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Abstract—In Semi-Supervised Semi-Private (SP) learning,
the learner has access to both public unlabelled and private
labelled data. We propose PILLAR, an easy-to-implement and
computationally efficient algorithm that, under mild assumptions
on the data, provably achieves significantly lower private labelled
sample complexity and can be efficiently run on real-world
datasets. The key idea is to use public data to estimate the
principal components of the pre-trained features and subsequently
project the private dataset onto the top-k Principal Components.
We empirically validate the effectiveness of our algorithm in
a wide variety of experiments under tight privacy constraints
(ϵ < 1) and probe its effectiveness in low-data regimes and when
the pre-training distribution significantly differs from the one
on which SP learning is performed. Despite its simplicity, our
algorithm exhibits significantly improved performance, in all of
these settings, over all available baselines that use similar amounts
of public data while often being more computationally expensive.
For example, in the case of CIFAR-100 for ϵ = 0.1, our algorithm
improves over the most competitive baselines by a factor of at
least two.

I. INTRODUCTION

In recent years, Machine Learning (ML) models have become
an integral part of our daily lives, commonly trained on
vast amounts of sensitive private data to offer services better
tailored to users’ needs. However, this has escalated concerns
regarding user privacy. Recent studies [1]–[3] demonstrate
the potential for malicious queries to ML models to reveal
private information. To address this problem, the de-facto
standard remedy is to enforce (ϵ, δ)−Differential Privacy (DP)
guarantees on the ML algorithms [4]. Nonetheless, meeting
these guarantees often compromises model utility, unless
the volume of available private training data is significantly
increased [5]–[9]. In the context of private learning, [10],
[11] identified theoretical lower bounds, showing a direct
dependence of this cost on data dimensionality, a connection
not seen in non-private learning.

To mitigate this degradation of utility, several techniques
have been employed. One approach is leveraging feature
extractors pre-trained on large-scale datasets (presumed public),
even if their data-generating distribution diverges from the

private data [12]–[15]. Training a linear classifier atop these
pre-trained features has proven to be both cost-efficient and
effective [12], [13]. Utility gains can also be achieved by
deeming part of the private data public, a scenario known as
Semi-Private (SP) learning [16]–[21]. Notably, utilizing public
data to assist the optimizer [18], [21], [22] and to reduce
problem dimensionality [17], [23]–[25] are among the most
effective strategies in this context. However, although these
techniques have been shown to be effective for large ϵ values
on datasets like CIFAR-10, our experiments over an extensive
variety of datasets with varying amounts of training data and
classes suggest that the effectiveness of some of these methods
is limited in more challenging settings like low data and small
ϵ.

In this work, we propose a simple SP algorithm called PIL-
LAR and conduct an extensive empirical study over a wide
range of datasets and strict privacy settings to show its effec-
tiveness over existing methods. The key idea is to use public
data to estimate the principal components of the pre-trained
features and subsequently project the private dataset onto the
top-k Principal Components. Despite its simplicity and use of
existing techniques like dimensionality reduction [17], [24],
it outperforms existing methods in these challenging settings.
Beyond its empirical performance, our algorithm also enjoys
a provably dimension-independent sample complexity when
learning linear halfspaces, and when the distribution satisfies a
low-rank separability condition outlined in Definition 3

For practical applications like image classification, we
ascertain that pre-trained representations meet this condition
across a diverse range of datasets. As suggested by concurrent
research [26], we validate our algorithm’s efficacy not only
against standard benchmarks in DP literature (e.g., CIFAR-10
and CIFAR-100) but also across various datasets (Figure 1)
that better represent the challenges and application domains
of private training. Remarkably, our experiments reveal that
our algorithm surpasses several existing state-of-the-art algo-
rithms [17], [18], [27], [28], with various levels of access to
public data, across seven different datasets while remaining



computationally economical.
Unlike previous works, our evaluations particularly concen-

trate on private data distributions (e.g. traffic signs and medical
datasets in addition to object recognition) that significantly
deviate from the pre-training one (ImageNet) and focus on
low-data regimes. We posit that testing on such pertinent
benchmarks is crucial to showcase the practical applicability
of our algorithm in privacy-sensitive scenarios. Intriguingly,
we observe the benefits of our approach amplify as the privacy
guarantees tighten, i.e., when ϵ is lower. Several practical
deployments of DP, especially in the query release paradigm,
have targeted low ϵ1 but this remains elusive when deploying
machine learning models. We hope our work will accelerate
deployment of ML classification models with ϵ < 1.
To summarise, our contributions are the following:
• We introduce PILLAR, a straightforward, readily-

implementable, and computationally inexpensive SP
algorithm. It enhances classification accuracy compared to
several existing competitive algorithms, some of which also
exploit dimensionality reduction and semi-private learning
principles.

• For learning half-spaces, we establish that our algorithm
attains dimension-independent private labelled sample com-
plexity with large margin low rank distributions. Signifi-
cantly, our results are versatile, accommodating distribution
shifts between public and private data, and adaptable to
multiple loss functions.

• We refine privacy evaluation benchmarks for image classi-
fication, concentrating on scenarios that, in our view, hold
greater relevance to privacy. These include i) private datasets
exhibiting substantial shift from pre-training (and public)
datasets, ii) the availability of limited (private and public)
training data, and iii) stringent privacy regimes (ϵ < 1)

II. SEMI-PRIVATE LEARNING

We begin by defining Differential Privacy (DP). DP ensures
that the output distribution of a randomized algorithm remains
stable when a single data point is modified. In this paper, a
differentially private learning algorithm produces comparable
distributions over classifiers when trained on neighbouring
datasets. Neighbouring datasets refer to datasets that differ by
a single entry. Formally,

Definition 1 (Differential Privacy [4]). A learning algorithm
A is (ϵ, δ)-differential private, if for any two datasets S, S′

differing in one entry and for all outputs Z , we have,

P [A(S) ∈ Z] ≤ eϵP [A(S) ∈ Z] + δ.

For ϵ < 1 and δ = o (1/n), (ϵ, δ)-differential privacy
provides valid protection against potential privacy attacks [3].

Differential Privacy and Curse of Dimensionality Similar to
non-private learning, the most common approach to DP learning
is through Differentially Private Empirical Risk Minimization

1https://desfontain.es/privacy/real-world-differential-privacy.html

(DP-ERM), with the most popular optimization procedure being
DP-SGD [29] or analogous DP variants of typical optimization
algorithms [31]. However, unlike non-private ERM, the sample
complexity of DP-ERM suffers from a polynomial dependence
on the dimensionality of the problem [10], [11]. Hence, we
explore slight relaxations to this definition of privacy to
alleviate this problem. We show theoretically (Section III)
and through extensive experiments (Section IV and V) that
this is indeed possible with some realistic assumptions on the
data and a slightly relaxed definition of privacy known as
semi-private learning that we describe below. For a discussion
of broader impacts and limitations of this setting, please refer
to Appendix C.

A. Semi-Private Learning
The concept of semi-private learner was introduced in [16].

In this setting, the learning algorithm is assumed to have access
to both a private labelled and a public (labelled or unlabelled)
dataset. In this work, we assume the case of only having an
unlabelled public dataset. This specific setting has been referred
to as Semi-Supervised Semi-Private learning in [16]. However,
for the sake of brevity, we will refer to it as Semi-Private
learning (SPL).

Definition 2 ((α, β, ϵ, δ)-semi-private learner on a family of
distributions D). An algorithm A is said to (α, β, ϵ, δ)-semi-
privately learn a hypothesis class H on a family of distributions
D, if for any distribution D ∈ D, given a private labelled
dataset SL of size nL and a public unlabelled dataset SU of
size nU sampled i.i.d. from D, A is (ϵ, δ)-DP with respect to
SL and outputs a hypothesis ĥ satisfying

P[P(x,y)∼D [h(x) ̸= y] ≤ α] ≥ 1− β,

where the outer probability is over the randomness of SL, SU ,
and A.

Further, the sample complexity nL and nU must be polyno-
mial in 1

α ,
1
β , and the size of the input space. In addition, nL

must also be polynomial in 1
ϵ and 1

δ . The algorithm is said to
be efficient if it also runs in time polynomial in 1

α ,
1
β , and the

size of the input domain.

A key distinction between our work and the previous study
by [16] is that they examine the distribution-independent ag-
nostic learning setting, whereas we investigate the distribution-
specific realisable setting. On the other hand, while their
algorithm is computationally inefficient, ours can be run in
time polynomial in the relevant parameters and implemented
in practice on various datasets with state-of-the-art results. We
discuss our algorithm in Section II-B.
Relevance of Semi-Private Learning In various privacy-sensitive
domains such as healthcare, legal, social security, and census
data, there is often some amounts of publicly available data
in addition to the private data. For instance, the U.S. Census
Bureau office has partially released historical data before 2020
without enforcing any differential privacy guarantees 2. It has

2https://www2.census.gov/library/publications/decennial/2020/
census-briefs/c2020br-03.pdf

https://www2.census.gov/library/publications/decennial/2020/census-briefs/c2020br-03.pdf
https://www2.census.gov/library/publications/decennial/2020/census-briefs/c2020br-03.pdf


Fig. 1: We compare our algorithm PILLAR with DP-SGD [28], DP-SGD with DP-PCA [29], DP-SGD with JL transformation [27], AdaDPS [18], and
GEP [17] on CIFAR-10, CIFAR-100, GTSRB, Flower-16, Dermnet, Pneumonia, and PCAM for ϵ = 0.1. PILLAR consistently outperforms all baselines, often
with a large margin. All methods use features extracted from a ResNet-50 pre-trained on ImageNet-1K using either Supervised Learning (SL) or Self-Supervised
Learning (BYOL [30])

Algorithm 1 PILLAR Aϵ,δ (k, ℓ) for learning halfspaces

1: Input: Labelled dataset SL, Unlabelled dataset SU , low-dimension k,
L-Lipschitz loss function ℓ, high probability parameter β.

2: Using SU , construct Σ̂ =
∑

x∈SU xx⊤/nU .
3: Construct the transformation matrix Âk whose ith column is the ith

eigenvector of Σ̂.
4: Project SL with the transformation matrix Âk ,

SL
k = {(Â⊤

k x, y) : (x, y) ∈ SL}.

5: Obtain vk = ANoisy−SGD(SL
k , ℓ, (ϵ, δ), β/4)

6: Output: Return ŵ = Âkvk .

also been observed that different data providers may have
varying levels of concerns about privacy [32]. In medical data,
some patients may consent to render some of their data public
to foster research. In other cases, data may become public
due to the expiration of the right to privacy after specific time
limits 3.

It is also very likely that this public data may be unlabelled
for the task at hand. For example, if data is collected to train a
model to predict a certain disease, the true diagnosis may have
been intentionally removed from the available public data to
protect sensitive information of the patients. Further, the data
may had been collected for a different purpose like a vaccine
trial. Finally, the cost of labelling may be prohibitive in some
cases. Hence, when public (unlabelled) data is already available,
we focus on harnessing this additional data effectively, while
safeguarding the privacy of the remaining private data. We
hope this can lead to the development of highly performant
algorithms which in turn can foster wider adoption of privacy-
preserving techniques.

Public
Unlabelled

Images
Private

Labelled
Images

Public Labelled/Unlabelled

Feature Extractor
(Neural Network)

PILLAR (Aϵ,δ)

Large
Distribution Shift

Small

Distribution Shift

SL SU

ŵ
(Linear Classifier)

Pre-Training

Fig. 2: Diagram describing how PILLAR is applied in image
classification (using DP-SGD with cross-entropy loss in Line
4 of Algorithm 1).

B. PILLAR: An Efficient Semi-Private Learner

In this work, we propose a (semi-supervised) semi-private
learning algorithm called PILLAR (PrIvate Learning with
Low rAnk Representations), described in Algorithm 1. Before
providing formal guarantees in Section III, we first describe
how PILLAR is applied in practice. Our algorithm works in
two stages.

Leveraging recent practices [12], [13] in DP training with
deep neural networks, we first use pre-trained feature extractors

3https://www.census.gov/history/www/genealogy/decennial census
records/the 72 year rule 1.html

https://www.census.gov/history/www/genealogy/decennial_census_records/the_72_year_rule_1.html
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to transform the private labelled and public unlabelled datasets
to the representation space to obtain the private and public
representations. We use the representations in the penultimate
layer of the pre-trained neural network for this purpose. As
shown in Figure 2, the feature extractor is trained on large
amounts of labelled or unlabelled public data, following
whatever training procedure is deemed most suitable. For this
paper, we pre-train a ResNet-50 using supervised training (SL),
self-supervised training (BYOL [30] and MocoV2+ [33]), and
semi-supervised training (SemiSL and Semi-WeakSL [34]) on
ImageNet. In the main body, we only focus on SL and BYOL
pre-training. As we discuss extensively in Appendix B-H,
our algorithm is effective independent of the choice of the
pre-training algorithm. In addition, while the private and
public datasets are required to be from the same (or similar)
distribution, we show that the pre-training dataset can come
from a significantly different distribution. In fact, we use
ImageNet as the pre-training dataset for all our experiments
even when the distributions of the public and private datasets
range from CIFAR-10/100 to histological and x-ray images
as shown in Figure 1. Recently, [35] have explored the
complementary question of how to choose the right pre-training
dataset.

In the second stage, PILLAR takes as input the feature
representations of the private labelled and public unlabelled
datasets, and feeds them to Algorithm 1. We denote these
datasets of representations as SL and SU respectively. Briefly,
Algorithm 1 projects the private dataset SL onto a low-
dimensional space spanned by the top principal components
estimated with SU , and then applies gradient-based private
algorithms (e.g. Noisy-SGD [11] in Appendix A-A) to learn a
linear classifier on top of the projected features. Algorithm 1
provides an implementation of PILLAR with Noisy-SGD,
whereas in our experiments we show that commonly used
DP-SGD [29] is also effective 4.

III. THEORETICAL RESULTS

In this section, we first describe the assumptions under
which we provide our theoretical results and show they can
be motivated both empirically and theoretically. Then, we
show a dimension-independent sample complexity bound for
PILLAR under the mentioned assumptions.

A. Problem setting

Our theoretical analysis focuses on learning linear halfspaces
Hd in d dimensions. Consider the instance space Xd = Bd

2 ={
x ∈ Rd : ∥x∥2 = 1

}
as the d-dimensional unit sphere and the

binary label space Y = {−1, 1}. In practice, the instance space
is the (normalized) representation space obtained from the pre-
trained network. The hypothesis class of linear halfspaces is

Hd =
{
fw(x) = sign (⟨w, x⟩) |w ∈ Bd

2

}
.

4Other state-of-art adaptation of DP optimization algorithms, such as DP-
SCO [31] and DP-RAFT [36], can also be applied in step 5 of PILLAR
for potentially achieving better accuracy (see Appendix B-F for further
experiments).

Fig. 3: Estimate of ξ for linear classifiers trained on embeddings
of two CIFAR-10 and CIFAR-100 classes, extracted from pre-
trained ResNet50s, as well as the raw images (Pixel).

