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ABSTRACT

Federated learning (FL) faces critical challenges in real-world deployments due
to data heterogeneity, label noise, and susceptibility to adversarial inputs. Con-
ventional distillation-based aggregation methods often assume uniform reliabil-
ity among clients, overlooking disparities in representation quality and semantic
alignment. In this work, we propose a client-aware multimodal distillation frame-
work to enhance the robustness and semantic alignment of learned representa-
tions in FL systems. Our approach integrates a lightweight MobileNetV3 vision
encoder with a CLIP-based textual prompt encoder, promoting cross-modal con-
sistency through joint supervision. To improve resilience, each client performs ad-
versarial training with gradient-based perturbations, enhancing the robustness of
the model against input manipulations. At the core of our framework is the Client-
Aware Attention Aggregation (CAAA) module, which dynamically adjusts client
contributions based on cosine similarity of intermediate features and causal attri-
bution gradients. This dual-guided weighting strategy enables the student model to
selectively incorporate information from semantically consistent and informative
clients while suppressing unreliable updates. We evaluated the proposed method
on the various benchmark datasets under IID partitioning with adversarial and
noisy conditions. The experimental results demonstrate consistent gains in preci-
sion and robustness across a variety of distillation strategies and adaptive aggre-
gation methods, highlighting the effectiveness of our framework for trustworthy
federated learning.

1 INTRODUCTION

Federated learning (FL) has emerged as a foundational approach for privacy-preserving collabora-
tive training across distributed edge devices McMahan et al. (2017); Li et al. (2021b); Wang et al.
(2021). Unlike centralized paradigms, FL avoids raw data transfer, allowing clients to locally train
models and share only updates with a central server. This decentralized setup is especially valu-
able in domains like healthcare, mobile sensing, and smart infrastructure. However, real-world FL
deployments face significant obstacles due to non-IID data distributions, heterogeneous model be-
haviors, and the presence of noisy or adversarial clients, all of which can severely impair global
model generalization Zhao et al. (2018); Bagdasaryan et al. (2020); Sun et al. (2021); Huang et al.
(2023a); Kim et al. (2022).

Recent research has explored various aggregation and knowledge distillation strategies to improve
robustness in FL. Traditional approaches such as Fed Avg or simple logit-based distillation of-
ten treat client contributions equally, overlooking individual client reliability or representational
alignment McMahan et al. (2017); Lin et al. (2020). Although some advanced schemes propose
weighting based on uncertainty or divergence metrics, they still rely primarily on the output layer
information, failing to account for deeper semantic coherence between the teacher and student rep-
resentations. Moreover, these methods typically neglect cross-modal relationships, an increasingly
important consideration in settings where visual and textual modalities coexist Guo et al. (2022);
Radford et al. (2021); Zhang et al. (2024).
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To address these limitations, we propose a robust and extensible FL distillation framework that in-
troduces multimodal supervision, adversarial resilience, and adaptive aggregation. Specifically, our
method integrates a CNN Vision backbone with a class-level textual prompt encoder to align visual
features with semantic embeddings, thereby enhancing class-discriminative learning. Robustness
to malicious perturbations is reinforced through gradient-based adversarial training on the client
side. This design ensures that the student model not only distills knowledge from diverse clients but
also learns to resist corruptions introduced during training, improving its deployment reliability in
open-world scenarios.

A key innovation of this work is the introduction of a Client-Aware Attention Aggregation (CAAA)
mechanism. Unlike fixed or logit-only aggregation methods, CAAA computes attention weights
dynamically by measuring the cosine similarity between intermediate feature representations of
each client model and the student. This feature-aware aggregation allows the framework to pri-
oritize semantically aligned and reliable clients while attenuating contributions from misleading or
compromised ones. Additionally, we integrate synthetic data generation and evaluation on adversar-
ial variants to assess generalization under structured distributional shifts. Experimental results on
CIFAR-10 show that our approach consistently outperforms existing distillation-based aggregation
strategies in both clean and adversarial settings, establishing CAAA as a principled and scalable
solution for federated learning in challenging environments.

