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Abstract

While autonomous vehicles still struggle to solve challenging situations during on-road driv-
ing, humans have long mastered the essence of driving with efficient, transferable, and
adaptable driving capability. The obvious gap between humans and autonomous vehicles
keeps us wondering about the essence of how humans learn to drive. Inspired by humans’
cognition model and semantic understanding during driving in a hierarchical learning pro-
cedure, we propose HATN, a hierarchical framework to generate high-quality, transferable,
and adaptable predictions for driving behaviors (intentions and trajectories)in multi-agent
dense-traffic environments. Our hierarchical method consists of a high-level intention iden-
tification policy and a low-level trajectory generation policy. We introduce a novel semantic
definition for the two policies and generic state representation for each policy, so that the
hierarchical framework is transferable across different driving scenarios. Besides, our model
is able to capture variations of driving behaviors among individuals and scenarios by an on-
line adaptation module. We demonstrate our algorithms in the task of trajectory prediction
for real traffic data at intersections and roundabouts from the INTERACTION dataset, the
InD dataset, and the Argoverse dataset. Through extensive numerical studies, it is evident
that our method significantly outperformed other methods in terms of prediction accuracy,
transferability, and adaptability. Pushing the performance by a considerable margin, we also
provide a cognitive view of understanding the driving behavior behind such improvement.
We highlight that in the future, more research attention and effort are deserved for the
transferability and adaptability of autonomous driving planning and prediction algorithms.
It is not only due to the promising performance elevation, but more fundamentally, they are
crucial for the scalable and general deployment of autonomous vehicles.

1 Introduction

When autonomous vehicles are deployed on roads, they will encounter diverse scenarios varying in traffic
density, road geometries, traffic rules, etc. Each scenario comes with different levels of difficulty in under-
standing and predicting future behaviors of other road participants. Even in a straight street with few road
entities, the sensor system of AVs still confronts a daunting amount of information that may or may not be
relevant to the behavior prediction task. Let alone in more complex scenarios like crowded, human-vehicle-
mixed, complicated-road-geometry intersection or roundabouts, currently deployed AVs tend to timidly take
conservative behaviors due to insufficient prediction capability. On the contrary, in many safe driving cases,
humans can drive through and across these environments easily, even while talking to friends or shaking to
the music.

Moreover, most state-of-art behavior prediction (intention and trajectory prediction)algorithms for AVs,
once trained for one scenario, are brittle due to overspecialization and tend to fail when transferred to
similar or new scenarios. On the contrary, when a green-hand human driverlearns to understand and predict
the behaviors of other drivers at one intersection, such an experience is omni-instructional, also helping to
enhance behavior understanding and prediction capability in other intersections and roundabouts.

There is an obvious gap of capability between AVs and human drivers. We naturally wonder what is the
secret in humans’ brains, which allows us to understand and predict driving behavior so easily and efficiently.
Evident from neuroscience, human’s efficient shuttling in dense traffic flows and complex environments ben-
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efits from two cognition mechanisms: 1) hierarchy (Botvinick et al., 2009; Flet-Berliac, 2019) - cracking the
entangling task into simpler sub-tasks; 2) selective attention (Niv, 2019; Radulescu et al., 2019) - identifying
efficient and low-dimensional state representations among the huge information pool. Certainly, the two
mechanisms are not mutually exclusive but are highly co-related. When dividing a complex task into easier
sub-tasks, humans will choose a compact set of low-dimension states relevant to each sub-task respectively.
An easy example can be found when a child learns to build a tower with blocks. Usually, the child would
divide the overall task into a sub-task of searching for proper blocks and a sub-task of cautiously placing
the blocks on the tower (Marcinowski et al., 2019; Spelke & Kinzler, 2007). In the high-level searching task,
the child would care about the shape or weight of the blocks, but in the low-level placing task, the child
would essentially pay attention to subtly adjusting the position and angle of the block. By choosing state
features at different granularity (information hiding) and learning different skills separately (reward hiding)
(Dayan & Hinton, 1993; Bacon et al.), children are not only able to build the blocks efficiently and rapidly
due to the simplified task and filtered state (efficient learning), but they are also capable of generalizing and
reusing the two skills when they confront new scenarios or tasks (generalization).

The benefits of the two mechanisms in efficient learning and generalization are certainly fruitful for hierar-
chical methods, which end-to-end approaches (Salzmann et al., 2020; Codevilla et al., 2018) cannot enjoy.
However, how much we can benefit from these two mechanisms significantly depends on how properly the hi-
erarchies and relevant states are designed. To this point, there are some existing works (Zhao et al., 2020; Gao
et al., 2020; Tang & Salakhutdinov, 2019) dividing the driving task into a high-level intention-determination
task and a low-level action-execution task. An intention is usually defined as a goal point in the state space
(Zhao et al., 2020; Ding et al., 2019; Sun et al., 2018a) or the latent space (Tang & Salakhutdinov, 2019;
Rhinehart et al., 2019). Actions are then generated to reach that goal.

However, to gain human-level high-quality and transferable prediction capability, the definition of hierarchy
should carry more semantics by referring to how humans think while driving (Shalev-Shwartz et al., 2017).
When humans are shuttling through traffic flows, they first exhibit high-level intention to identify which
"slot" is most spatially and temporally proper to insert into as shown in Figure 1(a). With the chosen slot
to insert into and the map geometry, humans then will generate a desired reference line as a low-level action
as shown in Figure 1(b). Then humans will polish their micro-action skills by optimizing how well they can
track the reference line.

Such a hierarchical policy with more profound semantics enjoys many advantages. First, the policy is intrinsi-
cally scenario-transferable and reusable, because the representation of insertion slot and reference trajectory
can be abstracted out and consistently defined across different scenarios. Second, the hierarchical design
encourages efficient learning since each sub-task’s state space is reduced where only relevant information for
the sub-task is left, and each sub-policy’s learns individually without information entanglement.

In addition, human behavior is naturally stochastic, heterogeneous, and time-varying. For instance, humans
with different driving styles (Wang et al., 2021; Sun et al., 2018b; Schwarting et al., 2019) may result in
distinct observed behaviors. Besides, though transferable, human behavior is still task-specific because there
exist inevitable distribution shifts across scenarios, making the generalization harder. For instance, speed
limits are set differently across different scenarios or cities, calling for driving customization on each scenario.
Capturing such behavior variance can not only help to make more accuratecustomized behavior prediction for
individuals, but also encourages better generalization across scenarios. As a result, an advanced prediction
algorithm should also harness the power of online adaptation, to embrace the uncertainty in human behavior.

In summary, to generate high-quality, transferable and adaptable driving behavior prediction in multi-agent
systems, we should not only design policies by leveraging human’s intrinsic hierarchy and selective attention
cognition model, but also capture diverse human behaviors with online adaptation methods. However, such
a design is not trivial. Harmonious and natural divisions of hierarchies, along with compact and generic state
representations, are crucial to achieve what we desire. Also, to seamlessly incorporate adaptation methods
into the hierarchy policies, strict mathematical formulations and systematic analysis are required.

In this paper, we propose HATN (Hierarchical Adaptable and Transferable Network), a hierarchical framework
for high-quality, transferable and adaptable behavior prediction in multi-agent traffic-dense driving environ-
ments. The framework consists of three parts: 1) a high-level semantic graph network (SGN) responsible
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Figure 1: Figure updated.In dense-traffic multi-agent driving scenarios, human drivers have a hierarchical
process in understanding and generating driving behavior, which cares about different features in each
hierarchy. Humans firstly predict which dynamic slot to insert into in the high-level intention hierarchy
as in (a), paying high attention to features related to the dynamic slots on the scene. Then humans are
predicted to execute actions to realize the intention in the low-level trajectory hierarchy as in (b), based
on finer features related to vehicle dynamics. Such a hierarchical prediction process is 1) simplifying the
learning by dividing the whole task into easier sub-tasks, which only takes in state relevant to its sub-goal;
2) intrinsically scenario-transferable as the representation for the “slots" and the “trajectory" can be defined
consistently across different scenarios; 3) adaptable to individuals by leveraging historic behaviors to adjust
model parameter. One can refer to Fig 5 6 7 for dynamic illustration of the insertion process.

for the slot-insertion task in multi-agent environments; 2) a low-level trajectory encoder decoder network
(TEDN)which generates future trajectory according to historic dynamics and intention signals from the
high-level policy; 3) an online adaptation module which applied modified extended Kalman filter (MEKF)
algorithm to execute online adaptation for better individual customization and scenario transfer. To the
best of our knowledge, this is the first method to explicitly and simultaneously take the driver’s nature of
hierarchy, transferability, and adaptability into account.

In addition to being deployed for high-quality real-time transferable and adaptable trajectory predictions, the
proposed method can have diverse practical applications. When the online adaptation module which requires
the feedback signal is deactivated, the methods can also be applied across different scenarios as a planning
system to: 1) generatemore user-friendly and socially-compatible driving behaviors; 2) providedriving sug-
gestions as an automatic driving assistance system, such as which slot to insert into; 3) reportemergency
alert when unsafe driving behavior happens. In the paper, we evaluate our method in the task of trajectory
prediction since there are more abundant real data for numerical evaluation.

The key contributions of this paper are as follows:

1. Propose a hierarchical framework that takes novel sub-task definitions with compact and generic
representations. Thus our framework canefficiently generates accuratedriving behavior prediction in
complex multi-agent intense-interaction environments, which is zero-shot transferable across scenar-
ios.

2. Leverage online adaptation algorithms to capture behavior variance among individuals and scenarios
for better customizability and transferability. A new set of metrics is proposed for the systematic
evaluation of online adaptation performance.
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3. Conduct extensive experiments on real human driving data, which include thorough ablation studies
for each module of our method and show how our method outperforms other behavior forecasting
methods, in terms of prediction accuracy, transferability and adaptability.

2 Related works

Our preliminary results were presented in non-archival workshop. The current version further provides:
1) comprehensive comparison with more state-of-the-art methods in Sec 7.5; 2) detailed description of the
methodology in Sec 3 and semantic graph representation in Sec 4; 3) in-depth experiment for evaluation
of the online adaptation in Appendix D; 4) discussion on the interacting agent density in Appendix E
and algorithm running time Appendix 7.6. In this section, we introduce related works on human behavior
prediction categorized by methodology and property. The readers are referred to Rudenko et al. (2020) for
a detailed survey.

2.1 Traditional prediction methods

The problem of predicting future motion for dynamic agents has been long studied in the literature. Classic
physics-based methods include Intelligent Driver Model (Treiber et al., 2000), Kalman Filter (Elnagar, 2001),
Rapidly Exploring Random Trees (Aoude et al., 2010), etc. These methods essentially analyze agents and
propagate their historic and current state forward in time according to manually designed physical rules.
Other classic optimization-based methods model humans as utility-maximization agents, whose future be-
havior can be predicted by assuming they are optimizing designed or learned reward (Fridovich-Keil et al.,
2020; Wang et al., 2021). Other classic pattern-based methods classify driving motion into semantically in-
terpretable maneuver classes, via Hidden Markov Model (Liu & Tomizuka, 2016; Deo et al., 2018), Gaussian
Process (Zhang et al., 2021), and Bayesian Network (Schreier et al., 2014). Such classes are then used to
facilitate intention-and-maneuver-aware prediction. These methods perform well in scenarios with simple
road geometry and weak interaction like highways and straight streets. However, these methods struggle
when confronting long-horizon prediction tasks or complex-road-geometry intense-interaction scenarios like
crowded roundabouts and intersections. Such performance downgrade usually stems from the limited ex-
pressiveness of the model, insufficient interaction and context encoding, and laborious but uncomprehensive
task-specific rule design.

2.2 Deep-learning-based prediction methods

The success of deep learning ushered in a variety of data-driven methods. Due to the temporal nature
of the prediction task, these models often utilizes therecurrent neural network (RNN) variants to process
temporal information (Park et al., 2018; Hu et al., 2018a; Zyner et al., 2019; Dequaire et al., 2018; Deo &
Trivedi, 2018). When modeling agents’ interaction, one intuitive idea is simply using Deep Neuron Network
(DNN), by flattening features of all agents and feeding them into deep neuron networks. However, such
designs lack flexibility as they usually only consider a fixed number of agents. On the other hand, These
methods are also not order-invariant: processing agents in a different order would produce different results,
while we would expect the same results for the same scene. Thus such methods have been rarely used in
related works. To bypass these problems and further impose agents’ spatial relationship in the reasoning
process, Convolution Neural Network (CNN) applies convolution operations on data (commonly in grid or
pixel form) to model spatial and temporal relationships, such as 3D voxelization, rasterization in 2D bird’s-
eye view (BEV) and occupancy grid (Radwan et al., 2020; Su et al., 2021; Itkina et al., 2019; Toyungyernsub
et al., 2021; Lange et al., 2021; Mohajerin & Rohani, 2019; Thomas et al., 2022; Mahjourian et al., 2022).
However, such representations have several drawbacks: 1) there is an uneasy trade-off between the resolution
of the spatial grid/image and the field of view. 2) the occupancy grid does not take into account HD map-
related information such as lane and lane relations, which are important for accurate future prediction,
especially in interactive scenarios. 3) representations obtained from the BEV images or occupancy grids via
CNNs are of high abstraction level, which may fail under scenarios that are not well covered by the training
data. 4) explicit relationship reasoning among agents is still missing, and it is difficult to capture long-
range interactions via convolutions with small receptive fields.To avoid or tackle these drawbacks, thegraph
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neural network (GNN) has been recently combined with RNN and CNN to model agent interaction in the
prediction tasks (Salzmann et al., 2020; Ding et al., 2019; Li et al., 2019; Ma et al., 2019; Choi et al., 2019;
Li et al., 2021; Hu et al., 2020; 2018b; Li et al., 2020). Due to the strong relational inductive bias of GNN
(Battaglia et al., 2018), these GNN-based methods successfully achieve flexibility in agent number, ordering
invariance, and explicit relationship reasoning. Consequently, in this paper, we also adopt a GNN-based
architecture. Readers are also referred to Wang et al. (2022) for detailed suvery on interaction modelling
and driver behavior prediction.