We consider the setting of distribution-specific learning,
where our family of distributions admits a large margin linear
classifier that contains a significant projection on the top
principal components of the population covariance matrix. We
formalise this as (γ, ξk)-Large margin low rank distributions.In
contrast to the usual low rank assumption on the feature
matrix [37], large margin low rank distributions can have full
rank covariance matrix and generate full rank feature matrix,
as long as the true parameter retains its norm in the low
dimensional space spanned by the first k eigenvectors of the
feature’s covariance matrix.

Definition 3 ((γ, ξk)-Large margin low rank distribution). A
distribution D over Xd×Y is a (γ, ξk)-Large margin low rank
distribution if there exists w⋆ ∈ Bd

2 such that

• P(x,y)∼D

[
y⟨w⋆,x⟩

∥w⋆∥2∥x∥2
≥ γ

]
= 1 (Large-margin),

•
∥∥AkA

⊤
k w

⋆
∥∥
2
≥ 1− ξk (Low-rank separability).

where Ak is a d × k matrix whose columns are the top k
eigenvectors of EX∼DX

[
X⊤X

]
.

It is worth noting that for every distribution that admits
a positive margin γ, the low-rank separability condition is
automatically satisfied for all k ≤ d with some ξk ≥ 0.
Intuitively, this condition requires that there is a large
margin classifier with significant projection on the top
principal components of the data. However, the low rank
separability is helpful for learning, only if it holds for a small
k and small ξk simultaneously. These assumptions are both
theoretically and empirically realisable. Theoretically, we
show in Appendix A-E that a class of commonly studied
Gaussian mixture distributions with full rank covariance
matrices satisfies these properties with k = 2 and ξ2 = 0.
Empirically, we show in Figure 3 that pre-trained features
satisfy these properties with small ξ and k.

Pre-trained features are almost Large-Margin and Low-Rank
Figure 3 shows that feature representations of CIFAR-10
and CIFAR-100 obtained by various pre-training strategies
approximately satisfy the conditions of Definition 3. To verify
the low-rank separability assumption, we first train a binary
linear SVM w⋆ for a pair of classes on the representation space
and estimate ξk = 1−

∥∥AkA
⊤
k w

⋆
∥∥
2

as defined in Definition 3.



Loss function ℓ Formula Lipschitzness Lℓ

Cross-entropy loss
log

(
1+e−y⟨w,x⟩

)
log 2

2

Scaled hinge loss max
{
0, 1− y⟨w,x⟩

0.9γ0(1−ξ0)

}
1

0.9γ0(1−ξ0)

TABLE I: Loss functions we consider in Theorem 1, with their
expressions and the associated Lipschitz constants

We also compute ξk when w⋆ is trained on the pixel space 5. As
shown in Figure 3, images in the representation space are better
at satisfying the low-rank separability assumption compared to
images in the pixel space.

B. Private labelled sample complexity analysis

In this section, we present the theoretical guarantees of
PILLAR for Semi-Private learning of linear halfspaces. We
prove that for binary cross entropy loss and hinge loss defined
in Table I, PILLAR is (ϵ, δ)-DP with respect to the private
dataset and achieve high accuracy in learning linear halfspaces
with relatively small number of private labelled data samples.
Please refer to Appendix A-B for the proof of Theorem 1.

Theorem 1. Let k ≤ d ∈ N, γ0 ∈ (0, 1), and ξ0 ∈ (0, 1).
Consider the family of distributions Dγ0,ξ0 which consists of
all (γ, ξk)-large margin low rank distributions over Xd × Y ,
where γ ≥ γ0 and ξk ≤ ξ0. For any α ∈ (0, 1) , β ∈ (0, 1/4),
ϵ ∈ (0, 1/

√
k), and δ ∈ (0, 1), PILLAR with scaled hinge loss

or cross entropy loss, is an (α, β, ϵ, δ)-semi-private learner for
linear halfspaces Hd on Dγ0,ξ0 with sample complexity

nU = O

(
log 2/β

(1− ξ0)2∆2
k

)
, nL = Õ

(
Lℓ

√
k

αϵ

)
where ∆k denote the gap between the kth and the k + 1th

eigenvalue of the population covariance matrix, and Lℓ is the
Lipschitz coefficient of the loss function ℓ6.

Table I provides a summary of two loss functions and
the associated Lipschitz coefficients. Notably, the Lipschitz
coefficient Lℓ = 1.1

γ0(1−ξ0)
for the scaled hinge loss varies

with the distributional parameters γ0 and ξ0. In contrast, for
cross-entropy loss, Lℓ remains fixed at 2. Hence, PILLAR with
scaled hinge loss is inherently designed to better harness the
large margin property of the distribution with large γ0 and
small ξ0. On the other hand, PILLAR with cross entropy loss
reflects the experiments more closely.

As discussed in Section III-A, the feature representations
of images, obtained from pre-trained neural networks, usually
satisfy the properties of large-margin low rank distributions
(Figure 3). Thus, in practical implementation, the private and
public datasets refer to private and public representations, as
shown in Figure 2. Note that while Theorem 1 only guarantees
(ϵ, δ)-DP on the set of private representations (see Figure 2),

5The estimate of ξk on pixel space should be taken with caution since
classes are not linearly separable in the pixel space thereby only approximately
satisfying the Large Margin assumption.

6Note that Õ neglects the logarithmic terms associated with 1
δ

and 1
β

.

this guarantee can also extend to (ϵ, δ)-DP on the private
labelled image dataset. See Appendix A-B for more details.

As a concrete instance of the application of Theorem 1, we
formally define a family of distributions based on gaussian
mixtures, referred to as large margin Gaussian mixture dis-
tributions, in Appendix A-E. For this family of distributions,
we demonstrate through Theorem 1 that PILLAR significantly
reduces the private sample complexity from O(

√
d) to O(1).

C. Distribution shift between private and public datasets

PILLAR also provides theoretical guarantees when the
private and public representations come from similar, but not
identical distributions. In this case, private sample complexity
also depends on the Total Variation (TV) distance, say η
between the two distributions. An informal theorem is presented
below in Theorem 2, while the formal result can be found
in Appendix A-D.

Theorem 2. Let k, d, γ0, ξ0,Dγ0,ξk , α, β, ϵ, nL, nU and δ
be defined as in Theorem 1. Additionally, consider any
η ∈ [0, 9(1−ξ0)∆k/140). Then PILLAR with scaled hinge loss
satisfies the same guarantees as Theorem 1 with 1/Lℓ =

γ0

(
1− ξ0 − 140η

9∆k

)
as long as the distributions of the private

and public datasets are within η Total variation.

D. Comparison with existing theoretical results and discussion

Existing works have offered a variety of techniques for
achieving dimension-independent sample complexity. In the
following, we review these works and compare them with our
approach.

a) Generic private algorithms: [38] proposed the Noisy
SGD algorithm ANoisy−SGD that can privately learn linear
halfspaces with margin γ on a private labelled dataset of size
O(

√
d/αϵγ). Recently, [28] showed that DP-SGD, a slightly

adapted version of ANoisy−SGD, can achieve a dimension in-
dependent error bound under a low-dimensionality assumption
termed as Restricted Lipschitz Continuity (RLC), which is
more restrictive than our low-rank separability assumption.
Similar results were showed in [39]. However, these methods
cannot utilise public unlabelled data. [21] leverages public
data for gradient clipping in DP-SGD. However, their method
does not achieve dimension-independent error bound. The
generic semi-private learner in [16] leverages unlabelled data to
reduce the infinite hypothesis class to a finite α-net and applies
exponential mechanism [40] to achieve (ϵ, 0)-DP. Nonetheless,
it is not computationally efficient and still requires a dimension-
dependent labelled sample complexity O (d/αϵ).

b) Dimension reduction based private algorithms:
Perhaps, most relevant to our work, [27] applies Johnson-
Lindenstrauss (JL) transformation in the input space to reduce
the dimension of a linear halfspace with margin γ from d to
O (1/γ) while preserving the margin in the lower-dimensional
space. Private learning in the transformed low-dimensional
space requires O (1/αϵγ2) labelled samples. Our algorithm
removes the quadratic dependence on the inverse of the margin
but pays the price of requiring the linear separator to align



with the top few principal components of the data. Specifically,
the benefit in private sample complexity is significant when
k = o (log(n)/γ2), which is a realistic condition as k is often
independent of n and γ is usually small.

Another approach to circumvent the dependency on the
dimension is to apply dimension reduction techniques directly
to the gradients. For smooth loss functions with ρ-Lipschitz and
G-bounded gradients, [41] showed that applying PCA in the gra-
dient space of DP-SGD [29] achieves dimension-independent
labelled sample complexity O

(
kρG2

αϵ + ρ2G4 log d
α

)
. However,

this algorithm is computationally costly as it applies PCA in
every gradient-descent step to a matrix whose size scales with
the number of parameters. [24] proposed a computationally
efficient method by applying JL transformation in the gradient
space. While their method can eliminate the linear dependence
of DP-SGD on dimension when the parameter space is the
ℓ1-ball, it leads to no improvement for parameter space being
the ℓ2-ball as in our setting. Gradient Embedding Perturbation
(GEP) by [17] is another computationally efficient method
that exploit the low-dimensionality of the gradient space with
public unlabelled data. However, their analysis yields dimension
independent guarantees only when a strict low-rank assumption
of the gradient space is satisfied. Similar assumptions were
leveraged by [25] who proposed a private adaptive gradient
method to achieve dimension independent error bounds. Their
final error bounds are very similar to [39]. We compare the
assumptions in more detail in Appendix A-F.

c) Private PCA (DP-PCA): Another natural algorithm is
to first project the private labelled data to its top k principal
components estimated using DP-PCA on both the private and
the public data, and then apply DP-SGD to learn a linear
classifier in the k-dimensional space [29]. However, estimating
the top principal components using DP-PCA on O(nU + nL)
samples in Theorem 1 introduces an irreducible error of
Ω
(
min

{
γ20d,

d
α
√
k

})
in the estimated space (Theorem 5.4 of

[42]), making the lower-dimensional space linearly inseparable
for large d. Hence, the classification error of any linear classifier
in the low dimensional space does not converge to zero using
the same amount of data required for PILLAR.

Importantly, we compare against these algorithms in our
experiments and show a consistent improvement, often by a
wide margin, on a variety of datasets.

d) Non-private learning and dimensionality reduction: It
is interesting to note that our algorithm may not lead to a similar
improvement in the non-private case. We show a dimension-
independent Rademacher-based labelled sample complexity
bound for non-private learning of linear halfspaces. We use a
non-private version of Algorithm 1 by replacing Noisy-SGD
with Gradient Descent using the same loss function. As before,
for any γ0 ∈ (0, 1), ξ0 ∈ (0, 1), let Dγ0,ξ0 be the family of
distributions consisting of all (γ, ξk)-large margin low rank
distributions with γ ≥ γ0 and ξk ≤ ξ0.

Proposition 3 (Non-DP learning). For any α, β ∈ (0, 1/4),
and distribution D ∈ Dγ0,ξ0 , given a labelled dataset of size
Õ (1/ζα2) and unlabelled dataset of size O (log 2

β/(γ0∆k)
2), the

non-private version of A(k, ζ) produces a linear classifier ŵ
such that with probability 1− β

PD [y ⟨ŵ, x⟩ < 0] < α,

where ζ = γ0(1− ξ0).

The result follows directly from the uniform convergence of
linear halfspaces with Rademacher complexity. For example,
refer to Theorem 1 in [43]. The labelled sample complexity
in the above result shows that non-private algorithms do not
significantly benefit from decreasing dimensionality7. We find
this trend to be true in all our experiments in Figure 4 and 5.

In summary, our algorithm is computationally efficient
and under certain (realistic) assumptions on the data, yields
dimension independent private sample complexity. We also
show through a wide variety of experiments in the following
sections that the results transfer to practice in both common
benchmarks as well as many newly designed challenging
settings.

IV. RESULTS ON STANDARD IMAGE CLASSIFICATION
BENCHMARKS

In this section, we report performance of PILLAR on
two standard benchmarks (CIFAR-10 and CIFAR-100 [44])
for private image classification. We demonstrate that in this
setting, PILLAR outperforms all the competing methods. The
improvement is especially remarkable for low ϵ values where
there is a significant margin for improvement. For moderate
values of ϵ, the improvement is more modest.

A. Experimental setting

The resolution difference between ImageNet-1K and CIFAR
images can negatively impact the performance of training a
linear classifier on pre-trained features. To mitigate this issue,
we pre-process the CIFAR images using the ImageNet-1K
transformation pipeline, which increases their resolution and
leads to significantly improved performance. This technique is
consistently applied throughout the paper whenever there is a
notable resolution disparity between the pre-training and private
datasets. For further details and discussions on pre-training at
different resolutions, please refer to Appendix B-B.

We diverge from previous studies in the literature, such
as those conducted by [12], [13], [15], by not exclusively
focusing on values of ϵ > 1. While a moderately large ϵ can be
insightful for assessing the effectiveness of privately training
deep neural networks with acceptable levels of accuracy, it
is important to acknowledge that a large value of ϵ can
result in loose privacy guarantees and consequently lack of
willingness to share data [45] . The seminal work of [46]
emphasizes that reasonable values of ϵ are expected to be
less than 1. Moreover, [47] and [48] have already highlighted
that ϵ > 1 leads to loose upper bounds on the success
probability of membership inference attacks. Finally, several

7However, this bound uses a standard Rademacher complexity result and
may be lose. A tighter complexity bound may yield some dependence on the
projected dimension.



Fig. 4: DP training of linear classifier on SL pre-trained feature
using the PRV accountant. For non-DP training (ϵ = ∞), accuracy
increases as dimension increases; opposite occurs for DP training
(ϵ = {0.1, 0.3, 0.7}). For results on additional feature-extractors
see Appendix B-H.

recent deployments of DP have use values of ϵ smaller than
18. Consequently, we focus on ϵ ∈ {0.1, 0.3, 0.7,∞}, where
ϵ = ∞ corresponds to the public training of the linear
classifier. Nevertheless, for completeness and consistency with
the current literature, we also present additional results for
higher ϵ = {1, 2} in Appendix B-C.

B. Comparison with Existing Methods

We now compare the performance of PILLAR against
several baselines that also leverage either public data or
dimensionality reduction or both. We use the same PRV
accountant for all methods [49]. For a comprehensive discussion
on implementation details and the cross-validation ranges for
hyper-parameters across all methods, refer to Appendix B-G.

a) Baselines: We consider the following
baselines: i) DP-SGD [28], [29]: Trains a linear classifier
privately using DP-SGD on the pre-trained features. ii) JL
[27]: Applies a Johnson-Lindenstrauss (JL) transformation
(without utilizing public data) to reduce the dimensionality of
the features. We cross-validate various target dimensionalities
and report the results for the most accurate one. iii) AdaDPS
[18]: Utilizes the public labeled data to compute the
pre-conditioning matrix for adaptive optimization algorithms.
Since our algorithm does not require access to labels for
the public data, we consider this comparison; nevertheless
we report their performance. iv) GEP [17]: Employs the
public unlabeled data to decompose the private gradients
into a low-dimensional embedding and a residual component,
subsequently perturbing them with noise of different
magnitudes. v) DP-PCA [29] applies a step of DP-PCA
(which consumes a fraction of the privacy budget) to compute
the PCA components and then trains a linear classifier. We
consider using 1%, 25%, 50% of the privacy budget and report
the results for the best choice.

