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WSEL: EEG feature selection with weighted self-expression
learning for incomplete multi-dimensional emotion recognition

Anonymous Author(s)

ABSTRACT

Due to the small size of valid samples, multi-source EEG fea-
tures with high dimensionality can easily cause problems such
as overfitting and poor real-time performance of the emotion
recognition classifier. Feature selection has been demonstrat-
ed as an effective means to solve these problems. Current
EEG feature selection research assumes that all dimensions
of emotional labels are complete. However, owing to the open
acquisition environment, subjective variability, and border
ambiguity of individual perceptions of emotion, the training
data in the practical application often includes missing in-
formation, i.e., multi-dimensional emotional labels of several
instances are incomplete. The aforementioned incomplete
information directly restricts the accurate construction of the
EEG feature selection model for multi-dimensional emotion
recognition. To wrestle with the aforementioned problem, we
propose a novel EEG feature selection model with weighted
self-expression learning (WSEL). The model utilizes self-
representation learning and least squares regression to recon-
struct the label space through the second-order correlation
and higher-order correlation within the multi-dimensional
emotional labels and simultaneously realize the EEG feature
subset selection under the incomplete information. We have
utilized two multimedia-induced emotion datasets with EEG
recordings, DREAMER and DEAP, to confirm the effective-
ness of WSEL in the partial multi-dimensional emotional
feature selection challenge. Compared to nine state-of-the-
art feature selection approaches, the experimental results
demonstrate that the EEG feature subsets chosen by WSEL
can achieve optimal performance in terms of six performance
metrics.

CCS CONCEPTS

∙Computing methodologies→Cognitive science; Fea-
ture selection; ∙ Human-centered computing → HCI
design and evaluation methods.
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1 INTRODUCTION

Electroencephalogram (EEG) is a portable, non-traumatic
technology for measuring brain activity that can react quickly
to a range of affective states[32, 42]. EEG-based emotion
recognition has received a lot of interest lately in the field
of multimedia-induced affective computing because of its
high temporal resolution and affordability[6, 9, 23]. Various
types of feature extraction approaches, such as non-stationary
index (NSI)[19], rational asymmetry (RASM)[26], higher-
order crossing (HOC)[33], etc., have been used to analyze
the non-stationary and nonlinear EEG signals in order to
correctly represent different affective states.

The quantity of electrodes accessible for emotion recog-
nition is rapidly increasing due to the development of EEG
signal collecting equipment, and a large number of EEG fea-
tures could be extracted from the electrodes [3, 40]. However,
owing to the relatively limited number of EEG samples, the
related features are often high-dimensional and always consist
of redundant, irrelevant, and noisy information, which may
significantly decrease the emotion recognition performance
[39]. Feature selection is an effective means to choose note-
worthy features and exclude irrelevant information from the
original features, which retains the original neural represen-
tation information of the EEG features and enhances the
transparency and interpretability of the emotion recognition
model[13].

The EEG feature selection algorithms could be broadly
divided into three types based on feature subset assessment
and search mechanism: filter, wrapper, and embedded ap-
proaches [12]. The filter techniques consider the statistical
characteristics of the EEG data to evaluate the significance
of EEG features in affective computing. However, the fea-
ture selection performance is often unsatisfactory with these
techniques, regardless of the learning algorithm [53]. Sever-
al studies have attempted to utilize wrapper techniques to
address the issue. In many cases, the wrapper techniques
could achieve better prediction performance than the filter
techniques[12] due to the fact they employ the learning out-
comes of a particular classifier as the evaluation index for the
EEG feature subset. Nevertheless, the wrapper approaches
often require lots of trials and incur significant computing
costs[53]. Recently, researchers have been paying close at-
tention to embedded approaches as a potential substitute
approach to deal with the filter problem. The search for
EEG feature subsets can be integrated into the optimization

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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problem using embedded techniques. The effectiveness of the
embedded techniques on the EEG-based emotion recognition
task has been demonstrated [44, 45].

Current EEG feature selection research relies on the com-
pleteness of the data. However, the training data in the
practical application often includes missing information, such
as partial dimensions of emotion labels from several samples,
owing to the open acquisition environment, subjective vari-
ability, and border ambiguity of individual perceptions of
emotion. The above incomplete information directly restricts
accurate modelling for the relationship between the EEG and
the multi-dimensional emotional labels.

To address the issue, we propose a novel EEG feature
selection model with weighted self-representation learning
(WSEL) for incomplete multi-dimensional emotion recogni-
tion. The model could reconstruct the label space through the
second-order correlation and higher-order correlation within
the multi-dimensional labels and simultaneously select the
informative and redundant EEG feature subsets under the
partial multi-dimensional information.

Furthermore, the following are the primary contributions
to our work:

∙ This study proposes an incomplete multi-dimensional
emotion feature selection method. The method embeds
the process of EEG feature selection into an extended
weighted self-representation model, which is able to
suppress the effect of missing labeling data on model
construction and introduce second-order and higher-
order correlations within multi-dimensional emotion
labels to recover missing labels.
∙ In order to copy the optimization problem of WSEL,
an efficient and straightforward alternative scheme is
proposed to ensure convergence and obtain an optimal
solution.
∙ To confirm the effectiveness of WSEL in the incom-
plete multi-dimensional emotion feature selection chal-
lenge, two multimedia-induced emotion datasets with
EEG recordings and multi-dimensional emotional la-
bels, DREAMER and DEAP, have been implemented.
Compared to nine state-of-the-art feature selection
approaches, the experimental outcomes demonstrate
that the EEG feature subsets chosen by WSEL can
achieve the best emotion recognition performance on
six evaluation metrics.