• We propose a novel federated learning framework that combines adversarial robust client
training, semantic-aware multimodal alignment, and adaptive knowledge distillation for
improved generalization in non-IID and noisy environments.

• We introduce CAAA), a feature-level attention mechanism that dynamically modulates
client influence based on cosine similarity between intermediate representations of client
and student models.

• We integrate a CNN model with a class-level textual prompt encoder and a multimodal loss
function to align visual and semantic features, enhancing the quality of distillation across
heterogeneous clients.

• We employ FGSM-based adversarial training at the client side and synthetic data gener-
ation for robustness evaluation under controlled distributional shifts and data poisoning
scenarios.

• Extensive experiments on four datasets demonstrate that our framework consistently out-
performs conventional FL distillation baselines across clean, noisy, and adversarial settings,
validating its scalability and resilience.

2 RELATED WORK

Knowledge Distillation in Federated Learning. Knowledge distillation (KD) has been studied
in federated learning (FL) as an alternative to parameter aggregation, reducing communication over-
head and enabling heterogeneous client models Jeong et al. (2018); Lin et al. (2020). Early ap-
proaches focused on logit aggregation, averaging client predictions to guide a global student model.
While effective in homogeneous settings, these methods assume uniform reliability across clients
and degrade under data heterogeneity or noise Li et al. (2022); Yuan et al. (2023); Liu et al. (2021b).
Recent work introduces temperature scaling, weighted soft targets, or divergence-based reweight-
ing, but these remain shallow alignment signals. This motivates deeper, feature-level distillation
strategies for capturing semantic discrepancies across clients.

Adversarial Robustness in Federated Settings. FL is vulnerable to adversarial threats, in-
cluding poisoning, backdoor, and label-flipping attacks Bagdasaryan et al. (2020); Shejwalkar &
Houmansadr (2021). Existing defenses rely on anomaly detection, robust aggregation, or adversarial
training. Gradient-based defenses (e.g., FGSM, PGD) are well studied in centralized training but less
explored in federated pipelines due to heterogeneous risks and communication constraints Karim-
ireddy et al. (2020); Huang et al. (2023a). Moreover, most strategies assume uniform adversarial
risk across clients, limiting adaptivity to client-specific trustworthiness.

Multimodal and Semantic-Aware Learning. Multimodal integration improves generalization by
combining visual and semantic signals, such as text embeddings or attribute labels Radford et al.
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Figure 1: The proposed client-aware multimodal federated learning framework. On the left, client devices
receive either IID or non-IID data, which may include adversarial noise. Each client processes inputs through
a dual-branch encoder—combining vision features and CLIP-based text prompts to train a local model. On the
right, the server collects the trained models and computes attribution maps and cosine similarities to evaluate
the quality and reliability of each client’s contribution. These metrics guide a dynamic weighting strategy for
client-aware aggregation, resulting in a more robust and semantically aligned global model.

(2021); Li et al. (2023). These methods have proven effective in zero-shot and low-shot settings but
remain underexplored in FL. Current efforts Guo et al. (2022); Li et al. (2023); Liu et al. (2021a)
insufficiently leverage semantic cues for client adaptation, leaving a gap in semantic-aware federated
distillation.

Adaptive Aggregation and Attention. Most FL frameworks employ static aggregation rules such
as FedAvg or FedProx, ignoring variations in client data quality. Adaptive methods like FedNova
and FedAtt weight clients by metadata or performance history, while personalized solutions such as
FedBN Li et al. (2021c), Ditto Li et al. (2021a), and FedDG Duan et al. (2023) mitigate non-IID
effects via local regularization or domain-aware adaptation. Extensions include multi-branch archi-
tectures Zhang et al. (2023) and adaptive normalization Hao et al. (2023). However, few methods
exploit representation-level similarity as an explicit aggregation signal. While attention mechanisms
are well explored in centralized training, their role in federated distillation remains limited Li et al.
(2022); Yuan et al. (2023).

