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ABSTRACT

We introduce and study the computational problem of determining statistical
similarity between probability distributions. For distributions P and Q over
a finite sample space, their statistical similarity is defined as Sstat(P,Q) :=∑

x min(P (x), Q(x)). Despite its fundamental nature as a measure of similar-
ity between distributions, capturing essential concepts such as Bayes error in
prediction and hypothesis testing, this computational problem has not been pre-
viously explored. Recent work on computing statistical distance has established
that, somewhat surprisingly, even for the simple class of product distributions,
exactly computing statistical similarity is #P-hard. This motivates the question of
designing approximation algorithms for statistical similarity. Our first contribution
is a Fully Polynomial-Time deterministic Approximation Scheme (FPTAS) for
estimating statistical similarity between two product distributions. Furthermore,
we also establish a complementary hardness result. In particular, we show that it is
NP-hard to estimate statistical similarity when P and Q are Bayes net distributions
of in-degree 2.

1 INTRODUCTION

Given two distributions P and Q over a finite sample space D, their statistical similarity, denoted
Sstat(P,Q), is defined as

Sstat(P,Q) :=
∑
x∈D

min(P (x), Q(x)). (1)

Statistical similarity serves as a fundamental measure in machine learning and statistical inference.
We defer a detailed discussion of motivating applications to Section 1.1.

When the sample space is small, computing Sstat is trivial. However, for high-dimensional distri-
butions, this computation presents significant challenges. Surprisingly, recent work (Bhattacharyya
et al., 2023) has established that computing Sstat is #P-hard even for the simple class of product
distributions. This hardness result is striking given that product distributions represent one of the most
basic high-dimensional distribution classes, where each dimension is independent of other dimensions.
The hardness of this elementary case raises fundamental questions about the computational nature of
statistical similarity: Can we develop efficient approximation algorithms for classes of distributions of
interest? In general, what is the boundary between tractable and intractable similarity computation?

The primary contribution of this work is to initiate a principled investigation of the computational
aspects of statistical similarity, identifying both tractable and intractable scenarios. Our first contri-
bution is a Fully Polynomial-Time deterministic Approximation Scheme (FPTAS) for estimating
Sstat between product distributions. To complement this algorithmic result, we establish sharp
computational boundaries by proving that approximating Sstat becomes NP-hard even for slightly
more general distributions. Specifically, we show that the problem is NP-hard to approximate for
Bayes net distributions with in-degree 2. Note that we work in a computational setting, where the
algorithms have access to a succinct description of distributions.

1.1 MOTIVATING APPLICATIONS

Statistical similarity plays a central role across multiple domains in machine learning and statistics.
We examine three key applications of statistical similarity: Its connection to Bayes error in prediction
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problems, its role in characterizing optimal decision rules in hypothesis testing, and its interpretation
through coupling theory. These applications demonstrate the significance of Sstat.

Statistical similarity arises naturally in the analysis of prediction problems through the notion of
Bayes error. Consider a binary prediction problem defined by a distribution P over X × {0, 1},
where X is a finite feature space. When a classifier g : X → {0, 1} attempts to predict the label,
it incurs a 0-1 prediction error measured as Pr(x,y)∼P [g(x) ̸= y]. The Bayes optimal classifier,
which outputs 1 if and only if P (1|x) > P (0|x), achieves the minimum possible error R∗, known
as the Bayes error. This error represents a fundamental lower bound that no classifier can surpass.
The connection to statistical similarity manifests through a precise mathematical relationship: For
any prediction problem, the Bayes error exactly equals the statistical similarity between its scaled
likelihood distributions. Specifically, if we denote the prior probabilities P (0) and P (1) by α0 and
α1 respectively, then R∗ = Sstat(α0P (X|0), α1P (X|1)) (a proof is given in Appendix A), where
αiP (X|i) represents the sub-distribution obtained by scaling P (i|X) with αi.

The relationship between statistical similarity and optimal decision-making extends beyond prediction
problems to the domain of hypothesis testing (Lehmann & Romano, 2008; Nielsen, 2014). This setting
is particularly relevant to our computational focus, as it deals with known distributions representing
null and alternate hypotheses. A recent result (Kontorovich & Avital, 2024) establishes how statistical
similarity between product distributions determines the optimal error in hypothesis testing (Parisi
et al., 2014; Berend & Kontorovich, 2015). To illustrate this connection, consider a hypothesis testing
game where a random bit Y ∈ {0, 1} is drawn with bias p1 (letting p0 = 1 − p1), followed by an
i.i.d. sequence X1, . . . , Xn where each Xi ∈ {0, 1} satisfies Pr[Xi = 1|Y = 1] = ψi and Pr[Xi =
1|Y = 0] = ηi for parameters ψ, η ∈ (0, 1)n. The optimal decision rule fOPT : {0, 1}n → {0, 1}
that minimizes Pr[fOPT(X) ̸= Y ] achieves an error rate of Sstat(p1Bern(ψ), p0Bern(η)), where
Bern(ψ) denotes the product distribution of individual Bern(ψi) distributions.