2 NOTATIONS AND RELATED
WORKS

2.1 Notations and definitions

This section provides a concise summary of the definitions
of the norms and symbols adopted throughout the work.
Vectors are represented by lowercase strong letters (x, y ...),
whereas matrices are represented by capital letters (𝑋, 𝑌 ...).
The mathematical notation for the transpose is represented
by an uppercase superscript 𝑇 . The operator denoted by ⊙
represents the Hadamard product. The trace of a matrix is

represented as Tr. The Frobenius norm and 𝑙2,1 norm of a
matrix 𝑋 are represented as:

‖𝑋‖𝐹 =

⎯⎸⎸⎷ 𝑑∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑥2
𝑖𝑗 =

√︀
𝑡𝑟 (𝑋𝑇𝑋) (1)

‖𝑋‖2,1 =

𝑑∑︁
𝑖=1

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1

𝑥2
𝑖,𝑗 =

𝑑∑︁
𝑖=1

‖𝑥𝑖,:‖2 (2)

𝑋 ∈ R𝑑×𝑛 is an EEG feature matrix, and each row rep-
resents a feature vector x𝑑 ∈ R1×𝑛. 𝑌 ∈ {−1, 1}𝑛×𝑘 is a
multi-dimensional emotional label matrix. The variables 𝑑, 𝑛,
and 𝑘 correspond to the quantities of features, samples, and di-
mensions, respectively. The vector 1𝑛 = (1, 1 . . . , 1)𝑇 ∈ R𝑛×1

is defined as a column vector consisting of all elements being
equal to one. The symbol 𝐼𝑛 ∈ R𝑛×𝑛 represents an identity
matrix.

2.2 Emotion representation models

Emotion representation models fall into two categories: dis-
crete emotion models and dimensional emotion models, de-
pending on how emotions are depicted. Discrete emotion
models utilize several basic discrete categories to charac-
terize emotions. For example, there are six basic discrete
categories, namely happiness, sadness, fear, anger, disgust,
and surprise [34]. Complex emotion categories are composed
of combinations of the basic discrete categories. However,
the representation approach cannot scientifically describe the
nature of emotions or effectively quantify emotional states
from a computational perspective [1].

In order to solve the difficulties faced by the discrete mod-
el, the dimensional affective model maps affective states as
points on a multi-dimensional space, and the affective states
are distributed in different locations in the space based on
different dimensions, and the distances between the locations
reflect the differences and associations between different af-
fective states [1]. Compared with the discrete emotion model,
the dimensional emotion model has the advantages of a wide
range of characterization and the ability to describe the e-
motional evolution process [8]. Commonly used dimensional
models include the Valence-Arousal (VA) model [35] and the
Valence-Arousal-Dominance (VAD) model [29].

2.3 EEG feature selection methods

The EEG feature selection techniques may be categorized into
three groups based on their interaction with classification
models: filter-based, wrapper-based, and embedded-based
methods [53].

Filter-based methods assess the significance of EEG fea-
tures based on specific criteria. The discriminatory EEG
features that score highly are subsequently chosen, such as
ReliefF [49], information gain [4], maximum relevance min-
imum redundancy [2, 41], conditional mutual information
maximization [47], etc. However, the aforementioned filter-
based methods may overlook a number of helpful features
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Figure 1: The proposed WSEL framework concludes the following three sections: (a) basic feature learning;
(b) weighted self-expression learning (WSEL); and (c) global feature redundancy learning.

that, when paired with other features, are discriminative
because learning models are neglected [36].

Using random or sequential search, wrapper-based ap-
proaches ”wrap” features into candidate EEG feature subsets.
A learning or prediction model then assesses the performance
of these candidate EEG feature subsets. Several popular
wrapper-based techniques, including the evolutionary compu-
tation algorithm [30] and the ReliefF-based genetic algorithm
[18], have been proposed or employed for EEG-based affective
computing. Nevertheless, the computational complexity of
wrapper-based techniques is often significant because of the
iterative nature of feature subset searches [37].

In order to address the shortcomings of filter-based or
wrapper-based feature selection techniques, embedded-based
methods have been put forward [24]. These methods inte-
grate feature selection into the training model process and
assess the relative significance of individual EEG features
while optimizing learning models. Because of its complete-
ness in statistics theory and efficacy for data analysis, least
squares regression is a popular statistical analysis model for
embedded-based feature selection approaches [5, 31, 43, 44].
Least square regression (LSR)-based embedded feature selec-
tion algorithms seek to learn a projection matrix 𝑊 and then
rank the feature significance by {‖𝑤1‖2, ..., ‖𝑤𝑑‖2|} [46]. The
discriminative EEG feature subsets can be chosen according
to their significance.

3 PROBLEM FORMULATION

This section proposes a unique EEG emotional feature selec-
tion approach to acquire non-redundant and relevant feature
subsets for incomplete multi-dimensional affective computing.

The WSEL framework is defined as follows:

min
𝑊,𝑈

𝐹 (𝑋,𝑊, 𝑌, 𝑈) + 𝜆𝐶(𝑌,𝑈) + 𝛾Ω(𝑊 ) (3)

where the projection matrix and coefficient matrix are repre-
sented by the variables 𝑊 and 𝑈 , respectively. 𝛾 and 𝜆 are
both tradeoff parameters. The basic feature learning function,
weighted self-expression learning function, and global feature
redundancy learning function are denoted by the symbols 𝐹 ,
𝐶, and Ω, respectively. The next sections will introduce the
definitions of 𝐹 , 𝐶, and Ω.