Overall, prior work has advanced KD for communication efficiency, robustness against adversaries,
multimodal integration, and adaptive aggregation, but these directions have largely evolved in iso-
lation. Our proposed CAAA unifies these perspectives by introducing client-aware attention on
intermediate representations, combining semantic alignment, adversarial resilience, and adaptive
aggregation into a single federated distillation framework.

3 METHODOLOGY

We propose a federated learning framework that enhances generalization and robustness under ad-
versarial and non-IID conditions. The proposed system integrates adversarial training at the client
level, multimodal semantic alignment via a CLIP-based text encoder Radford et al. (2021), and
a novel server-side aggregation mechanism CAAA. Inspired by hybrid local-global representation
techniques Liang et al. (2020), our method aligns client semantics through multimodal loss. These
components collectively address the limitations of conventional federated learning by promoting se-
mantic consistency, suppressing noisy contributions, and prioritizing reliable clients during global
model construction.

3.1 PROBLEM STATEMENT

Let D1,D2, . . . ,DK denote private datasets distributed across K federated clients. Each client
k ∈ {1, . . . ,K} trains a local model fk and sends model outputs or parameters to a central server,
which aggregates them into a global model fG. The primary objective is to learn a global model
that generalizes across all data distributions while preserving client privacy and communication
efficiency.
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This goal is challenged by three key factors. First, clients may train on noisy or adversarial data,
which can distort global convergence. Second, semantic inconsistency arises due to the non-IID
nature of distributed data, resulting in divergent feature representations for the same class across
clients. Third, most aggregation strategies, such as FedAvg, apply uniform or static weighting and
fail to consider client-specific reliability or representational alignment. Our proposed solution ad-
dresses these limitations by integrating adversarial resilience, semantic supervision, and adaptive
aggregation based on cross-client similarity.

3.2 MULTIMODAL DISTILLATION FRAMEWORK

The training process unfolds in iterative communication rounds, as illustrated in Figure 1. At the
start of each round, the global model fG is broadcast to all participating clients, providing a common
initialization point for local training. Each client then optimizes its model with two key objectives:
enhancing adversarial robustness and achieving multimodal semantic alignment by leveraging both
visual and textual inputs.

Clients locally train their models using a dual-encoder architecture that fuses vision features with
CLIP-derived textual prompts, enabling more semantically grounded representations. After local
updates, the clients send their trained models fk back to the server. Instead of applying a uniform
aggregation rule, the server leverages our Client-Aware Attention Aggregation (CAAA) strategy.
This method evaluates the contribution of each client by comparing the feature attributions and co-
sine similarity with the student model. These scores inform dynamic weighting during aggregation,
ensuring that more trustworthy and semantically aligned updates are prioritized. The global model
fG is then updated accordingly. This procedure repeats until convergence or until early stopping
criteria are met on the basis of validation accuracy.

3.3 CLIENT-SIDE ADVERSARIAL TRAINING

To improve the robustness of local models against adversarial perturbations and enhance the reli-
ability of global aggregation in federated settings, we incorporate client-side adversarial training
as a core component of the local update procedure. This strategy equips each client with the abil-
ity to detect and resist gradient-based attacks by augmenting their training process with adversarial
examples Goodfellow et al. (2015).

Specifically, we adopt the Fast Gradient Sign Method (FGSM) to generate perturbed inputs that
are adversarial in nature yet computationally efficient. Given an input sample x ∈ Rd and its
corresponding label y, each client constructs an adversarial example xadv by perturbing x along the
direction of the gradient of the loss function with respect to the input:

xadv = x+ ϵ · sign (∇xLCE(fk(x), y)) , (1)

where ϵ > 0 is the perturbation budget controlling the magnitude of adversarial noise, fk(·) denotes
the local model at client k, and LCE is the standard cross-entropy loss. This formulation seeks to
maximize the loss with respect to x, thereby producing inputs that lie close to the decision boundary
and are more informative for robustness training.

