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ABSTRACT

Transformer-based architectures traditionally employ softmax to compute attention
weights, which produces dense distributions over all tokens in a sequence. While
effective in many settings, this density has been shown to be detrimental for
tasks that demand precise focus on fixed-size patterns: as sequence length
increases, non-informative tokens accumulate attention probability mass, leading
to dispersion and representational collapse. We show in this paper that dynamically
sparse attention mechanisms using α-entmax can avoid these issues, due to their
ability to assign exact zeros to irrelevant tokens. Furthermore, we introduce
Adaptive-Scalable Entmax (ASEntmax), which endows α-entmax with a learnable
temperature parameter, allowing the attention distribution to interpolate between
sparse (pattern-focused) and dense (softmax-like) regimes. Our empirical
evaluation on synthetic tasks and language modeling demonstrates that ASEntmax
substantially outperforms softmax, scalable softmax, and fixed-temperature
α-entmax baselines, achieving up to 1000× length extrapolation on synthetic
benchmarks and superior long-context generalization on language modeling while
preserving short-context performance, including better perplexity trends and higher
retrieval accuracies at 8× training length.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has become the foundation of modern large
language models (LLMs), establishing new benchmarks across diverse domains. However, as re-
searchers push these models toward increasingly longer contexts—from thousands to millions of
tokens—several fundamental limitations emerge that can be traced to the softmax transformation
used in attention. Three critical limitations stand out: representational collapse occurs due to soft-
max’s inability to maintain distinct attention patterns as sequence length grows, erasing meaningful
distinctions between tokens (Barbero et al., 2024); over-squashing is exacerbated by softmax’s dense
probability distribution, leading to exponential dilution of gradients (Alon & Yahav, 2021; Barbero
et al., 2024); and attention dispersion arises from softmax’s fundamental property that forces prob-
ability mass to be distributed across all tokens, with attention weights necessarily approaching an
uniform distribution as context grows (Veličković et al., 2025; Nakanishi, 2025).

Previous approaches to address these challenges include positional encoding innovations such as
ALiBi (Press et al., 2022) and RoPE (Su et al., 2024), which help to mitigate position bias issues.
Recent works directly target the root cause—the softmax function itself. Nakanishi (2025) proposes
Scalable-Softmax to scale logits based on context length, while Veličković et al. (2025) identify
fundamental limitations of softmax for sharp out-of-distribution generalization and propose to learn
adaptive temperatures to control the sharpness of softmax. While effective, these solutions often
require careful tuning or address only a subset of the challenges.

In this paper, we address the root cause of these problems by replacing softmax with α-entmax (Peters
et al., 2019), a differentiable sparse transformation that induces probability distributions where
irrelevant tokens receive exactly zero attention. While α-entmax has been used successfully in
transformers (Correia et al., 2019; Gonçalves et al., 2025), its length generalization properties, to the
best of our knowledge, have never been studied. We show theoretically and empirically that α-entmax
consistently helps to address challenges in long context modeling. Our key contributions include:1

1Our code will be available upon acceptance.
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Figure 1: Long-context generalization on Multi-query Multi-token Associative Recall (left) and
Max Retrieval (right). SSMax represents the Scalable Softmax approach by Nakanishi (2025), and
Adaptive Temperature (Adapt. Temp.) represents the approach by Veličković et al. (2025). While
all methods benefit from using NAPE (NoPE + ALiBi), our adaptive-scaling version of α-entmax
exhibits the best extrapolation results, effectively handling extremely long sequences.

• Non-dispersion: We establish that α-entmax attention distributions maintain consistent focus
regardless of sequence length, with entropy bounded by O(log s) rather than approaching maximum
entropy O(logn) as with softmax, where s ≪ n is the number of tokens with nonzero probability.

• Representational preservation: α-entmax attention with sparse support can avoid represen-
tational collapse and reduces the number of gradient paths from O(nL) to O(sL), alleviating
over-squashing by strengthening the gradient flow for long-range dependencies.

• Adaptive-scalable α-entmax: We introduce ASEntmax, which adaptively adjust sparsity based
on sequence length to maintain optimal token selection even in extremely long contexts.

• Empirical results: We demonstrate that ASEntmax achieves superior performance across synthetic
and real-world tasks. For example, as shown in Figure 1, ASEntmax achieves 95.3% accuracy on
associative recall at 65K tokens after training on just 64 tokens—a 1000× length extrapolation.

2 BACKGROUND

2.1 TRANSFORMERS

In this work, we study (causal) transformers with sparse attention distributions created by replacing
softmax with α-entmax. We present the precise mathematical formulation below, following closely the
notation from (Barbero et al., 2024). Concretely, given a sequence of token embeddings X ∈ Rn×d,
where n is the sequence length and d is the hidden dimension, transformers compute query, key, and
value projections Q = XWQ, K = XWK , and V = XWV . We denote with qi,ki,vi ∈ Rd
the d-dimensional query, key, and value vectors of the i-th token. For each query position i, the
representation at layer ℓ for the i-th token is computed as:

u
(ℓ)
i =

∑
j≤i

p
(ℓ)
ij norm(ℓ)

1

(
v
(ℓ−1)
j

)
+ v

(ℓ−1)
i , v

(ℓ)
i = FFN(ℓ)

(
norm(ℓ)

2

(
u
(ℓ)
i

))
+ u

(ℓ)
i , (1)

where p
(ℓ)
ij are attention weights, FFN(ℓ) is the feed-forward network, norm(·) represent LayerNorm

modules (Xiong et al., 2020). The output is computed as yi = norm3

(
v
(L)
i

)
. The attention

weights p(ℓ)ij = π(z
(ℓ)
i )j are computed by applying a transformation π : Rn → △n to the attention

logits z
(ℓ)
ij = ⟨q(ℓ)

i ,k
(ℓ)
j ⟩/

√
d, where △n := {p ∈ Rn : p ≥ 0,1⊤p = 1} represents the

probability simplex. Standard transformers employ the softmax function as π. In this work, we study
transformers by casting π as the α-entmax transformation.

2.2 α-ENTMAX

α-entmax (Peters et al., 2019) is a differentiable transformation that generalizes softmax by allowing
for sparse probability distributions. For an input vector z ∈ Rn and α > 1, α-entmax is defined as:

α-entmax(z)i = [(α− 1)zi − τ(z)]
1

α−1

+ , (2)
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Figure 2: Visualization of α-entmax(z/θ) for different values of α. Each panel shows how probability
mass is distributed among five elements of z = [2.0, 1.8, 1.6, 1.4, 1.2] as the temperature parameter
decreases (θ−1 increases). The vertical lines show the temperature that leads to zero probability.

where [·]+ := max(0, ·) and τ : Rn → R yields a threshold that ensures the resulting distribution
sums to 1. A key property of α-entmax is that tokens with scores below the threshold receive
exactly zero probability, creating sparse attention patterns. When α → 1+, this reduces to the
standard softmax function. The sparsity level increases with α, with α = 2 corresponding to the
sparsemax function (Martins & Astudillo, 2016). Figure 2 illustrates α-entmax for different values of
α. We provide more information on α-entmax in §A. While α-entmax is a suitable choice for sparse
attention, its theoretical and empirical impact on long inputs is still unclear. In the next section, we
demonstrate how it fundamentally changes the way attention behaves for long contexts.

3 THEORETICAL PROPERTIES OF α-ENTMAX FOR LONG CONTEXTS

We analyze the theoretical properties of α-entmax that make it especially suitable for long-context
modeling, focusing on how it addresses the fundamental limitations of softmax.

3.1 NON-VANISHING ATTENTION PROBABILITIES

A critical limitation of softmax in transformers is that attention weights inevitably decrease as the
sequence length increases. Our first result demonstrates how α-entmax avoids this issue.

Lemma 1 (Non-Vanishing Attention Property). Consider scalars a1, ..., an−1, c ∈ R. Let x =
[a1, ..., an−1, c]

⊤ ∈ Rn and x∗ = [a1, ..., an−1, b, c]
⊤ ∈ Rn+1, with all entries bounded. The

following properties hold:

• For all α ≥ 1, we have α-entmax(x)n ≥ α-entmax(x∗)n+1. In the softmax case (α = 1),
Barbero et al. (2024, Lemma B.1) have shown that the inequality is always strict: softmax(x)n >
softmax(x∗)n+1.

• For all α > 1, there is some bmax ∈ R such that, for any b ≤ bmax, we have α-entmax(x)n =
α-entmax(x∗)n+1.

Furthermore, for α > 1, the difference α-entmax(x)n − α-entmax(x∗)n+1 can take any value in
[0, α-entmax(x)n] by appropriate choice of b.

The proof can be found in §D.1. This result demonstrates a fundamental difference between softmax
and α-entmax. Unlike softmax, where adding a new token always reduces the attention probability
of existing tokens strictly, α-entmax allows a distinct behavior: the attention probability can remain
unchanged. This occurs because the α-entmax’s thresholding effect allows tokens with logits below a
certain threshold to receive exactly zero attention, letting the model focus only on the relevant tokens.

Having established that α-entmax prevents the vanishing of individual attention weights, we now
formalize the broader concept of attention dispersion to better understand how attention distributions
as a whole behave as the sequence length increases.

3.2 ATTENTION DISPERSION AND CONCENTRATION

Recent work by Nakanishi (2025) and Veličković et al. (2025) has highlighted attention dispersion as
a fundamental limitation of softmax for long context generalization. Building upon these insights, we
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provide a formal definition to characterize attention dispersion and show how α-entmax naturally
exhibits concentration properties that address these limitations.

Definition 1 (Attention Dispersion). Let f : Rn → △n denote a transformation (such as softmax)
mapping logits to the probability simplex △n := {p ∈ Rn : p ≥ 0,1⊤p = 1}.

1. f exhibits complete dispersion if for any bounded sequence of logits (zn)n∈N, the normalized
entropy approaches 1 as the sequence length increases:

lim
n→∞

H(f(z1:n))

log n
= 1. (3)

2. f exhibits concentration resilience if there are bounded sequences of logits where the normalized
entropy remains bounded away from 1:

lim
n→∞

H(f(z1:n))

log n
< 1. (4)

These definitions allow us to examine how softmax and α-entmax behave as sequence length grows:

Proposition 1 (Dispersion Properties of Attention Mechanisms). Comparing softmax and α-entmax
(α > 1) attention mechanisms:

1. α-entmax can retain probability, while softmax always leaks: For any α > 1 and any logits
z ∈ Rn, there are logits z∗ ∈ RN with N > n such that:

α-entmax(z)i = α-entmax(z∗)i ∀i ≤ n. (5)

This is impossible for α = 1 (softmax), for which we always have softmax(z)i < softmax(z∗)i.

2. Softmax exhibits complete dispersion: For any fixed temperature θ > 0 and any bounded
sequence of logits (zn)n∈N:

lim
n→∞

H(softmax(z1:n/θ))

log n
= 1. (6)

3. α-entmax can exhibit strong concentration resilience: When the support size grows sublinearly
as |S| = O(nβ) with β < 1, α-entmax maintains bounded normalized entropy:

lim
n→∞

H(α-entmax(z1:n))

log n
≤ β < 1. (7)

The full proof can be consulted in §C. The key takeaway of this result is that the entropy of
attention distributions reveals how concentrated or dispersed they are across tokens. While softmax
distributions approach maximum entropy Θ(log n) as the sequence length increases (indicating
complete dispersion), α-entmax distributions maintain bounded entropy O(log s) where s is the
support size. This allows models with α-entmax to maintain focused, low-entropy attention patterns
even when processing extremely long sequences, as long as the support size is smaller than the
full sequence length. This non-dispersion property means transformers with α-entmax can scale to
very long contexts without the attention becoming dispersed, maintaining their ability to focus
on relevant information regardless of how much additional context is present. However, attention
dispersion is not the only obstacle to effective long-sequence modeling.

3.3 REPRESENTATIONAL PRESERVATION AND OVER-SQUASHING ALLEVIATION

Two other critical challenges in long-context transformers are representational collapse and over-
squashing, both exacerbated by the diffuseness of softmax attention (Barbero et al., 2024). More
concretely, collapse means ∥v(L)

i − v
(L)
j ∥1→0 as n→∞, and over-squashing means gradients from

distant inputs vanish across O(nL) paths. Here, we show that α-entmax mitigates both via sparse,
bounded-support attention:

4
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Proposition 2 (Representational Preservation and Reduced Gradient Paths). Let α > 1. Consider a
depth-L transformer with residual connections and attention weights given by α-entmax. Suppose
each attention distribution has support size at most s with s ≪ n. Then:

1. (Preserved representations) There exist input families v(0)∈Rn×d and v∗(0)∈R(n+1)×d and a
constant c > 0 such that ∥v(L)

n − v
∗(L)
n+1 ∥1 ≥ c for all n; i.e., α-entmax can maintain distinct

token representations as n → ∞.

2. (Alleviated over-squashing) The number of effective gradient paths scales as O(sL) (rather
than O(nL) under softmax), alleviating over-squashing via stronger gradient signals.

Full statements and proofs are in App. §D.2–§D.3.

Empirical evidence. We corroborate Proposition 2 with controlled experiments. For representa-
tional collapse, following the Barbero et al. (2024)-style one-token extension probe, we implement
a counterexample with α ∈ {1.0, 1.5, 1.75, 2.0}, and report the L1 gap between v

(L)
n and v

∗(L)
n+1 .

With softmax attention, the gap rapidly decays toward 0 with length, while α-entmax preserves a
non-vanishing margin up to 128K tokens, with larger α yielding stronger preservation (App. §D.2).
For over-squashing, we analyzed gradient flow through an 8-layer network on a copying task, where
the model must copy information across long distances. We find that α-entmax attention sustains
substantially larger norms across depths and lengths, consistent with O(sL) path growth, whereas
softmax degrades sharply with sequence length (App. §D.3).

4 ADAPTIVE-SCALABLE α-ENTMAX (ASENTMAX)

In the previous section we saw that α-entmax, for any choice of α > 1, can avoid some of the pitfalls
of softmax thanks to its ability to assign zero weight to many tokens, ignoring irrelevant information.
But what if it ignores too many tokens? Can it handle situations where many tokens are relevant and
should be attended? We show in this section that indeed the model might not be able to cope with
this for a fixed α and a fixed temperature, and we propose a practical solution.