These theoretical connections have significant practical implications. Since Bayes error represents the
theoretically optimal performance limit, statistical similarity serves as a benchmark for the evaluation
of machine learning models. This capability has spurred extensive research in estimating Bayes error
and statistical similarity (Fukunaga & Hostetler, 1975; Devijver, 1985; Noshad et al., 2019; Theisen
et al., 2021; Ishida et al., 2023).

Statistical similarity can be interpreted through coupling theory. For distributions P and Q, a
coupling is a distribution (X,Y ) where X ∼ P and Y ∼ Q. It is known that Sstat(P,Q) equals
the maximum over all couplings (X,Y ), Pr(X = Y ). Coupling theory, introduced by Doeblin
(1938), has led to important results in computer science and mathematics (Lindvall, 2002; Levin
et al., 2006; Meyn & Tweedie, 2012). Finally, statistical similarity admits a characterization in the
form of statistical distance (also known as total variation distance) dTV, defined as dTV(P,Q) :=
maxS⊆D(P (S) − Q(S)) = 1

2

∑
x∈D |P (x) − Q(x)|. The identity Sstat(P,Q) = 1 − dTV(P,Q),

known as Scheffé’s identity, establishes a duality (see Appendix B).

1.2 PAPER ORGANIZATION

We present some necessary background material in Section 2. We then present a survey of related
work in Section 3. Section 4 describes our primary contributions. Section 5 is dedicated to our
algorithmic result. The proof of NP-hardness of estimating the statistical similarity between in-
degree 2 Bayes net distributions is provided in Section 6. Section 7 gives some concluding remarks.
Appendix A discusses the connections between Bayes error and statistical similarity. Similarly,
Appendix B elaborates on the connection between TV distance and statistical similarity. Appendix C
contains the proof of Claim 11, used in the proof of Theorem 6.

2 PRELIMINARIES

We use [n] to denote the set {1, . . . , n}. We will use log to denote log2. The following notion of a
deterministic approximation algorithm is important in this work.
Definition 1. A function f : {0, 1}∗ → R admits a fully polynomial-time approximation scheme
(FPTAS) if there is a deterministic algorithm A such that for every input x (of length n) and ε > 0,
the algorithm A outputs a (1 + ε)-multiplicative approximation to f(x), i.e., a value that lies in the
interval [f(x)/(1 + ε), (1 + ε)f(x)]. The running time of A is poly(n, 1/ε).
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Definition 2. Given two distributions P and Q over a finite sample space D, the statistical similarity
between P and Q is Sstat(P,Q) :=

∑
x∈D min(P (x), Q(x)).

A product distribution P over [ℓ]n can be described by n functions p1, . . . , pn such that pi(x) ∈ [0, 1]
is the probability that the i-th coordinate equals x ∈ [ℓ]. For any y ∈ [ℓ]

n, the probability of y with
respect to P is given by P (y) =

∏n
i=1 pi(yi).

We require the following.
Proposition 3 (See also Lemma 3 in Kontorovich (2012)). For product distributions P = P1⊗ · · ·⊗
Pn and Q = Q1 ⊗ · · · ⊗Qn, it is the case that Sstat(P,Q) ≥

∏n
i=1 Sstat(Pi, Qi).

Proof. We will utilize a coupling argument. Let O = (X,Y ) be an optimal coupling between P and
Q, i.e., PrO[X = Y ] ≥ PrC [X = Y ] for any coupling C. Thus, PrO[X = Y ] = Sstat(P,Q) (as
mentioned in Section 1.1). For 1 ≤ i ≤ n, let Oi = (Xi, Yi) be an optimal coupling between Pi and
Qi. That is, Xi ∼ Pi, Yi ∼ Qi and PrOi [Xi = Yi] = Sstat(Pi, Qi). Let O′ be the coupling given
by the product of Oi’s. Then

Sstat(P,Q) = Pr
O
[X = Y ] ≥ Pr

O′
[X = Y ] =

n∏
i=1

Pr
Oi

[Xi = Yi] =

n∏
i=1

Sstat(Pi, Qi) .