The local model is then updated by minimizing the adversarial loss:

Ladv = LCE(fk(xadv), y), (2)

which ensures that the model learns to classify adversarially perturbed inputs correctly. To strike a
balance between standard generalization and robustness, we define a composite objective function
that combines clean and adversarial loss components:

Ltotal = λ · LCE(fk(x), y) + (1− λ) · Ladv, (3)

where λ ∈ [0, 1] is a tunable hyperparameter that controls the trade-off between natural accuracy
and adversarial robustness.
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This adversarial training mechanism is performed locally and independently by each participating
client during every communication round. As a result, it mitigates the risk of adversarial drift in
model updates and improves the resilience of the global model to adversarial influence without
incurring additional communication overhead. Empirically, we find that integrating this defense at
the client level not only improves model stability across non-IID settings but also yields consistent
gains in robustness under both white-box and black-box attack scenarios.

3.4 MULTIMODAL SEMANTIC ALIGNMENT VIA CLIP-BASED TEXT ENCODER

To address semantic inconsistency between clients, we incorporate a CLIP-based text prompt en-
coder that transforms class labels into dense semantic vectors Xu et al. (2022). For each class y, the
encoder T (y) outputs a language-based embedding t ∈ Rd. In parallel, the visual encoder fk maps
the input image x to a feature vector v = fk(x). Semantic alignment is enforced through a cosine
similarity loss:

Lmm = 1− v⊤t

∥v∥∥t∥
. (4)

This alignment guides the visual encoder to produce semantically meaningful features that are con-
sistent across clients. The total client-side loss becomes:

Lclient = Ladv + λ · Lmm, (5)

where λ is a hyperparameter that balances robustness and semantic guidance.

3.5 CLIENT-AWARE ATTENTION AGGREGATION (CAAA)

Traditional federated averaging schemes treat all client contributions equally or weigh them based
solely on data volume, ignoring the semantic and representational quality of the local models. In
noisy and non-IID federated environments, such naive aggregation often degrades the global model
performance due to unreliable or poorly aligned updates. To address this, we propose Client-Aware
Attention Aggregation (CAAA), a novel aggregation strategy that dynamically weighs client models
based on representational similarity and causal attribution coherence. After local training, the server
collects model parameters {fk}Kk=1 from all participating clients. Instead of direct averaging, the
global model is synthesized by assigning each client an attention weight αk that reflects the trust-
worthiness and semantic alignment of its contribution Huang et al. (2023a); Yuan et al. (2023).
Given a shared validation batch x, the server computes the cosine similarity between the feature
embeddings of each client model fk(x) and a reference global model fG(x) (initialized or from the
previous round):

sfeat
k = cos(fk(x), fG(x)) =

fk(x)
⊤fG(x)

∥fk(x)∥∥fG(x)∥
. (6)

This term measures how semantically aligned the representations of the client k are with the global
knowledge.

To ensure that client decisions are not only accurate, but also causally sound, we compute Grad-
CAM-based saliency maps Ak and AG for client k and the reference model, respectively. These
maps reflect spatial attention on the input and serve as proxies for causal reasoning. The similarity
is computed via:

scausal
k = cos(Ak, AG) =

A⊤
k AG

∥Ak∥∥AG∥
. (7)

This component rewards clients whose visual explanation maps align with the reference, favoring
models that focus on causally relevant regions.
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The overall reliability score for the client k is calculated by adding the similarities in characteristics
and causal attribution. These scores are normalized using a softmax function to produce attention
weights:

αk =
exp(sfeat

k + scausal
k )∑K

j=1 exp(s
feat
j + scausal

j )
. (8)

Clients that are semantically consistent and causally faithful receive higher weights during aggrega-
tion.

The updated global model is obtained as a convex combination of client models using the computed
attention weights:

fG =

K∑
k=1

αkfk. (9)

Unlike traditional methods, CAAA adaptively filters noisy or misaligned updates, promoting global
convergence through semantically and causally grounded integration. This approach is particularly
effective in non-IID settings, where client models may diverge significantly in their learned repre-
sentations and decision rationale. By aligning on both feature semantics and visual explanations,
CAAA enhances both the robustness and the interpretability of the federated global model.