4.1 CONTROLLING SPARSITY IN LONG CONTEXTS VIA ASENTMAX

As sequence length grows, the spread of attention logits increases—for IID Gaussian logits, the
expected range satisfies E[∆] ∼ 2σ

√
2 logn (Kamath, 2015). With a fixed temperature, this makes

attention overly peaky at long n. We address this with Adaptive-Scalable α-entmax (ASEntmax),
which rescales logits per head as a function of context length and content:

ASEntmax(z) = α-entmax((δ + β(logn)γ)z), (8)

where β, γ, δ ∈ R are head-specific scalars. Concretely, for each head, we obtain vectors β and γ
whose entries contain these coefficients for each query:

β = softplus(Xwβ) ∈ Rn+, γ = s tanh(Xwγ) ∈ (−s, s)n, (9)

where wβ ,wγ ∈ Rd are learnable, head-specific projection vectors. This characterization allows
the model to learn a slowly rising (γ > 0) or dampening (γ < 0) temperature schedule without
interfering in the positional encodings (which would happen with negative values of β). Specifically,
for IID Gaussian logits N (0, σ), when δ = 0 and γ = −0.5 the scaling counteracts the growth of
logit ranges (∆n) as context increases:

β(logn)−0.5 ·∆n = β(logn)−0.5 · 2σ
√
2 logn = 2σβ

√
2, (10)

which remains constant as n increases, preventing excessive sparsification. Furthermore, with this
parameterization, ASEntmax can recover standard α-entmax when β = 0, hence allowing a smooth
transition between scaled and unscaled regimes. By making wβ and wγ head-specific and learnable,
ASEntmax can adapt to the optimal scaling behavior for each head, balancing the natural concentration
benefits of α-entmax with precise control over how sparsity patterns evolve with sequence length.
Finally, we note that simply scaling the query-key products is appealing from a practical perspective
since it allows the direct use of fast optimized kernels for α-entmax, such as AdaSplash (Gonçalves
et al., 2025), without any modifications.
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Figure 3: Learned positions per head. Besides a simple linear fit baseline (βn), we also show the fit
given by δ + β logn and δ + β(log n)γ , which are used by SSMax and ASEntmax, respectively.

Empirical Analysis. To empirically validate the importance of the parameter γ in our proposed
scaling formulation, we conducted experiments on a language modeling task using a 120M-parameter
transformer trained on 5B tokens from the FineWeb dataset (Penedo et al., 2024). Following the
methodology from SSMax (Nakanishi, 2025), we implemented learnable scaling parameters for the
attention logits, but with a key difference: while Nakanishi (2025) uses a global scaling parameter, we
learn separate scaling parameters for each attention head, motivated by Correia et al. (2019)’s finding
that attention heads develop distinct sparsity patterns. Figure 3 presents the learned scaling behaviors
for representative attention heads, along with fitted curves from different scaling models. First, we
note that different heads learn significantly distinct patterns, highlighting the need of head-specific
scaling. Second, the results demonstrate that a simple log-scaling model δ + β logn provides poor
fits for many heads. In contrast, the inclusion of a γ power provides consistently better fits across
different attention heads. The complete distribution of fitted β and γ values across all heads is
provided in §F, and additional training details can be found in §F.1.

5 EXPERIMENTS

5.1 SYNTHETIC TASKS

A number of works have turned to synthetic tasks as a probing ground for transformers’ length-
generalization capabilities (Anil et al., 2022; Dziri et al., 2023; Zhou et al., 2024). Such tasks,
like copying a sequence and sorting numbers, allow precise control over training and test lengths,
revealing whether a model has truly learned an algorithm that scales or merely memorized patterns
within a limited length. Vanilla transformers struggle in this setting: they often achieve perfect
accuracy on sequences up to the training length, yet fail catastrophically on even slightly longer
sequences (Press et al., 2022). To quantitatively evaluate our proposed improvements, we embrace
this paradigm of synthetic tasks for long-sequence testing. Concretely, we evaluate our models on a
diverse set of synthetic tasks designed to test different aspects of long-context modeling, covering both
position-agnostic reasoning (where token positions are not critical) and position-sensitive operations
(where relative or absolute positions matter):

• Retrieval-focused tasks: These include Max Retrieval (Barbero et al., 2024), which requires identi-
fying maximum values in sequences, and Multi-query Multi-token Associative Recall (MQMTAR)—
a variant of that proposed by Arora et al. (2024), but with multi-token keys and values—which
involves matching queries to their corresponding key-value pairs. Both tasks test the model’s ability
to maintain focus on relevant tokens regardless of their positions in long contexts.

• Memory-dependent tasks: We evaluate models on Copy (reproducing input sequences). It assesses
how well the model preserves token representations and accesses specific positional information
throughout the network. On this line, we also evaluate on 2Back, described in §G.

• Ordering tasks: This category contains tasks such as Sort (arranging tokens in ascending order)
and Reverse (outputting tokens in reverse order). These evaluate compositional generalization and
positional reasoning, becoming increasingly challenging as sequence length grows.

Experimental Setup. We use small decoder-only transformers and keep the number of layers as
low as possible so that the results reflect the attention method’s capabilities rather than model scale.
The only exception is Reverse, where we raise L until a plain softmax baseline reaches at least 1.5×
the in-distribution performance. For positional information we default to NoPE+ALiBi, which we

6
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Table 1: Exact match accuracy (%) on representative tasks. For each task, we report in-distribution
sequence length n in the first column (n = 64 for all tasks), followed by OOD results at increasing
sequence lengths. L indicates the number of layers. Best results are in bold.

MQMTAR (L = 4) Reverse (L = 6)

Method ID 2× 4× 16× 64× 256× 1024× ID 1.5× 2× 4× 8×
Softmax 100.0 100.0 100.0 99.5 97.8 80.2 3.0 100.0 36.0 0.0 0.0 0.0
Top-K (K=32) 100.0 99.9 6.2 0.0 0.0 0.0 0.0 100.0 100.0 98.7 57.0 0.0
SSMax 99.9 100.0 99.9 99.6 98.3 90.6 26.7 100.0 54.6 0.0 0.0 0.0
Entmax 100.0 100.0 100.0 99.2 92.7 66.8 9.3 100.0 99.0 86.0 28.5 0.2
ASEntmax 100.0 100.0 100.0 99.7 99.6 99.0 95.3 100.0 100.0 99.8 96.4 56.7

Copy (L = 2) Sort (L = 2)

ID 2× 4× 8× 16× 32× 64× ID 2× 4× 8× -

Softmax 100.0 100.0 99.9 99.9 99.4 96.1 85.5 100.0 0.0 0.0 0.0 -
Top-K (K=32) 100.0 99.7 96.8 26.7 0.0 0.0 0.0 100.0 92.5 0.0 0.0 -
SSMax 100.0 100.0 100.0 99.9 99.6 99.3 95.8 100.0 0.0 0.0 0.0 -
Entmax 100.0 99.0 86.0 28.5 0.2 0.0 0.0 100.0 99.3 57.8 0.0 -
ASEntmax 100.0 100.0 99.9 99.7 99.4 96.3 86.6 100.0 100.0 79.7 0.0 -

dub as NAPE, where half the heads have no positional encoding (NoPE) and the other half use ALiBi
with linear slopes.2 We treat NAPE as a practical default, not a contribution, and report RoPE and
standalone ALiBi in App. §H for completeness.3 SSMax and ASEntmax models use δ = 1. Further
hyperparameters and ablations appear in App. §G.

Discussion. The results, shown in Table 1, reveal a critical factor for length generalization: attention
sparsity. Specifically, ASEntmax dramatically outperforms others at extreme lengths—maintaining
96.4% accuracy at 256× test length on MQMTAR (vs. 80.2% for softmax) and 96.4% at 4× on
Reverse (vs. 0% for softmax). Moreover, the consistent superiority of ASEntmax over basic α-
entmax confirms the benefits of adaptive scaling, particularly at extreme lengths where fixed-α may
become too sparse or too diffuse. SSMax performs well on the Copy task, even outperforming other
methods, but struggles on more complex tasks like MQMTAR and Reverse at extreme lengths. This
indicates that while scaling logits helps maintain peak attention magnitude, the explicit sparsity
of α-entmax provides additional benefits by completely removing irrelevant connections. These
findings are further supported by results on the Max Retrieval task (Figure 1 right), where sparse
attention mechanisms demonstrate superior length extrapolation compared to dense approaches, with
ASEntmax maintaining over 60% accuracy even at 4096-length sequences—a dramatic improvement
over standard Softmax and Adaptive Temperature (Veličković et al., 2025). Finally, Copy and Reverse
show moderate generalization (up to 64× and 8× respectively), while Sort fails beyond 4× length
for all methods. This pattern suggests that tasks requiring precise global ordering (Sort, Reverse) are
inherently more challenging for length generalization than tasks dependent on local or independent
token properties. We provide per-task results, including results for other positional encoding methods
such as RoPE, ALiBi, and NoPE, in §H.

5.2 LANGUAGE MODELING

To validate our approach on real-world tasks, we train 420M-parameter decoder-only models follow-
ing the LLaMA 3 architecture (details in App. G.3) on the high-quality DCLM-Edu dataset (Allal
et al., 2025), for 7B tokens with a context length of n = 2048. As in the synthetic experiments, we
report results in the main paper using NAPE (NoPE+ALiBi). Results with RoPE are reported in App.
H.9. We evaluate short-context performance on Lambada, HellaSwag, PIQA, ARC-C, Winogrande,
and OpenBookQA, and assess long-context generalization via perplexity on ArXiv/PubMed subsets
of The Pile (Gao et al., 2020) as well as RULER’s Needle-in-a-Haystack tasks (Hsieh et al., 2024).

2Hard-ALiBi (Jelassi et al., 2024) allows zero slopes on some heads, which is equivalent to NoPE; our NAPE
default mirrors this practical configuration.

3Across all attention methods tested—including softmax—NAPE consistently performs best. We study
its interaction with α-entmax and positional encodings in §E, with further empirical insights in §E.4 and §H.9.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Downstream-task results on short-context datasets. Best results are in bold.

Method Lambada (PPL) Lambada Hellaswag PIQA Arc-C WinoGrande OpenbookQA

Softmax 52.4 30.9 33.1 65.1 25.6 49.5 28.2
SSMax 48.9 31.6 32.9 65.1 25.0 51.5 30.4
Entmax 47.9 32.1 32.8 63.6 24.6 50.9 29.0
ASEntmax 41.6 34.3 33.4 63.8 26.0 50.0 28.6

Table 3: Long-context perplexity on ArXiv and PubMed from The Pile. Best results are in bold.

ArXiv (ID) ArXiv (OOD) PubMed (ID) PubMed (OOD)

Model 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K

Softmax 20.82 16.47 13.74 12.69 12.70 18.36 17.34 15.31 15.61 18.73
SSMax 20.81 16.44 13.41 11.95 12.00 18.13 17.10 14.87 14.11 15.36
Entmax 23.40 18.57 15.36 14.02 14.68 22.33 21.14 18.94 18.31 20.29
ASEntmax 20.64 16.30 13.15 11.19 10.77 18.15 17.09 14.66 13.48 14.48

Discussion. In short-context evaluation (Table 2), all models perform comparably. We note that per-
formance on ARC-C, Winogrande, and OpenBookQA is near-random. Among the other benchmarks,
ASEntmax achieves the highest scores on Lambada (both in terms of perplexity and accuracy) and
HellaSwag, while Softmax and SSMax perform best on PIQA. For long-context modeling (Table 3),
ASEntmax outperforms all other models. On ArXiv, it shows strong extrapolation, maintaining a
decreasing perplexity trend even when extended to 8× the pre-trained sequence length. On PubMed,
although all models struggle with 8× extrapolation, ASEntmax still leads by a margin of about 1
perplexity point vs SSMax. In retrieval tasks from RULER (Table 4), entmax-based models perform
better overall, with both Entmax and ASEntmax surpassing their softmax counterparts at the extrapo-
lation 4× and 8×. ASEntmax in particular shows strong extrapolation in passkey retrieval on the
simple haystack task (S-NIAH-1), maintaining near-perfect performance even at 8× context length.
On the harder S-NIAH-2 variant, despite performance dropping substantially across all models,
ASEntmax remains the best performer at 2× and 4× length generalization.

6 RELATED WORKS

Attention Dispersion. Recent work has identified attention dispersion as a fundamental limitation
in softmax-based transformers (Dong et al., 2021; Zhai et al., 2023; Veličković et al., 2025). For
example, Veličković et al. (2025) demonstrate that softmax attention inevitably disperses focus as
sequence length increases, while Nakanishi (2025) propose SSMax to scale attention logits based on
sequence length. Our approach employs α-entmax (Peters et al., 2019), which naturally produces
sparse distributions by assigning exactly zero probability to irrelevant tokens. We provide theoretical
guarantees that α-entmax maintains bounded normalized entropy as sequence length increases—a
property softmax fundamentally lacks. Our ASEntmax further improves α-entmax with learnable,
context-dependent scaling, leading to consistent gains over SSMax across diverse tasks.

Representational Collapse and Over-Squashing. Studies analyzing attention patterns in neural
networks have noted that increasing depth and context length can induce representational degenera-
tion (Dong et al., 2021; Noci et al., 2022; Arroyo et al., 2025). In particular, Barbero et al. (2024)
prove that with softmax attention, token representations become indistinguishable as sequence length
increases and gradient paths grow as O(nL), causing exponential signal dilution. Our analysis shows,
theoretically and empirically, that α-entmax can address both limitations by maintaining distinct
token representations and by reducing gradient paths to O(sL) for increasing sequence lengths n.

Positional Encodings. The design of positional encodings plays a central role in enabling trans-
formers to generalize to long contexts. ALiBi (Press et al., 2022) introduced linear attention biases
with fixed slopes that encourage recency, and has since inspired several extensions that either mitigate
softmax-related issues (e.g., Hard-ALiBi (Jelassi et al., 2024)) or induce various learned decay
patterns (KERPLE (Chi et al., 2022), FIRE (Li et al., 2024)). More recently, Stick-Breaking Attention
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Table 4: Retrieval performance on RULER benchmark. All models use NAPE positional encoding
and were trained on 2048-token contexts. Best results are in bold.

S-NIAH-1 (ID) S-NIAH-1 (OOD) S-NIAH-2 (ID) S-NIAH-2 (OOD)

Model 1K 2K 4K 8K 16K 1K 2K 4K 8K

Softmax 100.0 99.4 94.2 11.4 0.8 100.0 100.0 4.8 0.0
SSMax 100.0 99.8 99.2 92.0 75.2 99.4 99.2 64.4 14.8
Entmax 99.8 99.8 89.0 21.6 1.2 99.6 99.4 64.8 7.2
ASEntmax 99.6 100.0 100.0 99.8 97.4 99.4 99.4 83.2 25.4

(Tan et al., 2025) can be interpreted as a dynamic variant of ALiBi, in which the slopes are input-
dependent and calculated adaptively from spans of tokens. Our work incorporates NAPE (NoPE +
ALiBi). In this formulation, ALiBi heads combined with α-entmax create hard attention windows
similar to Hard-ALiBi (Jelassi et al., 2024). NoPE, in turn, can learn positional bias (see App. H.1),
and when combined with ASEntmax, it induces a learnable, input-dependent recency bias.

Attention Scaling. Recent work has shown that scaling attention logits is key for maintaining
sharp, focused attention in long contexts. Techniques like YaRN (Peng et al., 2024) and the entropy-
aware approach of Zhang et al. (2024) use dynamic logit scaling—often alongside modified RoPE—
to stabilize attention when training the model on extend contexts. Scalable-Softmax (Nakanishi,
2025) applies a simple log n scaling to logits during training to control dispersion without the need
for post-training adaptation. InfoScale (Li et al., 2025) derive scaling rules from the principle of
entropy invariance, while Scale-invariant Attention (Anson et al., 2025) introduces position-dependent
transformations to balance attention across both local and global contexts. Across these methods,
adaptive scaling consistently improves extrapolation to longer sequences. Our ASEntmax builds on
this line of work by introducing context-dependent, learnable scaling within the α-entmax framework,
enabling sparse, focused attention as context length increases.