2.3 Hierarchical prediction

In the driving task, there inherently exists a high-level intention determination sub-task and a low-level
motion execution sub-task. Thus the methods which predictsfuture motion in an end-to-end manner (Salz-
mann et al., 2020; Li et al., 2019; Ma et al., 2019) are usually hard to learn, explain, and verify. To this
point, some existing methods exploit the hierarchies in the driving task (Gao et al., 2020; Choi et al., 2019;
Li et al., 2021). An intention is usually defined as a goal point in the state space (Ding et al., 2019; Sun
et al., 2018a) or the latent space (Tang & Salakhutdinov, 2019; Rhinehart et al., 2019). However, though
equipped with hierarchies, most of these methods are still trained in an end-to-end manner. Consequently,
the two benefits of hierarchies, task simplification and representation filtering, are hardly exploited since the
model is still monolithically trained. There are a few works that not only utilizea hierarchical design, but
also trains the model hierarchically in two stages (Zhao et al., 2020).However, the representation of intention
in these works is far from generic, and the transferability of the algorithm is still ignored and not verified.
In comparison, our method is not only able to monitor and refine the learning in each hierarchy, but also
enhance transferability by designing generic and compact representation for each sub-policy so that they can
be reused in different scenarios.

2.4 Transferable prediction

It is desired to have omnipotent prediction algorithms that can be applied to many different scenarios such as
highways, intersections, and roundabouts. However, most existing methods either focus on certain scenarios
(Ding et al., 2019; Choi et al., 2019), or train and apply their methods in data from various scenarios without
assessing their scenario-wise performance (Salzmann et al., 2020; Li et al., 2019; Ma et al., 2019; Li et al.,
2021). As a result, these methods tend to fail when transferred to novel scenarios without learning a new
set of model parameters. Many factors contributes to such brittleness, while the representation may be the
first to be blame. The input features of these methods are usually in Cartesian coordinate frame or scene
images, which leads to two drawbacks: 1) scenario-specific information such as traffic regulations and road
geometries are softly and insufficiently incorporated if not completely ignored. 2) these representations are
not generic and will change each time a new scenario is encountered.

There have been effective representation definition for efficient and generalizable learning in some tasks,
such as the visuomotor control of humanoids where the environment is divided into proprioceptive and
exteroceptive state (Merel et al., 2018; Hasenclever et al., 2020), and the visual navigation task where image
target is defined (Zhu et al., 2017). However, in the driving context where complex road/traffic information
and intense interaction exist, very few works can address the representation issues. There are recent works
that vectorized the scene information (lane reference, agent trajectory, etc.) and apply learning modules on
such vectorized scene representation for scene understanding relationship reasoning (Zhao et al., 2020; Gao
et al., 2020; Liu et al., 2021). Although vectorized representations are applicable to various driving scenarios,
all relations between road or agent, which can sometimes be pretty simple and obvious, have to be learned
by the network and there is no guarantee that those known relations can be learned correctly. Besides, those
works only consider the static multimodality in the environment (such as vehicle’s keeping straight, turning).
The dynamic and multi-modal agent’s interaction is sufficiently considered.One recent work (Hu et al., 2020)
achieves transferable prediction by designing generic representations called Semantic Graph, where Dynamic
Insertion Areas rather than road entities are regarded as the nodes. In such representations, scenario-specific
information such as road geometry and traffic regulations is naturally and comprehensively incorporated in a
generic manner. The dynamic relationship/multi-modality among agents are also considered. However, this
work only considers the high-level intention prediction sub-task and cannot generate motion trajectory for

5



Under review as submission to TMLR

Attention-Based Relationship Reasoning

DIA Generation

Semantic Graph
Construction

Rec

Rec

Rec

Feature Encoding

Absolute 
Feature

Rec

Rec

Rec

Relative 
Feature

Intention Generation Semantic Graph Network
(SGN)

GRU GRU GRU. . . 

Encoder

Context
Vector

Intention Signal
Trajectory Encoder Decoder Network 

(TEDN)

Decoder

GRU GRU GRU. . . 
Historic 

State

Predicted
Trajectory

Online Adaptation
(OA)

Observed
Trajectory

Watt

Prediction Observation

Correction

O ,ht T t−Raw Observation

,ht T tG −
Semantic Graph
Representation

tg

,ht T tS −

1,
ˆ

ft t TY + +

1, ft t TY + +

Figure 2: Figure updated.The proposed HATN framework consists of four parts: 1) on the left of the image,
we extract ego vehicles’ interacting cars and construct a Semantic Graph (SG). In the SG, Dynamic Insertion
Areas (DIA) are defined as the nodes of the graph, which the ego vehicle can choose to insert into. 2) Taking
the SG as the input, the high-level Semantic Graph Network (SGN) is responsible for reasoning about
relationships among vehicles and predicting the intentions of individual vehicles, such as which area to insert
into and the corresponding goal state. 3) The low-level trajectory encoder decoder network (TEDN)takes
in each vehicle’s historic dynamics and intention signal to predict their future trajectories. 4) The Online
Adaptation (OA) module can online adapt TEDN’s parameter based on historic prediction errors, which
captures behavior pattern of different individuals and scenarios. The input and output for each module are
clarified formally in Table 1.

practical use. In contrast, our paper adopts such generic representations and train the model hierarchically,
which enables us to conduct both intention prediction and motion prediction simultaneously.

2.5 Adaptable prediction

Apart from hierarchies and transferability, adaptability is another desired property of the prediction algo-
rithms since there inevitably exists behavior variance in different individuals and scenarios. Consequently,
online adaptation has been recently studied in the human prediction research field. Cheng et al. (2020; 2019);
Si et al. (2019) adopts recursive least square parameter adaptation algorithm (RLS-PAA) to adapt the pa-
rameter of the last layer in the neural network. Abuduweili & Liu (2021); Liu & Liu (2021); Abuduweili & Liu
(2020) utilize modified extended Kalman filter (MEKFλ) to conduct model linearization, so that multi-step
adaptation on random sets of parameters is doable. These method also empirically compared the perfor-
mance of adapting different sets of parameters with different steps.The recent work most related to ours
(Abuduweili & Liu, 2021) adopts an encoder-decoder architecture for multi-task prediction, namely tasks
of intention and trajectory prediction. However, compared to our method, the benefit of GNN, hierarchical
training, and transferable generic representation is not considered.
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3 Problem formulation

With the proposed HATN framework, we aim at generating high-fidelity predictions of driving behaviors
in multi-agent traffic-dense scenarios1. Specifically, with the proposed method shown in Figure 2, we focus
on generating behavior predictions for any selected car (which will be called the ego car in the following
discussion) and the cars interacting with the ego car in the next Tf seconds Ŷt+1,t+Tf , based on observations
of the last Th seconds Ot−Th,t:

Ŷt+1,t+Tf = fHATN (Ot−Th,t). (1)

High-fidelity trajectory prediction is challenging especially when the horizon extends, where the intention
and inter-vehicle interaction have increasingly larger impacts on driving decisions. Evident from cognition
science (as discussed in Sec 1), when humans drive in dense traffic flows, their decision-making policy
naturally consist of hierarchies. Specifically, in the high-level hierarchy, human drivers intuitively search
for the proper slot to insert into. Thus we first adopt a generic representation about the environment
called the semantic graph (SG). In SG, dynamic insertion areas (DIA) are defined as the node of the graph,
among which the vehicles can decide to insert into or not. Such a representation is compact, efficient, and
generic, which captures sufficient information for intention determination and can be generically used across
different driving scenarios. Illustrated in the left part of Figure 2, the process of extracting semantic graph
representation Gt−Th,t from raw observations Ot−Th,t can be formally described:

Gt−Th,t = fSG(Ot−Th,t), (2)

where Gt−Th,t ∈ RM×Th×N1 denotes the extracted semantic graph, consisting of M DIAs from the past Th
step, each with N1 features. Ot−Th,t ∈ RM×Th×N2+K is the environment observation including K reference
lines, and M − 1 vehicles interacting with the ego carin the past Th steps, each with N2 features. Namely
there is M − 1 DIAs corresponding to the M − 1 interacting vehicles respectively, and there is another DIA
corresponding to the ego vehicle.fSG denotes the SG extraction function that selects cars interacting with
ego car, extracts DIAs, and constructs SG.

With the semantic graph, we then propose a semantic graph network (SGN), which takes the semantic graph
as input, inferences relationships and interactions among vehicles, and outputs two intention features: 1)the
probability for ego car to insert into each of the M DIAs wt ∈ RM ; 2) the distribution of the goal state in
the future horizonp(gt) ∈ RM×J for ego car and the interacting cars:

wt, p(gt) = fSGN (Gt−Th,t), (3)

where for each of the M vehicles, J parameters are used to describe the distribution of the goal state.

In the low-level hierarchy, our insight is that when humans drive, conditional on the goal state as the intention
signal, they conceptually track a reference trajectory via micro muscle actions. Thus we design a low-level
trajectory-generation policy to imitate such behavior. Besides the intention signal, the trajectory generation
procedure should also be subject to the instantaneous dynamics of the vehicles, which requires the encoding
of the historic state St−Th,t. Furthermore, the policy should also be able to express various motion patterns,
i.e. constant velocity and varying acceleration. To ensure dynamics continuity and motion diversity, we
use the trajectory encoder decoder network (TEDN)as the behavior-generation model, where the historic
dynamics are processed by the encoder and then used by the decoder to generate diverse maneuvers. With
model parameter θ, the task of TEDNis illustrated as in the lower part of Figure 2 and can be summarized
as:

Ŷt+1,t+Tf = fTEDN (St−Th,t, gt, θ), (4)

where St−Th,t ∈ RM×Th×N3 denotes the state of M vehicles in the past Th time step, each with N3 features.
Ŷt+1,t+Tf ∈ RM×Tf×N4 denotes the prediction for the M vehicles in the future Tf time steps, each with N4
features.

1This paper considers intersection and roundabout scenarios, which are relatively interaction-intense, while our method can
be easily applied to other scenarios like highway and parking lot.
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Up to this point, our model is capable of generating high-level intentions and low-level trajectories efficiently
and transferably. However, the trained model can only capture the motion pattern in an average sense,
while the nuances among individuals are hardly reflected. Besides, the behavior patterns also vary with
different scenarios. To capture these behavior nuances across different individuals and scenarios, we set up
an online adaptation module (OA), where a modified Extended Kalman Filter (MEFKλ) algorithm is used
to moderately adjust the model parameters for each agent based on its historic behaviors. Specifically, we
regard TEDNas a dynamic system and estimate its parameter θ by minimizing the error between ground-
truth trajectory Yt−τ,t and predicted trajectory Ŷt−τ,t in the past τ steps:

θt = fMEKFλ(θt−1,Yt−τ,t, Ŷt−τ,t), (5)

where Ŷt−τ,t ∈ RM×τ×N4 denotes the prediction for M vehicles from τ time step earlier to now, and
Ŷt−τ,t ∈ RM×τ×N4 denotes the ground-truth observation of the M vehicles in the past τ time steps, each
with N4 features.

The rest of this paper is organized as follows. In Sec 4, we introduce the high-level intention-identification
policy in detail, including the definition of semantic graph and the architecture of semantic graph network.
In Sec. 5, we describe the low-level behavior-generation policy, including the design of trajectory encoder
decoder network (TEDN)and the method of integrating the intention signal into the TEDN. In Sec. 6, we
introduce the formulation and the utilized algorithm (MEKFλ) of online adaptation module. Note that the
possible design choices of each module are systematically discussed in each corresponding section. In Sec. 7,
we conduct extensive empirical studies of our methods on real data, including a case study illustrating how
our method works in Sec. 7.2, an evaluation on the SGN in Sec 7.3, a brief summary of ablation studies
on TEDN and OA as a quick takeaway for the reader in Sec 7.4, and a comparison with other methods in
Sec 7.5. More detailed ablation studies on TEDN and OA to empirically find the optimal design choice can
be found in Appendix B C D.

Table 1: Input and output for each module in the proposed framework.

Module Input Output

SGN Semantic graph
(Dynamic insertion area)

Probability distribution of
future inserting area and goal state

TEDN Most likely goal state,
Historic dynamics Most likely future trajectory

OA
Historic observation,
Historic prediction,

Prior TEDNparameter

Updated TEDNparameter,
Adapted future trajectory

4 High-level intention-identification policy

Human behaviors are usually hierarchically divided for better efficiency and generalizability. In this section,
we introduce the high-level intention-identification policy in detail, including design insight, the definition
of semantic graph, and the architecture of semantic graph network (SGN).

In the high-level policy, humans usually take in low-dimension state feature to make decisions at a low
resolution (Dayan & Hinton, 1993; Botvinick et al., 2009; Niv, 2019). Specifically in the driving task, human
drivers first make a high-level decision on which area on the road is the most temporally and spatially suitable
to insert into. Such areas are usually formed by the slots between cars, traffic signs, and road geometries. To
imitate humans’ intention of inserting into slots in dense traffic, we first adopt the dynamic insertion area
(DIA) introduced in Hu et al. (2020) to define the slot formally. The extracted DIAs are then regarded as
nodes to form a semantic graph to construct a generic and compact representation of the scenario. We then
introduce the semantic graph network which generates agents’ intention by reasoning about their internal
relationships. The advantages of adopting dynamic insertion area are threefold: (1) It explicitly describes
humans’ insertion behavior considering the map, traffic regulations, and interaction information. (2) It filters
scene information and only extracts a compact set of vehicles and states crucial for the intention prediction
task. (3) DIA is a generic representation, which can be used across different scenarios.
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Figure 3: Dynamic insertion area (DIA) extraction and semantic graph (SG) construction procedure: when
other car’s lane reference line crosses ego car’s lane reference line, based on the conflict point, the DIAs are
extracted and regarded as nodes to construct the SG.