Proposition 4. Let P = P1 ⊗ · · · ⊗ Pn and Q = Q1 ⊗ · · · ⊗ Qn be product distributions over
[ℓ]

n. Let τP be a lower bound on Pi(x) for any i and x ∈ [ℓ] whereby Pi(x) is nonzero. Similarly
define τQ and let τ := min(τP , τQ). Then if

∏n
i=1 Sstat(Pi, Qi) > 0, then it is the case that∏n

i=1 Sstat(Pi, Qi) ≥ τn.

Proof. It would suffice to show that Sstat(Pi, Qi) ≥ τ , since the Pi’s and the Qi’s are independent.
Since

∏n
i=1 Sstat(Pi, Qi) > 0, for all i there must be some x such that Pi(x), Qi(x) > 0 and

min(Pi(x), Qi(x)) > τ . Therefore,

Sstat(Pi, Qi) =
∑
x∈[ℓ]

min(Pi(x), Qi(x)) ≥ τ.

Definition 5 (J-Sparsification (Feng et al., 2024)). Let S be a discrete random variable that takes
values between 0 and B and J be a collection of intervals I0, . . . , Im that partition [0, B]. We define
the J-sparsification of S, denoted by S̃, as follows: Given an interval Ij , let Sj be the conditional
expectation of S conditioned on S lying in the interval Ij . That is, suppose that S takes values
r1, . . . , rk in the interval Ij . Then Sj =

∑k
i=1 Pr[S = ri] ri/

∑k
i=1 Pr[S = ri]. Now the sparsified

random variable S̃ takes value Sj with probability Pr[S ∈ Ij ] =
∑k

i=1 Pr[S = ri].

3 RELATED WORK

Estimating the Bayes error has been a topic of continued interest in the machine learning community
Fukunaga & Hostetler (1975); Devijver (1985); Noshad et al. (2019); Theisen et al. (2021); Ishida
et al. (2023). These works focus on the setting where distributions are only accessible through
samples rather than explicitly specified, leading to techniques distinct from those needed in our
setting of explicitly represented distributions.

The computational complexity of statistical similarity was established through Scheffé’s identity
(Sstat(P,Q) + dTV(P,Q) = 1) and the result of Bhattacharyya et al. (2023), where it is shown
that the exact computation of dTV (and thus Sstat) is #P-hard even for product distributions. This
hardness naturally leads to the study of approximation algorithms, with multiplicative approximation
being stronger than additive approximation for measures bounded in [0, 1].

For distributions samplable by Boolean circuits, additive approximation of statistical similarity is
complete for SZK (Statistical Zero Knowledge) (Sahai & Vadhan, 2003), while the problem becomes
tractable for distributions that are both samplable and have efficiently computable point probabilities
(Bhattacharyya et al., 2020).

While recent work has made significant progress on multiplicative approximation of statistical distance
(also known as total variation distance), including an FPRAS (Feng et al., 2023) and an FPTAS (Feng

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

et al., 2024) for product distributions, these results do not directly translate to statistical similarity.
This is because multiplicative approximation of statistical distance does not yield multiplicative
approximation of its complement (statistical similarity), necessitating new algorithmic techniques for
statistical similarity. Similarly, the NP-hardness result for multiplicatively approximating statistical
distance between Bayes nets (Bhattacharyya et al., 2023) does not immediately imply hardness for
statistical similarity.

It is perhaps worth remarking that technical barrier in translating multiplicative approximation of
statistical distance to statistical similarity is rather fundamental, i.e., it is not possible in general
to use an efficient multiplicative approximation algorithm for a function f in order to design an
efficient multiplicative approximation algorithm for 1− f . In particular, even if there is an efficient
multiplicative approximation algorithm f , approximating 1 − f could be NP-hard. For instance,
let f be a function that takes as input a Boolean DNF formula ϕ and outputs the probability that a
random assignment satisfies ϕ. It is known that there is a randomized multiplicative approximation
algorithm for estimating f Karp et al. (1989). However, a multiplicative approximation algorithm
for estimating 1− f implies that all NP-complete problems have efficient randomized algorithms
(RP = NP). This is because the complement of a DNF formula is a CNF formula, and there is no
efficient randomized multiplicative approximation for estimating the acceptance probability of CNF
formulas unless RP = NP.

The connection between statistical similarity and hypothesis testing has been explored in several
works. While Kontorovich & Avital (2024) provides analytical bounds on statistical similarity for
product distributions in the context of hypothesis testing, these bounds do not yield multiplicative
approximation algorithms.

4 OUR RESULTS

Our first contribution is the design of a deterministic polynomial-time approximation scheme to
estimate the statistical similarity between product distributions.