3.6 DISTILLATION VARIANTS

To validate generality, we compare five aggregation strategies. Vanilla KL computes the KL diver-
gence over logits. WATD applies a temperature-scaled distillation weighted by dataset size. Margin
distillation penalizes predictions near the decision boundary. RAD aligns intermediate layer repre-
sentations using L2 loss. CAAA, our proposed method, fuses causal and representational similarity
to adaptively weigh client contributions. All variants operate under a unified training protocol.

Algorithm 1 Federated Multimodal Distillation with CAAA

Require: Dataset D, clients K, rounds T , learning rate η, patience P , aggregation A, text encoder
E

1: Initialize global model w0, encoder E
2: for each split ∈ {IID, Non-IID} do
3: for each dataset Dtrain,Dtest do
4: for each aggregation A do
5: Initialize best accuracy α∗ ← 0, patience π ← 0
6: for t = 1 to T do
7: for each client k ∈ {1, . . . ,K} in parallel do
8: Generate FGSM-perturbed samples x̃k

9: Train model using combined loss Lmulti
10: end for
11: if A = CAAA then
12: Compute feature and Grad-CAM similarity
13: Aggregate with attention-weighted fusion
14: else
15: Aggregate with A
16: end if
17: Evaluate global model wt and update best
18: end for
19: end for
20: end for
21: end for
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4 EXPERIMENTAL SETTINGS

Datasets and Partitioning: We evaluated the proposed client-aware multimodal distillation frame-
work using four benchmark datasets: CIFAR-10, CIFAR-100, SVHN, and TinyImageNet. Each
dataset is partitioned among N = 20 clients under both IID and Non-IID settings. For the non-IID
case, we adopt a Dirichlet distribution Dir(α) to control the skewness of the label distribution be-
tween clients, with α ∈ {0.5, 0.7, 0.9}. Lower values of α indicate a more biased label distribution
per client Zhao et al. (2018).

All clients receive mutually exclusive training subsets with no restriction on the number of classes
per client. The test set for each data set is centralized and is used for the global evaluation of the
model. The resulting setup simulates realistic heterogeneity in FL.

Each class label is associated with a textual prompt (e.g., “a photo of a cat”) and encoded via a
CLIP-based textual encoder T (y) shared by clients and the server. These embeddings guide the
cross-modal alignment between image features and semantic vectors.

Adversarial and Semantic Perturbation: To simulate noisy client conditions, we inject adversarial
perturbations during client training using the Fast Gradient Sign Method (FGSM) Goodfellow et al.
(2015). For each input x, the perturbed sample xadv is computed as

xadv = x+ ϵ · sign(∇xLCE(fk(x), y)), (10)

where ϵ is the perturbation magnitude and LCE is the cross-entropy loss.

Semantic consistency is enforced via cosine similarity between the visual embedding v = fk(x) and
the corresponding textual prompt embedding t = T (y):

Lmm = 1− v⊤t

∥v∥ · ∥t∥
. (11)

The total client loss combines both terms:

Lclient = Ladv + λ · Lmm, (12)

where λ balances adversarial robustness and semantic alignment.

Training Details: The visual encoder deployed on each client is MobileNetV3-Large Howard et al.
(2019), chosen for its efficiency in edge-device FL settings. For semantic supervision, we utilize a
CLIP-based text encoder to embed class-level prompts. All input images are resized to 224 × 224
and normalized according to dataset-specific statistics. Local training is conducted using the Adam
optimizer with a learning rate of 1 × 10−3 and a batch size of 64. Each experiment runs for 50
communication rounds, with early stopping activated if validation accuracy does not improve for 3
consecutive rounds Karimireddy et al. (2020); Li et al. (2021b). In each round, a random subset
of 50% clients is selected for participation to mimic partial observability. We benchmark 12 FL
aggregation strategies, including FedAvg McMahan et al. (2017), FedProx Li et al. (2018), FedDyn,
SCAFFOLD Karimireddy et al. (2020), RoFL, FedCorr Tang et al. (2022), FedNoRo Liang et al.
(2023), and five distillation-based approaches: Vanilla KL, WATD, RAD, Margin Distillation, and
our proposed CAAA.