4.1 Semantic graph

The semantic graph utilizes dynamic insertion areas as basic nodes for a generic spatial-temporal represen-
tation of the environment. As shown in Figure 3, when extracting DIAs from the scene, we first identify
each agent’s reference line by Dynamic Time Warping algorithm (Berndt & Clifford, 1994). Next we iden-
tify interacting cars whose lane reference crosses with the ego car’s lane reference. Interaction essentially
happens among these cars and the ego car as they are driving into a common area (the conflict point)
(Markkula et al., 2020). Then DIAs are extracted by the definition: a dynamic area that can be inserted
or entered by ego agent on the road. Each DIA consists of a front boundary formed by a front agent, a
rear boundary formed by a rear agent, and two side boundaries formed by reference lines. Note that DIAs
can be formed by vehicles, traffic signs and road geometries. Specifically, the rear boundary of one DIA
is always a vehicle, but the front boundary of one DIA can be a vehicle, a traffic sign (e.g. stop sign and
yield sign), the end point of one lane reference line, or a conflict point of two lane reference lines.To capture
each DIA’s crucial information for humans’ decision, we extract four high-level features under the Frenet
coordinate for each DIA: X = (dlonf/r, vf/r, φf/r, l), where dlonf/r denotes longitudinal distance to the conflict
point of front or rear boundary; vf/r denotes the velocity of front or rearboundary; φf/r denotes the angle
of front or rearboundary; l = dlonr − dlonf measures the length of the DIA. These features X are defined as
the absolute features of one DIA. To facilitate relationship inference among DIAs, we also define the relative
feature X′for each DIA by aligning it with the reference DIA. Specifically, we choose the front DIA as the
reference DIA Xref , because the ego vehicle is implicitly represented by the rear boundary of the front DIA.
Each DIA’s relative feature X′ is then derived by subtracting the DIA’s absolute feature X by the reference
DIA’s absolute feature Xref .

With the extracted DIAs as nodes, the 3D spatial-temporal semantic graph Gt−Th→t = (N t−Th→t, Et−Th→t)
can be constructed, where t − Th → t denotes the time span from a previous time step t − Th to current
time step t with Th denoting the horizon. Such a representation differs from other methods in the criteria of
choosing interacting cars and the definition of node in the graph, which is discussed in detail in Appendix E.
The readers are referred to Hu et al. (2020) for more detailed description on the DIA properties and DIA
extraction algorithm.

4.2 Semantic graph network

As the high-level intention identification policy, the architecture of the SGN is shown in Figure 2. SGN
takes the spatial-temporal 3D semantic graph from historic time step t−Th to the current time step t as the
input, rather than only the spatial 2D semantic graph of the current time step t in previous work (Hu et al.,
2020). Such a change aims at capturing more temporal dynamics and interactions among vehicles. SGN
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then decides which area to insert into and generate the associated goal state distribution. For simplicity,
the mean of the goal state distribution is then delivered to a low-level policy for generating more human-like
behaviors. The impact of sampling in the goal state distribution is left for future work to discuss.

4.2.1 Feature encoding layer

In this layer, we essentially encode the absolute and relative features for each node from historic time step
t− Th to the current time step t:

hti = f1
rec(Xt

i), (6)

h′
t
i = f2

rec(X′
t
i), (7)

where Xt
i = [xt−Thi , ..., xti] and X′ti = [x′t−Thi , ..., x′

t
i] respectively denote the absolute features and relative

features of node i from time step t− Tf to current time t; hti and h′
t
i denote the hidden states encoded from

absolute and relative features respectively, namely the outputs of the recurrent function f1
rec and f2

rec. hti
and h′ti are further embedded for later use.

ĥti = f1
enc(hti), (8)

ĥ′
t
i = f2

enc(h′
t
i). (9)

4.2.2 Attention-based relationship reasoning layer

To infer relationships between any two nodes, inspired by Graph Attention Network (Veličković et al.,
2017), we design an attention-based relationship reasoning layer. In this layer, we exploit the soft-attention
mechanism (Luong et al., 2015; Bahdanau et al., 2014) to compute the node ni’s attention coefficients on
node nj :

atji = fatt(concat(ĥ′tj , ĥ′
t
i); Watt), (10)

where function fatt maps each concatenated two features into a scalar with the parameter Watt. The
attention coefficient is then normalized across all nodes N t at time step t:

αtji =
exp(atji)∑

n∈N t exp(atni)
. (11)

Eventually, node i’s relationships with all nodes in the graph (including node i itself) are derived by the
attention-weighted summation of all encoded relative features:

h̄ti =
∑
n∈N t

αtni � ĥ′
t
n, (12)

where � denote element-wise multiplication.

4.2.3 Intention generation layer

In the high-level policy, there are two intention features to be predicted for each vehicle. The first is which
DIA the vehicle will insert into. This is a classification problem and our model will output the probability of
inserting into each DIA wi. Another intention signal is the distribution of the goal point in a certain future
g.When predicting these intention features, in addition to DIAs’ relationships beween each other, each DIA’s
own features are also required. Thus we first concatenate and encode each node’s embedded absolute and
relative feature:

h̃ti = f3
enc(concat(ĥti, ĥ′

t
i)). (13)

Each DIA’s future evolution in the latent space is then derived by combining its relationships with other
nodes and its own features:

zti = f4
enc(concat(h̄ti, h̃ti)). (14)

10
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Thus the latent vector representing each DIA’s evolution is then used to predict the first intention feature,
the probability of one DIA being inserted by the ego vehicle:

wti = 1
1 + exp(f1

out(zti))
, (15)

which is then normalized across all DIAs in current time step such that
∑
i∈N t w

t
i = 1. The second inten-

tion feature, the goal state of each vehicle, is also need to guide the trajectory prediction in the low-level
policy.Thus we further use a Gaussian Mixture Model (GMM) to generate a probabilistic distribution over
each vehicle’s future goal state g in a certain horizon2:

f(gti |zti) = f(gti |f2
out(zti)), (16)

where the function f2
out maps the latent state zti to the parameters of GMM (i.e. mixing coefficient α, mean

µ, and covariance σ). The goal state g then can be retrieved by sampling in the GMM distribution.

4.2.4 Loss function

We not only expect the largest probability to be associated with the actual inserted area (Lclass), but also
the ground-truth goal state to achieve the highest probability in the output distribution (Lregress). Thus we
define the loss function as:

L = Lregress + βLclass

= −
∑
Gs

( ∑
i∈N s

log
(
p
(
ǧi|f2

out(zi)
))

+ β
∑
i∈N s

w̌ilog(wi)
)
,

(17)

where Gs denotes all the training graph samples; N s denotes all the nodes in one training graph sample; ǧi
and w̌i denote the ground-truth label for goal state and insertion probability of node ni. Though our goal
is to predict the ego vehicle’s future motion, we output the goal state for all interacting vehicles rather than
only the ego vehicle (as done in Hu et al. (2020)) to encourage sufficient reasoning of interactions, and also
realize data augmentation.

Note that though only the goal state gt is delivered and used in the downstream low-level behavior prediction,
the learning for insertion probability wt serves as an auxiliary task to stabilize the goal state learning
(Mirowski et al., 2016; Hasenclever et al., 2020). Defining goal state in the state space instead of the
latent space also offers us accessible labels to monitor the high-level policy learning and provides more
interpretability of the model. The detailed description of the layers can be found in Table 5 of the appendix,
and detailed empirical evaluations on the high-level policy can be found in Sec 7.3.

5 Low-level behavior-generation policy

Once the high-level policy determines where to go, the low-level policy is then responsible to achieve that
goal by processing information at a finer granularity. Thus in this section, we describe the low-level behavior-
generation policy, including the architecture of trajectory encoder decoder network (TEDN), the methods of
integrating the intention signal into the TEDN, and possible design choices which requires empirical studies
at the end of the section.

In the driving task, humans will generate a sequence of micro actions like steering and acceleration based on
vehicle dynamics to reach their goals. To generate future behaviors of arbitrary length and ensure sufficient
expressiveness, we use the trajectory encoder decoder network (TEDN)(Cho et al., 2014; Neubig, 2017) as the
low-level behavior-generation policy, given the historic information and intention signal from the high-level
policy. The low-level policy enjoys two benefits from the hierarchical design: 1) the learning is simplified as
the low-level policy only needs to care about vehicle’s own dynamics, while the consideration for interactions,
collision avoidance, road geometries are left to the high-level policy to take care (information hiding); 2)

2Note that each DIA’s rear bound is formed by one vehicle, so that the movement of the DIA and the rear vehicle is
correlated.Besides, in this paper, we use the relative traveled distance in future 3 seconds as the goal state representation.
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the policy is only optimized for reaching the goal (reward hiding), so that the effect of different design and
training tricks can be better verified explicitly; 3) the learned policy is tranferable and reusable in different
scenarios.

5.1 Trajectory encoder decoder network (TEDN)

The TEDNconsists of two GRU (graph recurrent unit) networks, namely the encoder and the decoder. At
any time step t, the encoder takes in the sequence of historic and current vehicle states St−Th,t = [st−Th , ...st],
and compresses all information into a context vector ct. The context vector is then fed into the decoder as
the initial hidden state to recursively generate future behaviors Ŷt+1,t+Tf = [ŷt+1, ..., ŷt+Tf ]. Specifically,
the decoder takes the vehicle’s current state as the initial input to generate the first-step behavior. In every
following step, the decoder takes the output value of the last step as the input to generate a new output.
Mathematically, the relationship among encoder, decoder, and context vector can be summarized:

ct = fenc(St−Th,t; θE), (18)

Ŷt+1,t+Tf = fdec(ct, st; θD), (19)

where the context vector ct is the last hidden state of the encoder and is also used as the decoder’s initial
hidden state; the current state st is fed as the decoder’s first-step input. In this paper, we use a single-layer
GRU and stack three dense layers on the decoder for stronger decoding capability.

The goal of TEDNis to minimize the error between the ground-truth trajectory and the generated trajectory.
Taking a deterministic approach, the loss function is simply designed to be:

L =
N∑
i=0
||Ŷi

t+1,t+Tf −Yi
t+1,t+Tf ||p, (20)

where N denotes the number of training trajectory samples. The objective can be measured in any lp norm,
while in this paper we consider l2 norm.

5.2 Integrating the intention signal

The TEDNcan be regarded as a motion generator given the historic dynamics, while the encoding for
interaction and map information is left to the high-level intention policy to handle. Such a hierarchical
policy simplifies the learning burden for each sub-policy and offers better interpretability. However, it
remains unknown what intention signals should be considered and how to integrate them into the low-level
policy.

In our case, we aim at generating high-fidelity human-like predictions in a certain future horizon. So we
naturally expect the intention signals to include the goal state gt in the future horizon to guide the TEDN’s
generation process. Besides, considering the fact that the same GRU cell is recursively utilized at each step,
the GRU cell is unaware of whether the current decoding lies in the earlier horizon or the later horizon.
Consequently, we introduce the current decoding step t′as another intention signal to help the decoder to
better track the goal state gt. Introducing these intention signals would then modify the decoder definition
from Eq (19):

Ŷt+1,t+Tf = fdec(ct, st, gt, t′; θD). (21)

There are various ways to incorporate the intention signal into the time series model. In general, when the
additional feature is a temporal series, it is intuitive to append it to the end of the original input feature
vector or output vector of the GRU (before the dense layers) as in Cheng et al. (2020; 2019). However,
when we have a non-temporal-series additional feature, directly appending it to the original feature vector
may create harder learning by polluting the temporal structure. A more delicate approach is to embed the

12



Under review as submission to TMLR

additional feature with a dense layer and add it to the hidden state of RNN at the first-step decoding, so
that the non-temporal signal is passed in the GRU cell state along the decoding sequence as in Karpathy
& Fei-Fei (2015); Vinyals et al. (2015). Besides, in our case, the goal state intention signal is defined as the
goal position in the physical world, so another approach is to directly transform the original input state to
the state relative to the goal state, such that the model is implicitly told to reach origin at the last step of
decoding.

Besides how to incorporate the intention signal, it also remains unclear what coordinate, features, and
representation should be employed for the best performance? Thus we conducted systematic experiments
to evaluate the effect of these factors. A brief summary of these experiments is provided in Sec 7.4, while
detailed evaluations can be found in Appendix B C. We empirically found that in the test data distribution,
the best performance goes: 1) in Frenetcoordinate, 2) including input features like velocity and yaw, 3)
applying representation trick like incremental prediction and position alignment, 4) appending intention
signal like goal state and decoding step into the input feature.

6 Online adaptation

In this section, we introduce the motivation, formulation and the utilized algorithm (MEKFλ) of online
adaptation module. Possible design choices are also discussed at the end of the section.

Though humans are usually assumed to be rational, the standards of "optimal plan” may still vary across
different agents or circumstances (Baker et al., 2006; 2007). Consequently, human behaviors are naturally
heterogeneous, stochastic, and time-varying. Different driving scenarios also inevitably create additional
behavior shifts. We thus utilize online adaptation to inject customized individual and scenario patterns into
the model. The key insight for online adaptation is that, though drivers cannot communicate directly, their
historic behaviors can be a vital clue for their driving patterns, based on which we can adapt parameters of
our model to better fit the individual or scenario.