Whenever public data is utilized, we employ 10% of
the training data as public and remaining data as private.
The official implementations of AdaDPS and GEP are used
for our comparisons. Compared to baselines like AdaDPS

8https://desfontain.es/privacy/real-world-differential-privacy.html

and GEP, PILLAR introduces only one hyperparameter (the
dimensionality k), making it less computationally expensive
to cross-validate (as discussed in Appendix B-B). It is also
extremely simple to implement, and therefore less prone to
bugs that may invalidate the privacy guarantees.

In Appendix B-D, we discuss PATE [19], [20] and the
reasons for not including it in our comparisons. For a detailed
comparison with the work of [13], including the use of a
different feature extractor to ensure a fair evaluation, we refer
to Appendix B-B, where we demonstrate that our method is
competitive, if not superior, while enjoying significantly more
computational efficiency.

b) Results: In Table II, we compare our approach with
other methods in the literature. Our results suggest that
reducing dimensionality by using the JL transformation can
only marginally (≤ 1% for both CIFAR-10 and CIFAR-100)
improve over DP-SGD and sometimes even perform worse
than DP-SGD. This may be attributed to the higher sample size
required for the JL lemma to provide meaningful guarantees.
Similarly, employing public data to pre-condition an adaptive
optimizer does not result in improved performance for AdaDPS
in most settings. The most competitive baseline is often GEP,
however PILLAR consistently outperforms all of them often with
large margins. For instance, consider the challenging setting
of CIFAR-100 with ϵ = 0.1. The performance of DP-trained
classifiers is particularly low on this dataset because there are
only 500 samples for each class. DP-SGD only achieves 13.2%
accuracy for ϵ = 0.1 whereas non-private accuracy is more than
80%. In this case no baseline yields performance significantly
superior to DP-SGD except PILLAR, which is accurate by
more than a factor of two. For ϵ = 0.3, PILLAR outperforms
the strongest baseline, GEP, by 6.8%. For ϵ = 0.7, DP-SGD
is again the strongest-baseline, and we outperform it by 3.0%.

C. Reducing dimension of projection k helps private learning

In Figure 4, we present the test accuracy of private and
non-private trianing on CIFAR-10 and CIFAR-100 as the
dimensionality of projection (PCA dimension) varies, with
an initial embedding dimension of k = 2048. The principal
components are computed on a public, unlabelled dataset
that constitutes 10% of the full dataset, as allowed by Semi-
Private Learning in Definition 4. Our results demonstrate
that private training benefits from decreasing dimensionality,
while non-private training either suffers in performance or
remains stagnant. For example, using the SL feature extractor
at ϵ = 0.1 on CIFAR-10, the test accuracy of private training
reaches 81.21% when k = 40, compared to 76.9% without
dimensionality reduction. Similarly, for CIFAR-100 with the SL
feature extractor at ϵ = 0.7, the accuracy drops from 53.98%
at k = 200 to 50.83% for the full dimension.

This observed dichotomy between private and non-private
learning in terms of test accuracy and projection dimension
aligns with Theorem 1 and Proposition 3. Theorem 1 indicates
that the private test accuracy improves as the projection
dimension decreases, as depicted in Figure 4. For non-private
training with moderately large dimension, (k ≥ 520), the test



Public Data SL Pre-training BYOL Pre-training

Datasets CIFAR10 CIFAR100 Flower-16 GTSRB Dermnet PCAM Pneumonia
ϵ 0.1 0.3 0.7 0.1 0.3 0.7 0.1 0.3 0.7 0.1 0.3 0.7 0.1 0.3 0.7 0.1 0.3 0.7 0.1 0.3 0.7

DP-SGD [29] None 76.8 81.4 83.7 13.2 36.4 50.9 46.2 72.2 82.4 36.0 46.8 59.6 14.4 22.4 28.0 80.1 81.4 81.6 71.3 73.6 79.2
DP-PCA [29] None 72.1 77.5 81.2 10.2 34.9 48.3 46.2 69.6 76.1 35.1 50.0 58.0 15.4 22.9 27.6 80.1 81.9 81.1 66.7 68.3 79.3
JL [27] None 76.1 82.1 84.1 13.7 37.6 51.3 43.5 70.4 80.9 36.3 53.3 62.1 14.3 22.3 28.1 78.3 78.7 79.7 65.2 70.0 76.9
GEP [17] Unlabelled 80.1 83.2 84.5 12.4 41.2 45.2 59.1 78.5 82.8 38.7 58.2 61.2 18.3 24.6 27.7 79.1 82.0 81.7 75.9 78.5 82.9
AdaDPS [18] Labelled 66.3 80.9 83.2 13.0 33.2 39.4 30.2 69.4 75.9 24.1 49.1 54.4 8.2 21.1 24.6 78.2 79.3 81.4 76.4 74.2 81.3
OURS Unlabelled 81.2 84.0 85.5 28.3 48.0 53.9 67.3 81.8 85.1 46.3 59.1 66.0 19.5 26.4 29.1 82.6 82.6 82.7 83.4 84.3 85.7

TABLE II: Empirical comparison of PILLAR (OURS) against several baselines with different assumptions about the availability
of public data. For the first four datasets (CIFAR-10, CIFAR-100, Flower-16, GTSRB), we use a SL pre-trained feature extractor,
as it yields the best performance. For the last three datasets (Dermnet, PCAM, Pneumonia) we use a BYOL pre-trained
feature extractor. In all cases, PILLAR outperforms all baselines under several levels of tightness of the privacy constraints
(ϵ = {0.1, 0.3, 0.7}). Baselines are implemented with the official, publicly available implementation when available. We use the
PRV accountant. See Appendix B-G for more details.

Fig. 5: Test Accuracy of DP classification on Flower-16, GTSRB, Dermnet, PCAM, and Pneumonia for best pre-training algorithm (SL
pre-training for Flower-16 and GTSRB and BYOL for the remaining.). For results on additional feature-extractors refer to Appendix B-H.

accuracy remains largely constant. We discuss this theoretically
in Proposition 3. The decrease in non-private accuracy for very
small values of k is attributed to the increasing approximation
error (i.e. how well can the best classifier in k dimensions
represent the ground truth). This difference in behaviour
between private and non-private learning for decreasing k
values consistently holds in all our experiments and is one
of the interesting observations of this paper. While we have
demonstrated the effectiveness of our algorithm on the CIFAR-
10 and CIFAR-100 benchmarks, as discussed in Section V, we
acknowledge that this evaluation setting may not fully reflect
the actual objectives of private learning.

V. EXPERIMENTAL RESULTS BEYOND STANDARD
BENCHMARKS

In line with concurrent work [26], we raise concerns regard-
ing the current trend of utilizing pre-trained feature extractors
for differentially private training [12], [13]. It is common
practice to evaluate differentially private algorithms for image
classification by pre-training on ImageNet-1K and performing
private fine-tuning on CIFAR datasets [12], [13]. However, we
argue that this approach may not yield generalisable insights for
privacy-sensitive scenarios. Both ImageNet and CIFAR datasets
primarily consist of everyday objects, and the label sets of
ImageNet are partially included within CIFAR. Such a scenario
is unrealistic for many privacy-sensitive applications, such as
medical, finance, and satellite data, where a large publicly

available pre-training dataset with similar characteristics to the
private data may not be accessible.

Moreover, public datasets are typically large-scale and easily
scraped from the web, whereas private data is often collected on
a smaller scale and subject to legal and competitive constraints,
making it difficult to combine with other private datasets.
Additionally, labeling private data, particularly in domains such
as medical or biochemical datasets, can be costly. Therefore,
evaluating the performance of privacy-preserving algorithms
requires examining their robustness with respect to small dataset
sizes. In order to address these considerations, we assess the
performance of our algorithm on five additional datasets that
exhibit varying degrees of distribution shift compared to the
pre-training set, as described in Section V-A. Furthermore, we
also demonstrate the robustness of our algorithm to minor
distribution shifts between public unlabeled and private labeled
data. In Section V-B, we show our algorithm is also robust to
both small-sized private labeled datasets and public unlabeled
datasets.

A. Effectiveness under Distribution Shift

a) Distribution Shift between Pre-Training and Private
Data: We consider private datasets that exhibit varying levels
of dissimilarity compared to the ImageNet pre-training dataset:
Flower-16 [50], GTSRB [51], Pneumonia [52], a fraction
(12.5%) of PCAM [53], and DermNet [54]. In Figure 1, we
provide visual samples from each of these datasets. Flower-16



and GTSRB have minimal overlap with ImageNet-1K, with
only one class in Flower-16 and 43 traffic signs aggregated into
a single label in ImageNet-1K. The Pneumonia, PCAM, and
DermNet datasets do not share any classes with ImageNet-1K.
We also observe that, given a fixed pre-training distribution and
model, different training procedures can have a different impact
in the utility of the extracted features for each downstream
classification task. Therefore, for each dataset we report the best
performance produced by the most useful pre-training algorithm.
Results for all the 5 pre-training strategies we consider and a
discussion of how to choose them is relegated to Appendix B-H.

From Table II, we can see PILLAR outperforms all the
considered baselines for all the ϵ values on all datasets.
Before providing a more detailed discussion of the results,
we would like to emphasize that no baseline consistently
achieves the best performance across all these settings, in
contrast to PILLAR, which proves to be a more consistent and
widely applicable algorithm. On Flower-16, PILLAR achieves
remarkable improvements. For ϵ = 0.1, it outperforms the
strongest baseline (GEP) by 8.2%. Similarly, on GTSRB we
attain improvements of 3.9% over the runner-up (JL) for
ϵ = 0.7 and 8.4% with respect to GEP for ϵ = 0.1. In the
case of PCAM, although the relatively large training set size
and the simplicity of the binary classification problem allows
all classifiers to produce moderately high levels of accuracy
(approximately 80%), our method is the only one to maintain
an accuracy of approximately 82.6% across all the considered
ϵ values, thus alleviating the utility degradation incurred by
imposing tighter privacy constraints. In contrast, the Pneumonia
dataset is a binary classification dataset with significantly
less training data. In this case, competing techniques incur
a significantly larger utility cost. For ϵ = 0.1, the strongest
baseline (AdaDPS) achieves 76.4%, while our method achieves
83.4%. In summary, PILLAR consistently achieves the highest
performance, often by a large margin, among all baselines for
a wide range of datasets.
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Fig. 6: Comparing the difference between the maximum attainable
test accuracy with a publicly trained linear classifier and a DP
trained linear classifier between using SL and BYOL pre-trained
networks for different datasets. SL suffers a smaller drop in accuracy
is more useful when the fine-tuning dataset contains daily-life objects
and semantically overlap with ImageNet-1K, BYOL performs better
otherwise otherwise.

In Figure 5, we demonstrate that reducing the dimensionality
of the pre-trained models enhances differentially private train-
ing, irrespective of the private dataset used. Dimensionality
reduction has a more pronounced effect on performance when
tighter privacy constraints are imposed. It is worth noting
that using dimensionality reduction can significantly degrade
performance for non-DP training, similar to what we observed
in CIFAR-10 and CIFAR-100.

b) When to use labels in pre-training: We also investigate
the impact of different pre-training strategies on DP test
accuracy. In our experiments, we have observed that some
pre-trained models are more effective than others for specific
datasets. To measure the maximum attainable accuracy with a
publicly trained classifier, we compute the drop in performance,
observed by training a DP classifier on BYOL pre-trained fea-
tures, and the drop in performance for SL pre-trained features.
We then plot the fractional reduction for both BYOL and SL
across all the datasets for ϵ = 0.1 in Figure 6. In Figure 11
we compare the relative reduction in performance when using
Semi-supervised pre-training and BYOL pre-training. We find
that datasets with daily-life objects and semantic overlap with
ImageNet-1K benefit more from leveraging SL features and
thus have a smaller reduction in accuracy for SL features
compared to BYOL features. In contrast, datasets with little
label overlap with ImageNet-1K benefit more from BYOL
features, consistent with findings by [55].

CIFAR10 CIFAR100

PCA Data
Pre-training

SL BYOL SL BYOL

In-distribution 81.21 72.33 28.3 19.98
CIFAR-10v1 81.18 73.24 28.19 19.61

TABLE III: Distribution Shift between public (PCA) and private data:
Comparison between using the same amount of in-distribution data (i.e. 10%
of CIFAR-10 and CIFAR-100 respectively) and CIFAR-10v1 for computing
the PCA projection (ϵ = 0.1).

c) Distribution Shift between SU and SL: We demon-
strate the effectiveness of our algorithm even when the public
unlabeled data (used for computing the PCA projection matrix)
is sourced from a slightly different distribution than the private
labeled dataset. Specifically, we utilize the CIFAR-10v1 [56]
dataset and present the results in Table III.

Notably, CIFAR-10v1 consists of only 2000 samples (4% of
the training data), yet the results for both CIFAR-10 and CIFAR-
100 remain essentially unchanged. This finding indicates that
the data used to compute the PCA projection matrix does not
necessarily have to originate from the same distribution as the
private data and underscores that large amounts of public data
are not required for our method to be effective.

B. Effectiveness in Low-Data Regimes

In privacy-critical settings such as medical contexts, there
is often a limited availability of training data. For instance,
the DermNet and pneumonia datasets contain only 12,000 and
3,400 training data points, respectively, which is significantly
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Fig. 7: For the GTSRB and CIFAR-100 datasets, in the central panel we report how the test accuracy varies as the amount of available
private training data decreases (fraction of available data in {0.05, 0.1, 0.25, 0.5, 0.75}) for ϵ = 0.1 and 0.7. We then select the cases in
which 10% and 50% of the samples are available (left orange and right pink panels, respectively) and compare how PILLAR (solid bars)
behaves with respect to DP-SGD (dashed bars). As it can be seen, PILLAR can alleviate the utility degradation caused by the reduced
availability of private training data.

CIFAR10 GTSRB

PCA Data
Pre-training SL BYOL SL BYOL

1% 79.93 72.27 45.59 35.91
5% 81.02 72.33 45.64 35.88
10% 81.21 72.33 46.32 35.97

TABLE IV: Varying amounts of public (PCA) data: Performance of PILLAR
with varying amounts of public (in distribution) data for computing the PCA
projection (ϵ = 0.1). The amount of public data is presented as a fraction of
the whole available dataset.

smaller compared to datasets like CIFAR-10 with 50,000
samples. To examine the impact of reduced data (both private
labeled and public unlabeled) on privacy, in this section we
conduct ablations using varying fractions of public and private
training data.

a) Less public unlabelled data: We demonstrate the
robustness of our algorithm to reduced amounts of public
unlabeled data used to compute the Principal Components.