Theorem 6. There is an FPTAS for estimating Sstat(P,Q) whereby P andQ are product distributions
succinctly represented by their component distributions.

Theorem 6 is proved by adapting the ideas of Feng et al. (2024). We define a random variable
R = P∥Q which is the ratio of P and Q and then partition its range into a sequence of intervals.
Every one of these intervals is subsequently “sparsified,” in the sense that we only take into account
the average value of R over this interval. This allows us to efficiently estimate statistical similarity, as
we show in the proof.

A natural question is whether Theorem 6 can be extended to more general distributions such as Bayes
net distributions. Our second result is a hardness result.

Theorem 7. Given two probability distributions P and Q that are defined by Bayes nets of in-
degree two, it is NP-complete to decide whether Sstat(P,Q) ̸= 0 or not. Hence the problem of
multiplicatively estimating Sstat is NP-hard.

Theorem 7 is proved by adapting the proof of hardness of approximating TV distance between Bayes
net distributions presented in Bhattacharyya et al. (2023).

5 ESTIMATING STATISTICAL SIMILARITY

We prove Theorem 6. Let P,Q be distributions and D be the common domain of P,Q and let R
be a ratio random variable that takes the value P (x) /Q(x) ≥ 0 with probability Q(x). We can
assume Q(x) > 0, as R only takes value when x is such that Q(x) > 0. We denote this by writing
R := P∥Q. For ratios R1 = P1∥Q1, R2 = P2∥Q2 we define their independent product R1 ·R2 as a
random variable that takes the value (P1(x) /Q1(x)) (P2(y) /Q2(y)) with probability Q1(x)Q2(y).

Moreover, we overload notation and for a ratio random variable R = P∥Q, we let Sstat(R) denote
the functional E[min(R, 1)]. Then

Sstat(R) = E[min(R, 1)]

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

= E
x∼Q

[min(P (x) /Q(x) , 1)]

=
∑
x

min(P (x) /Q(x) , 1)Q(x) =
∑
x

min(P (x) , Q(x)) = Sstat(P,Q) .

Setting and Algorithm Definition. We denote by ε the desired accuracy parameter. Let τP be a
lower bound on Pi(x) for any i and x ∈ [ℓ] whereby Pi(x) is nonzero. Similarly define τQ and let
τ := min(τP , τQ). Let also B := 1/τn, δ := ε/ (2n) ≤ 1, and γ := ετ2n/

(
4n2 (1 + ε)

)
.

We require the following.

Proposition 8. It is the case that Pr[0 ≤ R ≤ B] = 1.

Proof. By definition, R ≥ 0. Since R takes the value P (x) /Q(x) with probability Q(x), we get
that R is at most maxx(P (x) /Q(x)) ≤ 1/τn = B with probability 1.

We now define a set of intervals

J :=
{
{0}, I0 := (0, γ], I1 := (γ, γ(1 + δ)], . . . , Im := (γ(1 + δ)m−1, γ(1 + δ)m = B]

}
,

whereby m := (log(B/γ)) / log(1 + δ). Define R1, . . . , Rn to be the ratios for each coordinates,
that is, Ri := Pi∥Qi. We define a set of random variables Yi for 1 ≤ i ≤ n. Define Y1 = R1 and
Yi+1 = Ỹi·Ri+1 where Ỹi is the J-sparsification of Yi. Also, for convenience, setZi := Ri+1·. . .·Rn

and Zn = 1. The output of our algorithm is Sstat(Ỹn · Zn) = Sstat(Ỹn). See Algorithm 1.

Algorithm 1 The pseudocode of our algorithm.
Require: Product distributions P,Q through their marginal distributions P1, . . . , Pn, Q1, . . . , Qn,

each over [ℓ], and an accuracy error parameter ε.
Ensure: The output Sstat

(
Ỹn

)
is an ε-approximation of Sstat(P,Q).

1: {We can compute n by parsing the input.}
2: for i← 1, . . . , n do
3: Ri ← Pi∥Qi

4: {Computing Sstat(Ri) takes time O(ℓ).}
5: if Sstat(Ri) = 0 then
6: return 0
7: end if
8: end for
9: δ ← ε/ (2n)

10: τP ← min{Pi(x) | i ∈ [n] , x ∈ [ℓ] , Pi(x) > 0} {This step takes time O(nℓ).}
11: τQ ← min{Qi(x) | i ∈ [n] , x ∈ [ℓ] , Qi(x) > 0} {This step takes time O(nℓ).}
12: τ ← min(τP , τQ)
13: γ ← ετ2n/

(
4n2 (1 + ε)