6.1 Multi-step feedback adaptation formulation

The goal of online adaptation is to improve the quality of behavior prediction with feedback from the
historic ground-truth information. In our case, the policy is hierarchically divided, with two sub-policies to
be adapted. Due to the large delay in obtaining the long-term ground-truth intention label, we only consider
the online adaptation for the low-level behavior-prediction policy, while keeping the high-level intention-
identification policy intact. The intuition behind the online adaptation is thus that, though given the same
goal state, drivers still have diverse ways to achieve it. Capturing such customized patterns can improve the
human-likeness of generated behavior.

Formally, at time step t, online adaptation aims at exploiting local over-fitting in the historic observation to
improve individual behavior prediction quality:

min
θ
||Ŷt−τ,t −Yt−τ,t||p, (22)

where Yt−τ,tis the ground-truth observed trajectory in the historic τ steps; Ŷt−τ,tis the predicted trajectory
by the TEDNwith the model parameter θ in the historic τ steps. Assume that the model parameter changes
slowly, namely θ̇ ≈ 0. Then the model parameter that generates the best predictions in the future can be
approximated by the model parameter that best fits the historic ground-truth observation. Also note that
online adaptation can be iteratively executed for one agent once a new observation is received.

Practically, since online adaptation can be conducted as soon as at least one-step new observation is available,
the length of ground-truth observation τ dose not necessarily have to match the behavior generation horizon
Tf . Thus the online adaptation is indeed a multistep feedback strategy (Abuduweili & Liu, 2021). By defini-
tion, at time step t, we have the recent τ step ground-truth observation Yt−τ,t = [yt−τ+1, yt−τ+2, ..., yt]. From
the memory buffer we also have the generated behavior at t− τ steps earlier Ŷt−τ,t = [ŷt−τ+1, ŷt−τ+2, ..., ŷt].
Then the model parameter can be adapted based on the recent τ -step error:

θ̂t = fadapt(θ̂t−1, Ŷt−τ,t,Yt−τ,t), (23)
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Algorithm 1 τ step online adaptation with MEKFλ
Input: Offline trained TEDNnetwork with parameter θ, initial variance Qt and Rt for measurement noise
and process noise respectively, forgetting factor λ
Output: A sequence of predicted future behavior {Ŷt+1,t+Tf }Tt=1

1: for t = 1, 2, ..., T do
2: if t ≥ τ then
3: stack recent τ -step observations:
4: Yt−τ,t = [yt−τ+1, ..., yt]
5: stack recent τ -step generated trajectory:
6: Ŷt−τ,t = [ŷt−τ+1, ..., ŷt]
7: adapt model parameter via MEKFλ:
8: θ̂t = fMEKFλ(θt−1, Ŷt−τ,t,Yt−τ,t)
9: else

10: initialization: θ̂t = θ
11: end if
12: collect goal state gt from SGN and input features St−Th .
13: generate future behavior:
14: Ŷt+1,t+Tf = [ŷt+1, ...ŷt+Tf ] = fTEDN (St−Th , gt, θ̂t).
15: end for
16: return a sequence of predicted future behavior {Ŷt+1,t+Tf }Tt=1

where fadapt denotes the adaptation algorithm to be discussed in detail in Sec 6.2. The adapted model is
then used to generate behaviors in the future Tf steps from the current time t. It is worth noting that
here only τ -steps errors are utilized and we expect better performance in Tf steps. Nevertheless, behavior
prediction error usually grows exponentially as the horizon extends. When τ is too small, we may not obtain
enough information for the online adaptation to benefit behavior prediction in the whole future Tf step
horizon. Intuitively, the problem can be mitigated by using errors of more steps. However, there exists a
τ -step time lag in τ -step adaptation strategy. Too many steps may also create a big gap between historic
behavior and current behavior, so that the model adapted at an earlier time may be outdated and incapable of
tracking the current behavior pattern. Thus there is indeed a trade-off between obtaining more information
and maintaining behavior continuity when we increase observation steps τ . It also remains theoretically
unknown which layer is the best to adapt. Consequently, we propose a new set of metrics shown in Figure 4
to investigate such a trade-off in detail:

1. ADE 1: This metric evaluates the prediction error of the adapted steps on the historic trajectory
Yt−τ,t. Because these steps are the observation source used to conduct online adaptation, the metric
can verify whether the algorithm is working or not.

2. ADE 2: This metric evaluates the prediction error of the adaptation steps on the current trajectory,
which aims at verifying how the time lag is influencing the adaptation. Also, this method can be
used to verify whether adaptation could improve short-term behavior prediction.

3. ADE 3: This metric evaluates the prediction error of the whole historic trajectory, which shows if
we have gotten enough information on the behavior pattern.

4. ADE 4: This metric evaluates the prediction performance of the whole current trajectory, which
shows whether or not the adaptation based on historic information can help current long-term
behavior prediction.

The effect of utilizing different steps’ observation is briefly discussed in 7.4 and analysed in detail in Ap-
pendix D, where we empirically found that in the tested data distribution, the best performance goes when
2 or 3 steps of observation are used.

6.2 Robust nonlinear adaptation algorithms
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Historic Trajectory
Y t – τ, t – τ+Tf

ADE 1: Error on Y t - τ, t

ADE 4: Error on Y t+1, t+Tf

Current Trajectory
Y t+1, t+Tf

Current Time 
t

Adapt Steps
τ

Historic Time 
t-τ

ADE 2: Error on Y t+1, t + τ

ADE 3: Error on Y t – τ, t – τ+Tf

Figure 4: Figure updated.An illustration of online
adaptation and 4 metrics for performance analysis. At
time step t, the model parameters can be adapted by
minimizing prediction error of the trajectory in past τ
steps Yt−τ,t. The adapted parameter is then used to
generate prediction Yt on current time t. A new set of
4 metrics is proposed to analyze the adaptation perfor-
mance. ADE 1 can verify how the adaptation works
on the source trajectory Yt−τ,t. ADE 2 can verify
whether adaptation can benefit short-term prediction
in the presence of behavior gap between earlier time
and current time. ADE 3 can verify whether we have
obtained enough information from the source trajec-
tory Yt−τ,t. ADE 4 verifies whether adaptation can
benefit the long-term prediction in the current time.

There are many online adaptation approaches, such
as stochastic gradient descent (SGD) (Bhasin et al.,
2012), recursive least square parameter adaptation
algorithm (RLS-PAA) (Ljung & Priouret, 1991). In
this paper, we choose the modified extended Kalman
filter with forgetting factors (MEKFλ) (Abuduweili
& Liu, 2021) as the adaptation algorithm due to its
robustness to data noises and efficient use of second-
order information. Compared to the previous work
(Abuduweili & Liu, 2021) which considers predict-
ing the human motion (wrist trajectory), we use the
method for driving behavior prediction in dense and
interactive traffic scenarios, a more complex prob-
lem.

The MEKFλ regards the adaptation of a neural net-
work as a parameter estimation process of a nonlin-
ear system with noise:

Yt+1,t+Tf = fTEDN (θ̂t,St−Th,t) + ut (24)
θ̂t = θ̂t−1 + ωt (25)

where Yt+1,t+Tf is the observation of the ground-
truth trajectory; fTEDN (θ̂t,St) = Ŷt+1,t+Tf is the
generated behavior by the TEDNpolicy fTEDN with
the input St at time step t; θ̂t is the estimate of
the model parameter of the TEDN; the measure-
ment noise ut ∼ N (0,Rt) and the process noise
ωt ∼ N (0,Qt) are assumed to be Gaussian with
zero mean and white noise. Since the correlation
among noises are unknown, it is reasonable to as-
sume noises are identical and independent of each other. For simplicity, we assume Qt = σqI and Rt = σrI
where σq > 0 and σr > 0. Applying MEKFλ on the above dynamic equations, we obtain the following
equations to update the estimate of the model parameter based on the prediction error in the historic τ time
steps:

θ̂t = θ̂t−1 + Kt · (Yt−τ,t − Ŷt−τ,t) (26)

Kt = Pt−1 ·HT
t · (Ht ·Pt−1 ·HT

t + Rt)−1 (27)

Pt = λ−1(Pt −Kt ·Ht ·Pt−1 + Qt) (28)

where Kt is the Kalman gain. Pt is a matrix representing the uncertainty in the estimates of the parameter θ
of the model; λ is the forgetting factor to discount old measurements; Ht is the gradient matrix by linearizing
the network:

Ht = ∂fTEDN (θ̂t−1,St−1,t−1−Th)
∂θ̂t−1

=
∂Ŷt−1,,t−1+Tf

∂θ̂t−1
(29)

In implementation, we need to specify initial conditions θ0 and P0. θ0 is initialized as the offline trained
model parameter. For P0, due to absence of prior knowledge on the initial model parameter uncertainty,
we simply set it as an identity matrix P0 = piI with pi > 0. The whole process of the online adaptation
is summarized in Algorithm 1, which enables us to adapt the parameter of any layer in the model. The
performance of adapting different layers is briefly discussed in Sec 7.4 and analysed in detail in Appendix D,
where we empirically found that in the tested data distribution, the best performance goes when the last
layer of the network is adapted.
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7 Experiment

By detailed experiments on real data, we aim at answering the following key questions:

1. In the high-level intention identification policy (SGN), what features in the input and output should
be considered? What graph network architecture works the best?

2. In the low-level behavior prediction policy (TEDN), what coordinates and features in the input
and output work the best? Whether commonly used representation tricks and mechanisms in the
encoder decoder architecture would improve performance?

3. How to integrate the intention signal into the TEDN? How much can the intention signal improve
the prediction accuracy?

4. How to systematically evaluate the performance of online adaptation (OA)? How many steps of
observation are the best to adapt? What is the best layer in the network to adapt?

5. How does the whole proposed method perform compared to other methods in terms of prediction
accuracy, transferability and adaptability?

In this section, we first provide a case study illustrating how our method works. To answer the first four
questions above, we then provide an evaluation on the SGN, a brief summary on the evaluations TEDNand
OA, and a comparison with other methods for the 5-th question. For detailed evaluations and analysis on
TEDNand OA, we refer interested readers to the Appendix B C D respectively.

7.1 Experiment setting

Dataset We verified our proposed method with real human driving data from the INTERACTION dataset
(Zhan et al., 2019), the InD dataset (Bock et al., 2020), and the Argoverse 1 dataset(Chang et al., 2019).
Two scenarios from the INTERACTION dataset were utilized: a 5-way unsignalized intersection (Figure 6)
and an 8-way roundabout (Figure 7). The intersection scenario was used to train our policy and evaluate
the performance of behavior prediction. The roundabout scenario was used to evaluate the transferability
of our method. In the intersection scenario, we had 19084 data points, which were split to 80% for training
data and 20% for validation data. In the roundabout scenario, there were 9711 data points. Another
4-way unsignalized intersection scenario from the InD Dataset is also included to verify transferability,
which consists of 12837 data points. Adaptability is evaluated on all above scenarios. Besides, Argoverse
dataset is also used to compare our method with prior methods, and we considered 9213 data points, where
80% come from the training set and 20% come for the validation set. Road reference paths and traffic
regulations were extracted from the provided high-definition map. The online adaptation was conducted on
the INTERACTION and InD dataset with access to multiple trajectory segments of one agent, and online
adaptation was not conducted on the Argoverse dataset as only on trajectory segment is provided for one
vehicle.

Implementation Details In our experiments, we choose the historic time steps Th as 10 and future time
step Tf as 30, which means we utilized historic information in the past 1 second to generate future behavior
in the next 3 seconds. In addition to the long-term behavior prediction evaluation in the whole future
30 steps, we also evaluated short-term behavior prediction in the future 3 steps, as short-term behavior
is safety-critical especially in close-distance interactions. The method was implemented in Pytorch on a
desktop computer with an Intel Core i7 9th Gen CPU and a NVIDIA RTX 2060 GPU. For each model,
we performed optimizations with Adam and sweep over more than 20 combinations of hyperparameters to
select the best one including batch size, hidden dimension, learning rate, dropout rate, etc. We trained each
method with three different seeds and displayed the best performance. The distributional metrics ± is used
to denote the standard deviations of the prediction errors over the data.
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Figure 5: Figure updated.Case 1 - an illustration of how our method works during one interaction. Our
methods can predict which DIA ego car will insert into, and the future trajectories of ego car and its
interacting cars. Black car denotes the ego car; bright-color cars denote vehicles interacting with ego car,
based on which the DIAs are extracted; transparent gray cars denote non-interacting vehicles.Each DIA
is marked with dashed-line box and one node. The same color is used for one DIA’s node, notation, and
the DIA’s rear-bound vehicle. The graphical relationships at one scene is displayed underneath each scene.
The darker the DIA is, the more likely the ego car is going to insert into that area. The ground-truth and
predicted most likely future trajectory of the ego vehicle and its interacting vehicles are displayed. In this
case, DIA A1 denotes the slot between ego car and the conflict point; DIA A2 denotes the slot between
orange car and the conflict point; DIA A3 denotes the slot between green car and the conflict point; DIA A4
denotes the slot between the blue car and green car; DIA A5 denotes the slot between yellow car and blue
car. During this interaction, the ego car first yielded the green car in (a)(b), and then passed before other
cars (c)(d).
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Figure 6: Figure updated.Case 2 - an illustration of how our method works during a sequence of interactions.
When ego car crosses the whole scene, our method can constantly identify interactions and extract interacting
cars. The ego car first interacted with the green car in (a), then with the purple car in (b), then the green
and orange car in (c)(d).