Sparse Attention. Previous sparse attention approaches include structured patterns like Longformer
(Beltagy et al., 2020) and BigBird (Zaheer et al., 2020), as well as adaptive methods like α-entmax
(Peters et al., 2019; Gonçalves et al., 2025), top-k related methods (Gupta et al., 2021; Treviso et al.,
2022; Zeng et al., 2025), and chunk-based approaches (Mohtashami & Jaggi, 2023; Hu et al., 2025).
Our work differs by providing a theoretical analysis of why sparsity helps with long-context gener-
alization, linking it to fundamental limitations including dispersion, representational collapse, and
over-squashing. In particular, we note chunk-based approaches are orthogonal to our method and can
be integrated with them to achieve even stronger length generalization and possibly faster inference.

7 CONCLUSIONS

In this paper, we present a principled approach to long-context modeling by replacing softmax
with α-entmax in transformer attention. Our theoretical analysis demonstrates how this simple
change addresses three fundamental limitations: it avoids attention dispersion through naturally
sparse distributions, prevents representational collapse by maintaining distinct token representations,
and alleviates over-squashing by reducing gradient paths from O(nL) to O(sL), where s ≪ n is
the number of tokens with nonzero probability. We further introduce Adaptive-Scalable α-entmax
(ASEntmax), which adaptively adjusts sparsity based on sequence length for each attention head
and query input. Our empirical results confirm these theoretical predictions across both synthetic
and real-world tasks. On synthetic benchmarks, ASEntmax achieves 95.3% accuracy on associative
recall at 1000× the training length, substantially outperforming softmax and existing alternatives.
On language modeling with 420M-parameter models, ASEntmax maintains decreasing perplexity at
8× the training context length and achieves 97.4% retrieval accuracy at 16K tokens after training on
only 2K tokens. These findings suggest that addressing the fundamental mathematical limitations of
transformer attention mechanisms provides a direct path to robust long-context generalization. Our
findings at the 420M-parameter scale provide a foundation for exploring sparse attention mechanisms
in larger production-scale models, where the benefits of attention focus may be even more pronounced.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, our complete implementation and experimental configura-
tions will be publicly available at blind-review. For efficient softmax attention, we have used
FlashAttention-2 (Dao, 2024), and for α-entmax we relied on AdaSplash (Gonçalves et al., 2025).
All theoretical results presented in §3 are accompanied by complete proofs in Appendix §C and §D.
For our synthetic task experiments, we provide detailed task descriptions, data generation proce-
dures, model architectures, and hyperparameters in Appendix §G.1-G.2. Our language modeling
experiments use publicly available datasets: DCLM-Edu (Allal et al., 2025) for training and standard
benchmarks (LAMBADA, HellaSwag, PIQA, ARC-C, Winogrande, OpenBookQA), The Pile (Gao
et al., 2020) (ArXiv, PubMed), and RULER (Hsieh et al., 2024) for evaluation, with complete model
specifications and training details provided in Appendix §G.3.
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Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
the finest text data at scale. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
n6SCkn2QaG.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=wHBfxhZu1u.

Ben Peters, Vlad Niculae, and André F. T. Martins. Sparse sequence-to-sequence models. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
1504–1519, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1146. URL https://www.aclweb.org/anthology/P19-1146.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):8732–8740, Apr. 2020. doi: 10.1609/aaai.v34i05.6399. URL https://ojs.
aaai.org/index.php/AAAI/article/view/6399.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

14

http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
https://aclanthology.org/D18-1260/
https://aclanthology.org/D18-1260/
https://openreview.net/forum?id=7eHn64wOVy
https://openreview.net/forum?id=7eHn64wOVy
https://aclanthology.org/P16-1144/
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=wHBfxhZu1u
https://www.aclweb.org/anthology/P19-1146
https://openreview.net/forum?id=R8sQPpGCv0
https://ojs.aaai.org/index.php/AAAI/article/view/6399
https://ojs.aaai.org/index.php/AAAI/article/view/6399


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shawn Tan, Songlin Yang, Aaron Courville, Rameswar Panda, and Yikang Shen. Scaling stick-
breaking attention: An efficient implementation and in-depth study. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
r8J3DSD5kF.

Marcos Treviso, António Góis, Patrick Fernandes, Erick Fonseca, and Andre Martins. Predicting
attention sparsity in transformers. In Proceedings of the Sixth Workshop on Structured Prediction
for NLP, pp. 67–81, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.spnlp-1.7. URL https://aclanthology.org/2022.spnlp-1.7.

Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics. Journal of Statistical
Physics, 1988.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural infor-
mation processing systems, 30, 2017. URL https://papers.nips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
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A α-ENTMAX TRANSFORMATION

For α > 1, the α-entmax transformation of a score vector z ∈ Rn is defined as (Peters et al., 2019):

α-entmax(z) := arg max
p∈△n

p⊤z +Hα(p), △n := {p ∈ Rn : p ≥ 0,1⊤p = 1}, (11)

where Hα(p) is the Tsallis(α) entropy (Tsallis, 1988). The closed form for α-entmax with α > 1 is

p⋆i =
[
(α− 1) zi − τ(z)

] 1
α−1
+ ,

where [·]+ = max(0, ·), and τ(z) is chosen so that p⋆ sums to 1. Figure 2 illustrates how α-entmax
with tempered scores z/θ behaves for different choices of α.

B MODEL DEFINITION AND NOTATION

In this work, we study (causal) transformers with sparse attention distributions created by replacing
softmax with α-entmax. We present the precise mathematical formulation of our model below,
following closely the notation from (Barbero et al., 2024).

Let Q = XWQ,K = XWK ,V = XWV ∈ Rn×d be the query, key, and value projections of
the input embeddings respectively, where n is sequence length and d the hidden size. We denote
with qi,ki,vi ∈ Rd the d-dimensional query, key, and value vectors of the i-th token. For a single
attention head, transformers compute the representation of the i-th token through the following
layer-wise transformations:4

u
(ℓ)
i =

∑
j≤i

p
(ℓ)
ij norm(ℓ)

1

(
v
(ℓ−1)
j

)
+ v

(ℓ−1)
i , (12)

v
(ℓ)
i = FFN(ℓ)

(
norm(ℓ)

2

(
u
(ℓ)
i

))
+ u

(ℓ)
i , (13)

yi = norm3

(
v
(L)
i

)
, (14)

where ℓ is the later index, p(ℓ)ij represents the attention weights, FFN(ℓ) : Rd → Rd represents

the feed-forward network, and norm(ℓ)
1 , norm(ℓ)

2 , and norm3 are normalization functions. The final
representation yi is computed after applying L transformer layers. For next-token prediction tasks,
the model output typically depends solely on yn, the final representation of the last token. The
attention weights p(ℓ)ij are computed by applying a transformation π : Rn → △n as follows:

p
(ℓ)
ij = π

(
z
(ℓ)
i

)
j
, (15)

where z
(ℓ)
i ∈ Rn is the vector of logits for token i at layer ℓ, with elements z(ℓ)ij = ⟨q(ℓ)

i ,k
(ℓ)
j ⟩/

√
d.

The function π maps these logits to a probability distribution over the n tokens, with △n denoting
the probability simplex. In standard transformers, π is the softmax function:

softmax(z)j =
exp(zj)∑
k≤i exp(zk)

. (16)

In our approach, we replace softmax with α-entmax (§A). We group the attention weights into an
attention matrix at the ℓ-th layer, defined element-wise as [P (ℓ)]ij := p

(ℓ)
ij . This is a row-stochastic

lower triangular matrix that can also be interpreted as a probabilistic directed graph. Finally, when
incorporating positional information, we modify the attention logits computation according to the
chosen positional encoding strategy:

• NoPE: z(ℓ)ij = ⟨q(ℓ)
i ,k

(ℓ)
j ⟩/

√
d.

• ALiBi: z(ℓ)ij = ⟨q(ℓ)
i ,k

(ℓ)
j ⟩/

√
d+m · (j − i), where m ∈ R is a slope hyperparameter.

• RoPE: z(ℓ)ij = (q
(ℓ)
i )⊤Rj−ik

(ℓ)
j , where R ∈ Rd×d is a block-diagonal rotation matrix.

4Following Barbero et al. (2024), we omit the linear projections used to compute the vectors from the output
of previous layers for clarity; however, this does not impact our derivations and conclusions.
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C NON-DISPERSION OF α-ENTMAX

A critical problem in long-context modeling is the dispersion of attention, where relevant signals
get diluted across increasingly long sequences. For clarity, we begin by examining how α-entmax
behaves with two-level logits, and then proceed to define dispersion more rigorously and how
α-entmax naturally counteracts this issue.

Lemma 2 (Threshold Behavior for Two-level Logits). Consider logits z ∈ Rn where k tokens
have value M and (n− k) tokens have value m with M > m.

1. For α > 1, when ∆ := M −m ≥ k−(α−1)

α−1 , only the k tokens with value M receive non-zero
attention. The threshold converges to τ(z) = (α− 1)M − k−(α−1), and each high-value token
receives attention 1

k while others receive zero attention. As a consequence, α-entmax maintains
a constant attention weight of Θ( 1k ) on high-value tokens regardless of the total sequence length
n.

2. In contrast, softmax (with fixed temperature θ > 0) necessarily disperses with attention weights
of Θ( 1n ) as n increases. For softmax to maintain concentration of at least c ∈ (0, 1) on the k
high-value tokens, the required logit difference must grow logarithmically with n:

∆

θ
≥ ln

(
n− k

k
· c

1− c

)
(17)

Proof. We prove the two parts below.

Part (i): Let S be the support set. A token i is in S if and only if zi >
τ(z)
α−1 where τ(z) satisfies:

n∑
i=1

[ (α− 1)zi − τ(z) ]
1

α−1

+ = 1. (18)

For our two-level distribution, this becomes:∑
i:zi=M

[ (α− 1)M − τ(z) ]
1

α−1

+ +
∑

i:zi=m

[ (α− 1)m− τ(z) ]
1

α−1

+ = 1. (19)

For only tokens with value M to receive non-zero attention, we need:

(α− 1)M − τ(z) > 0 and (α− 1)m− τ(z) ≤ 0. (20)

Rearranging: (α− 1)m ≤ τ(z) < (α− 1)M . In this regime:

k · [ (α− 1)M − τ(z) ]
1

α−1 = 1. (21)

Solving for τ(z):

[ (α− 1)M − τ(z) ]
1

α−1 =
1

k
(22)

(α− 1)M − τ(z) = k−(α−1) (23)

τ(z) = (α− 1)M − k−(α−1). (24)

For this threshold to satisfy τ(z) ≥ (α− 1)m, we need:

(α− 1)M − k−(α−1) ≥ (α− 1)m (25)

M −m ≥ k−(α−1)

α− 1
(26)

∆ ≥ k−(α−1)

α− 1
. (27)
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Thus, when ∆ ≥ k−(α−1)

α−1 , only the k tokens with value M receive non-zero attention, each receiving

an attention of 1
k . Therefore, when ∆ ≥ k−(α−1)

α−1 , the attention weights for α-entmax are:

α-entmax(z)i =
{

1
k if zi = M

0 if zi = m.
(28)

These weights remain Θ( 1k ) for high-value tokens regardless of n, demonstrating that α-entmax can
maintain constant attention on important tokens even as sequence length grows, as long as k is fixed
as n → ∞.

Part (ii): For softmax with temperature θ > 0, the attention weight for tokens with logit M is:

softmax(z/θ)i =
exp(M/θ)

k exp(M/θ) + (n− k) exp(m/θ)
. (29)

For softmax to maintain concentration of at least c on the k high-value tokens combined:

k exp(M/θ)

k exp(M/θ) + (n− k) exp(m/θ)
≥ c. (30)

Through algebraic manipulation:

k exp(M/θ) ≥ c [k exp(M/θ) + (n− k) exp(m/θ)] (31)
(1− c)k exp(M/θ) ≥ c(n− k) exp(m/θ) (32)

k exp(M/θ)

(n− k) exp(m/θ)
≥ c

1− c
(33)

k

n− k
exp(∆/θ) ≥ c

1− c
(34)

exp(∆/θ) ≥ n− k

k
· c

1− c
. (35)

Taking the natural logarithm:
∆

θ
≥ ln

(
n− k

k
· c

1− c

)
. (36)

This shows that as n grows, the required ∆ for maintaining concentration with softmax grows
logarithmically with n. In contrast, for α-entmax, assuming we have a k that is fixed as n grows,
the condition ∆ ≥ k−(α−1)

α−1 is independent of n, enabling constant focus regardless of sequence
length.

We now prove Proposition 1, which concerns the concept of dispersion presented in Definition 1.

Proof. We address each claim in turn. For bounded sequences (zn)n∈N, we assume m,M ∈ R with
m ≤ M such that m ≤ zi ≤ M for every i ∈ N.

Part (i) - α-entmax can retain probability, while softmax always leaks: For α > 1, consider
logits z ∈ Rn and an extended sequence z∗ ∈ RN with N > n, where all additional elements have
values below the threshold, z∗i ≤ τ(z)/(α− 1) for i > n. By the non-vanishing attention property
of α-entmax (Lemma 1), these additional elements receive exactly zero probability, resulting in:

α-entmax(z)i = α-entmax(z∗)i ∀i ≤ n. (37)

This demonstrates that α-entmax can produce identical distributions despite arbitrarily different
sequence lengths, maintaining the same concentration regardless of whether we have a distinct
number of tokens. In contrast, for softmax (α = 1), Barbero et al. (2024) proved that adding any
element to the sequence strictly decreases the probability assigned to existing elements, making such
invariance impossible.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Part (ii) - Complete dispersion of softmax: For softmax with constant temperature θ > 0, the
attention weights for bounded logits can be bounded as:

exp(m/θ)∑n
j=1 exp(zj/θ)

≤ softmax(z1:n/θ)i ≤
exp(M/θ)∑n
j=1 exp(zj/θ)

. (38)

Since
∑n
j=1 exp(zj/θ) ≥ n · exp(m/θ) and

∑n
j=1 exp(zj/θ) ≤ n · exp(M/θ), we have:

exp(m/θ)

n · exp(M/θ)
≤ softmax(z1:n/θ)i ≤

exp(M/θ)

n · exp(m/θ)
. (39)

This simplifies to:

1

n
exp

(
−∆

θ

)
≤ softmax(z1:n/θ)i ≤

1

n
exp

(
∆

θ

)
, (40)

where ∆ = M −m is bounded.

These bounds show that as n → ∞, all softmax weights are Θ(1/n). For the entropy:

H(softmax(z1:n/θ)) = −
n∑
i=1

softmax(z1:n/θ)i log softmax(z1:n/θ)i → log n. (41)

Thus, limn→∞
H(softmax(z/θ))

logn = 1, showing complete dispersion.

Part (iii) - Strong concentration resilience of α-entmax: First, we focus on the two-level case
from Lemma 2, where k tokens have logit value M and (n − k) tokens have value m. When
∆ = M −m ≥ k−(α−1)

α−1 , only the k tokens with value M receive non-zero attention:

α-entmax(z1:n)i =
{

1
k if zi = M

0 if zi = m.
(42)

The Shannon entropy of this distribution is:

H(α-entmax(z1:n)) = −
k∑
i=1

1

k
log

1

k
= log k. (43)

The normalized entropy is:
H(α-entmax(z1:n))

log n
=

log k

log n
. (44)

For fixed k as n → ∞, this ratio approaches 0, confirming concentration resilience.