)
14: J ← {{0} , {(0, γ]}}
15: for i← 1, . . . ,m do
16: J ← J ∪

{(
γ (1 + δ)

i−1
, γ (1 + δ)

i
]}

17: end for
18: Y1 ← R1

19: for i← 1, . . . , n do
20: Ỹi ← J-sparsification of Yi {This step takes time O(mℓ).}
21: if i < n then
22: Yi+1 ← Ỹi ·Ri+1 {This step takes time O(mℓ).}
23: end if
24: end for
25: return Sstat

(
Ỹn

)
{Computing Sstat

(
Ỹn

)
takes time O(m).}

5
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Running Time. Note that Sstat(Ri) = Sstat(Pi, Qi) can be computed in time O(ℓ) by following
the equality Sstat(Ri) = E[min(Ri, 1)] and utilizing the fact thatRi may assume ℓ values. Moreover,
the sparsification step can be computed in timeO(mℓ). This is because, firstly, in Line 22 we generate
mℓ many ratios and then in Line 20 (sparsification step) we crunch them into m ratios. Finally, and
similarly to Sstat(Ri), the output Sstat

(
Ỹn

)
can be computed in time O(m) by utilizing the fact that

Ỹn may assume m+ 1 values (as there are m+ 1 intervals in J).

Therefore, the running time of Algorithm 1 is

O(nℓm) = O(nℓ (log(B/γ)) / log(1 + δ))

= O
(
nℓ

(
log

(
(1/τn) /

(
ετ2n/

(
4n2 (1 + ε)

))))
/ log(1 + ε/ (2n))

)
= Õ

(
n3ℓ log((1 + ε) / (ετ)) /ε

)
.

Correctness. We will prove the this algorithm outputs a quantity that is an ε-approximation to
Sstat(P,Q). This is accomplished by Lemma 9 and Lemma 10.

Lemma 9. We have that Sstat

(
Ỹn

)
≤ (1 + ε)Sstat(P,Q).

Proof. We will first show that Sstat

(
Ỹi · Zi

)
≤ (1 + δ)Sstat(Yi · Zi) + γB. To this end, we have

Sstat

(
Ỹi · Zi

)
= E

[
min

(
Ỹi · Zi, 1

)]
= E

 m∑
j=0

min
(
Ỹi · Zi, 1

)
1[Yi ∈ Ij ]


= E

 m∑
j=1

min
(
Ỹi · Zi, 1

)
1[Yi ∈ Ij ]

+E
[
min

(
Ỹi · Zi, 1

)
1[Yi ∈ I0]

]

≤
m∑
j=1

E
[
min

(
Ỹi · Zi, 1

)
1[Yi ∈ Ij ]

]
+ γB

≤
m∑
j=1

E[((1 + δ)min(Yi · Zi, 1))1[Yi ∈ Ij ]] + γB

=

m∑
j=1

(1 + δ)E[min(Yi · Zi, 1)1[Yi ∈ Ij ]] + γB

= (1 + δ)

m∑
j=1

E[min(Yi · Zi, 1)1[Yi ∈ Ij ]] + γB

≤ (1 + δ)

m∑
j=0

E[min(Yi · Zi, 1)1[Yi ∈ Ij ]] + γB

= (1 + δ)E[min(Yi · Zi, 1)] + γB = (1 + δ)Sstat(Yi · Zi) + γB,

The first part of the first inequality follows from the linearity of the expectation. For the second
part, note that since I0 = (0, γ], the maximum value Ỹi can take in I0 is at most γ. The maximum
value of Zi is B, thus E

[
min

(
Ỹi · Zi, 1

)
1[Yi ∈ I0]

]
≤ γB. For the second inequality, suppose that

Yi ∈ Ij = (γ(1 + δ)j−2, γ(1 + δ)j−1]. The maximum value Ỹi can take is γ(1 + δ)j−1 and the Yi is
larger than γ(1 + δ)j−2. Thus Ỹi ≤ (1 + δ)Yi.

Therefore,

Sstat(Ỹn) = Sstat(Ỹn · Zn) ≤ γB + (1 + δ)Sstat(Yn · Zn) = γB + (1 + δ)Sstat(Ỹn−1 · Zn−1)

6
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so that inductively, we will get

Sstat(Ỹn) ≤ γB
n−2∑
k=0

(1 + δ)k + (1 + δ)nSstat(Y1 · Z1)

≤ γB (1 + δ)
n
+ (1 + δ)nSstat(P,Q)

≤ γB (1 + δn) + (1 + δ)nSstat(P,Q) ≤ 2nγB + (1 + δ)nSstat(P,Q),

since Sstat(Y1 · Z1) = Sstat(R1 · . . . ·Rn) = Sstat(P,Q). What is left is to show that 2nγB + (1 +
δ)nSstat(P,Q) ≤ (1 + ε)Sstat(P,Q). However, this readily follows from the definitions of γ, δ,B
as well as Proposition 3 and Proposition 4.