7.2 Case study

We first illustrate how our method works with three examples in Figure 5-7: 1) how ego vehicle interacted
with other vehicles to pass a common conflict point (one interaction); 2) how the ego vehicle interacted
with other vehicles to pass a sequence of conflict points (a sequence of interactions); 3) how ego vehicle
interacted with other vehicles when it is zero-shot transferred to the roundabout scenario without retraining
(scenario-transferable interactions).
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Figure 7: Figure updated.Case 3 - an illustration of how our method is directly transferred to the roundabout
scenario without learning a new set of parameters, after it is trained in the intersection scenario. The ego
car first yielded the green car in (a)(b), then passed before the yellow cars (c)(d)(e)(f). Note that humans’
hesitating and intention switch in this period was captured by our method, where the ego vehicle first decided
to yield the yellow car in (c), then changed it mind in (d), and finally passed before the yellow car in (e)(f).
The ego car then continued to run in (g), and left the roundabout before the green car in (h).

7.2.1 Case 1: one interaction

As in Figure 5, we first show how our method works in one interaction. Once we chose the ego vehicle,
we extracted cars whose reference lines conflict with the ego car’s reference line. These cars were regarded
as the interacting vehicles and corresponding DIAs were extracted. Our method would then predict the
intention and future trajectory of the ego vehicle and its interacting vehicles. In Figure 5, we drew the ego
vehicle with black color, the interacting vehicles with bright colors, and the non-interacting vehicles with
transparent gray color. The darker (less transparent) a DIA is, the more likely the ego vehicle would insert
into that DIA. The ground-truth and predicted future trajectories of the ego vehicle and the interacting
vehicles are also displayed.

As in Figure 5(a)(b), the black ego car initially had 5 areas to choose to insert into: A1, A2, A3, A4, A5. The
ego vehicle braked so our method predicted that it would insert into its front DIA A1, which means yielding
to other vehicles. In Figure 5(c), the green vehicle behind DIA A3 droveaway and the ego vehicle accelerated,
so our method predicted ego vehicle would insert into DIA A2, which means passing before other vehicles.
In Figure 5 (d) the ego vehicle crossed the conflict point and finished this interaction.

7.2.2 Case 2: A sequence of interactions

We illustrate how one vehicle crossed the intersection with a sequence of interactions in Figure 6. Specifically,
the ego vehicle initially interacted with the upper green vehicle as in Figure 6(a). As the black ego vehicle
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was running at a high speed, our method predicted it would insert into DIA A2 and pass before the green
vehicle. After finishing the first interaction, the ego vehicle then interacted with the purple vehicle below as
in Figure 6(b). Our method predicted the ego vehicle would continue to pass and insert into the DIA A3.
Later in Figure 6(c), the ego vehicle’s reference path conflicted with that of the green and orange car. The
ego vehicle first decelerated and our method predicted it would insert into its front DIA A1 and yield other
cars. In Figure 6(d), after the green car droveaway, the ego vehicle then accelerated and inserted into DIA
A5 to pass ahead of the orange car.

7.2.3 Case 3: Scenario-transferable interactions

In Figure 7, we show that after our policy was trained in the intersection scenario, it can be zero-shot
transferred to the roundabout scenario. In Figure 7(a), the ego vehicle just entered the roundabout with
some speed, so it was predicted to be equally likely to insert into the three DIAs A1, A2, A3. In Figure 7(b),
the ego vehicle decelerated, so it was predicted to yield other vehicles and insert into its front DIA A1. In
Figure 7(c), the green car moved away but the ego vehicle still remained at a low speed, leading to the
prediction that the ego car would continue to yield other vehicles. But later we witnessed a change of plan.
In Figure 7(d), the ego vehicle accelerated so it became equally likely to insert into either DIA A1 or DIA
A3. In Figure 7(e) the ego vehicle gained a high speed, and it was predicted to pass before the yellow car by
inserting into DIA A3. After finishing the first interaction in Figure 7(f), the ego vehicle continued to run
while there were no other interacting vehicles as in Figure 7(g). In Figure 7(h), one green car entered the
roundabout and the ego vehicle decided to pass before it by inserting into DIA A5

7.3 Ablation studies on the high-level policy (SGN)

In the high-level intention-identification task, we evaluated how well out method is able to predict future
intentions by comparing the performance of our semantic graph network (SGN) with that of the other six
approaches/variants. Three of them are set to explore the effect of different features and representations in
the input and output. And the rest of them are the variants of the proposed network, which explored the
effect of frequently used network architectures and tricks.

1. No-Temporal: This method does not take historic information into account, namely only considering
the information of the current time step t.

2. GAT: This method uses the absolute feature to calculate relationships among nodes instead of using
the relative feature. This method corresponds to the original graph attention network (Veličković
et al., 2017).

3. Single-Agent: This method only considers the loss of ego vehicle’s intention prediction, and does not
consider the intention prediction for other interactive vehicles.

4. No-Class-Loss: This method only considers the regress loss for goal state prediction (Lregress), and
does not consider the class loss for insertion area prediction (Lclass). Refer to Eq. 17 for detailed
definition of the two loss terms. This method is designed to evaluate the effectiveness of incorporating
insertion area prediction as a auxiliary task for goal point prediction.

5. Goal-Pt-Sample: This method samples in the predicted goal point distribution to get the goal point,
in contrast to our method where we choose the mean of the distribution as the goal point.

6. Two-Layer-Graph: This method has a two-layer graph to conduct information embedding, namely
exploits the graph aggregations twice (Sanchez-Gonzalez et al., 2018).

7. Multi-Head: This method employs the multi-head attention mechanism to stabilize learning
(Veličković et al., 2017), namely operating the relationship reasoning multiple times in parallel
independently, and concatenates all features as the final aggregated feature. In our case, we set the
head number as 3.
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Table 2: The statistical evaluation of the high-level intention prediction policy on two scenarios from the
INTERACTION dataset. We compared our method with the other six approaches/variants to explore the
effect of different representations, features, and architectures. Note that all the models are trained in the
intersection scenario and then directly transferred and tested on the roundabout scenario without further
training. Our method outperformed all other methods in the goal state prediction (ADE).

Representation/Loss Ablation Study Architecture Ablation Study
Scenario Measure No-Temporal GAT Single-Agent No-Class-Loss Goal Pt Sample Two-Layer-Graph Multi-Head Seq-Graph Ours

Intersection Acc (%) 87.44 ± 33.13 91.93 ± 27.05 88.8 ± 31.53 75.64 ± 42.92 90.50 ± 28.70 90.15 ± 29.79 90.00 ± 30.00 89.8 ± 30.24 90.50 ± 28.70
ADE (m) 1.59 ± 1.67 1.18 ± 1.51 1.04 ± 0.90 1.00 ± 0.76 1.31 ± 1.462 0.98 ± 0.93 0.97 ± 0.75 1.33 ± 1.91 0.94 ± 0.73

Roundabout
(Transfer)

Acc (%) 93.92 ± 23.88 91.21 ± 28.12 92.20 ± 26.75 83.53 ± 37.08 90.70 ± 29.08 90.54 ± 29.26 92.10 ± 26.96 91.60 ± 27.62 90.70 ± 29.08
ADE (m) 3.62 ± 6.72 2.70 ± 5.16 1.88 ± 2.48 1.79 ± 1.62 1.97 ± 2.70 1.87 ± 2.51 2.79 ± 20.78 3.10 ± 3.10 1.70 ± 1.99

8. Seq-Graph: This method first conducts relationship reasoning for the graph at each time step and
then feeds the sequence of aggregated graphs into RNN for temporal processing. As a comparison,
our method first embeds each node’s sequence of historic features with RNN and then conduct
relationship reasoning using each node’s hidden state from RNN at the current time step.

The models were trained and tested on the intersection scenario from the INTERACTION dataset. The
trained models were also directly tested on the roundabout scenario from the INTERACTION dataset to
evaluate the zero-shot transferability. The inserted area prediction accuracy was evaluated by the multi-class
classification accuracy. The performance of goal state prediction was evaluated by the absolute distance error
(ADE) between the generated goal state and ground-truth state.

7.3.1 Inserted area prediction accuracy

On the inserted area prediction accuracy shown in Table 2, we first provide some overview analysis. Except for
No-Class-Loss which does not optimize the inserted area prediction,all other models achieved close accuracy of
around 90%, generally benefiting from the representation of the semantic graph. Another overall observation
is that most models’ transferability performance in the roundabout scenario surprisingly surpassed the
performance on the intersection scenario on which the models were originally trained. This is because the
intersection is a harder scenario than the roundabout, as the vehicles need to interact with many vehicles from
different directions simultaneously when they are entering the intersection, while vehicles in the roundabout
only need to interact with the cars from nearby branches.

We then show some detailed analysis. The No-Class-Loss method had the lowest accuracy and largest
variance on both the intersection and the roundabout scenario, since it does not optimize the classification
loss for area insertion prediction.The No-Temporal method performed badly in the intersection scenario
(87.44±22.13%). This is because it lacks temporal information, which could otherwise efficiently help to
identify which DIA to insert into by considering historic speed and acceleration. What is interesting is that
the No-Temporal method contrarily achieved the highest insertion accuracy (93.92±23.88) in the round-
about scenario. One possible explanation is that, and the absence of temporal information constrained
the model’s capability and thus avoided over-fit, so the No-Temporal method has the best transferability
performance. Such hypothesis also helps to explain: 1) why the Two-Layer-Graph method had the lowest
insertion accuracy in the roundabout scenario (90.54±29.26%), as twice aggregations make the model brittle
to over-specification; 2) why the GAT had the highest performance while our method followed as the second
- since the inserted area prediction is a relatively simple classification task, while absolute features may be
enough for the model to learn, additional relative features may provide redundant information and make the
learning more difficult.

7.3.2 Goal state prediction error

The goal state prediction is main task as it is directly delivered to low-level policy as the intention signal to
guide the behavior generation process. On the other hand, it is much harder than the insertion area prediction
task as it requires more delicate information extraction and inference. Consequently, we can see that the
performance of different models varied a lot as shown in Table 2. Also, the models’ performance significantly
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(a) On Intersection Scenario (Trained) (b) On Roundabout Scenario (Transferred)

Without Intention Error Reduced With Intention Error Raised With IntentionConstant Velocity Model

Figure 8: Figure updatedPrediction error (m) of each step on two scenarios of the INTERACTION dataset.
The prediction error grew exponentially as horizon extends. The intention signal effectively suppressed the
error growth, especially in the long term. The model is trained and validated on the intersection scenario,
and is then directly transferred to the roundabout scenario.

down-graded when they were directly transferred to the roundabout scenario, as the two scenarios have
different geometries and different driving patterns such as speed and steering.

Specifically, we have several observations: 1) our method achieved the lowest error in both intersection
and roundabout scenarios; 2) the No-Temporal method was the worst in both intersection and roundabout
scenarios, due to the lack of temporal information; 3) the GAT method generated much higher errors than
our method especially in the roundabout scenario (58%), which shows the necessity of using the relative
features in relationship reasoning; 4) our method outperformed the Single-Agent method, which implies the
advantages of data augmentation and encouraging interaction inference by taking all vehicles’ generated
goal state into the loss function. 5) our method outperformed the No-Class-Loss method, indicating that
incorporating the area prediction task as an auxiliary task can indeed help with the goal point prediction;6)
our method outperformed the Goal-Pt-Sample method, indicating the advantage of choosing the mean of
the predicted distribution as the goal point for trajectory prediction.7) The Two-Layer-Graph method was
the closest one to our method, though it came with serious over-fitting, for which we conducted more
hyperparameter tuning to find a proper dropout value; 8) The Multi-Head method achieved the second-best
accuracy in the intersection scenario but much worse performance in the roundabout scenario, which could
be possibly improved by more delicate searching for a proper head number; 9) The Seq-Graph method was
the second-worst in both the intersection and the roundabout scenario, which may imply that the complex
encoding for past interactions could hardly help prediction but indeed makes the learning harder.

With the results above, a summary of conclusions on the intention prediction policy is that it is necessary
to consider temporal information, use the relative feature for relationship reasoning, predict the intention
of all agents in the scene, and incorporate the area prediction as an auxiliary task. On the contrary, the
architectures like Two-Layer-Graph, Multi-Head mechanism, and Seq-Graph do not help here. .

7.4 A summary of ablation studies on the low-level policy (END) and the online adaptation (OA)

AS shown in Table 3, we briefly summarize all ablation studies conducted to evaluate the low-level policy
(TEDN) and the online adaptation as a quick takeaway for the reader. A detailed version of these ablation
studies can be found in Appendix B C D.The model is trained and validated on the intersection scenario
from the INTERACTION dataset, and is then directly transfered to a roundabout scenario (INTERACTION
dataset) and one intersection scenario (InD dataset).

Evaluation on TEDN Starting from a baseline TEDNwhich takes in the historic position and predicts
future trajectory, we first explored the effect of coordinate, features, and representations in TEDN. By
transforming the coordinate from Cartesian to Frenet, the ADE in 3 seconds is reduced by 42%, 76%, and
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Table 3: A brief summary of ablation studies conducted to develop our method. We incrementally investi-
gated: the effect of the coordinate, feature, and representation in TEDN; the benefit of intention signal to
prediction; the performance of online adaptation. We evaluated the performance by calculating ADE (m)
and FDE (m) between predicted trajectory and ground-truth trajectory under different horizons. The model
is trained and validated on the intersection scenario from the INTERACTION dataset„ and is then directly
transfered to a roundabout scenario (INTERACTION dataset) and one intersection scenario (InD dataset).

