0 to identify salient oc-
cupied tokens. We employ q+ = 60% and q− = 40% for
zero-shot, and q+ = 100% and q− = 20% for finetuning.

Although the attention mask ignores non-salient tokens in
self-attention, the overall computational and memory com-
plexity remains unchanged. Because one of the main compu-
tational burdens in ViTs is the calculation of self-attention
maps, we propose removing non-salient tokens first using a
hyperparameter ratio ρ. While a small ρ preserves the most
informative regions but yields minimal savings in training
time and memory, a larger ρ can inadvertently remove some
salient tokens while enabling larger models and larger batch
sizes. This allows us to exclude empty regions of voxels
from computation, enabling memory and computationally
efficient handling of large proteins.

Loss: Classification objective improves the performance.
We also modify the reconstruction loss. Our target atom
type-wise densities xi,j are bounded between 0 and 1. In-
terpreting these as target occupancy probabilities allows
the use of a binary cross-entropy (BCE) loss, instead of a
regression-based ℓ2 loss common in MAE for continuous
values. Pre-training is thus reframed as predicting voxel
occupancy probability per atom type, with the model’s de-
coder outputting corresponding probability predictions via a
final sigmoid activation. This approach is akin to performing
per-voxel, per-atom-type logistic regression. To address the
challenge of atom type class imbalance, we integrate im-
portance weights wj for each atom type j. Moreover, small
batch sizes and low learning rates can also mitigate class
imbalance and improve training stability (Shwartz-Ziv et al.,
2023). In sum, the reconstruction loss Lrec is defined as:

Lrec =
1

|N |
∑
i∈N

1

C

C∑
j=1

wj · ℓBCE(xi,j , x̂i,j) (2)

where wj is the class weight, ℓBCE is the BCE between the
ground truth occupancy probability xi,j (a value in [0, 1]
for atom type j in voxel i) and the decoder’s predicted
probability x̂i,j . C is the number of atom types, and |N | is
the total number of voxels.

Dataset: Protein structure curation. In our data curation
process, we retrieve 218k protein structures from the Pro-
tein Data Bank (PDB) (Berman et al., 2000) (cutoff date:
September 2024). To ensure a purely protein dataset, we
remove all entries containing non-protein components. We
then further limit our selection to structures solved by X-ray
crystallography or electron microscopy.

One practical concern is that experimentally resolved pro-
tein structures often have missing atoms (Gall et al., 2007).

We addressed this by using PDBFixer (Eastman et al.,
2017) (Eastman et al., 2017) to repair minor gaps, such as
one missing amino acids or missing atoms of residues. How-
ever, for regions with extensive gaps, we did not attempt
to reconstruct the missing segments, leaving them unfilled
in our final dataset. We lastly remove duplicate protein se-
quences using MMSeq2 (Steinegger & Söding, 2017).

Data augmentation. We employ four data augmentation
strategies—rotation, random cropping, coordinate noise,
and protein substructure sampling—during the pre-training
stage. These methods not only mitigate the lack of training
data issue in comparison to amino acid sequences but also
increase robustness against each form of transformation.

ViTs for proteins rely heavily on the rotation of protein struc-
tures as a data augmentation strategy in contrast to many
popular protein architectures that employ SE(3)-equivariant
modules, e.g., Fuchs et al. (2020); Satorras et al.; Ganea
et al. (2022). Such augmentation, alongside with large-scale
protein structure datasets, enhances both predictive perfor-
mance and rotational invariance (Krizhevsky et al., 2012;
Cubuk et al., 2020; Park & Kim, 2022).

Proteins are often so large that they surpass the voxel capac-
ity dictated by the input dimensions. To address this limi-
tation, we randomly crop regions of the protein structures
so they fit the input volume. This technique with rotation
lets the model remain equivariant with respect to transla-
tion transformation, free from reliance on any particular
coordinate frame.

Experimentally determined protein structures intrinsically
contains prediction errors (Hooft et al., 1996; Read et al.,
2011). We strengthen neural networks’ atomic coordinate
robustness by adding random noise as spatial jitter to each
atom (c.f., Dauparas et al. (2022)). Controlled by the hyper-
parameter σ, the noise is drawn from a three-dimensional
Gaussian distribution, i.e., ξ ∼ N (0, σ2I) where σ = 0.2Å.