3.1 Basic feature learning

LSR is employed to estimate the correlation between the
EEG feature matrix 𝑋 and the self-expression matrix 𝑌 𝑈 .
To perform EEG feature selection, the projection matrix 𝑊
is constrained by 𝑙2,1-norm. The term 𝐹 (𝑋,𝑊, 𝑌, 𝑈) could
be expressed as follows:

𝐹 (𝑋,𝑊, 𝑌, 𝑈) =
⃦⃦⃦
𝑋𝑇𝑊 + 1𝑛𝑏

𝑇 − 𝑌 𝑈
⃦⃦⃦2

𝐹
+ 𝛿‖𝑊‖2,1 (4)

in which 𝑏 ∈ R𝑘×1 is a bias vector, 𝑊 ∈ R𝑑×𝑘 is the projec-
tion matrix, 𝑈 ∈ R𝑘×𝑘 is the coefficient matrix, and 𝛿 (𝛿 > 0)
is a tradeoff parameter.

3.2 Weighted self-expression learning

To describe the dimension-missing information, the element
𝑃𝑖,𝑗 of an indicator matrix 𝑃 is defined as follows:

𝑃𝑖𝑗 =

{︃
1 if 𝑖-th instance exists in 𝑗-th dimensional label;

0 otherwise.

(5)
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Then, 𝑃 is introduced into the self-expression learning
function as follows:

min
𝑈
‖𝑃 ⊙ (𝑌 − 𝑌 𝑈)‖2𝐹 + 𝛽‖𝑈‖2,1 (6)

Via high-order label correlations among the multi-dimensional
emotion labels, each dimension can be represented by all the
dimensions. In order that each label is reconstructed by the
most directly relevant labels, the self-expression coefficient
matrix 𝑈 is imposed with a 𝑙2,1-norm constraint.

Afterwards, a graph-based manifold regularizer is imple-
mented to maintain consistency of the local geometry struc-
tures between the self-expression space 𝑌 𝑈 and the original
multi-dimensional label space 𝑌 [14]. A graph Laplacian ma-
trix 𝐿𝑌 ∈ Rn×𝑛 is indicated by the notation 𝐿𝑌 = 𝐺 − 𝑆.
The affinity graph for 𝑌 is represented by 𝑆, and the elements
of the diagonal matrix 𝐺 can be obtained by 𝐺𝑖𝑖 =

∑︀𝑛
𝑗=1 𝑆𝑖𝑗 .

A heat kernel has been employed to generate the affinity
graph 𝑆. The similarity value of two labels, 𝑦𝑖. and 𝑦𝑗., is
represented by the element 𝑆𝑖𝑗 . 𝑆𝑖𝑗 is defined as follows:

𝑆𝑖𝑗 =

⎧⎨⎩ exp

(︂
−‖𝑦𝑖.−𝑦𝑗.‖2

𝜎2

)︂
𝑦𝑖. ∈ 𝒩𝑞 (𝑦𝑗.) or 𝑦𝑗. ∈ 𝒩𝑞 (𝑦𝑖.)

0 otherwise
(7)

The symbol 𝜎 represents the graph construction param-
eter, whereas 𝒩𝑝 (𝑦𝑗) denotes the set of the top 𝑞 closest
neighbours of the label 𝑦𝑗..

Ultimately, by including the graph-based manifold regular-
izer in the weighted self-expression learning, the formulation
of the term 𝐶 can be expressed as follows:

𝐶(𝑌,𝑈) =‖𝑃 ⊙ (𝑌 − 𝑌 𝑈)‖2𝐹 + 𝜂Tr
(︁
(𝑌 𝑈)𝑇𝐿𝑌 (𝑌 𝑈)

)︁
+ 𝛽‖𝑈‖2,1
s.t. 𝑈 ≥ 0

(8)

where 𝛽 and 𝜂 represent tradeoff parameters.

3.3 Global feature redundancy learning

In addition, we introduce a global feature redundancy matrix
𝐴 to evaluate the correlations among all the EEG features.
The value of 𝐴 could be obtained via the following calculation:

𝐴𝑖,𝑗 = (𝑂𝑖,𝑗)
2 =

(︂
𝑓𝑇
𝑖 𝑓𝑗

‖𝑓𝑖‖ ‖𝑓𝑗‖

)︂2

(9)

where 𝑓𝑖 ∈ R𝑛×1 and 𝑓𝑗 ∈ R𝑛×1 are 𝑖-th and 𝑗-th centralized
features of two types of EEG features 𝑥𝑖 and 𝑥𝑗 (𝑖, 𝑗 =
1, 2, ..., d). 𝑓𝑖 and 𝑓𝑗 can be computed as follows:{︂

𝑓𝑖 = 𝐻𝑥𝑇
𝑖

𝑓𝑗 = 𝐻𝑥𝑇
𝑗

(10)

where 𝐻 = 𝐼n − 1
𝑛
1𝑛1𝑛

𝑇 . Eq. (9) can be changed to

𝑂 = 𝑍𝐹𝑇𝐹𝑍 = (𝐹𝑍)𝑇𝐹𝑍 (11)

𝐹 is defined as 𝐹 = [𝑓1,𝑓2, ...,𝑓𝑑].Let 𝑍 be a diagonal
matrix such that each diagonal element 𝑍𝑖,𝑖 = 1