TEDNExploration Intention Integration Online Adaptation
Scenario
Dataset Metric Horizon Constant Velocity

Model Baseline Coordinate Feature Representation Goal State
Signal

Time
Signal Ours

Intersection
INTERACTION

ADE 3s 1.279 ± 1.123 1.525 ± 1.189 0.884 ± 0.594 0.629 ± 0.397 0.407 ± 0.328 0.302 ± 0.251 0.305 ± 0.253 0.301 ± 0.250
0.3s 0.016 ± 0.022 0.346 ± 0.268 0.409 ± 0.245 0.319 ± 0.224 0.027 ± 0.020 0.021 ± 0.017 0.029 ± 0.020 0.023 ± 0.014

FDE 3s 3.591 ± 3.157 2.960 ± 2.708 1.850 ± 1.684 1.416 ± 1.175 1.279 ± 1.130 0.890 ± 0.831 0.876 ± 0.835 0.877 ± 0.830
0.3s 0.032 ± 0.039 0.419 ± 0.338 0.423 ± 0.245 0.324 ± 0.229 0.040 ± 0.034 0.036 ± 0.025 0.043 ± 0.032 0.032 ± 0.024

Roundabout
INTERACTION

(Transfer)

ADE 3s 1.508 ± 1.157 12.315 ± 5.961 2.924 ± 4.695 2.201 ± 3.999 0.941 ± 0.778 0.845 ± 0.564 0.815 ± 0.526 0.815 ± 0.526
0.3s 0.022 ± 0.018 6.164 ± 5.258 1.572 ± 4.029 1.543 ± 3.957 0.062 ± 0.071 0.060 ± 0.060 0.073 ± 0.065 0.052 ± 0.068

FDE 3s 4.230 ± 3.203 19.262 ± 7.761 5.446 ± 7.157 4.123 ± 5.227 2.494 ± 2.070 2.081 ± 1.440 2.038 ± 1.409 2.041 ± 1.409
0.3s 0.044 ± 0.035 6.374 ± 5.316 1.546 ± 3.894 1.544 ± 3.944 0.088 ± 0.104 0.091 ± 0.101 0.108 ± 0.107 0.079 ± 0.114

Intersection
InD

(Transfer)

ADE 3s 1.959 ± 1.248 10.482 ± 3.906 2.758 ± 3.119 2.589 ± 1.838 1.264 ± 1.264 1.038 ± 0.543 1.029 ± 0.670 0.914 ± 0.537
0.3s 0.030 ± 0.019 2.554 ± 2.612 1.239 ± 1.239 1.081 ± 0.682 0.078 ± 0.073 0.119 ± 0.119 0.074 ± 0.071 0.057 ± 0.052

FDE 3s 5.477 ± 3.552 19.598 ± 8.165 5.225 ± 3.665 4.986 ± 3.700 3.359 ± 2.316 2.503 ± 1.670 2.480 ± 1.477 2.361 ± 1.473
0.3s 0.058 ± 0.038 2.851 ± 2.437 1.200 ± 0.625 1.220 ± 1.005 0.107 ± 0.107 0.180 ± 0.141 0.113 ± 0.112 0.080 ± 0.086

75% in the three scenarios respectively.By adding features such as speed and yaw, we reduced the ADE
in 3 seconds by 28%, 24%, and 6% in the three scenarios. In the representation aspect, we conducted
incremental prediction and position alignment. The position alignment trick aligns the positions of each step
to the vehicle’s current position (Park et al., 2018). Specifically, when considering prediction of a trajectory,
the coordinate of all waypoints on the trajectory will be subtracted by the coordinate of the waypoint in
the current step. The incremental prediction trick predicts the relative position compared to the position
of the last step (displacement of each step), rather than directly predicting the absolute position (Li et al.,
2019).Such design not only effectively reduced the ADE in 3 seconds by 35%, 57%, and 51% in the three
scenarios, but also significantly reduced the ADE in 0.3 seconds by 91%, 95%, and 92% with better vehicle
dynamic continuity. We can consequently conclude that the information of speed and yaw, along with the
incremental prediction and position alignment, are vital for the prediction performance in encoder decoder
architecture.

Next, we integrated intention signals into the TEDN. According to the Table 3, integrating the goal state
signal significantly reduced the ADE in 3 seconds by 25%, 10% and 17% in the three scenarios. The time
signal barely benefitted the prediction in the intersection scenario, but it reduced the ADE in 3 seconds of
the roundabout scenario by 3.5%. In Figure 8, we also displayed the error by step in the future 30 prediction
steps on two scenarios. We can clearly see that as the prediction horizon extended, the prediction error
grew exponentially. But the intention signal effectively suppressed the error growth, especially in the long
horizon. Such results effectively demonstrated the necessity of intention integration.

Evaluation on OA Finally, the online adaptation was implemented. As shown in Table 3, the online
adaptation barely improved the long-term prediction in the next 3 seconds on the INTERACTION dataset,
but improved the long-term prediction in the next 3 seconds by 11% on the InD dataset. One explanation
could be that the performance of online adaptation would depend on the data distribution. When the data
lies in different distribution, there will be more space for the adaptation.Besides, the short-term prediction
in 0.3 seconds was improved by 20%, 28%, and 22% in the three scenarios respectively. Such improvement
is valuable especially in close-distance prediction, where a small prediction shift can make a big difference in
terms of safety. Besides, the improvement in long-term prediction could also provide better vehicle dynamic
continuity in the predicted trajectory.

Besides, as discussed in Sec 6.1, there are also multiple design choices for the online adaptation. For example,
the adaptation steps τ pose a problem of trade-off between obtaining more information and maintaining
temporal behavior continuity when we increase observation steps τ . It also remains unknown which layer
of parameter is the best to adapt. To empirically investigate these problems, as in Figure 9, we show
the percentage of short-term prediction error (ADE 2) reduced or raised after adaptation, under different
adaptation step τ , different adapted parameters, and two different scenarios from the INTERACTION
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dataset. We have several observations: 1) as the adaptation step τ increased, the percentage of error
reduction increased and reached the peak at 2 or 3 steps. But after that the help of adaptation decayed.
After 7 steps, the online adaptation does not help because too many steps leads to a big gap between historic
behavior and current behavior, so that the model adapted at an earlier time may be outdated and incapable
of tracking the current behavior pattern; 2) Intuitively, the adaptation worked better in the roundabout
scenario, compared to the intersection scenario, as the model was trained on the intersection scenario and
directly transferred to the roundabout scenario. 3) The best adaptation performance is usually achieved by
adapting the layer WF

3 , which is the last layer of the FC network in the decoder.

7.5 Comparison with other methods
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Figure 9: Percentage of short-term prediction error
(ADE 2) reduced or raised after online adaptation,
under 1) different adaptation step τ ; 2) different layer
of parameters adapted; 2) different scenarios from the
INTERACTION dataset. Three conclusions from the
results: 1) online adaptation works the best around the
adaptation step of 2 or 3; 2) prediction accuracy was
improved by a higher percentage in the roundabout
scenario (transferred) than in the intersection scenario
(trained); 3) the best adaptation performance is ob-
tained usually by adapting WF

3 , the last layer of the
FC network in the decoder.

In this section, as in Table 4, we compared our
method with other methods in terms of behavior
prediction accuracy, transferability, and adaptabil-
ity in different horizons and scenarios. All models
are trained and validated in the intersection scenario
from INTERACTION dataset, and then zero-shot
transferred to the unseen roundabout scenario from
INTERACTION dataset and the intersection sce-
nario from InD datset to evaluate the transferability.
Besides, we also trained the models and evaluated
them on the Argoverse dataset.

Rule-based methods We first considered three
rule-based methods. The IDM (Treiber et al., 2000)
method basically follows its front car on the same
reference path. The FSM-based (Zhang et al., 2017)
method additionally considers cars on the other ref-
erence paths that have conflicts with the ego car,
and follows the closest front car using the IDM
model. When deciding the closest front car, the
FSM-D method calculates each car’s distance to the
conflict point and chooses the closest one. The FSM-
T method first calculates each vehicle’s time needed
to reach the conflict point by assuming they are run-
ning at a constant speed, and then chooses the clos-
est one. We set the parameter of the IDM model
as the values identified in urban driving situations
(Liebner et al., 2012). As shown in Table 4, the
rule-based method did not work well in the predic-
tion task. Several reasons may be possible. First is
that intersections, roundabouts and urban scenar-
ios are really complicated with intense multi-agent
interactions. Simple rules can hardly capture such
complex behaviors while systematic rules are hard
to manually design. A second reason is that, the
parameter in the driving model is hard to specify as
it is also scenario-and-individual-specific.

Learning-based methods We later evaluated sev-
eral learning-based methods. Vallina LSTM (V-
LSTM) adopts encoder decoder architecture with
LSTM cells, which processes historic trajectories
and generate future trajectory for each agent. Note
that the representation tricks of position alignmentand incremental prediction is also applied. To consider
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Table 4: Performance comparison with other methods. We evaluated the performance by calculating ADE
(m) and FDE (m) between predicted trajectory and ground-truth trajectory in different horizons and scenar-
ios/datasets. All models are trained and validated in the intersection scenario from INTERACTION dataset,
and then zero-shot transferred to the unseen roundabout scenario from INTERACTION dataset and the
intersection scenario from InD datset to evaluate the transferability. Besides, we also trained the models
and evaluated them on the Argoverse dataset, where adaptation was not conducted as only one trajectory
segment is provided for one agent.

Rule-Based Method Learning-Based Method
Scenario
Dataset Metric Horizon IDM FSM-D FSM-T V-LSTM S-LSTM S-GAN Grip++ Trajectron++ HATN w/o

adaptation HATN (Ours)

Intersection
INTERACTION

ADE 3s 2.847 ± 1.963 3.181 ± 2.403 3.372 ± 2.495 1.315 ± 1.177 1.277 ± 1.295 1.372 ± 1.221 0.949 ± 0.670 0.510 ± 0.440 0.305 ± 0.253 0.301 ± 0.250
0.3s 0.042 ± 0.014 0.051 ± 0.034 0.054 ± 0.034 0.073 ± 0.006 0.047 ± 0.003 0.073 ± 0.004 0.024 ± 0.002 0.009 ± 0.008 0.029 ± 0.020 0.023 ± 0.014

FDE 3s 7.655 ± 5.536 8.709 ± 7.081 9.011 ± 7.192 3.386 ± 2.229 3.160 ± 2.387 3.469 ± 2.265 2.646 ± 5.773 1.617 ± 1.517 0.876 ± 0.835 0.877 ± 0.830
0.3s 0.091 ± 0.033 0.103 ± 0.059 0.111 ± 0.059 0.140 ± 0.003 0.112 ± 0.001 0.153 ± 0.002 0.037 ± 0.007 0.014 ± 0.013 0.043 ± 0.032 0.032 ± 0.024

Roundabout
INTERACTION

(Transfer)

ADE 3s 5.271 ± 1.950 4.637 ± 1.448 4.824 ± 1.509 2.202 ± 4.295 2.459 ± 4.675 2.273 ± 4.448 1.543 ± 1.021 1.250 ± 0.849 0.815 ± 0.526 0.815 ± 0.526
0.3s 0.126 ± 0.062 0.093 ± 0.070 0.101 ± 0.004 0.061 ± 0.001 0.099 ± 0.002 0.090 ± 0.003 0.034 ± 0.004 0.015 ± 0.011 0.073 ± 0.065 0.052 ± 0.068

FDE 3s 13.891 ± 5.845 13.133 ± 4.208 13.505 ± 4.407 6.136 ± 8.445 6.668 ± 9.081 6.354 ± 9.499 4.352 ± 8.420 4.063 ± 2.706 2.038 ± 1.409 2.041 ± 1.409
0.3s 0.206 ± 0.096 0.157 ± 0.105 0.162 ± 0.102 0.189 ± 0.008 0.162 ± 0.003 0.211 ± 0.006 0.055 ± 0.001 0.025 ± 0.020 0.108 ± 0.107 0.079 ± 0.114

Intersection
InD

(Transfer)

ADE 3s 5.774 ± 1.950 4.924 ± 1.678 4.988 ± 1.651 2.922 ± 4.872 3.317 ± 5.388 3.333 ± 6.893 4.978 ± 39.385 1.655 ± 0.877 1.029 ± 0.670 0.914 ± 0.537
0.3s 0.102 ± 0.060 0.081 ± 0.063 0.081 ± 0.063 0.151 ± 0.007 0.099 ± 0.002 0.189 ± 0.006 0.427 ± 0.506 0.032 ± 0.024 0.074 ± 0.071 0.057 ± 0.052

FDE 3s 15.212 ± 4.747 14.392 ± 4.527 14.634 ± 4.355 8.183 ± 9.133 6.668 ± 9.081 9.024 ± 11.733 11.080 ± 161.228 4.689 ± 2.404 2.480 ± 1.477 2.361 ± 1.473
0.3s 0.184 ± 0.095 0.139 ± 0.097 0.139 ± 0.097 0.285 ± 0.013 0.162 ± 0.003 0.374 ± 0.015 0.055 ± 0.001 0.056 ± 0.045 0.113 ± 0.112 0.080 ± 0.086

Urban
Argoverse

ADE 3s 3.934 ± 3.498 5.651 ± 3.478 5.765 ± 3.587 2.827 ± 2.542 2.490 ± 2.512 3.087 ± 2.735 2.145 ± 2.255 1.551 ± 1.094 0.862 ± 0.629
Same as the
Left Column

0.3s 0.447 ± 0.648 0.457 ± 0.462 0.501 ± 0.651 0.756 ± 0.063 0.512 ± 0.055 0.786 ± 0.071 0.334 ± 0.008 0.071 ± 0.069 0.244 ± 0.216

FDE 3s 8.917 ± 7.203 14.550 ± 6.971 14.823± 7.105 7.415 ± 4.725 6.288 ± 4.726 7.944 ± 4.983 3.745 ± 11.344 3.039 ± 2.831 1.797 ± 1.706
0.3s 0.602 ± 0.864 0.624 ± 0.873 0.587 ± 0.756 0.8866 ± 0.096 0.8437 ± 0.062 0.9438 ± 0.004 0.392 ± 0.547 0.089 ± 0.085 0.286 ± 0.267

interaction between agents, Social LSTM (S-LSTM) (Alahi et al., 2016) additionally pools nearby agents’
hidden states at every step using social pooling operation. Social-GAN (Gupta et al., 2018) modelled each
agent as a LSTM-GAN, where a generator generates trajectory, which is then evaluated against the ground-
truth trajectory by a discriminator. As shown in Table 4, both the three methods achieved much higher
accuracy than traditional rule-based methods, distinguishing the power of deep learning. Though equipped
with social pooling, S-LSTM only performed closely to V-LSTM, similar to experiment in Gupta et al. (2018);
Salzmann et al. (2020). S-GAN suffered from unstable convergence during training and achieved slightly
worse performance. In practice, the long running time caused by pooling operations render these meth-
ods intractable in real-time deployment. In comparison, benefit by GNN operation, our method achieved
real-time computation and scaled pretty well with the agent number as shown in Appendix 7.6.