For cases where the support grows sublinearly as k := |S| = O(nβ) for some β < 1, the Shannon
entropy is bounded by:

H(α-entmax(z1:n)) ≤ log k = O(lognβ) = O(β logn). (45)

The normalized entropy is therefore:

lim
n→∞

H(α-entmax(z1:n))
log n

≤ β < 1. (46)

This confirms that the normalized entropy remains strictly bounded away from 1, even with growing
support, as long as the growth is sublinear.
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This proposition shows that the entropy of attention distributions reveals how concentrated or
dispersed they are across tokens. While softmax distributions with bounded logits must approach
maximum entropy O(logn) as sequence length increases (indicating complete dispersion), α-entmax
distributions can maintain bounded entropy O(log k) where k is the support size. This allows models
with α-entmax to maintain focused, low-entropy attention patterns even when processing extremely
long sequences.

Moreover, this proposition demonstrates that α-entmax attention distributions have a remarkable
property: they do not necessarily disperse as sequence length increases. They can maintain identical
attention patterns regardless of context length. This non-dispersion property means transformers with
α-entmax can scale to very long contexts without the attention becoming diluted, maintaining their
ability to focus on relevant information regardless of how much additional context is present.

D REPRESENTATIONAL COLLAPSE AND OVER-SQUASHING

D.1 PROOF OF LEMMA 1

Adding a new element to the sequence of logits can only redistribute probability mass, so
α-entmax(x)n ≥ α-entmax(x∗)n+1 must always hold, with equality iff α-entmax(x∗)n = 0.
Since softmax (α = 1) cannot return zeros, we must have a strict inequality for α = 1.

For α > 1, we need to find the value bmax such that, for any b ≤ bmax, α-entmax(x∗)n = 0
holds. From the definition of α-entmax equation 2, a token i receives non-zero probability iff
(α− 1)zi > τ(z), where τ(z) is the threshold ensuring the sum of probabilities equals 1. Therefore,
for the token b in the extended sequence x∗ to receive zero probability (thus not affecting other
probabilities), we need:

(α− 1)b ≤ τ(x∗). (47)

We know that τ(x∗) ≥ τ(x) in general for α-entmax, as shown by Peters et al. (2019); Martins et al.
(2022, Lemma 3; Proposition 4). Therefore, a sufficient condition is:

(α− 1)b ≤ τ(x). (48)

Solving for b, we get:

b ≤ τ(x)

α− 1
. (49)

Thus, we can define bmax = τ(x)
α−1 . For any b ≤ bmax, the token at position n in x∗ receives zero

attention, meaning it doesn’t affect the normalization. Therefore, τ(x∗) = τ(x), which means that
the condition equation 49 is both necessary and sufficient, and:

α-entmax(x)n =
[
(α− 1)c− τ(x)

] 1
α−1

+
=
[
(α− 1)c− τ(x∗)

] 1
α−1

+
= α-entmax(x∗)n+1. (50)

By choosing different values of b such that b ≤ bmax, we can control the change in threshold
τ(x∗) and consequently the difference α-entmax(x)n − α-entmax(x∗)n+1 can be as large as
α-entmax(x)n.

D.2 PROOF OF PROPOSITION 2 FOR REPRESENTATIONAL PRESERVATION

We prove the first part of Proposition 2 by exhibiting the counterexample below, following the
synthetic construction introduced by Barbero et al. (2024).

Proposition 3 (Counterexample to Representational Collapse with α-entmax). Let v ∈ R(n−1)×d

be a sequence of embedding vectors, and define:

v(0) = [v,va]
⊤ ∈ Rn×d, v∗(0) = [v,va,va]

⊤ ∈ R(n+1)×d, (51)

where the final token va ∈ Rd is repeated.
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For appropriate choice of embeddings and α > 1, there exists a constant c > 0 independent of n
such that:

∥v(L)
n − v

∗(L)
n+1 ∥1 ≥ c > 0 (52)

after L transformer layers with α-entmax attention, demonstrating that representational collapse is
not inevitable.

In contrast, Barbero et al. (2024) proved that for softmax attention, ∥v(L)
n − v

∗(L)
n+1 ∥1 → 0 as

n → ∞ for any such construction.

Proof. We prove this through explicit construction.

Since v
(0)
1:n−1 = v

∗(0)
1:n−1 and both sequences end with va, the attention logits computed by the final

tokens are:

z(1)
n = [v⊤

a v1, . . . ,v
⊤
a vn−1,v

⊤
a va], (53)

z
∗(1)
n+1 = [v⊤

a v1, . . . ,v
⊤
a vn−1,v

⊤
a va,v

⊤
a va]. (54)

Consider the specific embedding choice where:

• va is chosen such that v⊤
a va = ϕ for some ϕ ∈ R.

• vi for i = 1, . . . , n− 1 are chosen such that v⊤
a vi = b for some value b < ϕ.

This construction yields the following attention logits:

z(1)
n = [b, b, . . . , b, ϕ], (55)

z
∗(1)
n+1 = [b, b, . . . , b, ϕ, ϕ]. (56)

Specific counterexample. Consider d = 1, α = 2.0, ϕ = 0.5, and b = 0. We can construct inputs
as va =

√
0.5 and vi = 0 for i = 1, . . . , n− 1. The attention logits are:

z(1)
n = [0, . . . , 0, 0.5], (57)

z
∗(1)
n+1 = [0, 0, . . . , 0, 0.5, 0.5]. (58)

For α = 2.0 (sparsemax), the attention distributions are:

sparsemax(z(1)
n ) = [pb, pb, . . . , pb, pn] (dense) (59)

sparsemax(z∗(1)
n+1) = [0, 0, . . . , 0,

1

2
,
1

2
] (sparse) (60)

where 0 < pb < pn < 1. As n → ∞, we have pn → p∗ where:

p∗ = [(α− 1)(ϕ− b)]
1

α−1 = [(2− 1)(0.5− 0)]
1

2−1 = (0.5)1 = 0.5. (61)

The average representation is v̄ = 1
n−1

∑n−1
i=1 0 = 0, and therefore:

lim
n→∞

∥v(1)
n − v

∗(1)
n+1∥1 = (1− p∗)|v̄ − va| = (1− 0.5)|0−

√
0.5| = 0.5×

√
0.5 ≈ 0.354. (62)

This demonstrates that the L1 difference remains bounded at approximately c = 0.354, independent
of sequence length n. This specific example already establishes the existence of a counterexample
to representational collapse with α-entmax. We now extend this result to prove Proposition 3 for
general constructions of v and va.
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General Construction. With values of ϕ such that b+ 2−(α−1)/(α − 1) ≤ ϕ < b+ 1/(α − 1),
α-entmax produces the following distributions:5

α-entmax(z(1)
n ) = [p

(1)
1 , p

(1)
2 , . . . , p

(1)
n−1, p

(1)
n ], (63)

α-entmax(z∗(1)
n+1) = [0, 0, . . . , 0,

1

2
,
1

2
]. (64)

In particular, since the first n − 1 positions share the same representation, we have p
(1)
1 = p

(1)
2 =

... = p
(1)
n−1 = (1− p

(1)
n )/(n− 1) = p

(1)
b > 0, with 0 < p

(1)
n < 1. This leads to representations:

v(1)
n = p

(1)
b v1 + · · ·+ p

(1)
b vn−1 + p(1)n va, (65)

v
∗(1)
n+1 =

1

2
va +

1

2
va = va. (66)

Let, v̄ := 1
n−1

∑n−1
i=1 vi denote the average of the first block of vectors. Taking the L1-norm of the

representations difference:

∥v(1)
n − v

∗(1)
n+1∥1 =

∥∥∥(1− p(1)n )v̄ + p(1)n va − va

∥∥∥
1

(67)

= (1− p(1)n ) ∥v̄ − va∥1 . (68)

We need to show that the above expression does not tend to 0 as n → ∞. To that end, we need (i)
limn→∞ p

(1)
n = p∗ < 1, and (ii) limn→∞ ∥v̄ − va∥1 = c > 0.

First condition. We need to choose parameters so that as n → ∞, the original sequences remains
dense and the extended sequence is in the sparse regime. From our analysis with Lemma 1 and 2,
this requires:

2−(α−1)

α− 1
≤ ϕ− b <

1

α− 1
. (69)

From the α-entmax definition, we have:

(p
(1)
b )α−1 = (α− 1)b− τ, (70)

(p(1)n )α−1 = (α− 1)ϕ− τ, (71)

where p
(1)
b is the probability for each b token and p

(1)
n is the probability for the ϕ token. Subtracting

the first equation from the second:

(p(1)n )α−1 − (p
(1)
b )α−1 = (α− 1)(ϕ− b). (72)

From the normalization constraint (n− 1)p
(1)
b + p

(1)
n = 1:

p
(1)
b =

1− p
(1)
n

n− 1
. (73)

Substituting:

(p(1)n )α−1 −

(
1− p

(1)
n

n− 1

)α−1

= (α− 1)(ϕ− b). (74)

We know from the dense regime that p(1)n → p∗, with 0 < p∗ < 1. Thus, as n → ∞, the probability
p
(1)
n satisfies:

p(1)n → p∗ where p∗ solves (p∗)α−1 − lim
n→∞

(
1− p∗

n− 1

)α−1

= (α− 1)(ϕ− b). (75)

5The upper bound ensures a dense output for z(1)
n , following Lemma 1 with τ = (α− 1)ϕ− 1. The lower

bounds ensure a sparse output for z∗(1)
n+1, following Lemma 2 with k = 2.
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Since
(

1−p∗
n−1

)α−1

→ 0 as n → ∞, we get:

(p∗)α−1 = (α− 1)(ϕ− b) (76)

Therefore:
p∗ = [(α− 1)(ϕ− b)]

1
α−1 < 1. (77)

The inequality holds because ϕ− b < 1
α−1 , so (α−1)(ϕ− b) < 1. The key insight is that as n → ∞,

the small probabilities on the b tokens become negligible, but their sum (n− 1)p
(1)
b = 1−p∗ remains

finite, so each individual p(1)b → 0.

Second condition. Choose the input sequence such that v̄ = 1
n−1

∑n−1
i=1 vi ̸= va, and use the

construction:

• va =
√
ϕe1 where e1 is the first standard basis vector.

• vi =
b√
ϕ
e1 + e2 for i = 1, . . . , n− 1.

Note that this construction satisfies the logit constraints:

vTa vi =
√
ϕ · b√

ϕ
+ 0 · 1 = b, (78)

vTa va = (
√

ϕ)2 = ϕ. (79)

The average representation is:

v̄ =
1

n− 1

n−1∑
i=1

vi =
b√
ϕ
e1 + e2. (80)

Since va =
√
ϕe1, we have:

∥v̄ − va∥1 =

∥∥∥∥ b√
ϕ
e1 + e2 −

√
ϕe1

∥∥∥∥
1

=

∣∣∣∣b− ϕ√
ϕ

∣∣∣∣+ 1 > 0 (81)

The bound is strictly positive because b ̸= ϕ by the logit difference requirement, and because of
the constant +1 term from the e2 component. Therefore, limn→∞ ∥v̄ − va∥1 ̸→ 0. For the case
d = 1, we can use the simpler construction vi =

b√
ϕ

and va =
√
ϕ, where the non-collapse condition

becomes verifying that b√
ϕ
̸=

√
ϕ, which follows from b ̸= ϕ. In contrast, as shown by Barbero et al.

(2024), the resulting representations become increasingly similar as n → ∞ with softmax (α = 1.0),
regardless of the input content, leading to representational collapse.

Empirical Verification of Representational Preservation. To empirically validate our theoretical
analysis, we conducted the following experiment: we implemented the counterexample construction
using identity projection matrices for queries/keys/values and tested two scenarios with d = 1:

1. Constant prefixes: b = 1 and ϕ = 1.2.

2. Random prefixes: b ∼ U(0, 1) and ϕ = 1.2.

Using a 6-layered transformer with residual connections, we experiment with increasing sequence
lengths n ∈ {128, 256, . . . , 16384} and α ∈ {1.0, 1.5, 1.75, 2.0}, and compute ∥v(L)

n − v
∗(L)
n+1 ∥1.

Figure 4 shows how representational differences evolve across increasing sequence lengths. As estab-
lished in the previous counterexample, while softmax attention inevitably leads to representational col-
lapse in long contexts, α-entmax can maintain distinct representations even as sequence length grows.
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Figure 4: L1 norm of representation difference between original sequence and extended sequence
after 6 transformer layers, with constant prefix (left) and random prefix (right). With softmax
(α = 1.0), representation difference rapidly approaches zero, demonstrating inevitable collapse.
α-entmax (α > 1.0) maintains bounded differences even at extreme sequence lengths.

D.3 PROOF OF PROPOSITION 2 FOR OVER-SQUASHING ALLEVIATION

The following proposition demonstrates how α-entmax helps alleviate the problem of over-squashing,
the exponential dilution of gradient signals through deep networks. For clarity, we follow the same
set of assumptions as Barbero et al. (2024)—independence of attention coefficients from the values
and approximation of layer normalization with a constant factor.

Proposition 4 (Over-squashing Alleviation with α-entmax). Consider an L-layer transformer-like
model where the attention distribution for each head is computed by α-entmax with α > 1. For a
token n in the final layer, let v(L)

n ∈ Rd be its hidden representation and

yn = norm3

(
v(L)
n

)
(82)

be its final normalized output. The sensitivity of yn to the initial embedding v
(0)
i of token i

experiences less over-squashing with α-entmax than with softmax attention. Specifically, if the
support size of the α-entmax attention distributions is |S(ℓ)

j | = s ≪ n for tokens j across all layers
ℓ, then the number of gradient paths from token i to token n is reduced from O(nL) to O(sL), and
consequently helping to alleviate over-squashing by providing stronger gradient signals.

Proof. We begin by expanding ∂yn

∂v
(0)
i

through the chain rule. Since yn = norm(v
(L)
n ), and v

(L)
n is

the output of L transformer layers, we have:

∂yn

∂v
(0)
i

=
1

β3

∂v
(L)
n

∂v
(0)
i

, (83)

where 1
β3

accounts for the normalization assumption. Expanding the gradient through all L layers:

∂v
(L)
n

∂v
(0)
i

=
∑

k1,k2,...,kL−1

∂v
(L)
n

∂v
(L−1)
kL−1

∂v
(L−1)
kL−1

∂v
(L−2)
kL−2

· · ·
∂v

(1)
k1

∂v
(0)
i

. (84)

Due to causal masking, the only non-zero terms occur when i ≤ k1 ≤ k2 ≤ · · · ≤ kL−1 ≤ n. For
each pair of adjacent layers, we have:

∂v
(ℓ+1)
j

∂v
(ℓ)
k

=

(
σψ

β
(ℓ)
2

+ 1

)
∂u

(ℓ)
j

∂v
(ℓ)
k

, (85)

where u(ℓ)
j =

∑
k≤j p

(ℓ)
j,k

v
(ℓ)
k

β
(ℓ)
1

+v
(ℓ)
j , and p

(ℓ)
j,k are the attention probabilities computed using α-entmax.