‖𝑓𝑖‖
(𝑖 =

1, 2, ..., d). Since the matrix 𝑂 is positive semi-definite and
𝐴 = 𝑂⊙𝑂, the resulting global feature redundancy matrix 𝐴
is both non-negative and positive semi-definite [38]. Therefore,

the global feature redundancy learning function Ω can be
defined as:

Ω(𝑊 ) = Tr
(︁
𝑊𝑇𝐴𝑊

)︁
(12)

3.4 The final objective function of WSEL

By combining Eq. (4), Eq. (8), and Eq. (12) together, the
proposed WSEL can be formulated as follows:

min
𝑊,𝑏,𝑈

⃦⃦⃦
𝑋𝑇𝑊 + 1𝑛𝑏

𝑇 − 𝑌 𝑈
⃦⃦⃦2

𝐹
+ 𝜆‖𝑃 ⊙ (𝑌 − 𝑌 𝑈)‖2𝐹 + 𝛽‖𝑈‖2,1

+ 𝜂Tr
(︁
(𝑌 𝑈)𝑇𝐿𝑌 (𝑌 𝑈)

)︁
+ 𝜇Tr

(︁
𝑊𝑇𝐴𝑊

)︁
+ 𝛿‖𝑊‖2,1

s.t. 𝑈 ≥ 0

(13)
where 𝜆,𝛽, 𝜂, 𝜇, and 𝛿 are regularization parameters. The
flowchart of WSEL is shown in Fig. 1.

4 OPTIMIZATION STRATEGY

Taking the partial derivative of Eq. (13) with respect to 𝑏 and
setting it equal to zero, we can solve for 𝑏 using the equation
𝑏 = 1

𝑛

(︀
𝑈𝑇𝑌 𝑇1𝑛 −𝑊𝑇𝑋1𝑛

)︀
. By replacing the aforemen-

tioned equation in Eq. (13), the optimization problem will
be transformed to

min
𝑊,𝑈

⃦⃦⃦
𝐻𝑋𝑇𝑊 −𝐻𝑌 𝑈

⃦⃦⃦2

𝐹
+ 𝜆‖𝑃 ⊙ (𝑌 − 𝑌 𝑈)‖2𝐹 + 𝛽‖𝑈‖2,1

+ 𝜂Tr
(︁
(𝑌 𝑈)𝑇𝐿𝑌 (𝑌 𝑈)

)︁
+ 𝜇Tr

(︁
𝑊𝑇𝐴𝑊

)︁
+ 𝛿‖𝑊‖2,1

s.t. 𝑈 ≥ 0

(14)
The alternatively iterative update technique is adopted to

derive solutions for the two variables (𝑊 and 𝑈) in Eq. (14).
The technique is presented as follows:

4.1 Update 𝑊 by fixing 𝑈

When 𝑈 is fixed and we remove the irrelevant terms, we
obtain the following function about 𝑊 :

ℒ (𝑊 ) =
⃦⃦⃦
𝐻𝑋𝑇𝑊 −𝐻𝑌 𝑈

⃦⃦⃦2

𝐹
+ 𝜇Tr

(︁
𝑊𝑇𝐴𝑊

)︁
+ 𝛿‖𝑊‖2,1

(15)
By taking the partial derivative of ℒ (𝑊 ) w.r.t.𝑊 , we

could get

𝜕ℒ (𝑊 )

𝜕𝑊
= 2𝑋𝐻𝑋𝑇 − 2𝑋𝐻𝑌 𝑈𝑊 + 2𝜇𝐴𝑊 + 2𝛿𝐷𝑊 (16)

where 𝐷 is a diagonal matrix and the element of 𝐷 is calcu-
lated by 𝐷𝑖𝑖 =

1

2
√

𝑊𝑇
𝑖 𝑊𝑖+𝜖

(𝜖→ 0).

Hence, the optimal solution 𝑊 can be updated as follows:

𝑊 = (𝑋𝐻𝑋𝑇 + 𝜇𝐴+ 𝛿𝐷)−1(𝑋𝐻𝑌 𝑈) (17)

4.2 Update 𝑈 by fixing 𝑊

When 𝑊 is fixed, by introducing a Lagrange multiplier Ψ
for 𝑈 ≥ 0, we have the following Lagrange function:

ℒ (𝑈) =
⃦⃦⃦
𝐻𝑋𝑇𝑊 −𝐻𝑌 𝑈

⃦⃦⃦2

𝐹
+ 𝜆‖𝑃 ⊙ (𝑌 − 𝑌 𝑈)‖2𝐹 + 𝛽‖𝑈‖2,1

+ 𝜂Tr
(︁
(𝑌 𝑈)𝑇𝐿𝑌 (𝑌 𝑈)

)︁
+Tr

(︁
Ψ𝑇𝑈

)︁
(18)
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Then, the partial derivative of ℒ (𝑈) w.r.t.𝑈 in Eq. (18)
is calculated as:

𝜕ℒ (𝑈)

𝜕𝑈
=− 2𝑌 𝑇𝐻𝑋𝑇𝑊 + 2𝑌 𝑇𝐻𝑌 𝑈 + 2𝜆𝑌 𝑇 (𝑃 ⊙ (𝑌 𝑈 − 𝑌 ))

2𝜂𝑌 𝑇𝐿𝑌 𝑌 𝑈 + 2𝛽𝑉 𝑈 +Ψ

(19)
where 𝑉 is a diagonal matrix and the element of 𝑉 is calcu-
lated by 𝑉𝑖𝑖 =

1

2
√

𝑈𝑇
𝑖 𝑈𝑖+𝜖

(𝜖→ 0).