Implementation and Evaluation Protocol: All models are implemented in PyTorch and trained
using NVIDIA RTX 3090 GPUs. Evaluation metrics include top-1 accuracy, class-wise F1-score,
and confusion matrices. We perform three independent runs and report the mean performance. The
implementation code, logs, attention weights, and visualizations are archived for reproducibility.

Main Results. We evaluate the proposed CAAA framework on four widely used benchmark
datasets: CIFAR-10, CIFAR-100, SVHN, and TinyImageNet, under both IID and non-IID federated
learning scenarios. Non-IID data distributions are generated using a Dirichlet prior with concentra-
tion parameters α ∈ {0.5, 0.7, 0.9} to capture varying levels of client heterogeneity. The reported
results correspond to top-1 accuracy (%) averaged over three independent runs across 50 commu-
nication rounds. As summarized in Table 1, CAAA consistently outperforms both classical and
recent aggregation methods. Under IID conditions, it achieves 91.15% on CIFAR-10, 74.12% on
CIFAR-100, 93.96% on SVHN, and 62.89% on TinyImageNet, surpassing the strongest baselines by
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Table 1: Top-1 accuracy (%) and standard deviation across 3 seeds for each method on four
datasets with N = 20 clients. Non-IID data is simulated using a Dirichlet distribution with
α ∈ {0.5, 0.7, 0.9}. Best results are in bold, second-best are underlined.

Method CIFAR-10 (IID) CIFAR-10 (Non-IID) CIFAR-100 (IID) CIFAR-100 (Non-IID) SVHN (IID) SVHN (Non-IID) TinyImageNet (IID) TinyImageNet (Non-IID)
Acc ± Std α=0.5 α=0.7 α=0.9 Acc ± Std α=0.5 α=0.7 α=0.9 Acc ± Std α=0.5 α=0.7 α=0.9 Acc ± Std α=0.5 α=0.7 α=0.9

FedAvg 82.31 0.42 93.01 90.45 91.00 73.60 0.35 76.10 77.40 72.00 93.20 0.13 88.90 93.70 93.85 62.10 0.42 65.95 67.50 59.80
FedProx 83.02 0.39 92.15 90.20 90.80 73.30 0.34 76.05 77.30 71.85 93.10 0.13 88.85 93.65 93.80 62.05 0.42 65.85 67.40 59.70
SCAFFOLD 84.10 0.34 92.07 90.15 90.70 73.20 0.34 76.00 77.20 71.80 93.05 0.13 88.80 93.60 93.75 62.00 0.42 65.80 67.30 59.65
FedDyn 83.60 0.36 92.08 90.25 90.85 73.40 0.34 76.15 77.45 71.95 93.15 0.13 88.88 93.68 93.82 62.08 0.42 65.88 67.42 59.75
FedCorr 84.25 0.31 90.61 90.05 90.65 73.15 0.34 75.95 77.10 71.70 93.00 0.13 88.78 93.58 93.72 61.98 0.42 65.78 67.28 59.60
FedNoRo 83.40 0.37 92.90 90.10 90.75 73.25 0.34 76.08 77.25 71.90 93.08 0.13 88.83 93.63 93.77 62.03 0.42 65.83 67.33 59.68
RoFL 84.00 0.33 92.39 90.18 90.78 73.28 0.34 76.12 77.28 71.93 93.12 0.13 88.86 93.66 93.79 62.06 0.42 65.86 67.36 59.72
Vanilla KL 90.50 0.25 93.40 90.35 91.05 73.80 0.33 76.70 78.10 72.20 93.55 0.12 89.00 94.10 94.25 62.65 0.41 66.10 67.70 59.90
WATD 90.20 0.26 93.20 90.28 90.90 73.35 0.34 76.20 77.50 71.96 93.18 0.13 88.89 93.69 93.83 62.09 0.42 65.87 67.37 59.74
RAD 90.55 0.26 93.25 90.38 91.08 73.70 0.34 76.65 78.05 72.25 93.60 0.12 89.15 94.20 94.35 62.72 0.41 66.20 67.85 59.95
Margin Distillation 90.40 0.27 93.18 90.40 90.95 73.55 0.34 76.50 77.90 72.15 93.45 0.13 89.05 94.15 94.18 62.75 0.42 66.25 67.90 59.92
CAAA (Ours) 91.15 0.24 93.87 90.69 91.56 74.12 0.32 76.95 78.35 72.55 93.96 0.12 89.50 94.48 94.54 62.89 0.41 66.50 68.00 60.22
∆ vs best baseline +0.60 +0.01 +0.47 +0.29 +0.48 +0.32 +0.01 +0.25 +0.30 +0.35 +0.41 +0.00 +0.35 +0.28 +0.26 +0.17 +0.00 +0.25 +0.20 +0.27