Let us elaborate on these calculations. By the fact that δ = ε/ (2n), we get (1 + δ)nSstat(P,Q) ≤
(1 + ε/2)Sstat(P,Q). So what is left is to show that 2nγB ≤ (ε/2)Sstat(P,Q). By Proposition 3
and Proposition 4, it would suffice to show that 2nγB ≤ (ε/2) τn, which follows directly from the
definitions of γ and B.

Similarly, we have the following.

Lemma 10. We have that Sstat

(
Ỹn

)
≥ Sstat(P,Q) / (1 + ε).

To prove Lemma 10 we will utilize the following claim (proved in Appendix C).

Claim 11. It is the case that Sstat(Yi · Zi) ≤ (1 + δ)Sstat

(
Ỹi · Zi

)
+ γB.

Proof of Lemma 10. By Claim 11, and since Sstat

(
Ỹn

)
= Sstat

(
Ỹn · Zn

)
, we have

Sstat

(
Ỹn

)
≥ Sstat(Yn · Zn) / (1 + δ)− γB/ (1 + δ) .

Inductively, we get

Sstat

(
Ỹn

)
≥ Sstat(Y1 · Z1) / (1 + δ)

n − γB
n−1∑
k=1

1/ (1 + δ)
k ≥ Sstat(P,Q) / (1 + δ)

n − nγB.

What is left is to show that Sstat(P,Q) / (1 + δ)
n − nγB ≥ Sstat(P,Q) / (1 + ε) which is equiva-

lent to Sstat(P,Q) (1 + ε) ≥ nγB (1 + δ)
n
(1 + ε) + Sstat(P,Q) (1 + δ)

n. However, similarly
to what we did in Lemma 9, the stronger inequality Sstat(P,Q) (1 + ε) ≥ 2n2γB (1 + ε) +
Sstat(P,Q) (1 + δ)

n readily follows from the definitions of γ, δ,B as well as Proposition 3 and
Proposition 4.

This concludes the proof of Theorem 6.
Remark 12. We note that the above estimation algorithm also works for estimating similarity
for sub-product distributions. Let P ′ and Q′ be product distributions and P = αP ′ and Q =
βQ′ for constants α, β. In this case, to estimate similarity between P and Q, we will estimate
Ex∼Q′ [min(αP ′(x) /Q′(x) , β)].
Remark 13. While our algorithmic technique is inspired by the work of Feng et al. (2024), the details
of our algorithm are different. Specifically, the sparsification procedure is defined differently there,
tailored to dTV estimation instead of Sstat. The analysis here is more direct and arguably simpler.

6 NP-HARDNESS OF ESTIMATING STATISTICAL SIMILARITY

We show that it is NP-hard to efficiently multiplicatively estimate Sstat(P,Q) for arbitrary Bayes net
distributions P,Q. That is, we prove Theorem 7. We first formally define Bayes nets.

7
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6.1 BAYES NETS

For a directed acyclic graph (DAG) G and a node v in G, let Π(v) denote the set of parents of v.
Definition 14 (Bayes nets). A Bayes net is specified by a DAG over a vertex set [n] and a collection
of probability distributions over symbols in [ℓ], as follows. Each vertex i is associated with a random
variable Xi whose range is [ℓ]. Each node i of G has a Conditional Probability Table (CPT) that
describes the following: For every x ∈ [ℓ] and every y ∈ [ℓ]k, where k is the size of Π(i), the CPT
has the value of Pr[Xi = x|XΠ(i) = y] stored. Given such a Bayes net, its associated probability
distribution P is given by the following: For all x ∈ [ℓ]n, P (x) is equal to

Pr
P
[X = x] =

n∏
i=1

Pr
P

[
Xi = xi|XΠ(i) = xΠ(i)

]
.

Here, X is the joint distribution (X1, . . . , Xn) and xΠ(i) is the projection of x to the indices in Π(i).

Note that P (x) can be computed in linear time by using the CPTs of P to retrieve each
PrP

[
Xi = xi|XΠ(i) = xΠ(i)

]
.

6.2 PROOF OF THEOREM 7

The proof is similar to the proof of hardness of approximating TV distance between Bayes net
distributions presented in Bhattacharyya et al. (2023). However, the present proof gives more tight
relationship between the number of satisfying assignments of a CNF formula and statistical similarity
of Bayes net distributions.