While the dataset contains entire protein structures, inputs
may appear in diverse formats, creating a domain mismatch.
To address this challenge, we introduce protein substruc-
ture sampling, a novel technique that strategically fragments
whole proteins into smaller functional units like chains or
domains for use as inputs. In practice, rather than explicitly
decomposing proteins into domains, we can generate in-
puts by integrating samples with the CATH training dataset
(Orengo et al., 1997) for simplicity.

Optimizer. We use AdamW (Loshchilov & Hutter, 2019)
for training, by following the vanilla MAE setting (He et al.,
2022). See Appendix B for detailed configuration and opti-
mizer information for downstream tasks.
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(a) Zero-shot Class classification
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(b) Fine-tuning Class classification
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(c) Zero-shot Architecture classification
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(d) Fine-tuning Architecture classification

Figure 2: AtoMAE outperforms baselines in protein structure classification problems on the CATH dataset. The filled
square and open red squares represent GearNet with distance prediction and other pre-training methods, respectively. (a) In
zero-shot (kNN) Class-level classification (mainly secondary structure prediction), AtoMAE surpasses ESM2, achieving
better accuracy-to-parameter and accuracy-to-latency. GearNet shows comparable parameter-accuracy trends but with higher
latency. (b) These patterns persist in finetuning: structure-aware models (AtoMAE, GearNet) outperform ESM2 in accuracy-
parameter ratio, though GearNet requires significantly more computational resources. (c) For Architecture-level classification
(secondary structure global arrangement), AtoMAE exceeds ESM2’s performance while GearNet underperforms, suggesting
GearNet’s limitation in capturing global information. (d) Models leveraging structural information (AtoMAE, GearNet)
demonstrate significant performance improvements during finetuning compared to ESM2.

3. Structure Classification
This section shows that the proposed method distills struc-
tural cues across scales from local patterns to fold topology.
In particular, it surpasses both protein language modeling,
ESM2 (Lin et al., 2023b), and a graph neural network ap-
proach, GearNet (Zhang et al., 2023), on the CATH classifi-
cation benchmark (Orengo et al., 1997; Sillitoe et al., 2019),
which probes local secondary structure makeup alongside
global spatial arrangement of the elements.

Leveraging the Transformer backbone, the proposed models
scale similarly to those in vision and language fields. In
particular, compared to a GNN, our streamlined architecture
demonstrates superior computational and memory efficiency
relative to parameter count. While Transformers lack built-
in SE(3) invariance (Dosovitskiy et al., 2021; Rojas-Gomez
et al., 2024), extensive data augmentation allows it to learn
such symmetry, an advantage that compounds with more
data.

A preliminary task: structural moieties identification.
The proposed neural networks demonstrate the capability to
identify critical protein structural elements, including back-
bone conformations and Cα positions, without receiving
explicit structural annotations during pre-training. This indi-
cates the models’ understanding of structural components,
which guides their inference of structurally informed output
representations. See Appendix C.1 for more details.

CATH classification as a structural benchmark. The
CATH dataset organizes protein structural domains into a
hierarchical classification system with several levels (i.e.,
Class, Architecture, Topology, and Homology) of increas-
ing specificity. The evaluation framework in this section
leverages this multi-tier taxonomy, with particular empha-
sis on the top two crucial classification levels to assess our
model’s ability to discern both local structures and global
arrangements.

We evaluated the proposed method against established base-
lines using two distinct approaches: zero-shot (k-nearest
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Figure 3: Pre-trained AtoMAE learn SE(3) symmetry.
(a) The invariance error of AtoMAE’s representation with
respect to rotation. Lower invariance error indicates higher
SO(3) invariance. As the training dataset size increases, the
model better learns SO(3) invariance. (b) AtoMAE’s invari-
ance error with respect to translation. Consistent with the
previous result, increasing training data improves translation
invariance. This improvement is consistent across various
translation magnitudes.

neighborhood) and fine-tuning. For the k-NN approach, we
used k = 20. The fine-tuning protocol involves training
for 50 epochs on the S20 dataset (12k training data points)
which is the smallest similarity-based subset of CATH.