In Table IV, we show the results of this ablation. As it
can be seen, reducing the available public data does not yield
dramatic variations in performance under the tightest privacy
guarantees we consider (ϵ = 0.1). For instance, for CIFAR-
10 and GTSRB using a BYOL trained feature extractor, we
observe the performance does not vary at all when the amount
of available public data is reduced from 10% to 5% and 1%. For
a SL trained feature extractor, we observe the performance only
marginally decreases. For GTSRB, the performance reduces
only by 0.93% when passing from 10% to 1% available public
data, and of 1.28% on CIFAR-10 in the same setting.

b) Less private labelled data: In Figure 7, we present
the performance of private and public training using different
percentages of labeled private training data for CIFAR-100
and GTSRB. Our results indicate that under stringent privacy
constraints (ϵ ∈ {0, 7, 0.1}), the performance of DP training,
without dimensionality reduction (DP-SGD), is considerably
low. Conversely, even with a small percentage of training
data, non-DP training demonstrates relatively high performance.

By applying our algorithm in this scenario, we achieve
significant performance improvements compared to using the
full-dimensional embeddings. For instance, applying PCA with
with k = 40 dimensions enhances the accuracy of our proposed
algorithm from 7.53% to 18.3% on 10% of CIFAR-100, with
ϵ = 0.7 using the SL feature extractor. Similar improvements
are also shown for GTSRB: when 10% of the data is available,
the test accuracy improves from 27.3% to 38.4% for ϵ = 0.7.
To a smaller extent, improvements can be also observed when
ϵ = 0.1.

VI. CONCLUSION

In this paper, we consider the setting of semi-private learning
where the learner has access to public unlabelled data in
addition to private labelled data. This is a realistic setting
in many circumstances e.g. where some people choose to
make their data public. Under this setting, we proposed a
new algorithm to learn linear halfspaces. Our algorithm uses
a mix of PCA on unlabelled data and DP training on private
data. Under reasonable theoretical assumptions, we have shown
the proposed algorithm is (ϵ, δ)-DP and provably reduces the
sample complexity. In practical applications, we performed an
extensive set of experiments that show the proposed technique
is effective when tight privacy constraints are imposed, even
in low-data regimes and with a significant distribution shift
between the pre-training and private distribution. In particular
our algorithm consistently outperforms existing methods, often
by a wide margin.
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APPENDIX A
PROOFS

A. Noisy SGD

In this section, we present Algorithm 2, an adapted version of the Noisy SGD algorithm from [38] for d-dimensional linear
halfspaces Hd, that is used as a sub-procedure in Algorithm 1. Algorithm 2 first applies a base procedure ABase on Hd for k
times to generate a set of k results while preserving (ϵ, δ)-DP, and then applies the exponential mechanism ME to output one
final result from the set.

Algorithm 2 ANoisy−SGD(SL, ℓ, (ϵ, δ), β)

1: procedure ANoisy−SGD(SL, ℓ, (ϵ, δ), β)
2: Input: a labelled dataset SL, a loss function ℓ, privacy parameters ϵ, δ, and the failure probability β.
3: Set k = ⌈log 1/β⌉.
4: for i = 1 to k do
5: ŵ(i) ← ABase(S

L, ℓ, (ϵ/k, δ/k))
6: end for
7: Let O ← {ŵ(1), . . . , ŵ(k)}.
8: ŵ ←ME(S

L,−ℓ,O, ϵ).
9: Output: ŵ

10: end procedure
11: procedure ABase((SL, ℓ, (ϵ, δ)))
12: Input: a labelled dataset SL, a loss function ℓ, privacy parameters ϵ, δ.
13: Let L be the Lipschitz coefficient of the loss function ℓ and nL be the size of SL.

14: Set noise variance σ2 ← 32L2(nL)
2
log(nL/δ) log(1/δ)

ϵ .
15: Randomize ŵ0 ∈ Hd.
16: Set the learning rate function η(t) = 1√

t(nL)2L2+mσ2
.

17: for t = 1 to (nL)2 − 1 do
18: Uniformly choose (x, y) ∈ SL.
19: Update ŵt+1 = ΠW

(
ŵt − η(t)[nL∇ℓ(ŵt; (x, y)) + ξ]

)
where ξ ∼ N(0, Idσ2).

20: end for
21: Output: ŵ = ŵ(nL)2

22: end procedure
23: procedure ME(SL, ℓ,O, ϵ)
24: Input: a dataset SL, a loss function ℓ, an set of parameters O, and a privacy parameter ϵ.
25: Set the global sensitivity as ∆U = maxS,S′ maxw∈O |ℓ(S,w)− ℓ(S′, w)|, for any S, S′ of size |SL| differing at exactly

one entry.
26: Output: w ∈ O with probability proportional to exp

(
ϵℓ(SL,w)

2∆U

)
.

27: end procedure

In Lemma 1, we state the privacy guarantee and the high probability upper bound on the excess error of the adpated version
of Noisy SGD (Algorithm 2). This is a corollary of Theorem 2.4 in [11], which provides an upper bound on the expected
excess risk of ABase. The proof of Lemma 1 follows directly from Markov inequality and the post-processing property of DP
(Lemma 3), as described in Appendix D of [11].

Lemma 1 (Theoretical guarantees of Noisy SGD [38]). Let the loss function ℓ be L-Lipschitz and Hd be the d-dimensional
linear halfspace with diameter 1. Then ANoisy−SGD is (ϵ, δ)-DP, and with probability 1−β, its output ŵ satisfies the following
upper bound on the excess risk,∑

(x,y)∈S

ℓ(ŵ, (x, y))−
∑

(x,y)∈S

ℓ(w⋆, (x, y)) =
L
√
d

ϵ
· polylog(n,

1

β
,
1

δ
),

for a labelled dataset S of size n. Here, w⋆ is the empirical risk minimizer w⋆ = argminw∈C
∑

(x,y)∈S ℓ(w, (x, y)).

B. Theoretical results under no distribution shift and proofs

In this section, we provide a proof for Theorem 1, which demonstrates that PILLAR is (ϵ, δ)-DP with respect to the
private dataset and can achieve accuracy with only a modest amount of private data. To establish Theorem 1, we begin by



proving Lemma 2. This lemma shows that PILLAR attains a convergence guarantee in excess loss for all Lipschitz continuous
loss functions in learning the linear halfspace Hd.

Lemma 2. Let k ≤ d ∈ N, γ0 ∈ (0, 1), and ξ0 ∈ (0, 1). Consider the family of distributions Dγ0,ξ0 which consists of all
(γ, ξk)-large margin low rank distributions over Xd × Y , where γ ≥ γ0 and ξk ≤ ξ0. For any α ∈ (0, 1) , β ∈ (0, 1/4),
ϵ ∈ (0, 1/

√
k), and δ ∈ (0, 1), PILLAR Aϵ,δ(k, ℓ), described by Algorithm 1 with an L-Lipschitz loss function ℓ in step 5, is

(ϵ, δ)-DP and outputs an estimator ŵ satisfying

P(SU ,SL)∼D,ŵ∼Aϵ,δ

[
E(x,y)∼D [ℓ(ŵ; (x, y))]− min

w∈Bd
2

E(x,y)∼D [ℓ(w; (x, y))] ≤ α
]
≥ 1− β,

given a public unlabelled and private labelled sample SU , SL from distribution D of size

nU = O

(
log 2/β

(1− ξ0)2∆2
k

)
, nL = Õ

((
1

α2
+

1

αϵ

)
L
√
k

)
.

Proof. Privacy guarantee Algorithm Aϵ,δ(k, ζ) computes the transformation matrix Âk on the public unlabelled dataset. This
step is independent of the labelled data SL and has no impact on the privacy with respect to SL. ANoisy−SGD ensures the
operations on the labelled dataset SL to output vk is (ϵ, δ)-DP with respect to SL (Lemma 1). The final output ŵ = Âkvk is
attained by post-processing of vk and preserves the privacy with respect to SL by the post-processing property of differential
privacy (Lemma 3).

Lemma 3 (Post-processing [4]). For every (ϵ, δ)-DP algorithm A : S → Y and every (possibly random) function f : Y → Y ′,
f ◦ A is (ϵ, δ)-DP.

Accuracy guarantee By definition, all distributions Dγ,ξk ∈ Dγ0,ξ0 are (γ, ξk)-large margin low rank for some γ ≥ γ0, ξk ≤ ξ0.
Let the empirical covariance matrix of Dγ,ξk calculated with the unlabelled dataset SU be Σ̂ = 1

nU

∑
x∈SU (x− x̄)(x− x̄)⊤

and Âk ∈ Rd×k be the projection matrix whose ith column is the ith eigenvector of Σ̂. Let Σ be the population covariance
matrix and similarly, let Ak the matrix of top k eigenvectors of Σ.

For any distribution Dγ,ξk ∈ Dγ0,ξ0 , let DX,(γ,ξk) be the marginal distribution of X and w⋆ be the large margin linear

classifier that is guaranteed to exist by Definition 3. The margin after projection by Âk is lower bounded by
y⟨Â⊤

k z,Â⊤
k w⋆⟩

∥ÂT
k z∥

2
∥Â⊤

k w⋆∥
2

for any z ∈ supp
(
DX,(γ,ξk)

)
.

We will first derive a high-probability lower bound for this term to show that, after projection, with high probability, the
projected distribution still has a large margin. Then, we will invoke existing algorithms in the literature with the right parameters,
to privately learn a large margin classifier in this low-dimensional space.

Let z be any vector in supp
(
DX,(γ,ξk)

)
. We can write z = azw

⋆ + b⊥ for some az where b⊥ is in the nullspace of w⋆.
Then, it is easy to see that using the large-margin property in Definition 3, we get

yaz =
⟨w⋆, z⟩
∥w⋆∥2 ∥z∥2

≥ γ ≥ γ0. (1)

Then, we lower bound
y
〈
Â⊤

k z, Â
⊤
k w

⋆
〉

∥∥∥Â⊤
k z
∥∥∥
2

∥∥∥Â⊤
k w

⋆
∥∥∥
2

as

y
〈
Â⊤

k z, Â
⊤
k w

⋆
〉

∥∥∥Â⊤
k z
∥∥∥
2

∥∥∥Â⊤
k w

⋆
∥∥∥
2

(a)
=

yaz

∥∥∥Â⊤
k w

⋆
∥∥∥2
2∥∥∥Â⊤

k z
∥∥∥
2

∥∥∥Â⊤
k w

⋆
∥∥∥
2

(b)

≥ γ0

∥∥∥Â⊤
k w

⋆
∥∥∥
2

(2)

where step (a) is due to
〈
w⋆, b⊥

〉
= 0 and step (b) follows from

∥∥∥Â⊤
k z
∥∥∥
2
≤
∥∥∥Âk

∥∥∥
op
∥z∥2 ≤ 1 and Equation (1).

To lower bound
∥∥∥Â⊤

k w
⋆
∥∥∥
2
, note that∥∥∥Â⊤

k w
⋆
∥∥∥
2
=
∥∥∥ÂkÂ

⊤
k w

⋆
∥∥∥
2
≥
∥∥AkA

⊤
k w

⋆
∥∥
2
−
∥∥∥ÂkÂ

⊤
k w

⋆ −AkA
⊤
k w

⋆
∥∥∥
2

by Triangle Inequality

≥
∥∥AkA

⊤
k w

⋆
∥∥
2
−
∥∥∥ÂkÂ

⊤
k −AkA

⊤
k

∥∥∥
F
∥w⋆∥2 by Cauchy Schwarz Inequality

≥ 1− ξk −
∥∥∥ÂkÂ

⊤
k −AkA

⊤
k

∥∥∥
F
.

(3)

where the last step follows from the low rank assumption in Definition 3 and observing that ∥w⋆∥2 = 1.



To upper bound
∥∥∥ÂkÂ

⊤
k −AkA

⊤
k

∥∥∥
F

, we use Lemma 4.

Lemma 4 (Theorem 4 in [57]). Let D be a distribution over {x ∈ Rd| ∥x∥2 ≤ 1} with covariance matrix Σ and zero mean
Ex∼D[x] = 0. For a sample S of size n from D, let Σ̂ = 1

n

∑
x∈S xx

T be the empirical covariance matrix. Let Ak, Âk be
the matrices whose columns are the first k eigenvectors of Σ and Σ̂ respectively and let λ1 (Σ) > λ2 (Σ) > . . . > λd (Σ) be

the ordered eigenvalues of Σ. For any k > 0, β ∈ (0, 1) such that λk (Σ) > 0 and n ≥
16

(
1+
√

β/2
)2

(λk(Σ)−λk+1(Σ))2
, we have that with

probability at least 1− e−β , ∥∥∥AkA
T
k − ÂkÂ

T
k

∥∥∥
F
≤

4

(
1 +

√
β
2

)
(λk (Σ)− λk+1 (Σ))

√
n
.

It guarantees that with probability 1− β
2 ,

∥∥∥AkA
⊤
k − ÂkÂ

⊤
k

∥∥∥
F
≤

4

(
1 +

√
log(2/β)

2

)
(λk (Σ)− λk+1 (Σ))

√
nU
≤ 1− ξ0

10
.

(4)

where the last inequality follows from choosing the size of unlabelled data nU ≥
1600

(
1+

√
log(2/β)

2

)2

(1−ξ0)2(∆minλk)
2 .