Graph-based learning methods We then evaluated other graph-based learning methods. Grip++ (Li
et al., 2019) represents the interactions of close agents with a graph, applies graph convolution operations
to extract spatial and temporal features, and subsequently uses an encoder-decoder LSTM model to make
future predictions. We also implemented Trajectron++ (Salzmann et al., 2020), a GNN-based method.
Trajectron++ takes vehicles as nodes of a graph and utilizes a graph neural network to conduct relationship
reasoning. The map information is integrated by embedding the image of the map. A generative model
is then used to predict future actions. The future trajectory is then generated by propagating the vehicle
dynamics with the predicted actions. According to Table 4, we found these methods effectively surpassed
previous three learning-based methods, benefit from the representation and relational inductive bias of graph.
Among these methods, Trajectron++ and our method performed much better than Grip++ especially in
transferability, which could be showing the better reasoning capability of graph operations compared to
convolution operations. Among the two best methods, our method significantly outperformed Trajectron++,
with ADE in 3 seconds lower by 41%, 34%, 42%, and 44% in the four scenarios respectively. Such results
demonstrated that our method’s great capability in the long-term prediction, benefiting from our design
of semantic hierarchy and transferable representation. Nevertheless, Trajectron++ performed better than
ours in the short-term prediction. One important reason is that the predicted trajectory of Trajectron++ is
strictly dynamics-feasible, as it essentially predicts future actions and propagates them through the dynamics
to retrieve future trajectories. Such results motivate us to include dynamic constraintin our future work.
Besides, our method also differs from the two methods in the criteria to selecting interacting vehicles, which
is analyzed in detail in Appendix E.
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7.6 Running time

A key consideration in robotics is the runtime complexity. In particular, we care about how the number
of agents would affect the model’s running time. Consequently, we evaluated the time it took our method
to perform forward inference in different agent number. For points with insufficient number of agents, we
imputed values by copying existing agents. As shown in Figure 12, both the SGN and TEDNscaled well
to the number of agents. For SGN, the running time was always near 0.001 seconds as the agent number
increased to 100. The primary reason of such rapid computation is that in the SGN, the calculation for
agents is conducted simultaneously in the form of matrix operation. In the TEDN, the computation time
was near 0.018 seconds, which is slower than the SGN due to the iterative decoding process in the decoder.
The running time scaled well as all the agents can be batched and calculated simultaneously in one forward
inference. As for the online adaptation, the running time correlates with the adaptation steps. For instance,
the adaptation took an average of 0.03 seconds per sample when set the adaptation step as τ 1, but the
average time for adaptation step of 3 was 0.1 seconds for per sample. According to these results, our method
successfully meets the real-time computation requirement. Note that such a real-time computation speed is
achieved via code in python, which, in practical deployment, can be rewritten in C++ and paralleled for
further acceleration.

8 Conclusion

Summary In this paper, inspired by humans’ cognition model and semantic understanding during driving,
we proposed a hierarchical framework to generate high-quality driving behavior prediction in a multi-agent
dense-traffic environment. The proposed method consists of: 1) constructing semantic graph as a generic
representation for the environment, which is transferable across different scenarios; 2) a semantic graph
network for high-level intention prediction; 3) an trajectory encoder decoder networkfor low-level trajectory
prediction; 4) an online adaptation module to adapt to different individuals and scenarios. The proposed
method hierarchically divided the driving task into two sub-tasks with profound semantics, which simplifies
the learning and provides more interpretability. Due to the generic representation for each hierarchy/sub-
task, our method can be directly transferred to new scenarios after it is trained in one scenario. The
online adaptation module can also adapt our method to different individual and scenarios for high-fidelity
predictions.

In the experiments on real human data, we empirically investigated 1) what features and graph network
architecture should be utilized in the high-level intention prediction; 2) whether commonly used features,
representation tricks, and mechanisms would benefit low-level trajectory prediction; 3) how to integrate
intention signal into the low-level trajectory prediction policy; 4) systematically evaluation of the online
adaptation with a new set of metrics, including how much the prediction accuracy can be improved, what is
the best step of observation and layer to adapt; 5) how our method outperforms other methods.

Limitation and Future Work In the future, we emphasize that the transferability and adaptability of
prediction and planning algorithms are critical and worth more research efforts for the general and wide de-
ployment of autonomous vehicles on the roads. As for our paper, there are several limitations and important
next steps include: 1) including vehicle dynamics into the model and training to provide dynamic-feasible
trajectory predictions and more accurate short-term predictions; 2) simultaneously adapt the parameter
in both the high-level policy and low-level policy; 3) evaluate transferablity and generalizability in more
scenarios and benchmarks; 4) comprehensively consider the multimodality in the prediction task, such as
sampling in the high-level intention (insertion areas and the end point) and low-level trajectory, and formu-
lating probabilistic matching with the lane reference; 5) explore the characteristics of hierarchical training
and end-to-end training (McAllister et al., 2022; 2019), such as evaluating each module’s effect on the overall
system influence, adding an additional end-to-end training stage to explore the interaction between high-level
policy and low-level policy, where they can accommodate to each other and improve overall performance.
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A Network architecture detail

The detailed design of the network architecture can be found in Tabel 5.

Table 5: Architecture detail for SGN and EDN.

SGN Architecture Detail
f1
rec GRU cells
f2
rec GRU cells
f1
enc Dense layer with tanh activation function
f2
enc Dense layer with tanh activation function
fatt Dense layer with leaky relu activation function
f3
enc Dense layer without activation function
f4
enc Dense layer with tanh activation function

TEDNArchitecture Detail
Encoder GRU cells

Decoder GRU cell stacked with 3 dense layers,
each with tanh activation function and dropout

B Trajectory encoder decoder networkevaluation

There are many existing works exploiting the encoder decoder architecture for the driving behavior generation
(Park et al., 2018; Tang & Salakhutdinov, 2019; Zyner et al., 2019), but several questions still remain
unclear: what coordinate should be employed? what features should be considered? what representation
performs better? and whether commonly-used mechanisms in encoder decoder architecture can improve the
performance in the driving task? To answer these questions, we conducted extensive ablation studies on
the trajectory encoder decoder network (TEDN), where the intention signal is removed to avoid additional
variance from the high-level policy. As shown in Table 6, starting from a naive encoder decoder that simply
takes in position features and predicts positions, we incrementally added more tricks to test their effectiveness.
Two metrics are set, absolute distance error (ADE) and final distance error (FDE). Note that the values in
Table 6 may not exactly match with the values in Table 3. This is because in online adaptation process,
early trajectory segments of one vehicle is purely used for adapting model parameters and not evaluated in
prediction accuracy. For fair comparison, in Table 3, all methods also discarded early trajectory segments
of one vehicle and evaluated the rest segments, so they are slightly different from Table 6, where all segment
of one vehicle is used.

B.1 Coordinate study

We first investigated which coordinate we should employ between Frenet and Cartesian coordinate. As shown
in Table 6(a), the TEDNwith Frenet coordinate performed 40% (ADE) and 35% (FDE) better than the
TEDNwith Cartesian coordinate in the intersection scenario. In the zero-transferred roundabout scenario,
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Table 6: The statistical evaluation of the low-level behavior generation policy. We conducted experiments
incrementally to explore the performance under different coordinates, features, representations, and mecha-
nisms. The best performance is achieved when taking the Frenet coordinate, the speed and yaw feature in
the input, and representation of incremental prediction and position alignment.

(a)
Coordinate

Intersection Roundabout (Transfer)
ADE FDE ADE FDE

Cartesian 1.53 ± 1.22 2.90 ± 2.77 12.57 ± 5.68 19.77 ± 7.43
Frenet 0.91 ± 0.59 1.87 ± 1.48 2.96 ± 4.65 5.52 ± 7.20

(b) Speed
Ablation Intersection Roundabout (Transfer)

In Out ADE FDE ADE FDE
× × 0.91 ± 0.59 1.87 ± 1.48 2.96 ± 4.65 5.52 ± 7.20
X × 0.71 ± 0.54 1.53 ± 1.27 2.33 ± 3.84 4.30 ± 5.44
× X 0.78 ± 0.53 1.74 ± 1.41 2.51 ± 4.16 4.97 ± 6.35
X X 0.70 ± 0.49 1.46 ± 1.26 2.40 ± 4.10 4.67 ± 6.03

(c) Yaw
Ablation Intersection Roundabout (Transfer)

In Out ADE FDE ADE FDE
× × 0.71 ± 0.54 1.53 ± 1.27 2.33 ± 3.84 4.30 ± 5.44
X × 0.67 ± 0.46 1.45 ± 1.19 2.23 ± 3.95 4.14 ± 5.19
× X 0.73 ± 0.50 1.59 ± 1.36 2.34 ± 3.96 4.49 ± 6.46
X X 0.67 ± 0.48 1.46 ± 1.24 2.51 ± 4.60 4.77 ± 6.43

(d) Repre
Ablation Intersection Roundabout (Transfer)

Inc Ali ADE FDE ADE FDE
× × 0.67 ± 0.46 1.45 ± 1.19 2.23 ± 3.95 4.14 ± 5.19
× X 0.48 ± 0.44 1.32 ± 1.32 1.26 ± 0.95 3.04 ± 2.44
X × 0.43 ± 0.35 1.36 ± 1.19 1.07 ± 1.10 2.66 ± 2.31
X X 0.41 ± 0.33 1.29 ± 1.14 0.96 ± 0.80 2.53 ± 2.13

(e) Mech
Ablation Intersection Roundabout (Transfer)

TF Att ADE FDE ADE FDE
× × 0.41 ± 0.33 1.29 ± 1.14 0.96 ± 0.80 2.53 ± 2.13
X × 0.41 ± 0.34 1.32 ± 1.16 0.97 ± 0.83 2.54 ± 2.14
× X 0.43 ± 0.34 1.32 ± 1.13 1.10 ± 1.32 2.57 ± 2.50

though the performance of both two methods downgraded, the performance of the method on Cartesian
coordinate decayed more significantly, with ADE higher by 324% and FDE higher by 258% compared to
the method on Frenet coordinate. This is because the Frenet coordinate implicitly incorporates the map
information into the model. Compared to running in any direction in the Cartesian coordinate, in the Frenet
coordinate the vehicles only need to follow the direction of references paths, which constrains its behavior
in a more predictable pattern. Note that in the Frenetcoordinate, we use Dynamic Time Warping algorithm
(Berndt & Clifford, 1994) to determine the most likely reference line that each agent lies on.

B.2 Feature study

Second, we explored the effect of features, specifically, the speed feature and yaw feature. For each feature,
we consider two circumstances. The first is to incorporate the feature into the input of the encoder to provide
more information. The second is to set the feature as additional desired outputs of the decoder, which could
possibly help to stabilize the learning for position prediction. Thus for each feature, we explored 4 settings
in terms of whether or not to add the feature into the input or output.

As in Table 6(b), incorporating speed feature in either the input or output could both effectively improve
performance in the two scenarios. When incorporating it into the input and output simultaneously, compared
to only considering it in the input, the performance was slightly improved in the intersection scenario and
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slightly degraded in the roundabout scenario. Concluding from the average performance in the two scenarios,
we chose to only take the speed into the input of the encoder.

For the yaw feature, as shown in Table 6(c), taking it into input could slightly benefit the performance, while
incorporating it into the output made the performance worse. One possible reason for such performance
decay is that the yaw information has been already implicitly covered in the longitudinal and lateral speed
information. Adding the yaw information into the output of the decoder could provide little additional
information but indeed made the learning harder. We thus decided to incorporate the yaw feature only into
the input of the encoder.

B.3 Representation study

There are two commonly-used representation techniques to shape the data distribution. The first technique is
called incremental prediction (Li et al., 2019). On each prediction step, this trickpredicts the relative position
compared to the position of the last step (displacement of the time step), rather than directly predicting
the absolute position. The second technique is called position alignment, which aligns the positions of
each step to the vehicle’s current position (Park et al., 2018). Specifically, when considering the prediction
of a trajectory, the coordinate of all waypoints on the trajectory will be subtracted by the coordinate of
the waypoint in the current step.According to Table 6(d), both two techniques could significantly improve
the prediction accuracy, and applying both of them worked the best, improving the ADE by 38% in the
intersection and by 56% in the roundabout.

B.4 Mechanism study

There are two frequently used mechanisms in the encoder decoder architecture: teacher forcing (Williams
& Zipser, 1989) and attention mechanism (Bahdanau et al., 2014). Teacher forcing aims at facilitating the
learning of complex tasks while the attention is designed to attend differently to different historic input.
From the results in Table 6(c), we can see neither of the two mechanisms could benefit the performance.
Considering that the encoder decoder is used as a dynamics approximator, which is a relatively simple task,
the teacher forcing has pretty limited performance improvement since the TEDNitself can already learn well
enough. The attention mechanism indeed made the performance worse as the vehicle dynamics are most
related to the recent state so previous states may not be necessarily informative.