CATH: Class-level results. The highest level taxonomy
of the CATH dataset depends on overall secondary-structure
composition, which reflects the proteins’ local geometry.
The classes contain mainly-α, mainly-β, a mixture of α/β,
and proteins with few secondary structures. We include only
the three major classes in the evaluation.

Figure 2a illustrates top-1 zero-shot accuracies of the pro-
posed method and the baselines. From tiny (6M) to large
(385M) parameter models, the proposed AtoMAE con-
sistently outperforms (sequence-only) ESM2 counterparts.
With base-sized (86M) parameters, AtoMAE achieves per-
formance comparable to the 650M-parameter ESM2. A
(graph-based) GearNet pre-trained on distance prediction
(the filled square) follows AtoMAE’s performance curve,
delivering impressive results relative to its parameter count.

However, GearNet requires significant computational and
memory resources due to its mechanisms such as message
passing (Zhang et al., 2023), offering only a limited latency
advantage over ESM2 despite incorporating structural infor-
mation. Additionally, unlike Transformers, GearNet exhibits
performance degradation with increased layer depth in other
tasks such as Enzyme Commission number prediction. This
scalability limitation has been observed across protein fields
(Gligorijević et al., 2021; Hsu et al., 2022) and other GNN
applications (Kipf & Welling, 2017; Li et al., 2018; Oono

& Suzuki, 2020; Liu et al., 2024). We were unable to report
GearNet’s performance on deeper architectures for CATH
due to checkpoint unavailability.

Figure 2b shows the top-1 accuracy of the fine-tuned models.
In this task, AtoMAE achieves significant improvements
when fine-tuned by effectively encoding structural informa-
tion from the training dataset; even the smallest (6M) vari-
ant of AtoMAE outperforms large (650M) ESM2. GearNet
maintains its parameter efficiency advantage over ESM2,
though at the cost of increased computational latency.

These results demonstrate that AtoMAE’s pre-training pro-
cess instills a robust understanding of structural informa-
tion, particularly local characteristics. AtoMAE achieves
this despite its constrained training dataset, enabling trans-
fer to downstream tasks that depend on protein structural
properties, surpassing other baseline approaches even under
data-limited conditions.

CATH: Architecture-level results. The second level of
CATH classification, exemplified by structures such as 2-
layer sandwich and α-β barrel configurations, primarily
depends on the 3-D arrangement of secondary structures. To
evaluate the global properties of pre-trained representations,
we compare methods at this level using the 40 subclasses
derived from the three categories used in the previous task.

Figure 2c shows the zero-shot top-1 accuracy on
architecture-level classification. AtoMAE outperforms
ESM2 in large parameter regimes (86M, 385M), aligning
with MAE’s capacity to encode global information (He et al.,
2022; Park et al., 2023). While it falls behind ESM2 in small
parameter regimes (6M), it demonstrates superior scalabil-
ity. GearNet’s pre-training methods perform below ESM2’s
benchmark; we assume that it is due to the explicit encoding
of edges introducing locality bias that constrains the model’s
ability to represent long-range dependencies (c.f. Alon &
Yahav (2021); Wu et al. (2021); Dwivedi et al. (2022)).

Figure 2d shows the top-1 fine-tuning accuracy. Consistent
with previous results, AtoMAE demonstrates significant
performance improvements through fine-tuning and outper-
forms ESM2 and GearNet. GearNet also exhibits substantial
gains when transitioning from zero-shot to fine-tuned eval-
uation, matching ESM2’s accuracy within the parameter
regime.

These results demonstrate that AtoMAE approach success-
fully captures both local and global architectural informa-
tion. This ability contrasts with GNN frameworks’ inherent
limitations in global feature acquisition (Alon & Yahav,
2021; Wu et al., 2021; Dwivedi et al., 2022), while Vision
Transformers excel in modeling long-range dependencies
(Dosovitskiy et al., 2021; Raghu et al.; Park & Kim, 2022).
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Symmetry can be a learnable property. By incorporat-
ing rotation and random crop data augmentation in both pre-
training and fine-tuning stages, we expect AtoMAE to learn
SE(3) symmetry. To quantify this property, we measure the
invariance error of representations, Cov

(
f(x), f(T (x))

)
,

which is the covariance between the representation and the
transformed representation with respect to a transformation
T , after applying rotation and translation to the input 3D
voxelized protein structures.