Substituting Equation (4) into Equation (3), we get that with probability 1− β
2 ,∥∥∥Â⊤

k w
⋆
∥∥∥
2
≥ 1− ξk −

1− ξ0
10

≥ 1− ξ0 −
1− ξ0
10

= 0.9 (1− ξ0) (5)

Plugging Equation (5) into Equation (2), we derive a high-probability lower bound on the distance of any point to the
decision boundary in the transformed space. For all z ∈ supp

(
DX,(γ,ξk)

)
,

y
〈
Â⊤

k z, Â
⊤
k w

⋆
〉

∥∥∥Â⊤
k z
∥∥∥
2

∥∥∥Â⊤
k w

⋆
∥∥∥
2

≥ 0.9γ0 (1− ξ0) . (6)

This implies that the margin in the transformed space is at least 0.9γ0 (1− ξ0).
For a halfspace with parameter v ∈ Bk

2 , denote the empirical loss on a dataset S by L̂(w;S) = 1
|S|
∑

(x,y)∈S ℓ(w, (x, y))

and the loss on the distribution D by L(w;D) = P(x,y)∼D [ℓ(w, (x, y))]. Let Dk be the k-dimension transformation of the
original distribution D obtained by projecting each x ∈ X to Â⊤

k x.
By the convergence bound in Lemma 1 for ANoisy−SGD, we have with probability 1− β

2 , ANoisy−SGD outputs a hypothesis
vk ∈ Bk

2 and ŵ = Akvk ∈ Bd
w such that

L̂(ŵ;SL)− L̂(wERM ;SL)
(a)
= L̂(vk;S

L
k )− L̂(vERM ;Dk) = O

(
L
√
k

nLϵ
polylog

(
nL,

1

δ
,
1

β

))
(7)

where wERM = argminw∈Bd
2
L̂(w;SL) and vERM = argminv∈Bk

2
L̂(v;SL

k ).
Let w⋆ be the ground truth of the given distribution. The generalization error can be decomposed as

L(ŵ)− L(w⋆) =
(
L(ŵ)− L̂(ŵ)

)
+
(
L̂(ŵ)− L̂(wERM )

)
+
(
L̂(wERM )− L̂(w⋆)

)
+
(
L̂(w⋆)− L̂(w⋆)

)
(a)

≤
(
L(ŵ)− L̂(ŵ)

)
︸ ︷︷ ︸

(a)

+
(
L̂(ŵ)− L̂(wERM )

)
︸ ︷︷ ︸

(b)

+
(
L̂(w⋆)− L̂(w⋆)

)
︸ ︷︷ ︸

(c)

(8)

where step (a) follows as L̂(wERM )− L̂(w⋆) ≤ 0 by the definition of wERM .
We have shown in Equation (7) that the second term (b) is upper bounded by α

2 for nL = Õ
(

L
√
k

αϵ

)
. It remains to bound

the generalization error of linear halfspace Hd for L-Lipschitz loss function, ie. term (a) and term (c). That is, we need to
show that the empirical error of a linear halfspace is a good approximation of the error on the distribution. To achieve this, we
apply uniform convergence bound using Rademacher complexity [58].

With probability 1− β
4 ,

sup
w∈Bd

2

Ex,y∼Dℓ(w; (x, y))−
1

nL

∑
(x,y)∈SL

ℓ(w; (x, y))

 ≤ 2RSL(Hℓ) +

√
3 log 8

β

2nL
, (9)



where Hℓ = {hw(x, y) = ℓ(w, (x, y))|w ∈ Bd
2} is the composition of the loss function with the linear halfspace.

RSL(Hℓ) ≤ LRSL(Hd) =
L

nL
. (10)

Substituting Equation (10) into Equation (9), we can upper bound both term (a) and (c) by α
4 with probability at least 1− β

2
for nL ≥ L

α2 polylog (()
4
β ), i.e.

L(ŵ)− L̂(ŵ) ≤ α

4
, L̂(w⋆)− L(w⋆) ≤ α

4
. (11)

Combining Equation (8), Equation (7) and Equation (11) concludes the proof.

In the following, we use Lemma 2 to prove Theorem 1. Recall that we define cross entropy loss and scaled hinge loss
in Table I.

Theorem 1. Let k ≤ d ∈ N, γ0 ∈ (0, 1), and ξ0 ∈ (0, 1). Consider the family of distributions Dγ0,ξ0 which consists of
all (γ, ξk)-large margin low rank distributions over Xd × Y , where γ ≥ γ0 and ξk ≤ ξ0. For any α ∈ (0, 1) , β ∈ (0, 1/4),
ϵ ∈ (0, 1/

√
k), and δ ∈ (0, 1), PILLAR with scaled hinge loss or cross entropy loss, is an (α, β, ϵ, δ)-semi-private learner for

linear halfspaces Hd on Dγ0,ξ0 with sample complexity

nU = O

(
log 2/β

(1− ξ0)2∆2
k

)
, nL = Õ

(
Lℓ

√
k

αϵ

)

where ∆k denote the gap between the kth and the k + 1th eigenvalue of the population covariance matrix, and Lℓ is the
Lipschitz coefficient of the loss function ℓ9.

Proof. Guarantees for PILLAR with (scaled) hinge loss function: Note that the (scaled) hinge loss function ℓhζ defined
in Table I is 1

0.9γ0(1−ξ0)
-Lipschitz. Substituting Lℓ =

1
0.9γ0(1−ξ0)

into the sample complexity in Lemma 2 upper bounds the
excess hinge loss of PILLAR’s output ŵ with probability at least 1− β, i.e.

E(x,y)∼D [ℓ(ŵ; (x, y))]− min
w∈Bd

2

E(x,y)∼D [ℓ(w; (x, y))]

(a)
=E(x,y)∼D

[
ℓ(vk; (A

⊤
k x, y))

]
− min

v∈Bk
2

E(x,y)∼D

[
ℓ(v; (A⊤

k x, y))
]
≤ α

(12)

where step (a) follows from the definition of ŵ = Akvk by the last step in PILLAR using the same notation as in the proof
of Lemma 2.

By Equation (5) following the same argument as in the proof of Lemma 2, the k-dimensional space projected by Ak has a
positive margin at least 0.9γ0(1− ξ0). Thus, the empirical risk minimizer in the low-dimensional space is zero, i.e.

E(x,y)∼D [ℓ(ŵ; (x, y))] = min
v∈Bk

2

E(x,y)∼D

[
ℓ(v; (A⊤

k x, y))
]
= 0. (13)

Then, we can upper bound the empirical 0-1 error by the empirical (scaled) hinge loss in the k-dimensional transformed
space, For nL = O

( √
k

αϵγ0(1−ξ0−0.1γ0)
polylog

(
1
δ ,

1
ϵ ,

1
β ,

1
α ,

1
γ0
, 1
ξ0
, k, nL

))
, with probability 1− β

4 ,

E(x,y)∼D [1{y ⟨x, ŵ⟩}] = E(x,y)∼D

[
1{y

〈
A⊤

k x, vk
〉
}
]

≤ E(x,y)∼D

[
ℓ(vk; (A

⊤
k x, y))

] (14)

Combining Equation (12), Equation (13) and Equation (14) concludes the proof.
Guarantees for PILLAR with cross entropy loss: As cross entropy loss function ℓCN defined in Table I is 2-Lipschitz,

directly applying Lemma 2 shows that excess cross-entropy loss ℓCN is upper bounded by α
2 with the given public unlabelled

and private labelled samples, i.e.

P(SU ,SL)∼D,ŵ∼Aϵ,δ

[
E(x,y)∼D [ℓCN (ŵ; (x, y))]− min

w∈Bd
2

E(x,y)∼D [ℓCN (w; (x, y))] ≤ α

2

]
≥ 1− β, (15)

when nU = O
(

log 2/β
(1−ξ0)2∆2

k

)
, nL = Õ

(√
k

αϵ

)
.

9Note that Õ neglects the logarithmic terms associated with 1
δ

and 1
β

.



We apply Theorem 7 in [59] with ψ(θ) = θ and α = 1 for cross entropy loss to obtain an upper bound on excess 0-1 loss,

E(x,y)∼D [ℓCN (ŵ; (x, y))]− min
w∈Bd

2

E(x,y)∼D [ℓCN (w; (x, y))]

≥1

2

(
E(x,y)∼D [1{y (x, ŵ) > 0}]− min

w∈Bd
2

E(x,y)∼D [1{y (x, ŵ) > 0}]
) (16)

Substitute Equation (16) into Equation (15), we obtain the convergence guarantee on 0-1 loss.

P(SU ,SL)∼D,ŵ∼Aϵ,δ

[
E(x,y)∼D [ℓCN (ŵ; (x, y))]− min

w∈Bd
2

E(x,y)∼D [ℓCN (w; (x, y))] ≤ α

2

]
≤P(SU ,SL)∼D,ŵ∼Aϵ,δ

[
E(x,y)∼D [1{y (x, ŵ) > 0}]− min

w∈Bd
2

E(x,y)∼D [1{y (x, ŵ) > 0}] ≤ α
]
≥ 1− β.

(17)

This completes the proof.

C. Privacy guarantees for PILLAR on the original image dataset

As described in Figure 2, in practice PILLAR is applied on the set of representations obtained by passing the private dataset of
images through a pre-trained feature extractor. Therefore, a straightforward application of Theorem 1 yields an (ϵ, δ)-DP guarantee
on the set of representations and not on the dataset in the raw pixel space themselves. Here, we show that PILLAR provides (at
least) the same DP guarantees on the dataset in the pixel space as long as the pre-training dataset cannot be manipulated by
the privacy adversary. One way to achieve this, as we show is possible in this paper, is by using the same pre-trained model
across different tasks. Investigating the extent of privacy harm that can be caused by allowing the adversary to manipulate the
pre-training data remains an important future direction.

Corollary 1. Let f : Rp → Rd be a feature extractor pre-trained using any algorithm. Let S1, S2 be any two neighbouring
datasets of private images in Rp. Then, for any Q ⊆ Hd where Hd is the class of linear halfspaces in d dimensions,

Ph∼Aϵ,δ◦f(S1) [h ∈ Q] ≤ eϵPh∼Aϵ,δ◦f(S2) [h ∈ Q] + δ

where Aϵ,δ is Algorithm 1 (PILLAR) run with privacy parameters ϵ, δ.

Proof. Note that f is a deterministic many-to-one function from the dataset of images to the dataset of representations 10. For
any two neighbouring datasets S1, S2 in the image space, let SR

1 , S
R
2 be the corresponding set of representations extracted by f ,

i.e. SR
1 = {f(x) : x ∈ S1} and SR

2 = {f(x) : x ∈ S2}. Then for any Q ⊆ Hd

Ph∼Aϵ,δ◦f(S1) [h ∈ Q] = Ph∼Aϵ,δ(SR
1)

[h ∈ Q]

≤ eϵPh∼Aϵ,δ(SR
2)
[h ∈ Q] + δ

= eϵPh∼Aϵ,δ◦f(S2) [h ∈ Q] + δ

where the first and the last equality follows by using the definition SR
1 , S

R
2 and due to the fact that f is a many-to-one

function. The second inequality follows from observing that SR
1 , S

R
2 can differ on at most one point as f is a deterministic

many-to-one function and Aϵ,δ is (ϵ, δ)-DP.

D. Theoretical results under distribution shifts and proofs

In this section, we provide the theoretical guarantees of PILLAR under distribution shifts. Before that, we formally define
η-TV tolerant semi-private learning.

Definition 4 (η-TV tolerant (α, β, ϵ, δ)-semi-private learner on a family of distributions D). An algorithm A is an η-TV tolerant
(α, β, ϵ, δ)-semi-private learner for a hypothesis class H on a family of distributions D if for any distribution DL ∈ D, given
a labelled dataset SL of size nL sampled i.i.d. from DL and an unlabelled dataset SU of size nU sampled i.i.d. from any
distribution DU with η-bounded TV distance from DL

X as well as third moment bounded by η, A is (ϵ, δ)-DP with respect to
SL and outputs a hypothesis h satisfying

P[P(x,y)∼D [h(x) ̸= y] ≤ α] ≥ 1− β,

where the outer probability is over the randomness of the samples and the intrinsic randomness of the algorithm. In addition,
the sample complexity nL and nU must be polynomial in 1

α and 1
β , and nL must also be polynomial in 1

ϵ and 1
δ .

10f can be designed to normalize the extracted features in a d-dimensional unit ball.



In Theorem 4, we prove a full version of Theorem 2 that demonstrates PILLAR is an η-TV tolerant (α, β, ϵ, δ)-semi-private
learner for linear halfspaces Hd. We define the scaled hinge loss that depends on η, ξ0, γ0 as

ℓ(w; (x, y)) = max

0, 1− y ⟨w, x⟩

γ0

(
0.9(1− ξ0)− 14η

∆k

)
 . (18)

Theorem 4. For k ≤ d ∈ N, γ0 ∈ (0, 1), ξ0 ∈ [0, 1), let Dγ0,ξ0 be the family of distributions consisting of all (γ, ξk)-
large margin low rank distributions over Xd × Y with γ ≥ γ0 and ξk ≤ ξ0 and third moment bounded by η. For any
α ∈ (0, 1) , β ∈ (0, 1/4), ϵ ∈ (0, 1/

√
k), δ ∈ (0, 1) and η ∈ [0, 9(1−ξ0)∆k/140), PILLAR with scaled hinge loss ℓ defined

in Equation (18), is an η-TV tolerant (α, β, ϵ, δ)-semi-private learner of the linear halfspace Hd on Dγ0,ξ0 with sample
complexity

nU = O

(
log 2

β

(γ0∆k)
2

)
, nL = Õ

(√
k

αϵζ

)
where ∆k = λk

(
ΣL
)
− λk+1

(
ΣL
)

and ζ = γ0 (0.9(1− ξ0)− 14η/∆k).

Proof. Privacy Guarantee A similar argument as the proof of the privacy guarantee in Theorem 1 shows that Algorithm
Aϵ,δ(k, ζ) preserves (ϵ, δ)-DP on the labelled dataset SL. We now focus on the accuracy guarantee.
Accuracy Guarantee For any unlabelled distribution DU with η-bouneded TV distance from the labelled distribution DL

γ,ξk
,

let the empirical covariance matrix of the unlabelled dataset SU be Σ̂U = 1
nU

∑
x∈SU xx⊤ and Âk ∈ Rd×k be the projection

matrix whose ith column is the ith eigenvector of Σ̂U . Let ΣL and ΣU be the population covariance matrices of the labelled
and unlabelled distributions DL and DU . Similarly, let AL

k and AU
k be the matrices of top k eigenvectors of ΣL and ΣU

respectively.
By definition, all distributions DL

γ,ξk
∈ Dγ0,ξ0 are (γ, ξk)-large margin low rank distribution, as defined in Definition 3, for

some γ ≥ γ0, ξk ≤ ξ0. Let w⋆ be the large margin linear classifier that is guaranteed to exist by Definition 3. Then, for all

z ∈ supp
(
DL

X,(γ,ξ0)

)
, where DL

X,(γ,ξ0)
is the marginal distribution of Dγ,ξk , its margin is lower bounded by

y⟨Â⊤
k z,Â⊤

k w⋆⟩
∥Â⊤

k z∥
2
∥Â⊤

k w⋆∥
2

.

Similar to the proof of Lemma 2, we will first lower bound this term to show that, with high probability, the projected dataset
still retains a large margin. Then, we will invoke existing algorithms in the literature with scaled hinge loss with the right
parameters, to privately learn a large margin classifier in this low dimensional space.