Based on the Karush-Kuhn-Tucker complementary condi-
tion Ψ𝑖𝑗𝑈𝑖𝑗 = 0, the update rule for 𝑈 is

𝑈 ← 𝑈 ⊙ 𝑌 𝑇𝐻𝑋𝑇𝑊 + 𝜆𝑌 𝑇 (𝑃 ⊙ 𝑌 )

𝑌 𝑇𝐻𝑌 𝑈 + 𝜂𝑌 𝑇𝐿𝑌 𝑌 𝑈 + 𝜆𝑌 𝑇𝑃 ⊙ (𝑌 𝑈) + 𝛽𝑉 𝑈
(20)

Algorithm 1 EEG feature selection with weighted self-
expression learning for incomplete multi-dimensional emotion
recognition

Input: EEG feature matrix 𝑋 ∈ Rd×𝑛, incomplete multi-
dimensional emotional label matrix 𝑌 ∈ R𝑛×𝑘, and indi-
cator matrix 𝑃 ∈ R𝑛×𝑘.

Output: Return ranked EEG features.
1: Initial 𝐻 = 𝐼n − 1

𝑛
1𝑛1𝑛

𝑇 . Initial 𝑊 and 𝑈 randomly.
2: repeat
3: Update 𝐷 via 𝐷𝑖𝑖 =

1

2
√

𝑊𝑇
𝑖 𝑊𝑖+𝜖

;

4: Update 𝑉 via 𝑉𝑖𝑖 =
1

2
√

𝑈𝑇
𝑖 𝑈𝑖+𝜖

;

5: Update 𝑊 via 𝑊 = (𝑋𝐻𝑋𝑇 +𝜇𝐴+𝛿𝐷)−1(𝑋𝐻𝑌 𝑈);
6: Update 𝑈 via Eq. (20);
7: until Convergence;
8: return 𝑊 for EEG feature selection.
9: Sort the EEG features by ‖𝑤𝑖‖2;

Algorithm 1 provides the specific optimization steps for
Eq. (13). The scores of each EEG feature in the incomplete
multi-dimensional emotion recognition task can be evaluated
by 𝑊 . Ultimately, the optimal EEG feature subset with
non-redundant and informative features is obtained.

5 EXPERIMENTAL DETAILS

This section introduces experimental details, including dataset
description, EEG feature extraction, and experimental setup.

5.1 Dataset description

Comprehensive experiments are conducted on two EEG
datasets with multi-dimensional labels to assess the perfor-
mance of WSEL, including DEAP[17] and DREAMER[15].
The VAD paradigm is employed in the databases to describe
human emotions. During the multimedia stimulation, EEG
signals were concurrently recorded. A detailed description of
the experimental setup can be found in [15] and [17]. Table 1
presents basic information for the two datasets.

The experiments used a band-pass filter with a cutoff fre-
quency of 1-50 Hz to remove noise from the EEG recordings.

Table 1: Comparisons between two EEG datasets.

Database DREAMER DEAP

Channel no. 14 32
Subject no. 23 32
Video no. 18 40
Sample no. 414 1280

Stimulus materials film clips music videos

Table 2: The dimensions of the thirteen EEG feature
types extracted from the two databases.

Source domain Feature type DREAMER DEAP

Time

NSI 14 32
HOC 140 320
SPE 14 32
SHE 14 32

C0 complexity 14 32

Frequency
AP 70 160

𝐴𝑃𝛽/𝐴𝑃𝜃 14 32
DE 70 160

Time-frequency
AHTIMF 70 160
IPHTIMF 70 160

Spatial
DASM 35 70
RASM 35 70
FC 91 496

Total 651 1756

Subsequently, artifacts related to eye movement and mus-
cle activities were suppressed using independent component
analysis. It should be mentioned that EEG feature extraction
was performed on the whole trial as a sample. As stated
differently, trials were not divided into many parts in order
to expand the sample size of the experiments.

5.2 EEG feature extraction

Based on earlier studies on EEG emotional feature extrac-
tion and analysis [13, 45], thirteen types of EEG features
were extracted for the multi-dimensional affective comput-
ing task, such as C0 complexity [54], NSI[19], differential
asymmetry (DASM)[28], HOC[33], spectral entropy(SPE)
[48], RASM [26], shannon entropy(SHE)[25], DE[7], absolute
power (𝐴𝑃 ), the absolute power ratio of the theta band to
the beta band (𝐴𝑃𝛽/𝐴𝑃𝜃) [16], the amplitude of the Hilbert
transform of intrinsic mode functions (AHTIMF), the in-
stantaneous phase of the Hilbert transform of intrinsic mode
functions (IPHTIMF)[13], and function connectivity (FC).
The comprehensive descriptions of the thirteen EEG features
can be found in [7, 13, 44]. The dimensions of the thirteen
EEG feature types are presented in Table 2.
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5.3 Experimental setup

Nine advanced feature selection methods are compared in
order to fully assess the performance of WSEL in the multi-
dimensional affective computing task. The compared tech-
niques include multi-label feature selection using multi-criteria
decision making (MFS-MCDM) [10], multi-label graph-based
feature selection (MGFS) [11], PMU[20], global relevance and
redundancy optimization (GRRO) [50], scalable criterion for
large label set(SCLS)[22], feature selection with orthogonal
regression (FSOR) [45], global redundancy minimization in
orthogonal regression (GRMOR)[44], FIMF[21], and feature
selection method via manifold regularisation (MDFS)[51].