Thus, for k ≤ j, we have:
∂u

(ℓ)
j

∂v
(ℓ)
k

=
p
(ℓ)
j,k

β
(ℓ)
1

+ δj,kI, (86)
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where δj,k is the Kronecker delta and reflects the contribution from the residual connection, which

happens when k = j. For simplicity, let p̄(ℓ)j,k =
p
(ℓ)
j,k

β
(ℓ)
1

+ δj,k. Taking the norm and combining all

layers, we obtain:∥∥∥∥∥ ∂yn

∂v
(0)
i

∥∥∥∥∥ ≤ C
∑
k1≥i

∑
k2≥k1

· · ·
∑

kL−1≥kL−2

p̄
(L−1)
n,kL−1

p̄
(L−2)
kL−1,kL−2

· · · p̄(0)k1,i, (87)

where C = 1
β3

∏L
ℓ=1

(
σψ

β
(ℓ)
2

+ 1

)
is a constant independent of the sequence length.

The crucial distinction between softmax and α-entmax lies in the attention probabilities p(ℓ)j,k. For
α-entmax with α > 1, many tokens receive exactly zero attention. Specifically, if we define the
support set for the j-th token as S(ℓ)

j = {k | p(ℓ)j,k > 0 and k ≤ j}, then p
(ℓ)
j,k = 0 for all k /∈ S(ℓ)

j .

Consequently, p̄(ℓ)j,k = 0 when k /∈ S(ℓ)
j and j ̸= k (i.e., when there is no contribution from either

attention or the residual connection). This means we can rewrite our bound as:∥∥∥∥∥ ∂yn

∂v
(0)
i

∥∥∥∥∥ ≤ C
∑
k1∈T1

∑
k2∈T2(k1)

· · ·
∑

kL−1∈TL−1(kL−2)

p̄
(L−1)
n,kL−1

p̄
(L−2)
kL−1,kL−2

· · · p̄(0)k1,i. (88)

where we precisely characterize the gradient flow paths via the sets T1 and Tℓ(kℓ−1), which identify
tokens that receive non-zero gradient contributions:

T1 = {k ∈ {i, i+ 1, . . . , n} : k ∈ S(0)
i or k = i}, (89)

Tℓ(kℓ−1) = {k ∈ {kℓ−1, kℓ−1 + 1, . . . , n} : k ∈ S(ℓ−1)
kℓ−1

or k = kℓ−1} for ℓ > 1. (90)

These sets have the following meaning:

• T1 represents the tokens in layer ℓ = 1 that can receive non-zero gradients from token i in layer
ℓ = 0, either through attention (k ∈ S(0)

i ) or via the residual connection (k = i).

• Tℓ(kℓ−1) represents the tokens in layer ℓ that can receive non-zero gradients from token kℓ−1 in
layer ℓ− 1, either through attention (k ∈ S(ℓ−1)

kℓ−1
) or via the residual connection (k = kℓ−1).

The causal constraint (k ≥ i for T1 and k ≥ kℓ−1 for Tℓ) is explicitly incorporated in these definitions
to account for the causal attention mask. Importantly, the cardinality of these sets directly corresponds
to the potential gradient paths through the network. While softmax attention would yield |Tℓ(kℓ−1)| =
n− kℓ−1 + 1 paths from each token, α-entmax’s sparsity ensures |Tℓ(kℓ−1)| = |S(ℓ−1)

kℓ−1
|+ 1.

Hence, if the support size |S(ℓ)
j | = s ≪ n and assuming that i = j tokens are always in the support

due to the residual connections, this reduces the number of terms in the sum from O(nL) to O(sL),
drastically reducing the total number of gradient paths. Furthermore, as a direct consequence of
Lemma 1, since α-entmax may concentrate probability mass on fewer tokens, the non-zero p

(ℓ)
j,k

values can be larger than with softmax. In such cases, the gradients along the remaining paths will
be stronger, helping to further alleviate over-squashing by concentrating gradient flow on important
tokens.

Empirical Verification of Over-squashing Alleviation. To empirically validate our theoretical
prediction that α-entmax reduces gradient paths from O(nL) to O(sL), we conducted a controlled
experiment using a delayed copying task. In this task, the model is presented with a sequence
consisting of a prefix of random tokens, followed by a separator token, after which it must reproduce
the prefix tokens—creating a natural long-range dependency. We trained 8-layer transformers with
different attention mechanisms on sequences of length 256, where the model must copy information
from the beginning of the sequence to predict tokens after the separator.
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Figure 5: Left: Layer-wise gradient norms in an 8-layer transformer with sequence length n = 256.
α-entmax with α > 1.0 maintain substantially stronger gradient signals, especially in earlier layers,
compared to softmax. This demonstrates how α-entmax alleviates over-squashing by enabling more
effective gradient flow through the network, with gradient norms up to 6x higher than softmax. Right:
Visualization of the average number of non-zero gradient paths in a 8-layer transformer per layer,
showing how α-entmax creates fewer paths, which helps to alleviate over-squashing compared to
softmax, which always selects all possible paths (within machine precision).

Figure 5 shows the average gradient norm per layer when backpropagating from the loss to each
layer input. Softmax exhibits consistently low gradient norms across all layers, indicating severe
gradient dilution. In contrast, α-entmax variants maintain substantially stronger gradient signals,
particularly in the earlier layers of the network. This confirms that gradient information propagates
more effectively through the network with α-entmax, preserving signal strength even when flowing
through multiple layers.

The right part of Figure 5 quantifies the average number of non-zero gradient paths per layer. With
softmax, nearly all possible connections remain active within numerical precision, creating O(n2)
paths per layer. This compounds across layers, resulting in O(nL) total paths. α-entmax dramatically
reduces the number of active paths, with stronger sparsity (higher α values) creating even sharper
reductions. Notably, in the first layer less than 5 tokens are kept active on average. This empirically
confirms our theoretical claim that α-entmax prunes the computational graph to O(sL) paths.

E INTERACTION WITH POSITIONAL ENCODING

Here, we study—theoretically and empirically—how α-entmax interacts with different positional
encoding methods. We follow the same model definition and notation as in §B.

E.1 NO POSITIONAL ENCODING (NOPE)

We adopt the same set of assumptions as Wu et al. (2025). Namely,

A1 There exists C ∈ R such that max
t∈N

{
∥W (t)

Q ∥2, ∥W (t)
K ∥2

}
≤ C.

A2 The sequence
{
∥
∏k
t=0 W

(t)
V ∥2

}∞
k=0

is bounded.

The first assumption tells that key and query weight matrices are bounded. The second assump-
tion ensures that the node representations’ trajectories across t layers stays within a fixed interval
[−C2, C2].

Proposition 5 (No Positional Encoding with α-entmax). Let G be the causal mask graph and
P (ℓ) ∈ Rn×n represent the causal attention matrix at layer ℓ computed row-wise using α-entmax
(α subscript) with α ∈ (1, 2] or softmax (soft subscript). In particular, let p(ℓ)ij denote the (i, j)

probability entry in P (ℓ). Further, let P̃ (ℓ) = P (ℓ) · · ·P (0) represent the product of attention
matrices through layer ℓ, which we call the cumulative attention matrix, which captures how
information from tokens in the input layer flows to tokens in layer ℓ through the composition of
attention operations.
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For softmax, Wu et al. (2025) have shown that

lim
ℓ→∞

p̃
(ℓ)
soft,i1 = 1

for all 1 < i ≤ n.

Under assumptions A1-A2, for any indices 1 < j ≤ i ≤ n, with α-entmax we have:

1. Edge deletion: For every layer ℓ, an edge (j, i) ∈ G is present in the dynamic graph G(ℓ)
α if and

only if (α − 1)z
(ℓ)
ij > τ(z

(ℓ)
i ), where z

(ℓ)
ij = ⟨q(ℓ)

i ,k
(ℓ)
j ⟩ and τ(z

(ℓ)
i ) is the entmax threshold.

Otherwise, p(ℓ)α,ij = 0 and the edge is removed for that layer.

2. Modified attention patterns: Unlike softmax, α-entmax with α > 1 creates sparse attention
patterns by completely removing some connections. For tokens that survive the threshold, the
behavior of their attention weights depends on:

• How far the token’s logit sits above the threshold
• The relative differences between logits

For tokens that remain connected through the dynamic attention graph G(ℓ)
α at all layers, the

cumulative attention still exhibits a decay pattern:

p̃
(ℓ)
α,ij ≤ C(1− δij)

ℓ (91)

where δij depends on the connectivity pattern of the dynamic attention graph. This decay rate
differs from softmax due to edge pruning and the redistribution of probability mass.

3. Disrupted limit behavior: Unlike softmax, α-entmax does not necessarily converge to the first
token:

(a) If for every layer ℓ, there exists at least one directed path from token 1 to token i in the
dynamic graph G(ℓ)

α , then:
lim
ℓ→∞

p̃
(ℓ)
α,i1 = 1. (92)

(b) If at some layer ℓ0, directed paths from token 1 to token i are deleted in G(ℓ0)
α , then:

0 ≤ lim
ℓ→∞

p̃
(ℓ)
α,i1 < 1, (93)

with the exact limit determined by the structure of the strongly connected components
formed in the dynamic graph.

Proof. (i) Edge deletion: For α-entmax, a coefficient is non-zero if and only if its pre-activation
exceeds the layer-specific threshold. The stated condition follows directly from the definition of
α-entmax:

p
(ℓ)
α,ij = [(α− 1)z

(ℓ)
ij − τ(z

(ℓ)
i )]

1
α−1

+ , (94)
where [x]+ = max(0, x).

(ii) Modified attention patterns: For α-entmax, the attention weights are determined by thresholding:

pαi = [(α− 1)zi − τ ]
1

α−1

+ . (95)

Let τ ′ = τ
α−1 for simplicity. Consider two tokens with logits zi ≥ zj both in the support. The ratio

of their probabilities is:
pαj
pαi

=

(
zj − τ ′

zi − τ ′

) 1
α−1

. (96)

For softmax, the ratio is:
psoft
j

psoft
i

= e−(zi−zj). (97)
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The comparison between these ratios depends on how far zj sits above τ ′. Let ∆ = zi − zj and
b = zj − τ ′. Through algebraic manipulation, we can show:

pαj
pαi

≷
psoft
j

psoft
i

⇔ b ≷
∆

e(α−1)∆ − 1
. (98)

This means the relative behavior of attention weights in α-entmax compared to softmax depends on
the specific configuration of logits and thresholds, rather than following a simple universal relationship.
Since tokens that remain connected must distribute probability mass among fewer options (due to
pruning), there exists some 0 < δij < 1 such that:

p̃
(ℓ)
α,ij ≤ C(1− δij)

ℓ. (99)

The specific value of δij depends on the connectivity pattern of the dynamic attention graph and may
differ significantly from the softmax case due to edge pruning and probability redistribution.

(iii) Disrupted limit behavior.

(a) Case where paths to token the first token persist:

Suppose that for every layer ℓ, there exists at least one directed path from token 1 to token i in the
dynamic graph G(ℓ)

α — the unique “center node” as defined by Wu et al. (2025). For any token j > 1,
the geometric decay established in part (ii) applies:

p̃
(ℓ)
α,ij ≤ C(1− δij)

ℓ → 0 as ℓ → ∞. (100)

Since the row sums of P̃ (ℓ) must equal 1 (as it is a product of row-stochastic matrices), and all entries
p̃
(ℓ)
α,ij with j > 1 approach 0, we have:

lim
ℓ→∞

p̃
(ℓ)
α,i1 = 1− lim

ℓ→∞

i∑
j=2

p̃
(ℓ)
α,ij = 1. (101)

(b) Case where paths to token 1 are cut: The key difference from softmax arises when edge deletion
creates a configuration where token 1 cannot reach token i. Let ℓ0 be the first layer where paths from
token 1 to token i are removed in G(ℓ0)

α . Let C(ℓ0)
i ⊂ {1, 2, ..., n} be the set of tokens in the same

strongly connected component as token i in G(ℓ0)
α . By our assumption, 1 /∈ C(ℓ0)

i . At layer ℓ0, the
attention probability is distributed only among tokens in C(ℓ0)

i :∑
j∈C(ℓ0)

i

p
(ℓ0)
α,ij = 1 and p

(ℓ0)
α,i1 = 0. (102)

For all layers ℓ > ℓ0, the multiplication by zero ensures p̃(ℓ)α,i1 = 0, and therefore:

0 ≤ lim
ℓ→∞

p̃
(ℓ)
α,i1 < 1. (103)

The exact limit depends on the structure of the strongly connected components formed in the dynamic
graph through subsequent layers. In fact, the limit can be exactly zero whenever all paths from token
1 to token i are removed from Gα since layer ℓ0.

This proposition demonstrates a fundamental difference between softmax and α-entmax transformers:
while softmax inevitably leads to concentration of attention on the first token, α-entmax can potentially
disrupt this position bias through its ability to dynamically prune edges in the attention graph. This
provides a theoretical foundation for using sparse attention mechanisms to mitigate position bias in
transformer architectures.

E.2 ALIBI

We start by recalling the definition of ALiBi from (Press et al., 2022).
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Definition 2 (ALiBi Positional Encoding). Let H be the number of attention heads. A general
form of ALiBi bias for head h ∈ {1, 2, . . . ,H} can be defined as:

b
(h)
ij =

{
mh(j − i) if j ≤ i

0 otherwise,
(104)

where mh ∈ R+ is the slope parameter for head h, defined as mh = 2−
h
H .

Now, we consider how it interacts with α-entmax.

Proposition 6 (ALiBi with α-entmax). Consider α-entmax attention with the ALiBi bias from the
above definition. Assume the raw attention logits z(h)ij ∈ [z

(h)
min, z

(h)
max] for all i, j. Let

d(h)max =

⌊
z
(h)
max − z

(h)
min + 1

α−1

mh
+ 1

⌋
. (105)

Then, any token j with (i− j) > d
(h)
max receives zero attention from token i at head h.

Proof. For a token j to receive non-zero attention from token i with α-entmax, we require:

(α− 1)(z
(h)
ij + b

(i)
ij ) > τ, (106)

where τ is the threshold ensuring normalization. Since slopes are positive (mi > 0), we have:

(α− 1)(z
(h)
ij − (i− j)mh) > τ. (107)

In the extreme case where only the closest token receives attention (single-support case), we can
solve for τ exactly:

1 =
[
(α− 1)(z(h)max − τ)

] 1
α−1 ⇒ (α− 1)(z(h)max − τ) = 1 ⇒ τ = z(h)max −

1

α− 1
. (108)

Since the logits drop by at least mh per position due to the ALiBi bias, we have z
(h)
max ≥ z

(h)
min +mh,

which gives us:

τ ≥ z
(h)
min +mh −

1

α− 1
. (109)

For a token j with distance (i− j), even with the maximum logit z(h)max:

(α− 1)(z(h)max − (i− j)mh) ≤ (α− 1)(z
(h)
min −mh)− 1. (110)

Solving for (i− j):

(i− j) ≥
z
(h)
max − z

(h)
min +mh +

1
α−1

mh
. (111)

Hence,

d(h)max =

⌊
z
(h)
max − z

(h)
min + 1

α−1

mh
+ 1

⌋
. (112)

This proposition establishes that with α-entmax and ALiBi positional bias, there exists a head-
dependent hard cutoff distance d(h)max beyond which tokens receive exactly zero attention. This creates
an adaptive but bounded attention window that depends on both content relevance (z(h)max − z

(h)
min) and

the sparsity parameter α, naturally limiting the effective context without requiring explicit truncation.
This property allows the model to focus computational resources on a relevant window of tokens,
which can be particularly valuable for efficiently processing long documents.
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E.3 ROPE

To analyze the interaction between RoPE (Su et al., 2024) and α-entmax, we first establish our
notation. Following Barbero et al. (2025), we consider queries qi ∈ Rd and keys kj ∈ Rd, where i
and j are token positions in the sequence. RoPE decomposes these vectors into d/2 two-dimensional
chunks, denoted as q(k)

i ∈ R2 and k
(k)
j ∈ R2 for k ∈ {1, . . . , d/2}. Each chunk rotates at a different

frequency gk = θ−2(k−1)/d, where θ (typically 10,000) is the base wavelength parameter.