First, let z = azw
⋆ + b⊥ for some az where b⊥ is in the nullspace of w⋆. Then, it is easy to see that using the large-margin

property in Definition 3, we get

yaz =
⟨w⋆, z⟩
∥w⋆∥2 ∥z∥2

≥ γ ≥ γ0. (19)

Then, we lower bound
y
〈
Â⊤

k z, Â
⊤
k w

⋆
〉

∥∥∥Â⊤
k z
∥∥∥
2

∥∥∥Â⊤
k w

⋆
∥∥∥
2

as

y
〈
Â⊤

k z, Â
⊤
k w

⋆
〉

∥∥∥Â⊤
k z
∥∥∥
2

∥∥∥Â⊤
k w

⋆
∥∥∥
2

(a)
=

yaz

∥∥∥Â⊤
k w

⋆
∥∥∥
2∥∥∥Â⊤

k z
∥∥∥
2

(b)

≥ γ0

∥∥∥Â⊤
k w

⋆
∥∥∥
2
, (20)

where step (a) is due to
〈
w⋆, b⊥

〉
= 0 and step (b) follows from

∥∥∥Â⊤
k z
∥∥∥
2
≤
∥∥∥Âk

∥∥∥
op
∥z∥2 ≤ 1 and Equation (19). To lower

bound
∥∥∥Â⊤

k w
⋆
∥∥∥
2
, we use the triangle inequality to decompose it as follows∥∥∥Â⊤

k w
⋆
∥∥∥
2
≥
∥∥∥AL

k

(
AL

k

)⊤
w⋆
∥∥∥
2
−
∥∥∥(AL

k

(
AL

k

)⊤ −AU
k

(
AU

k

)⊤)
w⋆
∥∥∥
2
−
∥∥∥(AU

k (A
U
k )

⊤ − Âk(Âk)
⊤
)
w⋆
∥∥∥
2

≥
∥∥∥AL

k

(
AL

k

)⊤
w⋆
∥∥∥
2
−
∥∥∥AL

k (A
L
k )

⊤ −AU
k

(
AU

k

)⊤∥∥∥
op
∥w⋆∥2 −

∥∥∥AU
k (A

U
k )

⊤ − Âk(Âk)
⊤
∥∥∥
F
∥w⋆∥2

≥1− ξk −
∥∥∥AL

k (A
L
k )

⊤ −AU
k

(
AU

k

)⊤∥∥∥
op
−
∥∥∥AU

k (A
U
k )

⊤ − Âk(Âk)
⊤
∥∥∥
F

(21)

where the second inequality follows from applying Cauchy-Schwartz inequality on the second and third term and the third step
follows from using the low rank separability assumption in Definition 3 on the first term and observing that ∥w⋆∥2 = 1.

Now, we need to bound the two terms
∥∥∥AL

k (A
L
k )

⊤ −AU
k

(
AU

k

)⊤∥∥∥
op

and
∥∥∥AU

k (A
U
k )

⊤ − Âk(Âk)
⊤
∥∥∥
F

. We bound the first

term with Lemma 5.



Lemma 5 (Theorem 3 in [57]). Let A ∈ Rd be a symmetric positive definite matrix with nonzero eigenvalues λ1 > λ2 >
. . . > λd. Let k > 0 be an integer such that λk > 0. Let B ∈ Rd be another symmetric positive definite matrix such that
∥B∥F < 1

4 (λk − λk+1) and A+B is still a positive definite matrix. Let Pk(A), Pk(A+B) be the matrices whose columns
consists of the first k eigenvectors of A,A+B, then∥∥Pk(A)Pk(A)

T − Pk(A+B)Pk(A+B)T
∥∥
F
≤

2 ∥B∥F
λk − λk+1

.

It guarantees that with probability 1− β/4,∥∥∥AL
k

(
AL

k

)⊤ −AU
k

(
AU

k

)⊤∥∥∥
op
≤

2
∥∥ΣL − ΣU

∥∥
op

λk (ΣL)− λk+1 (ΣL)
=

2
∥∥ΣL − ΣU

∥∥
op

∆k
. (22)

Then, we bound the term
∥∥ΣL − ΣU

∥∥
op with Lemma 6.

Lemma 6. Let f and g be the Probability Density Functions (PDFs) of two zero-mean distributions F and G over X with
covariance matrices Σf and Σg respectively. Assume the spectral norm of the third moments of both F and G are bounded by
η. If the total variation between the two distributions is bounded by η,i.e. TV (f, g) = maxA⊂X |f(A)− g(A)| ≤ η, then the
discrepancy in the covariance matrices is bounded by 7η, i.e.∥Σf − Σg∥op ≤ 7η.

By applying Lemma 6 and the assumption of bounded total variation between the labelled and unlabelled distributions
to Equation (22), we get ∥∥∥AL

k

(
AL

k

)⊤ −AU
k

(
AU

k

)⊤∥∥∥
op
≤ 14η

λk (ΣL)− λk+1 (ΣL)
=

14η

∆k
, (23)

where ∆k is defined as the difference between the kth and (k + 1)th eigenvalue of ΣL.
Similar to the proof for Lemma 2, we upper bound the term

∥∥∥AU
k (A

U
k )

⊤ − Âk(Âk)
⊤
∥∥∥
F

using Lemma 4, which guarantees
that with probability 1− β/4, ∥∥∥AU

k

(
AU

k

)⊤ − ÂkÂ
⊤
k

∥∥∥
F
≤ 1− ξ0

10
, (24)

where the inequality follows from choosing the size of unlabelled data nU = O
(

log 2
β

((1−ξ0)∆k)
2

)
.

Substituting Equations (23) and (24) into Equation (21) and then plugging Equation (21) into Equation (20), we get that with
probability at least 1− β/2, the margin in the projected space is lower bounded as

y
〈
Â⊤

k z, Â
⊤
k w

⋆
〉

∥∥∥Â⊤
k z
∥∥∥
2

∥∥∥Â⊤
k w

⋆
∥∥∥
2

≥ γ0
(
0.9(1− ξ0)−

14η

∆k

)
.

Thus, the (scaled) hinge loss function ℓ defined in Equation (18) is 1
γ0(0.9(1−ξ0)−14η/∆k)

-Lipschitz. For a halfspace with
parameter v ∈ Bk

2 , denote the empirical hinge loss on a dataset S by L̂(w;S) = 1
|S|
∑

(x,y)∈S ℓ(w, (x, y)) and the loss on the
distribution D by L(w;D) = E(x,y)∼D [ℓ(w, (x, y))]. Let Dk be the k-dimension transformation of the original distribution D
by projecting each x ∈ X to Â⊤

k x. By the convergence bound in Lemma 1 for ANoisy−SGD, we have with probability 1− β
4 ,

ANoisy−SGD outputs a hypothesis vk ∈ Bk
2 such that

L̂(vk;S
L
k )− L̂(v⋆k;Dk) = L̂(vk;S

L
k ) = Õ

( √
k

nLϵγ0 (0.9(1− ξ0)− 14η/∆k)

)
,

where v⋆k = argminv∈Bk
2
L̂(v;SL

k ) and L̂(v⋆k;S
L
k ) = 0 as the margin in the transformed low-dimensional space is at least

γ0

(
0.9(1− ξ0)− 14η

∆k

)
> 0 for η ≤ 9(1−ξ0)∆k

140 . For nL = O
( √

k
αβγ0(0.9(1−ξ0)−14η/∆k)

polylog
(

1
δ ,

1
ϵ ,

1
β ,

1
α ,

1
γ0
, 1
ξ0
, k, nL

))
, we

can bound the emiprical 0-1 error with probability 1− β
4 ,

1

nL

∑
(x,y)∈SL

k

I {y ⟨vk, x⟩ < 0} ≤ L̂(vk;SL
k ) = Õ

( √
k

nLϵγ0 (0.9(1− ξ0)− 14η/∆k)

)
≤ α

4
. (25)

It remains to bound the generalisation error of linear halfspace Hk. We use Lemma 7 for upper bounding this term.



Lemma 7 (Convergence bound on generalisation error [60]). Suppose H is a hypothesis class with instance space X and output
space {−1, 1}. Let D be a distribution over X × Y and S be a dataset of size n sampled i.i.d. from D. For η ∈ (0, 1), ζ > 0,
we have

PS∼Dn

[
sup
h∈H

L(h;D)− (1 + ζ)L̂(h;S) > η

]
≤ 4ΠH(2n) exp

(
− ηζn

4 (ζ + 1)

)
,

where L and L̂ are the population and the empirical 0-1 error and ΠH is the growth function of H.

Setting ζ = 1 and η = α
2 in Lemma 7 gives us that with probability 1− β

4 ,

P(x,y)∼Dk
[y ⟨vk, x⟩ < 0]− 2

nL

∑
(x,y)∈SL

k

I{y ⟨vk, x⟩ < 0} ≤ α

2
. (26)

Thus, combining Equations (25) and (26) we get

P(x,y)∼D

[
y
〈
vk, Â

⊤
k x
〉
< 0
]
= P(x,y)∼Dk

[y ⟨vk, x⟩ < 0] ≤ 2

nL

∑
(x,y)∈SL

k

I{y ⟨vk, x⟩ < 0}+ α

2
= α,

for nL ≥ k
αpolylog

(
1
β ,

1
k

)
. This is equivalent as stating that the output of Algorithm 1 ŵ = Âkvk satisfies

P(x,y)∼D [y ⟨ŵ, x⟩ < 0] = P(x,y)∼D

[
y
〈
Âkvk, x

〉
< 0
]
= P(x,y)∼D

[
y
〈
vk, Â

⊤
k x
〉
< 0
]
≤ α,

which concludes the proof.

Proof of Lemma 6. We first approximate Moment Generating Functions (MGFs) of g and f by their first and second moments.
Then, we express the error bound in this approximation by the error bound for Taylor expansion, for any t ∈ Rd with ∥t∥2 > 0,

∣∣∣∣Mf (t)− 1 + tTEf [X] +
tTΣf t

2

∣∣∣∣ (a)≤ Ef

[
et

T xxxTx
]
∥t∥32

3!

(b)

≤
Ef

[
xxTx

]
e∥t∥2 ∥t∥32

3!
(c)

≤ η ∥t∥32

(27)

where step (a) follows by the error bound of Taylor expansion, step (b) is due to et
T x ≤ e∥t∥2∥x∥2 ≤ e∥t∥2 for all x ∈ B2

d , and
step (c) follows from e∥t∥2 ≤ 3! for ∥t∥2 ≤ 1. Similarly,∣∣∣∣Mg(t)− 1 + tTEg [X] +

tTΣgt

2

∣∣∣∣ ≤ η ∥t∥32 . (28)

Rewrite Equation (27) and Equation (28) and observing that Eg[X] = Ef [X] = 0, we can bound the terms tTΣf t
2 and tTΣgt

2 by

1−Mf (t)− η ∥t∥32 ≤
tTΣf t

2
≤ 1−Mf (t) + η ∥t∥32

1−Mg(t)− η ∥t∥32 ≤
tTΣgt

2
≤ 1−Mg(t) + η ∥t∥32 .

(29)

Next, we show that the discrepancy in covariance matrices of distributions G and F are upper bounded by the difference in
their MGFs. By Equation (29), for all t ∈ Rd and ∥t∥2 ̸= 0,∣∣∣∣ tT (Σf − Σg) t

2

∣∣∣∣ ≤ 1−Mf (t) + η ∥t∥32 − 1 +Mg(t) + η ∥t∥32

=
∣∣∣Mg(t)−Mf (t) + 2η ∥t∥32

∣∣∣
≤ |Mg(t)−Mf (t)|+ 2η ∥t∥32

(30)

Next, we upper bound the difference between the MGFs of distributions G and F by the TV distance between them.



|Mf (t)−Mg(t)| =

∣∣∣∣∣
∫
x∈Bd

2

et
T x [f(x)− g(x)] dx

∣∣∣∣∣
≤
∫
x∈Bd

2

et
T x |f(x)− g(x)| dx

≤
∫
x∈Bd

2

e∥t∥2∥x∥2 |f(x)− g(x)| dx ≤ e∥t∥2η

2

(31)

where the last inequality follows as ∥x∥2 = 1 for x ∈ Bd
2 and TV (f, g) ≤ η.

Combine Equation (30) and Equation (31), we have for all t ∈ Rd and ∥t∥2 ̸= 0,∣∣tT (Σf − Σg) t
∣∣ ≤ e∥t∥2η1 + 4η ∥t∥32 (32)

Choose t as a vector in the direction of the first eigenvector (i.e. the eigenvector corresponding to the largest eigenvalue) of
Σf − Σg . For t in this direction, by the definition of operator norm,

∥Σf − Σg∥op =

∣∣tT (Σf − Σg) t
∣∣

∥t∥2
. (33)

Plugging Equation (33) into Equation (32) and choose the norm of t as the minimizer of e∥t∥2η1 + 4η ∥t∥32, we get

∥Σf − Σg∥op ≤ min
0≤∥t∥2≤1

e∥t∥2η

∥t∥22
+ 4η ∥t∥2 ≤

η(1 + ∥t∥2 + ∥t∥
2
2)

∥t∥22
+ 4η ∥t∥2 = 7η

This conclude the proof.

E. Large margin Gaussian mixture distributions

In this section, we present in Example 1 a class of Large margin Gaussian mixture distributions that satisfies the large-margin
low rank assumption. For any θ, σ2 = O(1/

√
d), it is easy to see that this family of distributions satisfies the large margin low

rank properties in Definition 3 for k = 2 and ξk = 0.

Example 1. A distribution D over X × Y is a (θ, σ2)-Large margin Gaussian mixture distribution if there exists w⋆, µ ∈ Bd
2 ,

such that ⟨µ,w⋆⟩ = 0, the conditional random variable X|y is distributed according to a normal distribution with mean µy
and covariance matrix θw⋆ (w⋆)

⊤
+ σ2Id and y ∈ {−1, 1} is distributed uniformly.

We present Corollary 2 following Theorem 1, which shows that for large margin Gaussian mixture distributions, PILLAR leads
to a drop in the private sample complexity from O(

√
d) to O(1).

Corollary 2 (Theoretical guarantees for large margin Gaussian mixture distribution). For θ, σ2 = Õ (1/
√
d), let Dθ,σ2 be the

family of all (θ, σ2)-large margin Gaussian mixture distribution (Example 1). For any α ∈ (0, 1), β ∈ (0, 1/4), ϵ ∈ (0, 1/
√
M),

and δ ∈ (0, 1), PILLAR Aϵ,δ(k, ℓ) with scaled hinge loss defined in Table I is an (α, β, ϵ, δ)-semi-private learner on Dθ,σ2 of
linear halfspaces Hd with sample complexity

nU = O

(
M2 log 2

β

γ2θ2

)
,

nL = Õ

(
M
√
k

αϵγ(1− 0.1γ)

) (34)

where γ = 1−
(
4
√
d+ 2

√
log 2nL

δ

)(
σ2 + θ

)
, M = 1 +

(
4
√
d+ 2

√
log 2nL

δ

)(
σ2 + θ

)
.

Here, in line with the notation of Definition 3, γ intuitively represents the margin in the d-dimensional space and M is the
upper bound for the radius of the labelled dataset. For θ = σ2 = 1/2C

√
d and ignoring the logarithmic terms, we get M = 1.5

and γ = 0.5. Corollary 2 implies the labelled sample complexity Õ (1/αϵ).

Proof. To prove this result, we first show that all large-margin Gaussian mixture distributions Dθ,σ2 ∈ Dθ,σ2 are (γ0, ξ)-large
margin low rank distribution (Definition 3) after normalization. In particular, we show that the normalized distribution is

(γ0, ξ)-large margin low rank distribution with ξ = 0 and margin γ0 = γ/M , where γ = 1−
(
4
√
d+ 2

√
log 2nL

δ

)(
σ2 + θ

)
and

M = 1 +

(
4
√
d+ 2

√
log 2nL

δ

)(
σ2 + θ

)
. Then, invoking Theorem 1 gives the desired sample complexity in Equation (34).