The EEG recordings were divided into low and high values
depending on the self-assessed score of each affective dimen-
sion. The threshold value for this category was established
at five. Multi-label k-nearest neighbor (ML-KNN) [52] was
implemented as a base classifier. The values for the number
of nearest neighbors and smooth were set to 10 and 1, re-
spectively. Seventy percent of the participants were chosen
randomly to be used as training sets, while the remaining
thirty percent were designated as test sets. A cross-subject
experiment setup was implemented. In order to mitigate any
bias, a total of 50 separate and unbiased experiments were
carried out, and the average outcome was regarded as the
ultimate measure of affective computing.

The research applied six performance metrics for evaluating
the effectiveness of multi-dimensional emotion recognition.
These metrics include two label-based evaluation metrics,
macro-F1 and micro-F1, as well as four example-based evalu-
ation metrics: average precision, coverage, ranking loss, and
hamming loss. The detailed information on the above metrics
could be found in [51].

6 EXPERIMENTAL RESULTS AND
DISCUSSION

6.1 Performance comparison in
incomplete multi-dimensional emotion
recognition

We employed the strategy in [27] to simulate the incomplete
multi-label setting, eliminating certain ratios of labels from
each dimension as missing data. With a step of 10% , the
missing ratio was set between 10% and 50%. By using the
aforementioned feature selection methods, almost 10% of all
EEG features were selected. The tradeoff parameters (𝜆, 𝛽
𝜂, 𝜇, and 𝛿) were tuned from 103 to 103 with a step of 101.

Fig. 2 and Fig. 3 show the comparative results on the
DEAP and DREAMER datasets. The horizontal axis of each
figure represents the missing ratio of multi-dimensional labels,
while the vertical axis represents the results of each perfor-
mance metric. The results of WSEL are shown in Fig. 2 and
Fig. 3 as the red line. As seen in Fig. 2(a-c) and Fig. 3(a-c),
the multi-dimensional emotion recognition performance abili-
ty improves with decreasing values. Furthermore, as shown
in Fig. 2(d-f) and Fig. 3(d-f), the multi-dimensional emotion

(a) (b)

(c) (d)

(e) (f)

Figure 2: Multi-dimensional emotion classification
performance with different missing ratios on the
DEAP data set: (a) Hamming loss; (b) Coverage; (c)
Ranking loss; (d) Average precision; (e) Macro-F1;
(f) Micro-F1.

recognition performance ability improves with increasing val-
ues. Compared with the results of the other nine methods,
WSEL almost maintains the best performance with various
missing ratios.

Table 3 provides a summary of the quantitative compar-
ative results across the six multi-label performance metrics.
↑ denotes a larger result being better, and ↓ denotes the
contrary. Overall, the results in Fig. 2, Fig. 3, and Table 3
prove that the EEG feature subset chosen by the WSEL
method has the best incomplete multi-dimensional emotion
recognition performance.

To further validate the effectiveness of the weighted self-
representation learning module for label reconstruction, the
proportion of the number of successfully recovered emotional
labels with various missing rates is summarized in Table 4. As
shown in Table 4, the proposed method is able to effectively
recover more than 60% of the missing labels through the
weighted self-representation learning module, which in turn
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Table 3: The comparisons of average multi-dimensional emotion recognition results (↑ denotes a larger result
being better, and ↓ denotes the contrary).

Methods
DEAP DREAMER

HL ↓ RL ↓ CV ↓ AP↑ MA↑ MI ↑ HL ↓ RL ↓ CV ↓ AP ↑ MA ↑ MI ↑
MDFS 0.48 0.34 1.08 0.81 0.40 0.41 0.42 0.31 1.43 0.82 0.62 0.64
GRRO 0.49 0.34 1.10 0.81 0.37 0.38 0.41 0.34 1.45 0.81 0.62 0.64
PMU 0.53 0.42 1.17 0.76 0.25 0.26 0.48 0.42 1.53 0.77 0.48 0.51
SCLS 0.52 0.43 1.17 0.75 0.26 0.27 0.48 0.44 1.54 0.76 0.49 0.51
MGFS 0.51 0.39 1.13 0.78 0.32 0.33 0.47 0.43 1.53 0.77 0.53 0.56
MFS MCDM 0.51 0.37 1.12 0.79 0.31 0.32 0.46 0.44 1.52 0.76 0.52 0.55
FIMF 0.52 0.41 1.15 0.76 0.25 0.27 0.49 0.47 1.56 0.75 0.47 0.51
FSOR 0.50 0.40 1.13 0.77 0.32 0.33 0.47 0.41 1.53 0.77 0.49 0.54
GRMOR 0.48 0.37 1.12 0.79 0.38 0.39 0.43 0.35 1.46 0.81 0.57 0.61
WSEL 0.37 0.32 1.07 0.83 0.75 0.75 0.28 0.28 1.39 0.84 0.83 0.83

(a) (b)

(c) (d)

(e) (f)

Figure 3: Multi-dimensional emotion classification
performance with different missing ratios on the
DREAMER data set: (a) Hamming loss; (b) Cov-
erage; (c) Ranking loss; (d) Average precision; (e)
Macro-F1; (f) Micro-F1.

provides richer multi-dimensional emotional label information
for the basic feature learning module.

Table 4: The accurate recovery rate(%) of missing
labels.