RoPE applies position-dependent rotations through matrices ρ(gk)i to transform the original queries
and keys. The resultant raw attention logit between query position i and key position j is: In a
standard transformer with RoPE,

zij =

d/2∑
k=1

⟨q(k)
i , ρ(gk)

j−ik
(k)
j ⟩, (113)

where ρ(gk) is the 2D rotation matrix with frequency gk.

Query-Key Interaction with RoPE. Let ϕijk be the angle between the original (unrotated) vectors
q
(k)
i and k

(k)
j . That is:

cos(ϕijk) =
⟨q(k)
i ,k

(k)
j ⟩

∥q(k)
i ∥2∥k(k)

j ∥2
. (114)

For a single 2D chunk, since rotation preserves vector magnitudes, the contribution to the raw score
is:

⟨q(k)
i , ρ(gk)

j−ik
(k)
j ⟩ = ∥q(k)

i ∥2∥ρ(gk)j−ik(k)
j ∥2 cos(ϕijk + gk(j − i)) (115)

= ∥q(k)
i ∥2∥k(k)

j ∥2 cos(ϕijk + gk(j − i)), (116)

where ϕijk is the original angle between q
(k)
i and k

(k)
j . As shown in Proposition 3.1 of Barbero et al.

(2025), RoPE allows for maximal attention at any arbitrary distance. However, RoPE combined with
α-entmax creates a hard boundary on attention distance due to the thresholding effect, which we
analyze next.

Approximation for Small Angles. First, note that we can use the angle-sum expansion for cosine
as follows:

cos(ϕijk + gk(j − i)) = cos(ϕijk) cos(gk(j − i))− sin(ϕijk) sin(gk(j − i)). (117)

Further, note that for small angles ϕijk we can use a second-order Taylor expansion for gk(j − i):6

cos(gk(j − i)) ≈ 1− g2k(j − i)2

2
. (118)

Finally, applying the dot-product:

zij ≈
d/2∑
k=1

∥q(k)
i ∥2∥k(k)

j ∥2 cos(ϕijk)−
d/2∑
k=1

∥q(k)
i ∥2∥k(k)

j ∥2 cos(ϕijk)
g2k(j − i)2

2
+ sin terms

(119)

≈ zmax −
d/2∑
k=1

ckg
2
k(i− j)2. (120)

Here, we simplified the last step by focusing on the quadratic decay from the cosine term while
omitting the sine terms − sin(ϕijk)gk(j − i). For semantically aligned tokens where ϕijk ≈ 0, the
sine term’s contribution is minimal since limx→0 sin(x) = 0.

6cos(x) ≈ 1− x2/2 + higher order terms.
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Proposition 7 (Maximum Attention Distance for RoPE (Small-Angle Regime)). Let gmax =
maxk gk be the maximum frequency in RoPE. Within the small-angle domain where

|i− j| ≤ π

2gmax
,

so that all rotational angles θ = gk(i− j) satisfy |θ| ≤ π
2 , and assuming zmax > τ(zi)

α−1 , there exists
a critical distance dmax beyond which tokens receive exactly zero attention:

dmax =


√√√√zmax − τ(zi)

α−1∑d/2
k=1 ckg

2
k

 . (121)

Proof. For a token to receive non-zero attention under α-entmax, we must have zij >
τ(zi)
α−1 . Sub-

stituting the decay pattern from Equation 119, which is valid within the small-angle domain where
cosine can be approximated using a Taylor expansion cos θ ≈ 1− θ2

2 :

zmax −
d/2∑
k=1

ckg
2
k(i− j)2 >

τ(zi)

α− 1
. (122)

Rearranging for (i− j)2:

(i− j)2 <
zmax − τ(zi)

α−1∑d/2
k=1 ckg

2
k

. (123)

Taking the floor of the square root gives us dmax.

Note that this analysis applies to the first attention window. Due to the periodicity of rotation
operations, at distances beyond π

gk
for any frequency component k, the attention pattern may exhibit

additional windows of non-zero attention, which we address next.

Proposition 8 (Frequency-Specific Cutoff for RoPE). For each frequency component k, let βk =
τ(zi)

(α−1)∥q(k)
i ∥2∥k(k)

j ∥2

. Since at least one token must receive non-zero attention for α-entmax to

yield a valid probability distribution, βk ≤ 1 must hold for at least one component. Assuming
βk ∈ [−1, 1] (covering all possible cosine values), there exists a sequence of distances {dk,n}∞n=0
at which its contribution to attention crosses the threshold.

The first such distance is:

dk,0 =

⌊
1

gk
arccos

(
τ(zi)

(α− 1)∥q(k)
i ∥2∥k(k)

j ∥2

)⌋
. (124)

Due to the periodicity of cosine, subsequent threshold crossings occur at approximately:

dk,n ≈ 2πn± dk,0
gk

, n ∈ N. (125)

Furthermore, dk,0 is non-increasing in α and inversely proportional to gk.

Proof. For a single frequency component k, the contribution to the raw score from Equation 115 is:

⟨q(k)
i , ρ(gk)

j−ik
(k)
j ⟩ = ∥q(k)

i ∥2∥k(k)
j ∥2 cos(gk(j − i) + ϕijk). (126)
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For this to exceed the attention threshold under optimal alignment (ϕijk = 0, which maximizes the
contribution):

(α− 1)∥q(k)
i ∥2∥k(k)

j ∥2 cos(gk(j − i)) > τ(zi) (127)

cos(gk(j − i)) >
τ(zi)

(α− 1)∥q(k)
i ∥2∥k(k)

j ∥2
. (128)

Taking the arccos of both sides and dividing by gk gives the first threshold crossing distance dk,0:

|i− j| > 1

gk
arccos

(
τ(zi)

(α− 1)∥q(k)
i ∥2∥k(k)

j ∥2

)
. (129)

Due to the 2π-periodicity of cosine, subsequent threshold crossings occur at distances 2πn±dk,0
gk

for
integers n > 0. Moreover, τ(zi)/(α − 1) grows as α increases, making the arccos term smaller
and consequently decreasing dk,0. The inverse proportionality to gk is evident directly from the
formula.

These theoretical analyses of RoPE with α-entmax reveal two interesting takeaways. First, differ-
ent frequency components in RoPE naturally create attention windows of different widths. High-
frequency components (large gk) produce very narrow windows focused on local context, while
low-frequency components (small gk) enable attention over longer distances. Second, the sparsity
pattern induced by the combination of RoPE and α-entmax is not uniform but varies across frequency
components, creating a more complex attention structure than simple distance-based decay methods
like ALiBi.

E.4 COMPARISON BETWEEN POSITIONAL ENCODING METHODS WITH α-ENTMAX

The positional encoding scheme used in a transformer has significant implications for how attention
behaves over long contexts. Our theoretical approach from previous subections reveals that α-entmax
interacts with positional encodings in ways that fundamentally alter attention behavior compared
to softmax. We summarize our theoretical findings next, along with an empirical analysis within a
controlled experimental setting.

Theoretical Analysis. With NoPE (Kazemnejad et al., 2023), softmax transformers (without MLP
layers) develop an implicit bias towards the first tokens as depth increases, as shown by Wu et al.
(2025). α-entmax disrupts this behavior through its ability to create disconnected attention graphs.
By assigning exactly zero attention to some connections, it may remove the implicit bias encouraging
attention to concentrate on early tokens.

When combined with ALiBi (Press et al., 2022), α-entmax transforms the smooth linear de-
cay into a hard attention window. For tokens separated by distance d > d

(h)
max, where d

(h)
max =⌊

1
mh

(zmax − zmin + 1
α−1 ) + 1

⌋
, attention weights become exactly zero. This creates an adaptive

but bounded attention window that depends on the input (zmax − zmin) and the sparsity parameter α.

With RoPE (Su et al., 2024), α-entmax induces frequency-dependent sparsity. Each frequency
component k has a critical distance dk beyond which its contribution falls below the attention
threshold. This creates a multi-scale attention pattern where nearby tokens interact through all
frequency components, while distant tokens interact only through low-frequency components.

These interactions between positional encodings and α-entmax have important practical implications,
and further motivate the introduction of our hybrid approach, NAPE (NoPE + ALiBi). By creating
natural, content-adaptive attention windows, NAPE combine the benefits of sparse, focused attention
with awareness of token positions, allowing models to effectively balance local and global information
processing. This provides a principled alternative to manually designed sparse attention patterns like
sliding windows or dilated attention, with the advantage of adapting to content relevance rather than
using fixed patterns.
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Figure 6: Per-head attention centroids across different positional encoding methods. Each panel
represents one attention head’s behavior. The dashed line shows the identity function (attending to
self). NoPE heads consistently exhibit an early-token bias, ALiBi heads maintain proximity-based
attention, and RoPE heads display more varied patterns with irregular fluctuations.

Empirical Analysis Setup. We simulated a sequence of length n = 128 with attention heads using
α-entmax (α = 1.5). For each query position i, we generated a vector of raw attention scores (logits)
for all positions j ≤ i according to:

zij = zbase
ij + zprox

ij + znoise
ij , (130)

where zbase
ij ∼ U(Zmin, Zmax) represents the base content-based affinity, zprox

ij = 0.2(Zmax −
Zmin)(1− 0.5 |j−i|

i ) introduces a proximity bias, and znoise
ij ∼ N (0, σ2) adds Gaussian noise. The

parameters were set to Zmin = −5.0, Zmax = 5.0, and σ = 0.5. This formulation models a realistic
mixture of content-based attention (random component), a mild inherent bias toward nearby tokens
(proximity component), and natural variation (noise component). We then applied different positional
encoding methods to modify these base logits. Finally, we calculated the attention distribution using
α-entmax and determined the attention centroid for each query position i as centroidi =

∑i
j=1 j ·pij ,

where pij = α-entmax(zi)j .

Empirical Results. The head-specific analysis in Figure 6 reveals distinct behaviors across posi-
tional encoding methods when combined with α-entmax. While seems to NoPE exhibit a weak bias
towards earlier positions, it also shows a modest variability, indicating more disperse attention. ALiBi
clearly creates a consistent recency bias, with centroids following slightly below the identity line,
maintaining low variability that indicates focused attention. RoPE demonstrates centroid patterns
similar to NoPE but with lower entropy (higher variability), suggesting a focused attention in more
distant positions. These observations may explain why NAPE—the hybrid NoPE+ALiBi—works
well in practice, since ALiBi heads provide consistent positional structure focused on recent context,
while NoPE heads can contribute complementary via early-token and semantic focus, creating a
more balanced attention mechanism than either approach alone. In fact, as we show in §H.1, models
equipped with NoPE are flexible enough and can acquire relative positional encoding, thus also
supporting the original hypothesis of Kazemnejad et al. (2023). Therefore, in NAPE has the ability to
encourage short-span focus with ALiBi alongside learning more longer-span focus that are guided
via semantic information with NoPE.

F ADAPTIVE-SCALABLE α-ENTMAX (ASENTMAX)

F.1 LEARNING SCALERS FOR LANGUAGE MODELING

To verify our scaling approach, we follow the setup from (Nakanishi, 2025) and trained a language
model with learnable scales pi for each i-th position. However, we do so independently for each head
in the model. Specifically, we train a 12-layer transformer with approximately 120 million parameters.
We set hidden size to 768, attention heads to 12, MLP intermediate size to 2048, learning rate to
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Figure 7: Heatmaps for β and γ per head for Scalable α-entmax.

6× 10−4, weight decay to 0.001, batch size to 1M tokens, and sequence length to 1024. Each head
thus contains 1024 learnable parameters (1 per position). Finally, we train on the FineWeb dataset for
a total of 5 billion tokens.

In Figure 3 we show how the δh + βh(log n)
γh scaling performs well for different attention heads.

In contrast, removing γh—as done by Nakanishi (2025)—leads to a severe degradation fit for several
heads. Specifically, the linear fit has an overall R2 = 0.12, the log fit has R2 = −14 (severe
underfitting), and our log with a γ exponent has R2 = 0.17. The full set of βh and γh learned by our
approach are shown in Figure 7.

Effect of Negative γh. Experiments on the Copy task, shown in Table 10, suggest that, without
scaling, α-entmax can hurt performance, leading to a noticeable drop in accuracy in the OOD scenario.
Introducing an adaptive temperature, however, substantially mitigates this effect. We hypothesize that
Copy requires less sparse attention patterns, which can be accomplished by applying a negative power
to the logarithm function. We confirm this hypothesis in Figure 11, which shows that ASEntmax
learns negative values of γh in all heads, resulting in more spread-out attention distributions.

G EXPERIMENTAL DETAILS

G.1 SYNTHETIC DATA

Following the data diversity assumptions of Zhou et al. (2024), we generate a large number of
samples—between 10 million and 50 million, depending on task complexity. See Table 5 for
training/test details on for each task along with model hyperparameters. The 2Back and Local Count
tasks are token-classification tasks, while the remaining tasks are generative. In Figure 8, we show
examples of the tasks we introduce in this work.

2Back. In this classification task, the model must predict the class of the token that appeared two
positions earlier. Via this task, we examine the ability of models equipped with NoPE to learn relative
positional bias and assess their behaviour in out-of-distribution scenarios (see H.1).

Local Count. The Local Count task is a classification task in which the model must predict the
number of times a word has occurred so far. We restrict the vocabulary size to 16, allowing multiple
clusters of the same word to appear within a sequence multiple times. This increases the task’s
difficulty, as the model must distinguish between different clusters of identical words. We sample the
number of repetitions for each cluster uniformly from U(1, 48) to test whether models equipped with
NoPE can learn a longer focus span than observed in the 2Back task.
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Multi-query Multi-token Associative Recall
   k1    v1        k2    v2      k3    v3       q1    q2

Input : 0 4 6 1 7 8 0 0 0 5 5 1 3 9 0 0 3 6 1 6 8 0 0 2 3 6 2 4 6
Target: 2 6 8 2 7 8

2Back
Input : 0 0 2 5 2 6 9 7 1 2 3 3 8 2 2 
Target: 0 0 0 0 2 5 2 6 9 7 1 2 3 3 8 

Local Count
Input : 2 2 2 4 4 6 6 8 8 8 8 2 2 
Target: 0 1 2 0 1 0 1 0 1 2 3 0 1 

Figure 8: Examples of the introduced tasks. MQMTAR: Each digit is a token; the alphabet size is 10,
and the number of queries is 2. 2Back: A special token 0 is added at the beginning of the sequence to
ensure the model has something to predict at the first two positions; the vocabulary size is 10. Local
Count: The maximum number of repetitions is 4, and the vocabulary size is 8.