Figure 3 (a) and (b) show an inverse relationship be-
tween training dataset size and invariance error of rotation
and translation, respectively. This confirms that AtoMAE
acquires SE(3) symmetry with larger and more diverse
datasets. However, ViT’s architecture, lacking explicit SE(3)
equivariance modules, cannot achieve perfect equivariance
regardless of data abundance (Gruver et al., 2023). To ad-
dress this limitation, we implement rotation test-time aug-
mentation ensemble (c.f. Krizhevsky et al. (2012); Ayhan &
Berens (2018)), which is particularly useful when process-
ing larger proteins that require truncation via random crop.
Practical examples of this ensemble approach are provided
in Section 4 and Appendix C.2.

4. Residue Identification
This section demonstrates that the proposed method can
understand both residue information and structural features.
Notably, despite receiving only atomic type information as
input, the pre-training process effectively instills meaningful
biological knowledge into the neural networks. This inherent
understanding is further refined through fine-tuning with
residue labels, resulting in high predictive accuracy.

A preliminary task: residue identification from
sidechains. Our analysis confirms that neural networks
extract residue information from datasets encompassing
both backbone and sidechain elements, even during self-
supervised pre-training without explicit residue labels. By
utilizing a frozen pre-trained neural network with a minimal
four-layer Transformer for token-level decoding, we achieve
an accuracy of 92%. Fine-tuning substantially enhances this
performance, culminating in high discrimination between
residue types at an accuracy of 99%. See Appendix C.2 for
a practical use case of this task.

This framework can be extended to the inverse folding (IF)
problem, where the task requires predicting viable residue
types using only backbone structures. Initial experiments
with frozen backbone yielded promising results with an
accuracy of 23%. The label-informed fine-tuning achieves
comparable accuracy to state-of-the-art IF methods such as
ProteinMPNN (Dauparas et al., 2022) and ESM-IF (Hsu
et al., 2022) without using complex and task-specific de-
coders, e.g., U-Net (Ronneberger et al., 2015) or SigFormer

(Xie et al., 2021). Below, we provide a detailed explanation
of our approach and present the results for this problem.

Semantic segmentation approach. Our approach di-
verges from conventional inverse folding paradigms. We
treat proteins as voxelized structures and consider only back-
bone carbon and nitrogen atoms, excluding additional bio-
logical features such as Cα labels from the input, thereby
maximizing input flexibility. Instead of producing sequence-
level probabilities, our architecture first generates spatially-
resolved predictions analogous to semantic segmentation,
maintaining dimensional context between input and out-
put spaces. We then aggregate voxel-wise probabilities into
residue-specific predictions through averaging, enabling di-
rect comparison with conventional sequence-based inverse
folding methods.

To verify whether our method correctly identifies residues,
we adopt multinomial sampling with temperature τ to ob-
tain diverse sequences from the estimated probabilities.
Even with this simple approach, a substantial number of se-
quences fold correctly. For example, in terms of folding suc-
cess rate, i.e., the proportion of structures with RMSD below
2.0Å among those with pLDDT exceeding 80%, AtoMAE
demonstrates competitive performance at 69.7% (72.3% for
ESM-IF and 61.5% for ProteinMPNN). For training and
testing, we use the same dataset used for pre-training.

To accommodate larger protein structures that surpass our
model’s input capacity, we implement test-time augmen-
tation via random cropping and rotation. By averaging
sequence probabilities across 8 ensemble iterations, we
achieve comprehensive coverage of proteins spanning about
500 amino acids. The large ensemble size also results in
enhanced recovery rates. See Appendix C.2 for details.

Metrics for fidelity and diversity. We use metrics to
evaluate the generated sequences from fidelity and diversity
perspectives. For fidelity, we use two metrics: (1) sequence
recovery rate, which is a standard sequence-level accuracy
metric as well as the training objective, and (2) mean Cα

RMSD between the input reference backbone structure and
the backbones of predicted structures via ESMFold (Lin
et al., 2023a). This Cα RMSD demonstrates whether the
generated sequences are biologically plausible and preserve
structure. For diversity, we use mean residue-wise Shannon
entropy, H = − 1

L

∑L
i=1

∑
a∈A pi,a log pi,a, where L is

the sequence length, A is the set of 20 standard amino acids,
and pi,a is the empirical probability of observing amino acid
a at position i across the sampled sequences.