Missing ratio
Accurate recovery rate
DEAP DREAMER

10% 60.61 62.85
20% 69.08 62.76
30% 60.72 61.51
40% 62.89 62.85
50% 60.81 61.45

(a) (b)

(c) (d)

(e) (f)

Figure 4: The Nemenyi test results (significance lev-
el 𝛼 = 0.05): (a) Hamming loss; (b) Coverage; (c)
Ranking loss; (d) Average precision; (e) Macro-F1;
(f) Micro-F1.
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Table 5: The results of ablation experiments on the
performance index average precision (w/o, GMR,
and GFRL denote without, graph-based manifold
regularizer, and global feature redundancy learning,
respectively).

Conditions
Average precision

DEAP DREAMER

w/o WSEL 0.75 0.78
w/o GMR 0.80 0.82
w/o GFRL 0.79 0.80
Our method 0.83 0.84

6.2 Nemenyi test and ablation
experiments

The Nemenyi test is applied as a specific post-hoc test to
complete the multi-dimensional emotion recognition perfor-
mance comparison, and the WSEL is implemented as the
control method. The outcomes of the Nemenyi test in terms
of six performance metrics are shown in Fig. 4. WSEL outper-
forms the other nine approaches on all performance metrics,
as Fig. 4 illustrates. This indicates that the WSEL method
could achieve highly competitive multi-dimensional emotion
recognition performance with incomplete label information.

To determine the contributions of each module in the
proposed EEG feature selection model, we carried out ab-
lation experiments. There are three important modules in
WSEL, and we only sequentially removed each module. Ta-
ble 5 illustrates that the weighted self-expression model plays
a key role in recovering missing labels by efficiently cap-
turing high-order correlation information within incomplete
multi-dimensional emotional labels. Other modules play roles
in maintaining the local geometry structures and removing
redundant information.

Table 6: The comparison of average computational
time results (seconds).

Methods DEAP DREAMER

MDFS 4.08 1.45
GRRO 32.42 2.01
PMU 134.19 7.54
SCLS 27.51 1.73
MGFS 0.45 0.34
MFS MCDM 0.65 0.18
FIMF 0.03 0.01
FSOR 369.05 46.42
GRMOR 146.22 27.47
WSEL 3.98 0.99

(a) (b)

Figure 5: Convergence of the WSEL algorithm on
the two data sets: (a) DEAP; (b) DREAMER.

6.3 Computational cost and convergence
demonstration

Additionally, the computational time cost of all the meth-
ods was compared. The implementation was made in MAT-
LAB (MathWorks Inc., Novi, MI, USA) and run under Mi-
crosoft Windows 11× 64 on a computer with an Intel Core
i5-124000HQ 2.5 GHz CPU and 16.00 GB of RAM. The aver-
age computational time results are shown in Table 6. As seen
in Table 6 and Table 4, the proposed method is able to obtain
the optimal performance of incomplete multi-dimensional e-
motion recognition with relatively little computational cost.

Finally, we conduct a convergence speed analysis of the
proposed iterative optimization algorithm. Fig. 5 shows the
convergence curves of the objective value on the DEAP and
DREAMER. The tradeoff parameters (𝜆, 𝛽 𝜂, 𝜇, and 𝛿) are all
fixed at 10. As seen in Fig. 5, the WSEL algorithm converges
rapidly in a small number of iterations, demonstrating the
potency of our iterative optimization strategy.

7 CONCLUSIONS AND FUTURE
WORK

An embedded EEG feature selection framework under in-
complete multi-dimensional emotion information is proposed,
which selects discriminative EEG features and reconstructs
the multi-dimensional emotion label space by simultaneously
merging weighted self-expression learning and global feature
redundancy learning in the least squares regression model.
Furthermore, a simple and effective substitute strategy is
also proposed to copy the optimization problem of WSEL.
The experimental results have demonstrated the effective
performance of WSEL.

Although the proposed method can recover missing emo-
tional labels to a certain extent (more than 60%), its recovery
rate is not particularly satisfactory, especially in real brain
computer interface-based emotion recognition applications.
It is an interesting topic to improve the recovery rate of
missing labels. In the future, we will focus on researching
novel strategies to improve the recovery rate of missing labels
for incomplete multi-dimensional affective computing.
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feature selection techniques in bioinformatics. bioinformatics 23,
19 (2007), 2507–2517.

[37] Jiliang Tang, Salem Alelyani, and Huan Liu. 2014. Feature selec-
tion for classification: A review. Data classification: Algorithms
and applications (2014), 37.

[38] De Wang, Feiping Nie, and Heng Huang. 2015. Feature selec-
tion via global redundancy minimization. IEEE transactions on
Knowledge and data engineering 27, 10 (2015), 2743–2755.

[39] Fei Wang, Shichao Wu, Weiwei Zhang, Zongfeng Xu, Yahui Zhang,
Chengdong Wu, and Sonya Coleman. 2020. Emotion recognition
with convolutional neural network and EEG-based EFDMs. Neu-
ropsychologia (2020), 107506.

[40] Hailing Wang, Xia Wu, and Li Yao. 2022. Identifying Cortical
Brain Directed Connectivity Networks From High-Density EEG
for Emotion Recognition. IEEE Transactions on Affective Com-
puting 13, 3 (2022), 1489–1500. https://doi.org/10.1109/TAFFC.
2020.3006847

https://doi.org/10.1109/TAFFC.2014.2339834
https://doi.org/10.1109/JBHI.2017.2688239
https://doi.org/10.1109/TNSRE.2022.3233109
https://doi.org/10.1109/TNSRE.2022.3233109
https://doi.org/10.1109/TAFFC.2020.3006847
https://doi.org/10.1109/TAFFC.2020.3006847


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[41] Xiaowei Wang, Dan Nie, and Baoliang Lu. 2011. EEG-based
emotion recognition using frequency domain features and support
vector machines. In International conference on neural informa-
tion processing. Springer, 734–743.