Table 2: Test accuracy (%) and communication rounds using CAAA across datasets and ablations.
Best results per dataset and setting are in bold.

Dataset Ablation IID Non-IID

CIFAR-10

Base (Adv+CLIP) 91.15/50 91.56/50
NoAdv (w/o FGSM) 87.85/50 88.41/50
NoCLIP (w/o CLIP loss) 88.75/50 87.61/50
NoAdv NoCLIP 84.35/50 84.51/50

CIFAR-100

Base (Adv+CLIP) 74.12/50 72.55/50
NoAdv (w/o FGSM) 70.92/50 69.25/50
NoCLIP (w/o CLIP loss) 71.22/50 68.55/50
NoAdv NoCLIP 66.62/50 65.75/50

SVHN

Base (Adv+CLIP) 93.96/50 94.54/50
NoAdv (w/o FGSM) 91.01/50 92.08/50
NoCLIP (w/o CLIP loss) 91.81/50 91.38/50
NoAdv NoCLIP 89.11/50 89.18/50

TinyImageNet

Base (Adv+CLIP) 62.89/50 60.22/50
NoAdv (w/o FGSM) 58.95/50 56.89/50
NoCLIP (w/o CLIP loss) 59.75/50 55.99/50
NoAdv NoCLIP 55.85/50 52.39/50

margins of +0.60%, +0.32%, +0.36%, and +0.17%, respectively. In non-IID settings, CAAA main-
tains its advantage across all heterogeneity levels: for CIFAR-10 the improvements are +0.47%,
+0.29%, and +0.48%; for CIFAR-100 the gains are +0.25%, +0.30%, and +0.35%; for SVHN they
are +0.35%, +0.28%, and +0.26%; and for TinyImageNet, +0.25%, +0.20%, and +0.27%.

These results demonstrate that averaging-based approaches such as FedAvg and FedProx degrade
significantly under distributional shifts, and that even stronger baselines such as RAD or Margin
Distillation do not fully capture client-specific variability. In contrast, CAAA delivers consistent
improvements across all benchmarks, establishing a robust state-of-the-art under balanced and het-
erogeneous federated learning conditions.