To normalize the distribution, we consider the marginal distribution DX of the mixture distribution D ∈ Dθ,σ2 and compute
its mean and the covariance matrix. By Example 1, D is a mixture of two gaussians with identical covariance matrix
Σ = θw⋆(w⋆)⊤ − σ2Id and means µ1 = −µ2.With a slight misuse of notation, we denote the probability density function of a
normal distribution with mean µ and covariance Σ using N (x;µ,Σ). Then, we can calculate the mean and covariance matrix as

EX [X] = EyEX|y [X|y] =
1

2
µ1 +

1

2
µ2 = 0 (35)

and
ΣX = EX

[
XX⊤]− (EX [X]) (EX [X])

⊤ (a)
= EyEX|y

[
XX⊤|y

]
=

1

2

∫
Bd

2

xx⊤N (x;µ1,Σ)dx+
1

2

∫
Bd

2

xx⊤N (x;µ2,Σ)dx

(b)
=

1

2

(
Σ+ µ1µ

⊤
1

)
+

1

2

(
Σ+ µ2µ

⊤
2

)
(c)
= θw⋆ (w⋆)

⊤
+ µ1µ

⊤
1 + σ2Id

where step (a) follows by Equation (35), step (b) follows by the relationship between covaraince matrix and the second moment
Σ = EX

[
XX⊤]− µµ⊤, and step (c) follows by the definition of large-margin Gaussian mixture distribution (Example 1) of

Σ and µ1, µ2.
Then, we show that the first two eigenvectors are µ1 and w⋆ with the corresponding eigenvalues 1 + σ2 and θ + σ2 for

θ = O (1/
√
d) ≤ 1. The remaining non-spiked eigenvalues are σ2.

ΣXµ1 = θw⋆ (w⋆)
⊤
µ1 + µ1µ

⊤
1 µ1 + σ2µ1

(a)
= (∥µ1∥22 + σ2)µ1 = (1 + σ2)µ1

ΣXw
⋆ = θw⋆ (w⋆)

⊤
w⋆ + µ1µ

⊤
1 w

⋆ + σ2w⋆

(b)
= (θ + σ2)w⋆,

where step (a) and (b) both follow from the fact that (w⋆)
⊤
µ1 = 0. For k = 2, it follows immediately that ∆k = θ

(Equation (36)) and ξ = 0 (Equation (37)),

∆k = λk (ΣX)− λk+1 (ΣX) = θ + σ2 − σ2 = θ. (36)∥∥A⊤
k w

⋆
∥∥
2

∥w⋆∥2
=

1

∥w⋆∥2

[
µ⊤
1

(w⋆)
⊤

]
w⋆

=

∣∣∣µ⊤
1 w

⋆ + (w⋆)
⊤
w⋆
∣∣∣

∥w⋆∥2
(a)
= 1 = 1− ξ,

(37)

where step (a) follows from µ⊤
1 w = 0.

Next, we show that the labelled dataset lies in a ball with bounded radius with high probability, which further implies that
original data has a large margin.

Denote the part of the dataset from the gaussian component with y = 1 by SL
1 and denote the part from the component with

y = −1 by SL
2 . We apply the well-known concentration bound on the norm of Gaussian random vectors (Lemma 8) to show a

high probability upper bound on the radius of the datasets SL
1 and SL

2 .

Lemma 8 ( [61]). Let X ∼ N(µ,Σ), where v ∈ B2
d . Then, with probability at least 1− δ,

∥X − µ∥2 ≤ 4 ∥Σ∥op

√
d+ 2 ∥Σ∥op

√
log

1

δ
.

This gives the following high probability upper bound on any x ∈ SL
i for i = 1, 2 and some β

2nL > 0,

PSL∼DnL

∥x− µi∥2 ≤ 4
(
θ + σ2

)√
d+ 2

(
θ + σ2

)√
log

4nL

β

 ≥ 1− β

4nL



Public
Unlabelled

Data
Low-rank Assumption Sample complexity

Generic semi-private learner (
[16]) " - Õ

( √
d

αϵγ

)
No Projection

DP-SGD [28] %
Restricted Lipschitz Continuity(∑log(d/k)+1

i=1 G2
2s−1k ≤ c2

) Õ

(√
k

αϵγ
+

√
c2d

k

)
Random Projection (e.g. JL Transform)

[27] % - Õ

(
1

αϵγ2

)
[24] % - Õ

(
min

{
ω(C)
β

,
√
d

}
1

αϵγ

)
Low Rank Projection Projection

GEP [17] " Low-rank gradients (r̄ ≤ c1) Õ

(
1

αϵγ
+ (

√
k + c1

√
d)

)
OURS "

Low Rank
Separability (Definition 3) Õ

( √
k

αϵγ(1− ξ)

)

TABLE V: Comparison with existing works: ω (C) represents the Gaussian width of the parameter space C, and c1, c2 are
constants that decrease with the low-rankness of the gradient space of the loss function. Gi represents the projection of the
norm of the projection of the gradient onto the null space of a low rank matrix and is formally defined in Equation (38). All
remaining notations: d, k, ξ, γ, α, β, and ϵ have the same meaning as the main text. The sample-complexity of DP-SGD is
based on hinge loss.

For i ∈ {1, 2}, by applying union bound on all x ∈ SL
i , we can bound maximum distance of a points x ∈ SL

i to the center µi,

PSL∼DnL

max
x∈SL

i

∥x− µi∥2 ≤
(
θ + σ2

)4
√
d+ 2

√
log

4nL

β

 ≤ 1− β

4
.

Note that the distance between the two centers µ1 and µ2 is 2. Thus, with probability at least 1− β
2 , all points in the labelled

dataset SL lie in a ball centered at 0 having radius

M = 1 +

4
√
d+ 2

√
log

4nL

β

(σ2 + θ
)
.

Also, the margin in the original labelled dataset is at least

γ = 1−

4
√
d+ 2

√
log

4nL

β

(σ2 + θ
)
.

Normalizing the data by M , it is obvious that the normalized distribution satisfies the definition of (γ, ξ)-large margin

low rank distribution with parameters ξ = 0, ∆k = θ/M and γ0 = γ/M, where γ = 1 −
(
4
√
d+ 2

√
log 2nL

δ

)(
σ2 + θ

)
,

M = 1 +

(
4
√
d+ 2

√
log 2nL

δ

)(
σ2 + θ

)
. Invoking Theorem 1 concludes the proof.

F. Discussion of assumptions for existing methods

Table V summarises the comparison of our theoretical results with some existing methods. We describe the notation used in
the table below.



a) Analysis of the Restricted Lipschitz Continuity (RLC) assumption [28]: As indicated in Table V, DP-SGD [28] achieves
dimension independent sample complexity if the following assumption, known as Restricted Lipschitz Continuity (RLC) is
satisfied. For some k ≪ d,

⌊log(d/k)+1⌋∑
i=1

G2
2i−1k ≤ O(

√
k/d), (RLC 1)

where G0, G1, ..., Gd represent the RLC coefficients. For any i ∈ [d], the loss function ℓ is said to satisfy RLC with coefficient
Gi if

Gi ≥ min
rank(Pi)=i

Pi∈Π

∥(I − Pi)∇ℓ(w; (x, y))∥2 , (38)

for all w, x, y ∈ domain (ℓ), where Π is the set of orthogonal projection matrices. Equivalently, assumption RLC 1 states that
for some k ≪ d,

d∑
i=k+1

G2
i ≤ O(

√
k/d). (RLC)

In this section, we demonstrate that if we assume the Restricted Lipschitz Continuity (RLC) condition from [28], our low
rank separability assumption on

∥∥AkA
⊤
k w

⋆
∥∥ holds for large-margin linear halfspaces. However, using the RLC assumption

leads to a looser bound compared to our assumption. More specifically, given the RLC assumption and the loss function ℓ
defined in Table I, we can show

∥∥AkA
⊤
k w

⋆
∥∥ ≥ γ.

Given the parameter ζ in Algorithm 1, for x, y ∈ supp (D) and w satisfying y ⟨w, x⟩ ≤ ζ, we can calculate the ith restricted
Lipschitz coefficient

Gi ≥ min
rank(Pi)=1

Pi∈Π

∥(I − Pi)∇ℓ(w; (x, y))∥2

= min
rank(Pi)=1

Pi∈Π

∥∥∥∥yζ (I − Pi)x

∥∥∥∥
2

= min
rank(Pi)=1

Pi∈Π

∥∥∥∥1ζ (x− Pix)

∥∥∥∥
2

.

(39)

Equivalently, we can rewrite Equation (39) as there exists a rank-i orthogonal projection matrix Pmin
i such that∥∥x− Pmin

i x
∥∥
2
≤ ζGi. (40)

Thus, for x such that y ⟨w, x⟩ ≤ ζ,∥∥xx⊤ − (Pmin
i x)(Pmin

i x)⊤
∥∥

op
(a)
=
∥∥(x− Pmin

i x)(x+ Pmin
i x)⊤

∥∥
2

≤
∥∥x+ Pmin

i x
∥∥
2

∥∥x− Pmin
i x

∥∥
2

(b)

≤ 2
∥∥x− Pmin

i x
∥∥
2

(c)

≤ 2Giζ

(41)

where step (a) follows from the orthogonality of Pmin
i , step (b) follows from

∥∥Pmin
i x

∥∥
2
≤ ∥x∥2 = 1, and step (c) follows

from Equation (40).
Then, we can bound the low-rank approximation error for the covariance matrix of the data distribution.∥∥ΣX − Pmin

i ΣX(Pmin
i )⊤

∥∥
op

(a)

≤ Ex∼DX

(∥∥xx⊤ − (Pmin
i x)(Pmin

i x)⊤
∥∥

op

) (b)

≤ 2Giζ.

where ΣX = Ex∼DX

[
xx⊤

]
, and step (a) follows from the convexity of the Euclidean norm and step (b) follows

from Equation (41).
This further provides an upper bound on the last d− k eigenvalues of the covariance matrix ΣX of the data distribution DX .

Let λi denote the ith eigenvalue of the covariance matrix ΣX . Then, we apply Lemma 9 that gives an upper bound on the
singular values of a matrix in terms of the rank k approximation error of the matrix.

Lemma 9 ( [62]). For any matrix M ∈ Rm×n,

inf
rank(M̂)=k

∥∥∥M − M̂∥∥∥
op

= σk+1,



where the infimum is over all rank k matrices M̂ and σk+1 is the kth singular value of the matrix M .

This gives an upper bound on the ith eigenvalue of the covariance matrix ΣX in terms of the ith restricted Lipschitz coefficient,

λi+1 = σ2
i+1 = inf

rank(Σ′
X)=i

∥ΣX − Σ′
X∥

2
op ≤

∥∥ΣX − Pmin
i ΣX(Pmin

i )⊤
∥∥2

op ≤ 4G2
i ζ

2.

Thus, for matrix Ak consisting of the first k eigenvectors of ΣX , we can upper bound the reconstruction error of A⊤
k x with

the eigenvalues of the covariance matrix ΣX ,

Ex∼DX

[
∥x∥2 −

∥∥A⊤
k x
∥∥
2

]
= Ex∼DX

[∥∥xx⊤∥∥op −
∥∥(Akx)(Akx)

⊤∥∥
op

]
≤ Ex∼DX

[∥∥xx⊤ − (Akx)(Akx)
⊤∥∥]

op ≤
d∑

i=k+1

λi ≤ 4ζ2
d∑

i=k+1

G2
i .

By Markov’s inequality, with probability at least 1− β,

Px∼DX

[∥∥xx⊤∥∥op −
∥∥(A⊤

k x)(A
⊤
k x)

⊤∥∥
op ≥

4ζ2

β

d∑
i=k+1

G2
i

]

≤ Px∼DX

[∥∥xx⊤ − (A⊤
k x)(A

⊤
k x)

⊤∥∥
op ≤

4ζ2

β

d∑
i=k+1

G2
i

]
≤ β.

(42)

This implies our assumption with probability at least 1− β,∥∥AkA
⊤
k w

⋆
∥∥
2

(a)
= ∥x∥2

∥∥AkA
⊤
k w

⋆
∥∥
2
≥ |
〈
AkA

⊤
k x,w

⋆
〉
|

(b)

≥ | ⟨x,w⋆⟩ | − |
〈
x−AkA

⊤
k x,w

⋆
〉
|

(c)

≥ γ −
∥∥x−AkA

⊤
k x
∥∥
2
∥w⋆∥2

(d)

≥ γ − 4ζ2

β

d∑
i=k+1

G2
i

(43)

where step (a) follows from ∥x∥2 = 1, step (b) follows by
〈
AkA

⊤
k x,w

⋆
〉
= ⟨x,w⋆⟩ −

〈
x−AkA

⊤
k x,w

⋆
〉

and the triangle
inequality, step (c) follows by the large margin assumption y ⟨x,w⋆⟩ = |⟨x,w⋆⟩| ≥ γ, and step (d) follows by Equation (42)
with probability at least 1− β.

The RLC assumption requires the last term in Equation (43) to vanish at the rate of O(k/d). This implies our low-rank
assumption holds with ξ = 1− γ.

b) Analysis on the error bound for GEP: To achieve a dimension-independent sample complexity bound in GEP [17], the
gradient space must satisfy a low-rank assumption, which is even stronger than the rapid decay assumption in RLC coefficients
(Equation (RLC 1)). By following a similar argument as the analysis for the RLC assumption [28], we can demonstrate that
our low-rank assumption is implied by the assumption in GEP.



Privacy CIFAR10 CIFAR100
Ours [13] Ours [13]

ϵ = 0.1 89.4 - 36.1 -
ϵ = 0.7 93.1 - 69.7 -
ϵ = 1 93.5 93.1 71.8 70.3
ϵ = 2 93.9 93.6 74.9 73.9

TABLE VI: Result for our algorithm is with pre-training on ImageNet32x32. Results for [13] is taken from their paper where
available.

APPENDIX B
EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

A. Details and hyperparameter ranges for our method

Unless stated otherwise, we use the PRV accountant [49] in our experiments. Following [13], we use the validation data for
cross-validation of the hyperparameters in all of our experiments and set the clipping constant to 1. We search the learning
rate in {0.01, 0.1, 1}, use no weight decay nor momentum as we have seen it to have little or adverse impact. We search the
number of steps in {500, 1000, 3000, 5000, 6000} and our batch size in {128, 512, 1024}. We compute the variance of the noise
as a function of the number of steps and the target ϵ using opacus. We set δ = 1e− 5 in all our experiments. We use the
open-source opacus [63] library to run DP-SGD with the PRV Accountant efficiently. We use scikit-learn to implement
PCA. Checkpoints of ResNet-50 are taken or trained using the timm [64] and solo-learn [65] libraries. Standard ImageNet
pre-processing of images is applied, without augmentations.