Inverse folding results. Figure 4a shows the sequence
recovery rate and entropy for the sequences generated by
the proposed method and baselines. While not specifically
designed for inverse folding, AtoMAE demonstrates com-
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Figure 4: AtoMAE can predict residue types from protein backbone structures. (a) AtoMAE shows a sequence recovery
rate similar to baseline inverse folding methods that infer sequences from the backbone. Left figure shows the distribution;
each point represents a protein, and × represents the mean value. AtoMAE exhibits similar patterns in the recovery rate
versus sequence entropy relationship across sampling temperatures (τ ) compared to other models. (b) The sequences
generated by AtoMAE are refoldable. The Cα RMSD values are comparable at low temperatures.
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Figure 5: AtoMAE is robust against coordinate noise.
Adding coordinate noise to the backbone results in de-
creased fidelity while increasing diversity (where σ repre-
sents the Gaussian noise magnitude). In the left figure, each
point represents a protein. AtoMAE demonstrates greater
robustness compared to baselines in the low noise regime.

parable performance to specialized algorithms in backbone-
to-sequence prediction. Without an autoregressive decoder,
AtoMAE generates more diverse sequences, with the trade-
off between recovery rate and diversity controllable by tem-
perature adjustment. The trend with respect to varying tem-
perature aligns with other inverse folding methods, suggest-
ing AtoMAE’s simple structure captures similar characteris-
tics to specialized models.

Beyond sequence-level metrics, we also evaluated the struc-
tural quality of the generated sequences. Figure 4b shows
the three methods demonstrated comparable Cα RMSD val-
ues at low sampling temperatures (0.1 ≤ τ ≤ 0.5). This
result suggests that AtoMAE effectively encodes biological
priors at a level consistent with other specialized inverse
folding methods. Despite its success, AtoMAE exhibits high
Cα RMSD values at high sampling temperatures, which we
attribute to the absence of a specialized sampling decoder.

Robustness to random noise. Input backbones may con-
tain coordinate noise. On one hand, this can increase the

diversity of generated sequences, while on the other hand,
excessive sensitivity to noise can degrade performance and
generalization abilities (Naseer et al., 2021). By introducing
Gaussian random noise to the backbone atoms during infer-
ence, we evaluate the robustness of the methods. Figure 5
shows performance changes with respect to noise magnitude.
As expected, stronger random noise tends to decrease fi-
delity while increasing sequence diversity. AtoMAE demon-
strates higher robustness against weak noise (σ = 0.5Å)
perturbations compared to ProteinMPNN and ESM-IF.

5. Discussion
The proposed atomic voxel-based neural network approach
for protein structure modeling demonstrates significant
promise across multiple perspectives. It surpasses both pro-
tein language models and graph neural networks in captur-
ing structural information while learning essential biological
knowledge. Performance metrics and properties scale with
increasing parameter count. The transformer-only design
delivers efficiency without sacrificing performance, while
leaving room for future optimization through advanced tech-
niques, such as FlashAttention (Dao et al., 2022). Moreover,
the voxelized atom featurization method provides advan-
tages over traditional representations by encoding rich 3D
structure information. This approach captures atomic de-
tail, encompassing both protein backbones and sidechains,
which is essential for accurate molecular representation.
Such detailed modeling potentially benefits applications
involving molecular interfaces. The limitations and future
research directions are discussed in Appendix D. Conse-
quently, these findings underscore the importance of key
design paradigms: models with weak inductive bias can
autonomously construct biological domain knowledge via
representation learning, thereby enabling flexible input, scal-
ability, and superior performance.
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A. Related Work
Prior work to obtain protein representations primarily focused on finding appropriate inductive biases. Graph and equivariant
networks, while encoding rich priors, ultimately struggle to scale; conversely, language models scale effectively by leveraging
amino acid sequences but overlook 3-D structural details, particularly local geometry. Although voxel approaches show
promise, they were frequently overlooked due to their resource requirements; voxel CNNs can capture atoms but have
lacked strong pre-training methods. AtoMAE unifies these approaches by marrying atom type voxel inputs with a weak-bias
Transformer and a masked-reconstruction objective for pre-training, thus enabling data-driven discovery of protein geometry
while maintaining scalability.