The reduction takes a CNF formula ϕ on n variables and produces two Bayes net distributions P and
Q (with in-degree at most 2) so that

Sstat(P,Q) =
|Sol(ϕ)|

2n
,

where Sol(ϕ) is the set of satisfying assignments for ϕ.

Let ϕ be a CNF formula. Without loss of generality, view ϕ as a Boolean circuit (with AND,
OR, NOT gates) of fan-in at most two with n input variables X = {X1, . . . , Xn} and m internal
gates Y = {Y1, . . . , Ym}. Let Gϕ be the DAG representing this circuit with vertex set X ∪ Y .
So in total there are n + m nodes in Gϕ. Assume X ∪ Y is topologically sorted in the order
X1, . . . , Xn, Y1, . . . , Ym, whereby Ym is the output gate. For every internal gate node Yi, there is
directed edge from node Yi to node Yj if the gate/variable corresponding to Yi is an input to Yj .

We will define two Bayes net distributions P andQ on the same DAG Gϕ. Let Xi be a binary random
variable corresponding to the input variable node Xi for 1 ≤ i ≤ n and Yj be a binary random
variable corresponding to the internal gate Yj for 1 ≤ j ≤ m. The distributions P and Q on G are
given by Conditional Probability Tables (CPTs) defined as follows. The CPTs of P and Q will only
differ in Ym.

For both P and Q, each Xi (1 ≤ i ≤ n) is a uniform random bit. For each Yi (1 ≤ i ≤ m− 1), its
CPT is the deterministic function defined by its associated gate. For example, if Yi is an OR gate
in Gϕ, then Yi = 1 with probability 1 except when the inputs are 00, in which case Yi = 0 with
probability 1. The CPTs for AND and NOT nodes are similar.

For P , the value of Ym is given by the deterministic function of the output gate Ym in Gϕ. For Q, the
value of Ym is 1 (independently of the input).

Note that even though the sample space is {0, 1}n+m, there are only 2n strings in the support of P
and Q. In particular, a point z in the sample space {0, 1}n+m can be written as xy where x is the
first n bits and y is the last m bits. By construction, it is clear that for every x, there is only one y
(which are the gate values for the input assignment x) for which xy has positive probability in both
the distributions, and this probability is exactly 1

2n . For any x, let fP (x) (respectively, fQ(x)) denote
this unique y in P (respectively, in Q). The crucial observation is that fP (x) and fQ(x) are the same
if and only if x is in Sol(ϕ). In this case, denote fP (x) = fQ(x) = f(x).

Consider z = xy ∈ {0, 1}n+m. If xy is not in the support of both P and Q, then the minimum of
P (z) and Q(z) is 0, so assume that xy is in the support of at least one.

8
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Case 1. Assume that x is a not a satisfying assignment of ϕ. Then z = xfP (x) is in the support of
P , however, it is not in the support of Q as the last bit of z = 0. Similarly xfQ(x) is in the support
of Q but not in P . Hence, min(P (z), Q(z)) = 0.

Case 2. Assume that x is a satisfying assignment of ϕ. In this case the last bit of z = xfP (x) is 1 and
hence is in the support on both P and Q and has a probability of 1

2n . Thus min(P (z), Q(z)) = 1
2n .

Hence we have

Sstat(P,Q) =
∑

z∈{0,1}n+m

min (P (z), Q(z))

=
∑

x∈Sol(ϕ)

min(P (xf(x), Q(xf(x)) +
∑

x̸∈Sol(ϕ)

min(P (xfP (x), Q(xfP (x)))

+
∑

x ̸∈Sol(ϕ)

min(P (xfQ(x)), Q(xfQ(x))) =
|Sol(ϕ)|

2n
+ 0 + 0 =

|Sol(ϕ)|
2n

.

This concludes the proof.

7 CONCLUSION

Statistical similarity (Sstat) between distributions is a fundamental quantity. In this work, we initiated
a computational study of Sstat. Prior results on statistical distance computation imply that the exact
computation of Sstat for high-dimensional distributions is computationally intractable.

Our first contribution is a fully polynomial-time deterministic approximation scheme (FPTAS) for
estimating statistical similarity between two product distributions. Notably, the existing FPTAS
for statistical distance (Feng et al., 2024) does not directly yield an FPTAS for Sstat. We also
establish a complementary hardness result: Approximating Sstat for Bayes net distributions is NP-
hard. Extending our results beyond product distributions to more structured settings, such as tree
distributions, remains a significant and promising research direction.