Flip-Flop (Liu et al., 2023). Flip-Flop uses sequences made up of alternating instructions "write",
"ignore", and "read" (w, i ,r). Each instruction is paired with a bit (0 or 1). The model must memorize
the bit if it follows a w, and recall the last stored bit when it encounters an r. For example, in the
string "i 0 w 0 i 1 i 1 w 1 i 0 i 1 r", the correct output is 1. We conducted experiments
on two datasets with different “write” instruction probabilities: 10% - sparse, 80% - dense.

Max Retrieval. We follow Veličković et al. (2025) in constructing the Max Retrieval dataset and
the model architecture.

Multi-Query Multi-Token Associative Recall (MQMTAR). MQMTAR is a retrieval task in
which models must produce a sequence of multi-token values corresponding to the queries provided
at the end of the input sequence (see Figure 8). MQMTAR employs three special tokens: (1) 0 for
empty space; (2) 1 as the key–value delimiter; and (3) 3 as the query delimiter, which is also used
to separate values in the target sequence. We set the lengths of both keys and values to be 2 tokens,
resulting in 5 tokens per key-value pair in the input. The number of queries is 4, and the density of
key-value pairs is 80% of the total number of tokens. Finally, the size of alphabet is 256 from which
we constructed 100K key-value pairs.

Sort, Copy and Reverse. These are well-known tasks for testing models’ length generalization
(Kazemnejad et al., 2023). We use a small vocabulary size of 32 to generate more sequences with
repeated tokens, since models must handle such repetitions increasingly as sequence length grows.

G.2 MODELS FOR SYNTHETIC TASKS

All synthetic tasks are trained with a decoder-like transformer. We evaluate models in extreme settings
by using as few layers as possible as our aim is to test the attention mechanism coupled with our
positional-encoding strategy, rather than the scaling capabilities of transformer. However, for the
Reverse task—which proved particularly challenging for softmax-based models—we increment the
layer count until the softmax baseline generalizes to at least 1.5x the in-distribution length.

For experiments with RoPE, we use the Hugging Face implementation from LLaMA 3 (Grattafiori
et al., 2024), which includes RoPE scaling. Since our sequences are relatively short, the base
frequency is set to its default value of 10,000. To improve length extrapolation in RoPE-based
models, we apply a scaling factor of 16, which we found to be optimal for Flip-Flop under 4×
extrapolation (see Table 11); factors of 8 or 32 degrade performance. For NAPE, each ALiBi head
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Table 5: Task details and hyperparameters.

Task Samples Length Batch Vocab. Heads Layers Hid. dim. Int. dim.
2Back 10M 32-64 128 16 8 2 256 512
Local Count 10M 64-128 128 16 8 3 128 512
Flip-Flop 10M 32-64 128 4 8 4 256 512
Copy 20M 32-64 128 32 16 2 256 1024
Reverse 30M 32-64 128 32 8 6 256 512
MQMTAR 50M 32-64 128 256 16 4 512 1024
Sort 40M 32-64 128 32 8 2 256 1024

uses a slope of m = 1
h , where h is the head index. We employ 8 attention heads for all tasks except

Copy and MQMTAR, where 16 heads yields a performance boost across all models.

In case of ASEntmax, βih and γih are computed per token i via linear projections followed by
activations softplus and tanh respectively, allowing to scale attention adaptively based on content.
For our experiments with α-entmax, we use α = 1.5 as the default value for the α-entmax models,
unless mentioned otherwise. Furthermore, we use the Gemma2 implementation from Hugging Face,
but disabling sliding-window attention in all layers. For experiments with α-entmax, we replaced
FlashAttention with AdaSplash (Gonçalves et al., 2025).

For optimization, we use the AdamW with default betas and a cosine learning-rate scheduler with
warm-up, setting 10K warm-up steps. Given the large training corpus, we do not employ dropout or
weight decay. In addition, we use bfloat16 in all experiments. All models are relatively small (2–10M
parameters) and fit on a single GPU.

We observe that even when models are 100% accurate in-distribution, they still require significantly
more training; in some cases, the training loss reached as low as 10−8. Therefore, the best checkpoint
is selected based on performance at 8× the in-distribution sequence length. In some cases such as
the Sort task and models with RoPE, where generalization up to 8× was not possible, we use BLEU
as an intermediate metric and 2× or 4× the in-distribution sequence length. We perform evaluation
with 1K samples per sequence length. 2Back and Local Count are evaluated using accuracy, as they
are classification tasks, whereas for the remaining tasks, we use exact match accuracy—assigning 1
only if the entire predicted sequence matches the reference and 0 otherwise. We report results for the
single best-performing model selected from experiments conducted with multiple random seeds (3)
and various learning rates.

For some tasks, we also report results for SEntmax—which learns β and γ directly, without linear
projections or nonlinearities—and also for ASSMax—which applies our adaptive-scaling strategy to
Softmax. Finally, for some tasks we also experiment with Stick-Breaking Attention (SB, Tan et al.
2025), which corresponds to a different positional encoding strategy.

G.3 LANGUAGE MODELING

We train 420M-parameter decoder-only models following the LLaMA-3 architecture, using the
following hyperparameters: (1) model dimension: 768; (2) number of layers: 24; (3) number of heads:
12. For RoPE and FFN layers, we use the default LLaMA-3 settings. The training is conducted
using the torchtitan library (Liang et al., 2025). We train for a total of 13.5K steps, with 1.35K steps
allocated for warm-up. The learning rate is set to 3 · 10−4, and the cooldown phase corresponds
to 10% of the total steps with a minimum learning rate of 3 · 10−5, where we apply cosine decay
scheduling. We use the AdamW optimizer and train with bfloat16 precision. The global batch
size is set to 524K tokens. For tokenization, we employ the LLaMA-3.2-1B tokenizer. For NAPE
experiments, we choose original exponential ALiBi slopes.

We use the following benchmarks for short context evaluation: Lambada (Paperno et al., 2016),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-C (Clark et al., 2018), Winogrande
(Sakaguchi et al., 2020), and OpenBookQA (Mihaylov et al., 2018). For length generalization, we
use 500 documents from each dataset (ArXiv and PubMed), with all documents at least 16K tokens
long, and 500 samples (default number of samples in RULER) for each length for S-NIAH-1 and
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S-NIAH-2. We evaluate models with RoPE in two settings: vanilla RoPE and RoPE with Adjusted
Base Frequency (ABF) (Xiong et al., 2024), where the base frequency is set to 500,000, i.e., 50×
used in pre-training. Results for language modeling are in Appendix H.9.

H DETAILED RESULTS

In this section, we provide a more detailed analysis of each task.

H.1 2BACK

Table 6: Accuracy (%) on 2Back.

ID Out-of-Distribution

Model 64 128 256 512 1024 2048 4096
RoPE
Softmax 100.0 100.0 100.0 99.3 81.4 63.4 41.1
SSMax 100.0 100.0 100.0 99.8 98.5 90.4 69.0
Entmax 100.0 98.2 94.8 83.7 65.5 45.7 31.3
ASEntmax 100.0 100.0 100.0 95.0 61.2 36.2 22.1

NoPE
Softmax 99.9 83.2 51.4 30.1 18.5 12.7 9.7
SSMax 100.0 80.5 47.2 27.2 16.9 11.8 9.2
Entmax 100.0 77.3 50.5 33.2 20.7 13.7 10.2
ASEntmax 100.0 90.3 55.1 36.5 24.3 16.2 11.5

NAPE
Softmax 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SSMAx 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Entmax 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ASEntmax 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Following the hypothesis of Kazemnejad et al. (2023) that NoPE can learn a relative positional bias,
we conducted experiments on the simple 2Back task, in which the model must predict the class of
the token two positions earlier. Table 6 shows that models equipped with NoPE achieve perfect
in-distribution performance. Moreover, the attention maps in Figure 9 (left) confirm that NoPE indeed
acquires relative positional encodings, thus supporting the hypothesis. However, the OOD attention
maps (right part) reveal that, as sequence length increases, the recency bias diffuses unevenly across
positions. Such behavior is detrimental in tasks requiring attention to a fixed-size local context (e.g.,
associative recall, previous instructions in code, n-grams in text). By contrast, ALiBi constrains
attention to a local window irrespective of content. Moreover, we observe that ASEntmax partially
mitigates diffusion in the attention maps (bottom right), which is also reflected in the accuracy gains
shown in Table 9. In our design of positional encoding, NoPE + ALiBi (NAPE), half of the attention
heads employ a faster-decaying variant of ALiBi to enforce a short-span focus, while the remaining
heads use NoPE which can 1) learn a focus that spans longer and depends on position 2) guide
attention semantically.

H.2 LOCAL COUNT

As observed (Table 7), models using ALiBi perfectly solve the task, which is unsurprising given that
ALiBi induces a recency bias. Furthermore, the results for ALiBi and NAPE suggest that models can
rely exclusively on ALiBi heads in case of NAPE. With NoPE, however, the model is challenged
because identical tokens are not distinguishable at the very first layer. Therefore, the model must
develop a mechanism to locate the current cluster. Figure 10 indicates that by the third layer, the
NoPE model exhibits a relative positional bias. Combined with the bias observed in 2Back, this
indicates that NoPE models can acquire various content-based recency biases that differ from those
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Softmax

Entmax α = 1.5

ASEntmax α = 1.5

Figure 9: Comparison of attention maps for the 2Back task. Left: In-distribution, sequence length 64.
Right: Out-of-distribution, sequence length 512 (for visualization clarity, we applied max pooling
with a window size 4 and stride 4). The maps are shown for the second layer for all models. We
can observe that diagonal patterns are less distorted with α-entmax. Moreover, ASEntmax mitigate
dispersal of the diagonal pattern up to 3× the in-distribution sequence length and make it less distorted
up to 8×.
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induced by ALiBi or RoPE. Finally, for Local Count, we observe no improvement in NoPE models
when using attention scaling.

Table 7: Accuracy (%) on Local Count.

ID Out-of-distribution

Model 128 256 512 1024 2048 4096
RoPE
Softmax 100.0 99.4 91.6 55.2 31.1 17.3
SSMAx 100.0 100.0 81.3 42.6 23.0 13.4
Entmax 100.0 99.9 89.3 47.1 24.9 14.1
ASEntmax 100.0 100.0 79.1 41.4 22.4 13.1

NoPE
Softmax 99.1 71.7 36.5 18.3 9.2 4.6
SSMax 99.1 71.4 36.8 18.6 9.3 4.7
Entmax 99.8 80.8 45.6 25.0 13.8 7.7
ASEntmax 99.6 78.1 42.6 22.5 11.9 6.4

ALiBi
Softmax 100.0 100.0 100.0 100.0 100.0 100.0
Entmax 100.0 100.0 100.0 100.0 100.0 100.0

NAPE
Softmax 100.0 100.0 100.0 100.0 100.0 100.0
SSMax 100.0 100.0 99.9 99.9 99.8 99.8
Entmax 100.0 100.0 100.0 100.0 100.0 100.0
ASEntmax 100.0 100.0 100.0 100.0 100.0 100.0

Figure 10: Attention maps of Entmax model on Local Count. Left: Layer 1. Right: Layer 3; We
observe a local pattern: attention weights fade as relative distance increases. Input sequence: (1..1
×10, 2..2 ×4, 3..3 ×10, 2..2 ×4, 4..4 ×10, 2..2 ×4)..×4

H.3 MAX RETRIEVAL

Solving this task requires an extremely concentrated attention distribution. Such distribution can
be achieved by either lowering the temperature θ for softmax or increasing the entmax parameter α.
As Table 8 shows, increasing α yields substantial performance gains. However, if α becomes too
large, the distribution may collapse to a one-hot vector, causing entmax to lose all gradient signal and
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hindering learning (e.g. α > 16). Instead, this issue can be alleviated by scaling entmax based on the
sequence length. With this approach, ASEntmax with α = 1.5, learned β, and elevated γ achieves
substantially improved performance on the task. We also note that Top-K with K=2 works roughly as
well as SSMax. However, lowering K to 1 is not possible since this would essentially reduce Top-K
to an argmax operation, a non-differentiable function.

Table 8: Accuracy (%) on Max Retrieval

ID Out-of-Distribution

Model 16 32 64 128 256 512 1024 2048 4096
Softmax Veličković et al. (2025) 98.6 97.1 94.3 89.7 81.3 70.1 53.8 35.7 22.6
Adapt. temp. Veličković et al. (2025) 98.6 97.1 94.5 89.9 82.1 72.5 57.7 39.4 24.9

Softmax θ =
√
d 99.2 98.5 96.7 93.2 86.7 73.5 54.4 36.4 24.1

Softmax θ = 0.1 99.5 99.0 97.8 95.1 89.6 77.9 60.2 41.2 28.5
Softmax θ = 0.0004 99.2 98.4 97.0 94.2 89.4 81.8 71.4 58.4 43.4
SSMax 99.4 98.9 97.8 95.9 92.3 85.0 74.7 59.9 44.7
Top-K, K = 2 99.4 98.6 97.6 95.4 91.3 85.0 75.3 62.4 48.3
Top-K, K = 4 98.8 97.7 95.0 89.5 79.1 64.6 48.9 38.9 32.4

Entmax α = 1.5 99.4 98.8 97.4 94.7 89.9 80.1 65.1 50.0 36.8
Entmax α = 2 99.5 99.1 98.0 96.0 92.1 84.5 72.0 58.4 44.6
Entmax α = 4 99.5 98.9 97.7 95.9 92.1 84.8 75.2 61.4 46.9
Entmax α = 16 99.6 99.4 98.7 97.5 95.2 91.0 82.8 70.3 53.4
Entmax α = 32 99.4 98.7 97.5 95.5 91.5 83.8 72.6 57.5 41.7
Entmax α = 64 99.1 98.4 96.8 93.9 88.7 78.6 64.6 45.5 28.1

ASEntmax, α = 1.5, βlearn, γ = 1 99.5 99.0 98.1 96.3 93.1 86.1 76.2 61.9 44.5
ASEntmax, α = 1.5, βlearn, γ = 2 99.6 99.2 98.4 96.9 94.4 89.0 81.4 69.5 55.1
ASEntmax, α = 1.5, βlearn, γ = 3 99.6 99.4 99.0 98.0 96.0 92.4 85.9 76.1 62.7
ASEntmax, α = 1.5, βlearn, γ = 4 99.3 98.7 97.6 95.4 91.3 84.6 73.6 59.7 45.9

H.4 MQMTAR

We observe the same pattern across all tasks: despite theoretical extrapolation to 16×via RoPE
scaling, RoPE models poorly generalize beyond 4×. Moreover, although models with ALiBi can
extrapolate up to 64×, ALiBi’s limited span inevitably leads to performance degradation on very
long sequences. However, NAPE provides a substantial boost in all models. As in the copy task,
Entmax alone underperforms Softmax, but adaptive scaling in ASEntmax makes the model superior,
extending the generalization to an impressive 1024×. We also conducted experiments with ASSMax
to demonstrate that, despite adaptive scaling benefits and improved performance in comparison with
the model without scaling, softmax dispersion still causes a significant performance drop on very
long sequences.