A.1. Graph-based protein structure modeling

Graph neural networks (GNNs) have emerged as the dominant paradigm for structure-aware protein modeling (Ingraham
et al., 2019; Jing et al., 2021; Gligorijević et al., 2021; Xia et al., 2021; Zhang et al., 2023). Researchers have widely
demonstrated that residues can naturally serve as graph nodes—enriched with coordinates, amino-acid identity, and physico-
chemical descriptors—while covalent bonds or distance-based contacts define edges (Ingraham et al., 2019; Gligorijević
et al., 2021). Early successes, including the design-graph model of Ingraham et al. (2019), GVP-GNN’s rotation-aware vector
features (Jing et al., 2021), and structure-GNNs for function and binding-site prediction (Gligorijević et al., 2021; Xia et al.,
2021), demonstrated that message passing can capture local geometry and chemical context with modest computational cost.
Follow-on systems such as GearNet introduce contrastive learning or reconstruction-based pre-training methods to capture
detailed information from protein structures and accelerate fine-tuning, cementing graph-based methods as a practical,
biologically intuitive choice for many protein tasks (Zhang et al., 2023). Jamasb et al. (2024) benchmark GNN efforts in a
unified scenario, providing comprehensive evaluation frameworks for the field.

Despite these merits, standard message-passing graphs struggle to propagate long-range information. As depth increases,
oversmoothing and bottleneck effects erode expressive power, causing accuracy to plateau or even decline while memory
and latency grow sharply (Li et al., 2018; Oono & Suzuki, 2020; Alon & Yahav, 2021). Sophisticated variants like GearNet
mitigate but do not eliminate these issues (Zhang et al., 2023). These scaling limits, coupled with the need to hand-design
edge lists and interaction radii, have motivated newer methods to capture both local and global geometric properties of
proteins (Dwivedi et al., 2022; Wu et al., 2021; Liu et al., 2024).

A.2. SE(3)-equivariant neural networks

Equivariant models incorporate 3-D symmetry directly into their layers so outputs move in step with rotated or translated
inputs. The SE(3)-Transformer adds this property to self-attention by using steerable tensor features, yielding frame-invariant
performance on point-cloud and molecular tasks (Fuchs et al., 2020). The E(n)-GNN maintains the same rotational and
translational equivariance without heavy tensor mathematics, achieving strong results on particle-dynamics and molecular
benchmarks with lower computational cost (Satorras et al.). Extensions to rigid-body docking and ligand reconstruction
further underscore the benefits of explicit symmetry (Ganea et al., 2022; Bhadra-Lobo et al., 2023). These works show that
enforcing geometric symmetry can reduce sample complexity and boost robustness, though their specialized operations still
add overhead compared with isotropic Transformer backbones that approximate the same invariance through random-rotation
augmentation (Jing et al., 2021; Zhang et al., 2023).

A.3. Protein language modeling

Transformer language models trained on raw amino-acid sequences treat proteins as sentences, allowing them to internalize
co-evolutionary patterns and “grammatical” rules of folding without any 3-D supervision (Rao et al., 2020; Rives et al.,
2021). Sequence-only systems such as ESM-1b (Rives et al., 2021) and ESM-2 (Lin et al., 2023b) scaled to billions of
parameters and hundreds of millions of sequences—learn residue contacts well enough to solve annotation tasks in a
zero-shot setting (Lin et al., 2023b) and, when augmented with lightweight structure heads (e.g., ESMFold), can predict
atomic coordinates directly from a single sequence (Lin et al., 2023b). Yet because these models see only 1-D inputs, they
still lack fine-grained geometric context and often lag behind structure-aware architectures on fold-classification or design
benchmarks, motivating hybrid or explicitly 3-D approaches (Zhang et al., 2023; Dauparas et al., 2022).
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A.4. Voxel-based 3-D representations

These methods “rasterize” atomic coordinates into a regular Cartesian grid: each voxel stores occupancy or density for a
handful of atom channels, allowing generic vision backbones to process a protein structure as a 3-D image (Ragoza et al.,
2017; Derevyanko et al., 2018). Early 3-D CNN systems for binding-site scoring and fold-quality assessment pioneered this
volumetric view of pockets and whole proteins (Ragoza et al., 2017; Derevyanko et al., 2018). Compared with graph models,
the grid approach preserves full atomic detail and offers a wide receptive field that naturally captures long-range context,
and recent diffusion-style generators demonstrate that the same voxel format scales to molecular design tasks (Pinheiro
et al., 2023; 2024). The main drawbacks remain memory overhead and the absence of built-in SE(3) equivariance, but
token-selection and data-augmentation strategies outlined in our work partially offset these limitations.