We believe Sstat computation is a compelling problem from a complexity theory perspective. Inter-
estingly, for product distributions, both Sstat and its complement (1− Sstat = dTV) admit FPTAS,
making it one of the rare problems with this property. A deeper complexity-theoretic study of
functions f in #P with range in [0, 1], where both f and 1− f have approximation schemes, is an
intriguing direction for future research. Finally, this work is limited to the algorithmic foundational
aspects of Sstat computation. We leave the experimental evaluation of the algorithm for future work.
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error possible in the sense that the error of any classifier is at least Bayes error. It is known that for a
prediction problem P , its Bayes error R∗ is given by the following marginal expectation:

R∗ = E
X
[min(P (0|X), P (1|X))] .

Let the prior probabilities P (0) and P (1) be denoted by α0 and α1 respectively. Note that α0 and α1

are constants that sum up to 1. We call P balanced if P (0) = P (1) = 1/2. For simplifying notation,
we will also denote the likelihood distributions P (X|0) and P (X|1) as P0 and P1 respectively.

Theorem 15. For a prediction problem P , its Bayes error is given by

R∗ = Sstat(α0P0, α1P1).

In particular, for a balanced prediction problem P , its Bayes error is given by R∗ = Sstat(P0, P1)/2.

Proof. The proof is a simple application of the Bayes theorem. That is,

R∗ = E
X
[min(P (0|X), P (1|X)]

=
∑
x∈X

P (x) ·min(P (0|x), P (1|x))

=
∑
x

P (x) ·min

(
P (x|0)P (0)

P (x)
,
P (x|1)P (1)

P (x)

)
=

∑
x

min(P (x|0)P (0), P (x|1)P (1)) = Sstat(α0P0, α1P1).

The balanced case follows from the fact that α0 = α1 = 1
2 .

B TOTAL VARIATION DISTANCE AND STATISTICAL SIMILARITY

Statistical similarity can be proved to be equal to the complement of statistical distance, which is
commonly called total variation distance (denoted by dTV). See below.

Definition 16. For distributions P,Q over a sample space D, the total variation (TV) distance
between P and Q is

dTV(P,Q) :=
∑
x∈D

max(0, P (x)−Q(x)) .

Proposition 17 (Scheffé’s identity, see also (Tsybakov, 2009)). Let P,Q be distributions over a
sample space D. Then Sstat(P,Q) = 1− dTV(P,Q).

Proof. We have that

Sstat(P,Q) =
∑
x∈D

min(P (x) , Q(x))

=
∑
x∈D

min(P (x) , P (x) +Q(x)− P (x))

=
∑
x∈D

P (x) +
∑
x∈D

min(0, Q(x)− P (x))

= 1−
∑
x∈D

max(0, P (x)−Q(x)) = 1− dTV(P,Q) .

C PROOF OF CLAIM 11

We have

Sstat(Yi · Zi) = E[min(Yi · Zi, 1)]

11
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= E

 m∑
j=0

min(Yi · Zi, 1)1[Yi ∈ Ij ]


= E

 m∑
j=1

min(Yi · Zi, 1)1[Yi ∈ Ij ]

+E[min(Yi · Zi, 1)1[Yi ∈ I0]]

≤
m∑
j=1

E[min(Yi · Zi, 1)1[Yi ∈ Ij ]] + γB

≤
m∑
j=1

E
[(

(1 + δ)min
(
Ỹi · Zi, 1

))
1[Yi ∈ Ij ]

]
+ γB

=

m∑
j=1

(1 + δ)E
[
min

(
Ỹi · Zi, 1

)
1[Yi ∈ Ij ]

]
+ γB

= (1 + δ)

m∑
j=1

E
[
min

(
Ỹi · Zi, 1

)
1[Yi ∈ Ij ]

]
+ γB

≤ (1 + δ)

m∑
j=0

E
[
min

(
Ỹi · Zi, 1

)
1[Yi ∈ Ij ]

]
+ γB

= (1 + δ)E
[
min

(
Ỹi · Zi, 1

)]
+ γB = (1 + δ)Sstat

(
Ỹi · Zi

)
+ γB,

The first part of the first inequality follows from the linearity of the expectation. For the second part,
note that the interval I0 = (0, γ]. Thus, the maximum value Yi can take in this interval is almost γ.
The maximum value of Zi is B, thus E[min(Yi · Zi, 1)1[Yi ∈ I0]] ≤ γB. For the second inequality,
suppose that Yi ∈ Ij = (γ(1 + δ)j−2, γ(1 + δ)j−1]. The maximum value Yi can take is γ(1 + δ)j−1

and the Ỹi is larger than γ(1 + δ)j−2. Thus Yi ≤ (1 + δ) Ỹi.
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