H.5 COPY

As shown by Jelassi et al. (2023), transformers generalize to the Copy task especially with appropriate
positional encodings. Table 10 shows that the Softmax transformer generalizes up to 64× the ID
length. Notably, SSMax outperforms all other models which might suggest that scaling is crucial for
this task.

As we can also see, without scaling, α-entmax can hurt performance, leading to a noticeable drop in
accuracy in the OOD scenario. Introducing an adaptive temperature, however, substantially mitigates
this effect: ASEntmax matches Softmax performance outperforming Entmax 4 times of the sequence
length. We hypothesize that Copy requires less sparse attention patterns, which can be accomplished
by applying a negative power to the logarithm function. We confirm this hypothesis in Figure 11,
which shows that ASEntmax learns negative values of γ in all heads, resulting in more spread-out
attention distributions.
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Table 9: Exact match accuracy (%) on Multi-query Multi-token Associative Recall.

ID Out-of-Distribution

Model 64 128 256 512 1024 2048 4096 8192 16K 32K 65K
RoPE
Softmax 100.0 3.1 0 0 0 0 0 0 0 0 0
SSMAx 99.8 6.2 0 0 0 0 0 0 0 0 0
Entmax 99.8 49.4 4.5 0 0 0 0 0 0 0 0
ASEntmax 100.0 66.9 0.8 0 0 0 0 0 0 0 0

NoPE
Softmax 100.0 30.6 0 0 0 0 0 0 0 0 0
Entmax 100.0 26.1 0 0 0 0 0 0 0 0 0
SSMax 100.0 39.1 0 0 0 0 0 0 0 0 0
ASEntmax 100.0 58.3 0 0 0 0 0 0 0 0 0

ALiBi
Softmax 100.0 100.0 99.5 99.0 98.0 93.9 77.8 38.8 6.8 0 0
Entmax 99.5 97.5 90.6 75.4 44.7 11.7 1.1 0 0 0 0

NAPE
Softmax 100.0 100.0 100.0 99.4 99.5 98.2 97.8 90.2 80.2 34.2 3.0
SSMax 100.0 100.0 99.9 99.9 99.8 99.6 98.3 97.4 90.6 74.0 26.7
ASSMax 100.0 100.0 100.0 99.7 99.8 99.7 98.7 94.2 85.2 72.8 21.7
Top-K, K = 16 100.0 100.0 99.9 41.8 5.8 0.3 0 0 0 0 0
Top-K, K = 32 100.0 100.0 99.9 45.9 6.2 0.8 0 0 0 0 0
Entmax 100.0 100.0 100.0 99.9 99.2 97.8 92.7 86.2 66.8 35.8 9.3
ASEntmax 100.0 100.0 100.0 100.0 100.0 99.7 99.6 99.2 99.0 97.8 95.3

SB Attention 100.0 100.0 100.0 99.7 99.8 99.2 94.6 68.6 12.4 0.4 0

Figure 11: Distributions of γ per head and layer for ASEntmax trained on Copy.

H.6 FLIP-FLOP

We first conducted an ablation study to evaluate model performance with various RoPE scaling factors
(Table 11). Although the random baseline accuracy for Flip-Flop is 50%, our generative training setup
with a vocabulary of 7 tokens (4 main and 3 special) can yield accuracies below 50%. Therefore,
we treat accuracies at or below 50% as poor and select a scaling factor of 16 as optimal. The RoPE
scaling factor defines the expansion multiple to which the model must generalize. Throughout all
experiments, however, we observe that RoPE models poorly generalize at sequence lengths 8× the
in-distribution length.

While Flip-Flop is considered a challenging task for testing length extrapolation (Liu et al., 2023),
we found that ALiBi and NAPE strategy almost perfectly solves both the sparse and dense variants.
Surprisingly, RoPE models generalize better with the sparse variants.
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Table 10: Exact match accuracy (%) on Copy task.

ID Out-of-Distribution

Model 64 128 256 512 1024 2048 4096
RoPE
Softmax 100.0 2.8 0 0 0 0 0
SSMax 100.0 0 0 0 0 0 0
ASSMax 99.9 19.9 0 0 0 0 0
Entmax 100.0 34.3 0 0 0 0
ASEntmax 100.0 5.3 0 0 0 0 0

NoPE
Softmax 56.3 0 0 0 0 0 0
SSMax 56.1 0 0 0 0 0 0
Entmax 34.6 0 0 0 0 0 0
ASEntmax 45.8 0 0 0 0 0 0

ALiBi
Softmax 100.0 99.8 99.8 98.8 98.3 93.9 26.8
Entmax 100.0 100.0 96.6 14.6 0.1 0 0

NAPE
Softmax 100.0 100.0 99.9 99.9 99.4 96.1 85.5
SSMax 100.0 100.0 100.0 99.9 99.6 99.3 95.8
ASSMax 99.9 99.8 99.7 99.3 97.5 91.1 72.8
Top-K, K = 16 100.0 99.9 86.3 0.6 0.0 0.0 0.0
Top-K, K = 32 100.0 99.7 96.8 26.7 0.0 0.0 0.0
Entmax 100.0 99.0 86.0 28.5 0.2 0 0
SEntmax 100.0 100.0 99.9 99.0 96.2 69.7 6.5
ASEntmax 100.0 100.0 99.9 99.7 99.4 96.3 86.6

SB Attention 100.0 100.0 100.0 99.6 98.8 48.6 0.0

Table 11: Exact match accuracy (%) for ablation of LLaMA 3 RoPE scaling on Flip-Flop (sparse)

ID Out-of-Distribution

Model Factor 64 128 256 512 1024 2048 4096
Softmax - 100.0 79.9 54.4 51.5 48.8 50.8 50.8
Softmax 4 100.0 99.6 33.8 11.2 3.3 0.5 0.0
Softmax 8 100.0 100.0 72.6 0.2 0 0 0
Softmax 16 100.0 99.9 97.3 36.7 0 0 0
Softmax 32 100.0 99.2 71.6 51.3 51.1 49.3 49.2

H.7 REVERSE

From Table 14, we can see that ASEntmax with NAPE achieved impressive 8× length generalization
which to our knowledge, represents the largest extrapolation reported. Moreover, RoPE models fail
even at a sequence length of 96. Although NAPE improves Softmax and SSMax, it does not enable
generalization beyond 1.5× the in-distribution length; however, applying adaptive scaling to Softmax
(ASSMax) enables performance at 2× the in-distribution length.

H.8 SORT

Table 15 demonstrates superiority of α-entmax on Sort, with two-layer models generalizing almost
perfectly to 2× under both NoPE and NAPE configurations. Furthermore, Softmax models with
NAPE experience a performance decline relative to their NoPE counterparts, and adaptive scaling
degrades performance for both Softmax and α-entmax (we also report results for NoPE + SEntmax
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Table 12: Accuracy (%) on Flip-Flop (sparse).

ID Out-of-Distribution

Model 64 128 256 512 1024 2048 4096 8192 16K 32K
RoPE
Softmax 100.0 99.9 97.2 36.6 0.0 0.0 0.0 - - -
SSMax 100.0 99.8 91.8 77.8 52.2 22.0 39.2 - - -
Entmax 100.0 99.9 89.0 64.0 50.6 50.6 55.1 - - -
ASEntmax 100.0 99.8 98.9 51.4 51.4 50.2 49.2 - - -

ALiBi
Softmax 100.0 99.9 99.8 99.9 99.9 100.0 99.7 99.7 99.9 99.7
Entmax 100.0 99.9 99.8 99.8 99.8 99.9 99.7 99.7 99.7 99.7

NAPE
Softmax 100.0 99.8 99.6 99.3 99.7 99.6 99.6 99.6 99.3 99.4
SSMax 100.0 99.8 99.9 99.8 99.8 99.7 99.8 100.0 99.9 99.6
Entmax 100.0 99.9 99.8 99.9 99.9 100.0 99.7 99.7 99.8 99.7
ASEntmax 100.0 99.8 99.6 99.3 99.5 99.3 99.5 99.7 99.6 99.5

Table 13: Accuracy (%) on Flip-Flop (dense).

ID Out-of-Distribution

Model 64 128 256 512 1024 2048 4096
RoPE
Softmax 100.0 70.2 62.2 53.2 49.2 50.3 53.1
SSMax 100.0 69.1 60.4 53.2 48.5 51.0 53.1
Entmax 100.0 80.4 73.6 60.3 49.3 51.2 53.1
ASEntmax 100.0 100.0 100.0 49.6 48.9 51.1 53.1

NAPE
Softmax 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SSMAx 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Entmax 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ASEntmax 100.0 100.0 100.0 100.0 100.0 100.0 100.0

to be convinced). However, combining NAPE with adaptive scaling enhances α-entmax. This pattern
suggest that sparsity, adaptive scaling, and NAPE can act complementarily.

H.9 LANGUAGE MODELING

We present a comparison between RoPE and NAPE models on standard benchmarks in Table 16, and
on length generalization in Table 17. NAPE alone improves short-context results on LAMBADA,
HellaSwag, and PIQA. Furthermore, length generalization capabilities only emerge when using either
RoPE with ABF or NAPE. While SSMax, Entmax, and ASEntmax with RoPE + ABF achieve near-
perfect generalization on the S-NIAH-1 task, NAPE combined with scalable models demonstrates
more consistent performance across all sequence lengths in both S-NIAH-1 and S-NIAH-2. Perhaps
more importantly, we find that RoPE with ABF leads to a decline in in-distribution performance.
For instance, Lambada perplexity/accuracy drops, as does accuracy on HellaSwag, PIQA, ARC-C,
and the in-distribution S-NIAH tasks. Moreover, both Softmax + ABF and SSMax + ABF fail
dramatically on S-NIAH-2. Given that NAPE shows more consistent performance across different
tasks and sequence lengths, we believe it stands out as a more robust positional encoding approach
than RoPE.
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Table 14: Exact match accuracy (%) on Reverse.

ID Out-of-Distribution

Model 64 96 128 256 512
RoPE
Softmax 100.0 0 0 0 0
SSMax 100.0 0 0 0 0
ASSMax 100.0 0 0 0 0
Entmax 100.0 0 0 0 0
ASEntmax 100.0 0 0 0 0

NoPE
Softmax 100.0 0 0 0 0
SSMax 100.0 0 0 0 0
Entmax 100.0 77.1 0 0 0
ASEtmax 100.0 74.4 0 0 0

ALiBi
Softmax 100.0 0 0 0 0
Entmax 100.0 96.1 78.5 0 0

NAPE
Softmax 100.0 36.0 0 0 0
SSMax 100.0 54.6 0 0 0
Top-K, K = 16 100.0 99.4 83.3 0.0 0.0
Top-K, K = 32 100.0 100.0 98.7 57.0 0
Top-K, K = n

2 100.0 100.0 98.8 68.9 0
ASSMax 100.0 98.7 62.4 0 0
Entmax 100.0 99.0 86.0 28.5 0.2
SEntmax 100.0 100.0 98.1 51.4 0.0
ASEntmax 100.0 100.0 99.8 96.4 56.7

SB Attention 100.0 100.0 99.1 0.0 0.0

I AI ASSISTANTS

We used Cursor during development, and ChatGPT during paper writing for correcting grammar and
polishing sentences.
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Table 15: Exact match accuracy (%) on Sort.

ID Out-of-Distribution

Model 64 128 256 512
RoPE
Softmax 100.0 0 0 0
SSMax 100.0 0 0 0
Entmax 100.0 0 0 0
ASentmax 100.0 0 0 0

NoPE
Softmax 100.0 97.6 46.6 0
SSMax 100.0 96.3 29.8 0
Top-K, K = 16 99.7 48.0 0 0
Top-K, K = 32 100.0 92.5 0 0
Entmax 100.0 99.9 66.2 0
SEntmax 100.0 99.4 47.7 0
ASEnmtax 100.0 97.5 20.8 0

ALiBi
Softmax 99.9 0 0 0
Entmax 99.2 0 0 0

NAPE
Softmax 100.0 0 0 0
SSMax 100.0 0 0 0
ASSMax 100.0 99.5 9.4 0
Entmax 100.0 99.3 57.8 0
ASEntmax 100.0 100.0 79.7 0

SB Attention 100.0 36.5 0 0

Table 16: Downstream-task results on short-context datasets encompassing a comparison between
RoPE and NAPE.

Method Lambada (PPL) Lambada Hellaswag PIQA Arc-C WinoGrande OpenbookQA

R
oP

E

Softmax 59.7 30.3 32.5 64.3 26.3 50.8 28.6
SSMax 54.5 30.9 32.3 63.4 26.0 51.7 31.0
Entmax 53.0 31.1 32.9 62.9 25.8 49.9 27.8
ASEntmax 56.5 29.9 32.2 62.4 25.5 52.3 27.8

+ ABF, Softmax 126.3 19.0 31.5 63.8 24.6 51.8 28.8
+ ABF, SSMax 96.8 21.6 31.9 63.2 24.7 51.1 30.2
+ ABF, Entmax 101.9 20.3 32.3 62.2 25.5 50.6 27.2
+ ABF, ASEntmax 99.0 20.0 29.4 62.7 24.1 52.0 29.2

N
A

PE

Softmax 52.3 30.9 33.1 65.1 25.6 49.5 28.2
SSMax 48.9 31.6 32.9 65.1 25.0 51.5 30.4
Entmax 47.9 32.1 32.8 63.6 24.6 50.9 29.0
ASEntmax 41.6 34.3 33.4 63.8 26.0 50.0 28.6

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Table 17: Retrieval performance on RULER benchmark

S-NIAH-1 S-NIAH-2

ID OOD ID OOD

Model 1K 2K 4K 8K 16K 1K 2K 4K 8K

R
oP

E

Softmax 99.8 79.0 0.0 0.0 0.0 99.6 11.4 0.0 0.0
SSMax 99.0 83.0 0.0 0.0 0.0 99.6 53.6 0.0 0.0
Entmax 100.0 79.6 0.0 0.0 0.0 99.6 53.0 0.0 0.0
ASEntmax 99.8 87.2 0.0 0.0 0.0 99.0 83.6 0.0 0.0

+ ABF, Softmax 99.2 97.2 93.4 75.4 75.6 0.0 0.0 0.0 0.0
+ ABF, SSMax 98.2 98.0 97.6 97.4 98.0 30.8 37.4 4.4 0.2
+ ABF, Entmax 98.4 98.2 99.4 100.0 100.0 98.8 89.0 64.8 32.4
+ ABF, ASEntmax 100.0 99.6 99.6 99.6 94.0 98.6 83.6 30.8 7.2

N
A

PE

Softmax 100.0 99.4 94.2 11.4 0.8 100.0 100.0 4.8 0.0
SSMax 100.0 99.8 99.2 92.0 75.2 99.4 99.2 64.4 14.8
Entmax 99.8 99.8 89.0 21.6 1.2 99.6 99.4 64.8 7.2
ASEntmax 99.6 100.0 100.0 99.8 97.4 99.4 99.4 83.2 25.4
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