As a summary of the ablation studies above, the best performance goes when taking the Frenet coordinate,
the speed and yaw feature in the input, and representation of incremental prediction and position alignment.
The teacher forcing and attention could not benefit the performance. Here we would also like to provide more
precise discussion on the attention mechanism. There are actually multiple methods to use attention. In
high-level policy, we did apply the attention mechanism to help with the relationship/interaction reasoning
among multiple agents, which common in many existing works(Salzmann et al., 2020; Hu et al., 2020; Tang &
Salakhutdinov, 2019; Li et al., 2020). But in the low-level policy, the attention is on the temporal information,
namely attending to historic steps differently when predicting future trajectory. Such temporal attention
has been quite popular in language processing field(Luong et al., 2015; Yang et al., 2016). However, our
experiments in Table 6check the reference in the modified final versionindicate that such attention on one
vehicle’s own historic trajectory did not help much.

C Intention signal integration evaluation

As mentioned in Sec 5.2, we have two intention signals, namely the goal state and the decoding step. The
goal state signal refers to the goal position in the future horizon. The decoding step refers to the which step
the decoding cell lies in the whole decodinghorizon. The two signals can be integrated into the low-level
policy TEDNin several ways, such as appending it into the input or output of the decoder (note as Input or
Output), embedding it into the hidden state at the first step (note as Hidden). For the goal state intention
signal, we can additionally choose to introduce it by transforming the origin state of the vehicle into the
state relative to the goal state (note as Transform). In this section, we evaluate the performance when the
different intention signals are incorporated in different ways, as shown in Tabel 7.
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Table 7: The statistical evaluation of different methods to introduce intention signals (the goal state and the
decoding step) into the low-level trajectory prediction policy. The best performance is achieved when both
the two intention signals are appended into the input feature.

(a) Ground-truth Goal State Introduction

Scenario Metric No-Intention With-Intention
Transform Input Output Hidden

Intersection ADE (m) 0.41 ± 0.11 0.10 ± 0.10 0.15 ± 0.13 0.17 ± 0.16 0.13 ± 0.14
FDE (m) 1.29 ± 1.30 0.15 ± 0.25 0.29 ± 0.40 0.38 ± 0.41 0.26 ± 0.39

Roundabout
(Transfer)

ADE (m) 0.96 ± 0.64 0.42 ± 0.37 0.51 ± 0.46 0.60 ± 0.54 0.48 ± 0.41
FDE (m) 2.53 ± 4.54 0.72 ± 0.66 0.94 ± 0.73 1.03 ± 0.74 0.84 ± 0.67

(a) Predicted Goal State Introduction

Scenario Metric No-Intention With-Intention
Transform Input Output Hidden

Intersection ADE (m) 0.41 ± 0.11 0.31 ± 0.25 0.30 ± 0.25 0.32 ± 0.25 0.31 ± 0.25
FDE (m) 1.29 ± 1.30 0.92 ± 0.85 0.89 ± 0.83 0.89 ± 0.83 0.89 ± 0.82

Roundabout
(Transfer)

ADE (m) 0.96 ± 0.64 0.89 ± 0.56 0.86 ± 0.61 0.92 ± 0.75 0.87 ± 0.54
FDE (m) 2.53 ± 4.54 2.14 ± 1.44 2.12 ± 1.51 2.19 ± 1.69 2.22 ± 1.46

(a) Decoding step Introduction

Scenario Metric No-Intention With-Intention
Transform Input Output Hidden

Intersection ADE (m) 0.41 ± 0.11 0.30 ± 0.25 0.30 ± 0.25 0.30 ± 0.25 0.30 ± 0.24
FDE (m) 1.29 ± 1.30 0.89 ± 0.83 0.88 ± 0.83 0.89 ± 0.83 0.88 ± 0.81

Roundabout
(Transfer)

ADE (m) 0.96 ± 0.64 0.86 ± 0.61 0.82 ± 0.53 0.87 ± 0.59 0.84 ± 0.53
FDE (m) 2.53 ± 4.54 2.12 ± 1.51 2.06 ± 1.43 2.15 ± 1.51 2.11 ± 0.23

C.1 Integrating ground-truth goal state

First, we introduced the ground-truth goal state into the TEDNto measure the most performance improve-
ment we can get from the ground-truth intention. According to Table 7(a), the Transform method had the
best performance and reduced the ADE by 75% and 56% in the two scenarios, which represents the most
benefit we can get with ground-truth intention but is also impossible as there exist inevitable errors in the
predicted goal state.

C.2 Integrating predicted goal state

When integrating the predicted goal state into TEDN, the error in the goal state prediction would perturb
the performance. As in Table 7(b), while the performance of these goal state integration methods was close,
appending the goal state into the input feature list performed the best, reducing the ADE by 26% and 10%
in the two scenarios.

C.3 Integrating decoding step

After introducing the goal state into the input feature, we further investigate the performance when decoding
step signal is introduce as in Table 7(c). Similarly, appending it into the input performed the best, reducing
the error in the roundabout scenario by 5%.

C.4 Visualizing the effect of intention signal

In Figure 8, we illustrated the effect of introducing the intention signal (the predicted goal state and the
decoding step), by calculating the prediction error of each step in the future 30 steps. Obviously, as the
prediction horizon extended, the prediction became more difficult and the error grew exponentially. After
introducing the intention signal, the error growth was effectively suppressed, especially in the long horizon.
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D Online adaptation evaluation

The online adaptation aims at capturing nuances in different individuals and scenarios by exploiting historic
observations to subtly adjust model parameters. In this section, we address two questions by empirical
evaluation 1) How many steps of observation are the best to adapt? 2) What is the best layer in the network
to adapt? The new set of metrics mentioned in Sec 6 and shown in Figure 4 are used for the evaluation.

D.1 Trade-off in adaptation step

The adaptation step τ is an important parameter in the multi-step online adaptation algorithm. On the one
hand, we can obtain more information by increasing τ . On the other hand, the behavior gap between the
current time and historic time also increases. As a result, there is a performance trade-off when we increase
the adaptation step τ . To empirically answer the question that how many steps are the best, We run the
online adaptation on both the intersection and roundabout scenarios, and collected statistical results of the
absolute distance error (ADE) between the ground-truth and the predicted trajectory. Note that here when
evaluating one adaptation step τ , we adapted parameters in different layers and chose the best performance
as the performance of that adaptation step τ .

Figure 10(a) shows the online adaptation results in the intersection scenario. According to ADE 1 and ADE
2 in the first two images, as the adaptation step τ increased, the prediction error of the first τ step on
both the historic trajectory (ADE 1) and the current trajectory (ADE 2) increased. But the adaptation can
depress such error growth. For ADE 1, the error was reduced by higher percentage when more steps τ of
observation are used for adaptation, because more information was gained. For the ADE 2, as the adaptation
steps τ increased, the error reduction percentage first increased and reached a peak of 20.5% at 3 adaptation
steps. After that, the error reduction percentage decreased as the behavior gap had come into effect due
to a longer time lag τ . The last two images show the error in the whole historic trajectory (ADE 3) and
current trajectory (ADE 4). For the ADE 3, longer τ led to a higher percentage of error reduction due to
more information gained. However, for the ADE 4 evaluating the performance of long-term prediction, due
to the insufficient information and behavior gap, the improvement was limited. Similar results can be found
in the roundabout scenario in Figure 10(b). But in the ADE 2, more improvement (28%) was achieved in
the short-term prediction, due to the fact that the model was not trained on the roundabout scenario and
there was more space for adaptation.

With these analyses, a conclusion is that though the adaptation does not help with the long-term behavior
prediction in the next 3 seconds, the short-term behavior prediction in the next 0.3 seconds is effectively
improved by 20.5% and 28.7% in the two scenarios. Such improvement in short-term prediction is valuable
as it can effectively enhance safety in close-distance interactions.

D.2 Adaptation layer choice

The neural network consists of many layers of parameters and it remains a question which layer shall we
adapt in order to get the best adaptation performance. Thus in the section, we empirically analyze the
performance of adapting different layers.

We first claim and denote all the layers. In the trajectory encoder decoder network, both the encoder and
decoder consist of single-layer gated recurrent units (GRU), and the decoder is additionally stacked with
three layers of fully connected (FC) networks. We denote the encoder GRU’s input-hidden weights as WE

ih,
the encoder GRU’s hidden-hidden weights as WE

hh, the decoder GRU’s input-hidden weights as WD
ih , the

decoder GRU’s hidden-hidden weights as WD
hh, and the weights of the three-layer FC as WF

1 , WF
2 , WF

3
respectively.

As in Figure 9, we show the percentage of the change of ADE 2 after adaptation, under different adaptation
step τ , different parameters, and different scenarios. We have several observations: 1) as the adaptation step
τ increased, the percentage of error reduction increased and reached the peak at 2 or 3 steps. But after that
the help of adaptation decayed, and after 7 steps, the predictions became even worse due to a big behavior
gap; 2) Intuitively, the adaptation worked better in the roundabout scenario, compared to the intersection
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ADE1: Error on Historic Steps ADE2: Error on Current Steps ADE3: Error on Historic Traj ADE4: Error on Current Traj

ADE1: Error on Historic Steps ADE2: Error on Current Steps ADE3: Error on Historic Traj ADE4: Error on Current Traj

(a) Adaptation Results on Intersection Scenario

(b) Adaptation Results on Roundabout Scenario

Before Adaptation Error Reduced After Adaptation Error Raised After Adaptation

Figure 10: Online adaptation performance analysis. According to ADE 1 and ADE 3 in (a)(b), as adaptation
step τ increased, the online adaptation could get more information and improve prediction accuracy by a
higher percentage. In ADE 2, as the adaptation step τ increases, the improved percentage first grew higher
due to more information obtained, but then declined due to the behavior gap between earlier time and
current time. When τ was 3, the short-term prediction was improved by 20% and 28% on the two scenarios
respectively. In ADE 4, we can see online adaptation can barely benefit long-term prediction.

scenario, as the model was trained on the intersection scenario and directly transferred to the roundabout
scenario. 3) The best adaptation performance is usually achieved by adapting the layer WF

3 , which is the
last layer of the FC network in the decoder.

E Interacting car density

In multi-agent systems, it is important to answer the question which vehicles should be considered as the
interacting vehicles. In some works, all the vehicles in the scene are considered as the interacting vehicles;
while in some works, the interacting vehicles are defined as the vehicles within a certain range of the ego
vehicle (Salzmann et al. (2020); Li et al. (2019)). However, we argue that distance may not necessarily deter-
mine interaction. For instance, cars that are close but driving in opposite direction may not be interacting
at all. Essentially, interactions will happen among cars which are driving into a common area. We consider
the interacting vehicles as the vehicles whose reference lines conflict with ego vehicles’ reference line, and
regard them as the node in our graph.

In Figure 11, we show the interacting density distribution as we choose interacting vehicles by different
criteria. These results are collected from the real human data in the intersection scenario of the Interaction
Dataset. In Figure 11(a), when we considered all the vehicles in the scene as the interacting vehicles, each
ego car would be assumed to interact with 10 to 17 cars for most of the time. In Figure 11(b), when we
took the vehicles within the range of 30 meters as the interacting car, there would be 5 to 10 interacting
vehicles. Such results are counter-intuitive as it would be tough for humans to attend to so many cars at
the same time. But when we considered cars within the range of 10 meters, as shown in Figure 11(c), the
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Figure 11: Percentage of interacting car number, when different criteria is used to choose interacting vehicles.

SGN EDN Sum

Figure 12: Running time of our method under different agent numbers.

number of interacting cars was further reduced to be no more than 2. Nevertheless, such assumption also
has its drawback, as people may still care about vehicles far from them as long as they are intervening each
other. In our method, we care about vehicles whose reference lines conflict with ego car’s reference line.
As in Figure 11(d), the percentage of interacting vehicles number gradually decayed untill 5, which may be
closer to real driving situations.

F Running Time

As shown in Figure 12, our method meets the real-time computation requirement and performs well when
the agent of number increases.

37


	1 Introduction
	2 Related works
	2.1 Traditional prediction methods
	2.2 Deep-learning-based prediction methods
	2.3 Hierarchical prediction
	2.4 Transferable prediction
	2.5 Adaptable prediction

	3 Problem formulation
	4 High-level intention-identification policy
	4.1 Semantic graph
	4.2 Semantic graph network
	4.2.1 Feature encoding layer
	4.2.2 Attention-based relationship reasoning layer
	4.2.3 Intention generation layer
	4.2.4 Loss function


	5 Low-level behavior-generation policy
	5.1 blueTrajectory encoder decoder network (TEDN)black
	5.2 Integrating the intention signal

	6 Online adaptation
	6.1 Multi-step feedback adaptation formulation
	6.2 Robust nonlinear adaptation algorithms

	7 Experiment
	7.1 Experiment setting
	7.2 Case study
	7.2.1 Case 1: one interaction
	7.2.2 Case 2: A sequence of interactions
	7.2.3 Case 3: Scenario-transferable interactions

	7.3 blueAblation studies on the high-level policy (SGN)black
	7.3.1 Inserted area prediction accuracy
	7.3.2 Goal state prediction error

	7.4 A summary of ablation studies on the low-level policy (END) and the online adaptation (OA)
	7.5 Comparison with other methods
	7.6 blueRunning timeblack

	8 Conclusion
	A Network architecture detail
	B blueTrajectory encoder decoder networkblack evaluation
	B.1 Coordinate study
	B.2 Feature study
	B.3 Representation study
	B.4 Mechanism study

	C Intention signal integration evaluation
	C.1 Integrating ground-truth goal state
	C.2 Integrating predicted goal state
	C.3 Integrating decoding step
	C.4 Visualizing the effect of intention signal

	D Online adaptation evaluation
	D.1 Trade-off in adaptation step
	D.2 Adaptation layer choice

	E Interacting car density
	F Running Time