B. Hyperparameter
Table 1 enumerates the key hyper-parameters to pre-train neural networks. Training is executed on 8 NVIDIA A100 GPUs.

Table 1: Hyper-parameters for pre-training.

Training

Batch size 32
Total epochs 800
Warm-up epochs 10

Optimizer & LR schedule

Optimizer AdamW
Learning rate 1.0× 10−2

Weight decay 7.0× 10−2

β-values (0.9, 0.95)

Model

Input voxel grid 963

Voxel kernel / stride 8/8
Mask ratio 90%
Loss function BCE+channel weights

Data & augmentation

Voxel channels (#) 3 (C, N, O)
Resolution (Å) 0.5
Coord. noise (std. Å) 0.2

C. Structural Pattern Identification
AtoMAE demonstrates the ability to learn patterns from protein structures during pre-training, including atom types and
residue identification. To evaluate whether the pre-trained model understands protein structural features, we first examine if
the model can infer coarse-grained atom-type categories from atomic inputs alone. Second, assessing its capacity to extract
biological meaning by inferring amino acid identities from atomic arrangements.

C.1. coarse-grained atom-type category identification

We use eight coarse-grained atom-type categories: alpha carbon, beta carbon, backbone carbon, sidechain carbon, backbone
nitrogen, sidechain nitrogen, backbone oxygen, and sidechain oxygen. These categories capture essential structural and
chemical distinctions in protein architecture.

The experiment in this section follows the semantic segmentation approach described in Section 4, however, we freeze the
pre-trained encoder and train only a streightforward shallow 4-layer Transformer decoder instead of U-Net or other semantic
segmentation specialized decoders. This design choice ensures that structural understanding emerges from the pre-trained
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Input Ground Truth Prediction

(a) Eight coarse-grained atom-type categories

Input Ground Truth Prediction

(b) Cα (red) and others (yellow)

Input Ground Truth Prediction

(c) Backbone (red) and sidechain (green)

Figure 6: Pre-trained AtoMAE can capture structural patterns in protein structures in a zero-shot manner. The
first column displays the input voxelized protein structure (with blue, yellow and green represent carbon, nitrogen, and
oxygen, respectively), the second column presents the ground truth, and the final column shows the prediction. (a) We use a
pre-trained AtoMAE with a 4-layer Transformer decoder to predict eight coarse-grained atom type categories. Here, the
pre-trained backbone is frozen and only a thin decoder is trained to assess how much structural information the backbone
captured during pre-training. The figure shows that the ground truth closely resembles the prediction, which suggests that
the backbone possesses such capabilities.
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Figure 7: Shallow Transformer decoders are enough for structure identification. To assess the impact of architectural
depth on structural pattern identification across the 8 atomic categories, we very the Transformer decoder depth from 0
(linear probing) through 4 layers, evaluating performance in terms of accuracy and Jaccard similarity metrics. The results
reveal that a single Transformer layer yields substantial performance gains, while 4 decoder layers reach the performance
plateau.

representations rather than being learned during fine-tuning. The decoder in the framework primarily serves to reconstruct
fine-grained, high-resolution representations from coarse patch-level embeddings.

Quantitative results: Shallow Transformer decoders are enough for structure identification. We systematically
vary decoder depth from 0 (linear layer) to 4 layers while maintaining consistent encoder architecture. Performance is
evaluated on the atom-type classification task described above, providing a direct measure of how decoder capacity affects
structural pattern recovery. Figure 7 shows that adding even a single decoder layer results in dramatic accuracy improvements
compared to direct classification from encoder outputs. This suggests that the patch-level representations contain rich
structural information that requires minimal processing to extract atom-level predictions. Performance reaches near-optimal
levels at the accuracy of 79% with just 2 decoder layers, and further increases beyond 4 layers show marginal gains. This
saturation behavior indicates that shallow Transformer decoders are sufficient for structure identification tasks, consistent
with the relatively local nature of atom-type prediction.