[42] Minchao Wu, Wei Teng, Cunhang Fan, Shengbing Pei, Ping Li,
and Zhao Lv. 2023. An Investigation of Olfactory-Enhanced
Video on EEG-Based Emotion Recognition. IEEE Transactions
on Neural Systems and Rehabilitation Engineering 31 (2023),
1602–1613. https://doi.org/10.1109/TNSRE.2023.3253866

[43] Xia Wu, Xueyuan Xu, Jianhong Liu, Hailing Wang, Bin Hu, and
Feiping Nie. 2021. Supervised Feature Selection With Orthogonal
Regression and Feature Weighting. IEEE Transactions on Neural
Networks and Learning Systems 32, 5 (2021), 1831–1838. https:
//doi.org/10.1109/TNNLS.2020.2991336

[44] Xueyuan Xu, Tianyuan Jia, Qing Li, Fulin Wei, Long Ye, and
Xia Wu. 2023. EEG Feature Selection via Global Redundancy
Minimization for Emotion Recognition. IEEE Transactions on
Affective Computing 14, 1 (2023), 421–435. https://doi.org/10.
1109/TAFFC.2021.3068496

[45] Xueyuan Xu, Fulin Wei, Zhiyuan Zhu, Jianhong Liu, and Xia
Wu. 2020. Eeg Feature Selection Using Orthogonal Regression:
Application to Emotion Recognition. In ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). 1239–1243. https://doi.org/10.1109/
ICASSP40776.2020.9054457

[46] Sheng Yang, Rui Zhang, Feiping Nie, and Xuelong Li. 2019.
Unsupervised Feature Selection Based on Reconstruction Error
Minimization. In IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE, 2107–2111.

[47] Morteza Zabihi, Serkan Kiranyaz, Turker Ince, and Moncef Gab-
bouj. 2013. Patient-specific epileptic seizure detection in long-term
EEG recording in paediatric patients with intractable seizures. In
IET Intelligent Signal Processing Conference. 1–7.

[48] Aihua Zhang, Bin Yang, and Ling Huang. 2008. Feature extraction
of EEG signals using power spectral entropy. In 2008 international
conference on BioMedical engineering and informatics, Vol. 2.
IEEE, 435–439.

[49] Jianhai Zhang, Ming Chen, Shaokai Zhao, Sanqing Hu, Zhiguo Shi,
and Yu Cao. 2016. ReliefF-based EEG sensor selection methods
for emotion recognition. Sensors 16, 10 (2016), 1558.

[50] Jia Zhang, Yidong Lin, Min Jiang, Shaozi Li, Yong Tang, and
Kay Chen Tan. 2020. Multi-label Feature Selection via Global
Relevance and Redundancy Optimization.. In IJCAI. 2512–2518.

[51] Jia Zhang, Zhiming Luo, Candong Li, Changen Zhou, and Shaozi
Li. 2019. Manifold regularized discriminative feature selection for
multi-label learning. Pattern Recognition 95 (2019), 136–150.

[52] Minling Zhang and Zhihua Zhou. 2007. ML-KNN: A lazy learning
approach to multi-label learning. Pattern Recognition 40, 7
(2007), 2038 – 2048. https://doi.org/10.1016/j.patcog.2006.12.
019

[53] Rui Zhang, Feiping Nie, Xuelong Li, and Xian Wei. 2019. Feature
selection with multi-view data: A survey. Information Fusion 50
(2019), 158–167.

[54] Yi Zhou, Lingli Xie, Gaohang Yu, Fang Liu, Yi Zhao, and Yu
Huang. 2008. The study of C0 complexity on epileptic absence
seizure. In 7th Asian-Pacific Conference on Medical and Biolog-
ical Engineering. Springer, 420–425.

https://doi.org/10.1109/TNSRE.2023.3253866
https://doi.org/10.1109/TNNLS.2020.2991336
https://doi.org/10.1109/TNNLS.2020.2991336
https://doi.org/10.1109/TAFFC.2021.3068496
https://doi.org/10.1109/TAFFC.2021.3068496
https://doi.org/10.1109/ICASSP40776.2020.9054457
https://doi.org/10.1109/ICASSP40776.2020.9054457
https://doi.org/10.1016/j.patcog.2006.12.019
https://doi.org/10.1016/j.patcog.2006.12.019

	Abstract
	1 Introduction
	2 Notations and Related Works
	2.1 Notations and definitions
	2.2 Emotion representation models
	2.3 EEG feature selection methods

	3 Problem formulation
	3.1 Basic feature learning
	3.2 Weighted self-expression learning
	3.3 Global feature redundancy learning
	3.4 The final objective function of WSEL

	4 Optimization Strategy
	4.1 Update W by fixing U
	4.2 Update U by fixing W

	5 Experimental Details
	5.1 Dataset description
	5.2 EEG feature extraction
	5.3 Experimental setup

	6 Experimental Results and Discussion
	6.1 Performance comparison in incomplete multi-dimensional emotion recognition
	6.2 Nemenyi test and ablation experiments
	6.3 Computational cost and convergence demonstration

	7 Conclusions and future work
	References