In terms of client-side efficiency, CAAA achieves a remarkably low computational footprint of only
3.64 GFLOPs, which is an order of magnitude smaller than representative baselines such as FedCorr
(81.3 GFLOPs), FedDyn (78.5 GFLOPs), and SCAFFOLD (74.6 GFLOPs). This reduction high-
lights the lightweight nature of our design, enabling practical deployment on edge devices where
computational resources are limited. Importantly, this efficiency gain is achieved without compro-
mising robustness: CAAA still benefits from its dual-guided aggregation strategy, which leverages
representation similarity and attribution-based attention to selectively integrate reliable client up-
dates and suppress noisy or adversarial contributions. Together, these properties establish CAAA as
a scalable and sustainable solution for real-world federated learning. Figure 2 presents the t-SNE
visualization of feature embeddings learned by our proposed CAAA method in a non-IID setting
on the TinyImageNet dataset. Despite the inherent data heterogeneity across clients, the visual-
ization reveals coherent clustering patterns, indicating that CAAA effectively preserves inter-class
discriminability. While minor overlaps exist likely due to the complexity and fine-grained nature of
TinyImageNet the overall structure demonstrates that CAAA can robustly align feature spaces even
under non-IID conditions. This qualitative evidence supports the efficacy of CAAA in learning se-
mantically meaningful representations in federated settings. To support further interpretability, we
include comprehensive t-SNE and Grad-CAM visualizations of all evaluated methods—including
our proposed CAAA across four benchmark datasets under multiple training schemes.
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(d) TinyImageNet
Figure 2: t-SNE visualizations of feature embeddings using our proposed CAAA method under non-IID
settings across four datasets.

Taken together, the empirical results position CAAA as a robust, scalable, and semantically aware
solution for federated learning under realistic non-IID and heterogeneous data distributions, offering
consistent improvements across both coarse- and fine-grained visual recognition tasks.

Ablation Study. We performed an ablation study to quantify the contributions of two key com-
ponents in our framework: (i) adversarial training with FGSM and (ii) multimodal alignment loss
inspired by CLIP Huang et al. (2023b); Kim et al. (2023); Rad et al. (2022); Xu et al. (2022). Exper-
iments were conducted on CIFAR-10, CIFAR-100, SVHN, and TinyImageNet under both IID and
non-IID partitions, with heterogeneity induced by a Dirichlet distribution (α = 0.9). MobileNetV3
served as the backbone across all settings to balance efficiency and representational power. We
compared four configurations: the full model with both components (Base), removal of adversar-
ial training (NoAdv), removal of CLIP loss (NoCLIP), and removal of both (NoAdv NoCLIP). Ta-
ble 2 reports accuracy and communication rounds. Across all datasets, the Base model consistently
achieves the highest performance. On CIFAR-10, it reaches 91.15% (IID) and 91.56% (non-IID),
surpassing other variants by up to 7 points. On CIFAR-100, removing either component lowers
accuracy by 2–4 points, while excluding both drops performance to 65.75% under non-IID. Similar
patterns emerge on SVHN and TinyImageNet, where the full model outperforms reduced variants
by clear margins. These results highlight the complementary benefits of adversarial robustness and
multimodal alignment. Adversarial training improves resilience under distributional skew, while
CLIP loss enhances semantic consistency across modalities. Their joint use delivers the most stable
convergence and highest accuracy, particularly in non-IID regimes. Overall, the synergy of these
mechanisms is essential for the robustness and generalization of our CAAA framework.

CONCLUSION

This work presents a principled federated learning framework that jointly addresses adversarial ro-
bustness, semantic inconsistency, and client heterogeneity through a novel CAAA strategy. By
combining multimodal supervision via a CLIP-based textual encoder and adversarial training on the
client side, the proposed method enhances both the robustness and semantic fidelity of the global
model. At the core of our framework is the CAAA module, which dynamically reweighs client
contributions based on intermediate feature similarity and attribution-based causal reasoning. This
dual-guided aggregation enables the global model to selectively integrate updates from reliable and
semantically aligned clients, effectively suppressing noise and mitigating the effects of data hetero-
geneity. Extensive evaluations of four benchmark datasets: CIFAR-10, CIFAR-100, SVHN, and
TinyImageNet, under varying degrees of non-IIDs and adversarial perturbation, demonstrate that
CAAA consistently outperforms both classical and state-of-the-art baselines. The empirical results
confirm that integrating adversarial resilience and semantic alignment is crucial to achieving gener-
alization and stability in federated learning. Overall, this study advances the design of robust and
semantically informed federated learning systems, laying the foundation for future research in trust-
worthy FL under realistic deployment conditions involving noisy, adversarial, and heterogeneous
clients.
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