Qualitative results: AtoMAE understands protein structurs. The qualitative results demonstrate consistent and
interpretable patterns in the model’s predictions. The pre-trained AtoMAE model shows clear separation between the eight
atom-type classes in Figure 6a, with visually coherent spatial clustering that aligns with chemical expectations. For improved
interpretability, we also provide separate visualizations focusing on alpha carbon atoms in Figure 6b and backbone/sidechain
distinctions in Figure 6c. These targeted visualizations more clearly reveal the structural trends captured by the model,
demonstrating that AtoMAE develops a hierarchical understanding of protein architecture from fine-grained atomic details
to broader structural motifs.

C.2. Residue identification for rescuing AI-generated proteins

Beyond distinguishing coarse structural elements such as Cα and backbone atoms, a fine-tuned AtoMAE can full residue
identities directly from voxelised atomic protein structures. Because the architecture consumes only raw atom types and 3-D
positions, it remains agnostic to missing or misplaced atoms that frequently plague de novo structures designed by generative
AI pipelines. This section demonstrates how such a model can rescue noisy all-atom designs that defeat rule-based parsers
(e.g. OpenBabel (O’Boyle et al., 2011)) and sequence-only language models.

Experimental set-up. Starting from high-resolution experimentally obtained proteins, we inject 0.4Å Gaussian coordinate
noise and random atom deletions or duplications with 4% probability. These corruptions alter about 60% of all residues,
mimicking the idiosyncratic artefacts observed in de novo all atom AI-generated protein structures.
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Figure 8: AtoMAE demonstrates the capability to rescue all-atom AI-generated proteins suffering from atomic loss,
duplication, and coordinate noise. (a, b) To evaluate the capacity for converting corrupted AI-generated proteins back
to their original sequences, we design a controlled scenario involving deliberate insertion of atomic loss, duplication, and
coordinate noise into protein structures, followed by sequence recovery. Despite these substantial perturbations, AtoMAE
achieves highly accurate sequence recovery by effectively leveraging structural information. In contrast, ESM2 exhibits
considerably lower recovery rates even under significantly more lenient conditions, reflecting its reliance solely on sequence
contextual information. (c) AtoMAE employs test-time augmentation strategies, incorporating random cropping and rotation,
to effectively process very large proteins. The inference performance exhibits dramatic improvement with increasing
ensemble size.

Structure-aware models outperform sequence-only baselines. Despite the severe perturbations, the fine-tuned AtoMAE
achieves 99 % residue accuracy as shown in Figure 8, vastly exceeding the ∼40 % accuracy obtained by an ESM2 language
model that restores 10% masked tokens using only sequence context. The result underscores the advantage of exploiting
explicit geometric information when rescuing AI-designed proteins. These results position AtoMAE as a practical drop-in
module for sanitising AI-generated proteins, enabling downstream pipelines (e.g. sequence design or functional screening)
to operate without costly manual curation.

Test-time augmentation (TTA) boosts the performance. Large proteins sometimes exceed the receptive field of a single
voxel unit (483Å

3
). We therefore apply random crops and rotations at inference, and aggregate results across views. As

shown in Appendix C.1, we observe a monotonic improvement up to an ensemble size of 16. Balancing compute and
accuracy, we adopt an ensemble of 8 crops in subsequent experiments.

D. Limitations and Future Work
While the proposed atomic voxel-based approach demonstrates significant potential, several limitations present opportunities
for future development.

Limitations. A fundamental limitation lies in our approach’s structural dependency. Unlike sequence-based protein
language models, our method requires three-dimensional structural information as input. This constraint is challenging
given the substantial data requirements for large parameter models and the relative scarcity of experimentally determined
protein structures compared to available sequences. While we limited biological priors in our current work to establish a
baseline, integrating domain knowledge and developing novel training techniques offers a promising direction for addressing
structural data scarcity.

Future work. We aim to verify whether these favorable scaling trends persist in substantially higher parameter regimes.
Additionally, we will assess the approach’s generalizability to computationally predicted structural datasets such as
AlphaFoldDB (Varadi et al., 2022; 2024), which could dramatically expand available training data points. Finally, we
will evaluate our voxel featurization method across diverse downstream tasks to comprehensively benchmark it against
established sequence-based and graph-based approaches.
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