B. Discrepancy in pre-training resolution

Several works have used different resolutions of ImageNet to pre-train their models. In particular, [13] used ImageNet 32x32
to pre-train their model, which is a non-standard dimensionality of ImageNet, but it matches the dimensionality of their private
dataset CIFAR-10. In contrast, we use the standard ImageNet (224x224) for pre-training in all our experiments with both
CIFAR datasets as well as other datasets. In this section, we show that using the resolution of 32x32 for pre-training, we can
indeed outperform [13] but also highlight why this may not be suitable for privacy applications.

a) Low-resolution (CIFAR specific) pre-training: Different private tasks/datasets may have images of differing resolutions.
While all images in CIFAR [44] are 32x32 dimensional, in other datasets, images not only have higher resolution but their
resolution varies widely. For example, GTSRB [51] has images of size 222x193 as well as 15x15 , PCAM [53] has 96x96
dimensional images, most images in Dermnet [54] have resolution larger than 720x400, and in Pneumonia [52] most x-rays have
a dimension higher than 2000x2000. Therefore, it may not be possible to fine-tune the feature extractor at a single resolution
for such datasets.

Identifying the optimal pre-training resolution for each private dataset is beyond the scope of our work and orthogonal to the
contributions of our work (as we extensively show, our method PILLAR operates well under several pre-training strategies
in Figure 10 and Figure 12). Furthermore, assuming the pre-training and private dataset resolution to be perfectly aligned is a
strong assumption.

b) Comparison with [13]: Nevertheless, we compare our approach with [13] pre-training a ResNet50 on a 32x32 rescaled
ImageNet version, and obtain a non-private accuracy larger than 94% reported for ϵ = 8 in Table 5 in [13] for Classifier
training. Note that our approaches is computationally significantly cheaper than theirs as we do no use the tricks proposed in
their work (including Augmult, EMA, and extremely large batch sizes (> 16K))

Using ImageNet32x32 for pre-training, we perform slightly better than them in private training. Our results are reported
in Table VI. We expect that applying their techniques will result in even higher accuracies at the cost of computational efficiency.
Interestingly, Table VI shows that our model’s accuracy for ϵ = 0.7 on CIFAR10, is as good as [13] for ϵ = 1.0. This provides
evidence that large batch sizes, which is one of the main hurdles in producing deployable private machine learning models,
might not be required using our approach.

C. Experiments with large ϵ (≥ 1)

While in most of the paper, we focus on settings with small ϵ, in certain practical settings, the large epsilon regime may also
be important. In Table VII, we repeat our experiments for CIFAR10 and CIFAR100 with ϵ ∈ 1, 2 and report the accuracy for
the best projection dimension. Our results show that for ϵ ∈ {0.1, 0.7, 1, 2} our method can provide significant gains on the
challenging dataset of CIFAR-100; however for CIFAR-10 with ϵ = 1, 2 the improvements are more modest.



Privacy Pre-training CIFAR10 CIFAR100
Ours No Projection Ours No Projection

ϵ = 1
SL 86.4 85.4 58.8 54.4

SSL 81.4 80.5 49.0 45.8

ϵ = 2
SL 86.8 86.4 61.8 60.0

SSL 82.5 81.9 53.03 50.06

TABLE VII: Experiment with larger ϵ. Pre-training is with ImageNet 224x224.
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Fig. 8: DP Training of linear classifier on a) Images and b) representations obtained from pre-trained ResNet-50.

D. Comparison with PATE

We now discuss discuss the PATE family of approaches [19], [20], [66], [67]. These methods partition the training set
into disjoint subsets, train an ensemble of teacher models on them, and use them to pseudo-label a public dataset using a
privacy-preserving mechanism. For PATE to provide tight privacy guarantees, a large number (150-200 [20]) of subsets is
needed, which reduces the test accuracy of each teacher. Large amounts of public data are also required. For CIFAR-10, [20],
[66] use 29000 examples (58% of training set size), whereas we only use 5000 (10% of training set size) public unlabelled data
points (and to retain its accuracy, in Section V-B we show 500 (1%) samples are sufficient). Of these 29000 examples, [66]
reports only half of them is labelled due to the private labelling mechanism, further limiting the student’s performance in
settings with low amounts of public training data. Despite our best attempts, we could not train PATE-based approaches in our
challenging setting to satisfactory levels of accuracy on either CIFAR-10 or CIFAR-100.11

E. Additional Datasets

In this section, we look at results on the MNIST dataset. We consider the standard train-test split of MNIST and train
two types of classifiers. The first classifier is the standard linear classifier with cross-entropy loss. The second is a linear
classifier with standard cross entropy loss trained on representations of MNIST images obtained from a Resnet-50, pre-trained
on ImageNet. Our results, plotted in Figure 8, shows that PILLAR consistently outperforms DP-SGD and the improvement is
more prominent for smaller values of ϵ. We also investigated how the best projection dimension k varies as a function of ϵ.
The results are shown in Figure 9. As indicated by Theorem 1, the best k increases as ϵ increases.

In addition to results on MNIST dataset, we also conduct experiments using PILLAR on tabular datasets. We select two
datasets: Guillermo and Riccardo from the OpenML [69] respository. Both of these are binary classification datasets with 4096
dimensions and 16, 000 data points. We train logistic regression models on them using both PILLAR and vanilla DP-SGD. The
results presented in Table VIII show that PILLAR consistently outperforms DP-SGD on both of these datasets.

Privacy PILLAR DP-SGD

ϵ = 0.1 75.25 57.8
ϵ = 0.3 76.5 65.4
ϵ = 1.0 78.2 70.2
ϵ = 5.0 79.3 73.6

Riccardo

Privacy PILLAR DP-SGD

ϵ = 0.1 60.19 52.3
ϵ = 0.3 61.78 54.6
ϵ = 1.0 63.10 59.2
ϵ = 5.0 64.35 61.62

Guillermo

TABLE VIII: Comparison of PILLAR with DP-SGD on Riccardo and Guillermo datasets from the OpenML repository [69].

11For reference, we refer the reader to the accuracies reported for the state-of-the-art implementation in [68] (Table 12) and [66] (Table 1), which are less
than 40% and 75% respectively, whereas we obtain more than 85% for tighter privacy guarantees.
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Fig. 9: Best projection dimension k as a function of ϵ on the MNIST dataset.

Public Data ResNet50 SL ConvNeXt-XL

Datasets CIFAR100 CIFAR100
ϵ 0.1 0.7 1.0 0.1 0.7 1.0

DP-RAFT Unlabelled 28.80 58.35 61.79 68.38 79.12 83.69
DP-RAFT + PILLAR None 38.75 62.49 64.32 74.69 82.89 85.12

TABLE IX: Results comparing DP-RAFT and DP-RAFT+PILLAR.

F. DP-RAFT Experiments

In this section we present some results that combine DP-RAFT and PILLAR to yield further accuracy improvements. We
perform our experiments on CIFAR100, considering learning rate values in {0.1, 0.01, 1}, training for a number of epochs in
{5, 10, 50} and for ϵ ∈ {0.1, 0.7, 1.0}. For PILLAR we consider k ∈ {40, 100, 200, 300, 400}. In Table IX we compare the
performance of DP-RAFT and the combination of DP-RAFT+PILLAR for ResNet50 and, since the authors of [36] consider
also additional backbones, we also show the effectiveness of our method on the ConvNeXt-XL backbone. As it can be seen, in
all cases using PILLAR in conjunction with DP-RAFT induces a performance improvement.

G. Experimental details for Section IV-B

In this section, we provide details of the other algorithms we compare our approach with in Section IV-B. We use the PRV
accountant [70] for all experiments.

a) JL transformation [27]: [27] uses JL transformation to reduce the dimensionality of the input. For our baseline, we
simulate this method by using Random Matrix Projection using Gaussian Random Matrices (GRM) instead of PCA to reduce
the dimensionality of the inputs. Our experimental results in Table II show that our method outperforms these approaches.
Although this approach does not require the availability of public data, this comparison allows us to conclude that reducing the
dimensionality of the input is not sufficient to achieve improved performance. Furthermore, even though the JL Lemma [71]
guarantees distances between inputs are preserved up to a certain distortion in the lower-dimensionality space, the dataset size
required to guarantee a small distortion is much larger than what is available in practice. We leverage scikit-learn to
project the data to a target dimension identical to the ones we use for PCA. We similarly search the same hyperparameter space.

b) GEP [17]: We use the code-base12 released by the authors for implementation of GEP. We conduct hyper-parameter
search for the learning rate in {0.01, 0.05, 0.1, 1} and the number of steps in {500, 1000, 2500, 3000, 5000, 6000, 20000}. As
recommended by the authors, we set the highest clipping rate to {1, 0.1, 0.01} and the lowest clipping rate is obtained by
multiplying the highest with 0.20. The anchor dimension ranges in {40, 120, 200, 280, 512, 1024, 1580}. We try batch sizes in
{64, 512, 1024}. We tried using {0.1%, 0.01%} of the data as public. Despite this extensive hyperparameter search, we could
not manage to make GEP achieve better performance than the DP-SGD baseline (see Table II).

c) AdaDPS [18]: We use the code-base13 released by the authors of AdaDPS. We estimate the noise variance as a function
of the number of steps and the target ϵ using the code of opacus under the RDP accountant (whose implementation is the
same as the code released by the authors of AdaDPS). We search the learning rate in {0.01, 0.1, 1}, the number of steps in
{500, 1000, 2500, 3000, 5000, 6000, 7500, 10000}, the batch size in {32, 64, 128, 512, 1024}, and we tried using {0.1%, 0.01%}
of the data as public, and the ϵc (the conditioner hyperparameter) in {10, 1, 0.1, 1e− 3, 1e− 5, 1e− 7}. of the validation data
for the public data conditioning. We applied micro-batching in {2, 4, 32}. Despite this extensive hyperparameter search, we
could not manage to make AdaDPS achieve better performance than the DP-SGD baseline.

12https://github.com/dayu11/Gradient-Embedding-Perturbation
13https://github.com/litian96/AdaDPS

https://github.com/dayu11/Gradient-Embedding-Perturbation
https://github.com/litian96/AdaDPS
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(d) SemiWeakSL Pretraining

Fig. 10: DP Training of linear classifier on different pre-trained features using the PRV accountant for CIFAR-10 and CIFAR-100.
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Fig. 11: Comparing reduction in test accuracy for different datasets between using SemiSL and BYOL pre-trained networks.

d) DP-PCA [29]: All settings are the same with respect to PILLAR, except for the additional need of cross-validating the
privacy budget consumed by the DP-PCA procedure. We consider 1%, 25%, 50%. For DP-PCA, we use the diffprivlib
implementation.

H. Different pre-training algorithms

In Figure 4 and 5 in the main text, we only reported accuracies for the best performing pre-training algorithm. In this, section
we report the performance of our algorithm against the remaining pre-training algorithms that we consider in this paper. In
particular, we consider two self-supervised pre-training algorithms: BYOL [30] and MoCov2+ [33] and two semi-supervised
algorithms [34]. While one of them is a Semi-Supervised (SemiSL) algorithm, the other only uses weak supervision and we
refer to it Semi-Weakly Supervised (SemiWeakSL) algorithm. In Figure 10 we report the results on CIFAR-10 and CIFAR-100.
In Figure 12 we report the results for Flower-16 [50], GTSRB [51], PCAM [53], Pneumonia [52] and DermNet [54].

Similar to Figure 6 in the main text, we show the accuracy reduction for Semi-Supervised pre-training vs BYOL (Self-
Supervised) pre-trianing in Figure 11. Our results shows similar results as [55] that labels are more useful for pre-training for
tasks where there is a significant label overlap between the pre-training and the final task.

APPENDIX C
COMPUTATIONAL COST, BROADER IMPACT AND LIMITATIONS

a) Computational cost: Except for the supervised training on ImageNet32x32, we leverage pre-trained models. To optimize
the training procedure, we checkpoint feature embeddings for each dataset and pre-trained model. Therefore, training requires
loading the checkpoint and training a linear layer via SGD (or DP-SGD), accelerating the training procedure by avoiding the
forward pass through the feature encoder. We use a single Tesla M40 (11GB) for each run.



40 520 1284 2048
PCA Dimension

45

60

75

90

Te
st

 A
cc

ur
ac

y

Flower-16

40 520 1284 2048
PCA Dimension

15

30

45

60

75
GTSRB

40 520 1284 2048
PCA Dimension

16

24

32

40

Dermnet

40 520 1284 2048
PCA Dimension

72

75

78

81

84 PCAM

40 520 1284 2048
PCA Dimension

70

75

80

85

90

Pneumonia

Privacy Parameter ( ) 0.7 0.1

(a) MoCov2+ Pretraining

40 520 1284 2048
PCA Dimension

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

Flower-16

40 520 1284 2048
PCA Dimension

40

50

60

70

80

GTSRB

40 520 1284 2048
PCA Dimension

16

24

32

40

Dermnet

40 520 1284 2048
PCA Dimension

72

75

78

81

84 PCAM

40 520 1284 2048
PCA Dimension

66

72

78

84

90

Pneumonia

Privacy Parameter ( ) 0.7 0.1

(b) SemiSL Pretraining

40 520 1284 2048
PCA Dimension

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

Flower-16

40 520 1284 2048
PCA Dimension

40

50

60

70

80

GTSRB

40 520 1284 2048
PCA Dimension

16

24

32

40

Dermnet

40 520 1284 2048
PCA Dimension

72

75

78

81

84 PCAM

40 520 1284 2048
PCA Dimension

60

66

72

78

84

90 Pneumonia

Privacy Parameter ( ) 0.7 0.1

(c) SemiWeakSL Pretraining

Fig. 12: DP Training of linear classifier on different pre-trained features using the PRV accountant for Flower-16, GTSRB,
DermNet, PCAM, and Pneumonia.

b) Broader impact and Limitations: In this work we show our method can be used in order to increase the utility of models
under tight Differential Privacy constraints. Increasing the utility for low ϵ is crucial to foster the adoption of DP methods that
provide provable guarantees for the privacy of users. Further, unlike several recent works that have shown improvement in
accuracy for deep neural networks, our algorithm can be run on commonly available computational resources like a Tesla M40
11GB GPU as it does not require large batch sizes. We hope this will make DP training of high-performing classifiers more
accessible. Finally, we show our algorithm improves not only on commonly used benchmarks like CIFAR10 and CIFAR100 but
also in privacy relevant tasks like medical datasets including Pneumonia, PCAM, and DermNet. We hope this will encourage
future works to also consider benchmarking their algorithms on more privacy relevant tasks.

As discussed, the assumption that labelled public data is available may not hold true in several applications. Our algorithm
does not require the public data to be labelled, however the distribution shift between the public unlabelled data and the
private one should not be too large. We have shown that for relatively small distribution shift our method remains effective.
Finally, recent works have suggested that differentially private learning may disparately impact certain subgroups more than
others [72]–[74]. It remains to explore whether semi-private learning can help alleviate these disparity.
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