

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALGORITHMS AND HARDNESS FOR ESTIMATING STA-TISTICAL SIMILARITY

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce and study the computational problem of determining statistical similarity between probability distributions. For distributions P and Q over a finite sample space, their statistical similarity is defined as $S_{\text{stat}}(P, Q) := \sum_x \min(P(x), Q(x))$. Despite its fundamental nature as a measure of similarity between distributions, capturing essential concepts such as Bayes error in prediction and hypothesis testing, this computational problem has not been previously explored. Recent work on computing statistical distance has established that, somewhat surprisingly, even for the simple class of product distributions, exactly computing statistical similarity is $\#P$ -hard. This motivates the question of designing approximation algorithms for statistical similarity. Our first contribution is a Fully Polynomial-Time deterministic Approximation Scheme (FPTAS) for estimating statistical similarity between two product distributions. Furthermore, we also establish a complementary hardness result. In particular, we show that it is NP-hard to estimate statistical similarity when P and Q are Bayes net distributions of in-degree 2.

1 INTRODUCTION

Given two distributions P and Q over a finite sample space D , their statistical similarity, denoted $S_{\text{stat}}(P, Q)$, is defined as

$$S_{\text{stat}}(P, Q) := \sum_{x \in D} \min(P(x), Q(x)). \quad (1)$$

Statistical similarity serves as a fundamental measure in machine learning and statistical inference. We defer a detailed discussion of motivating applications to Section 1.1.

When the sample space is small, computing S_{stat} is trivial. However, for high-dimensional distributions, this computation presents significant challenges. Surprisingly, recent work (Bhattacharyya et al., 2023) has established that computing S_{stat} is $\#P$ -hard even for the simple class of product distributions. This hardness result is striking given that product distributions represent one of the most basic high-dimensional distribution classes, where each dimension is independent of other dimensions. The hardness of this elementary case raises fundamental questions about the computational nature of statistical similarity: Can we develop efficient approximation algorithms for classes of distributions of interest? In general, what is the boundary between tractable and intractable similarity computation?

The primary contribution of this work is to initiate a principled investigation of the computational aspects of statistical similarity, identifying both tractable and intractable scenarios. Our first contribution is a Fully Polynomial-Time deterministic Approximation Scheme (FPTAS) for estimating S_{stat} between product distributions. To complement this algorithmic result, we establish sharp computational boundaries by proving that approximating S_{stat} becomes NP-hard even for slightly more general distributions. Specifically, we show that the problem is NP-hard to approximate for Bayes net distributions with in-degree 2. Note that we work in a computational setting, where the algorithms have access to a succinct description of distributions.

1.1 MOTIVATING APPLICATIONS

Statistical similarity plays a central role across multiple domains in machine learning and statistics. We examine three key applications of statistical similarity: Its connection to Bayes error in prediction

problems, its role in characterizing optimal decision rules in hypothesis testing, and its interpretation through coupling theory. These applications demonstrate the significance of S_{stat} .

Statistical similarity arises naturally in the analysis of prediction problems through the notion of *Bayes error*. Consider a binary prediction problem defined by a distribution P over $X \times \{0, 1\}$, where X is a finite feature space. When a classifier $g : X \rightarrow \{0, 1\}$ attempts to predict the label, it incurs a 0-1 prediction error measured as $\Pr_{(x,y) \sim P}[g(x) \neq y]$. The *Bayes optimal classifier*, which outputs 1 if and only if $P(1|x) > P(0|x)$, achieves the minimum possible error R^* , known as the Bayes error. This error represents a fundamental lower bound that no classifier can surpass. The connection to statistical similarity manifests through a precise mathematical relationship: For any prediction problem, the Bayes error exactly equals the statistical similarity between its scaled likelihood distributions. Specifically, if we denote the prior probabilities $P(0)$ and $P(1)$ by α_0 and α_1 respectively, then $R^* = S_{\text{stat}}(\alpha_0 P(X|0), \alpha_1 P(X|1))$ (a proof is given in Appendix A), where $\alpha_i P(X|i)$ represents the sub-distribution obtained by scaling $P(i|X)$ with α_i .

The relationship between statistical similarity and optimal decision-making extends beyond prediction problems to the domain of hypothesis testing (Lehmann & Romano, 2008; Nielsen, 2014). This setting is particularly relevant to our computational focus, as it deals with known distributions representing null and alternate hypotheses. A recent result (Kontorovich & Avital, 2024) establishes how statistical similarity between *product distributions* determines the optimal error in hypothesis testing (Parisi et al., 2014; Berend & Kontorovich, 2015). To illustrate this connection, consider a hypothesis testing game where a random bit $Y \in \{0, 1\}$ is drawn with bias p_1 (letting $p_0 = 1 - p_1$), followed by an i.i.d. sequence X_1, \dots, X_n where each $X_i \in \{0, 1\}$ satisfies $\Pr[X_i = 1|Y = 1] = \psi_i$ and $\Pr[X_i = 1|Y = 0] = \eta_i$ for parameters $\psi, \eta \in (0, 1)^n$. The optimal decision rule $f^{\text{OPT}} : \{0, 1\}^n \rightarrow \{0, 1\}$ that minimizes $\Pr[f^{\text{OPT}}(X) \neq Y]$ achieves an error rate of $S_{\text{stat}}(p_1 \text{Bern}(\psi), p_0 \text{Bern}(\eta))$, where $\text{Bern}(\psi)$ denotes the product distribution of individual $\text{Bern}(\psi_i)$ distributions.

These theoretical connections have significant practical implications. Since Bayes error represents the theoretically optimal performance limit, statistical similarity serves as a benchmark for the evaluation of machine learning models. This capability has spurred extensive research in estimating Bayes error and statistical similarity (Fukunaga & Hostetler, 1975; Devijver, 1985; Noshad et al., 2019; Theisen et al., 2021; Ishida et al., 2023).

Statistical similarity can be interpreted through coupling theory. For distributions P and Q , a coupling is a distribution (X, Y) where $X \sim P$ and $Y \sim Q$. It is known that $S_{\text{stat}}(P, Q)$ equals the maximum over all couplings (X, Y) , $\Pr(X = Y)$. Coupling theory, introduced by Doeblin (1938), has led to important results in computer science and mathematics (Lindvall, 2002; Levin et al., 2006; Meyn & Tweedie, 2012). Finally, statistical similarity admits a characterization in the form of statistical distance (also known as total variation distance) d_{TV} , defined as $d_{\text{TV}}(P, Q) := \max_{S \subseteq D} (P(S) - Q(S)) = \frac{1}{2} \sum_{x \in D} |P(x) - Q(x)|$. The identity $S_{\text{stat}}(P, Q) = 1 - d_{\text{TV}}(P, Q)$, known as Scheffé's identity, establishes a duality (see Appendix B).

1.2 PAPER ORGANIZATION

We present some necessary background material in Section 2. We then present a survey of related work in Section 3. Section 4 describes our primary contributions. Section 5 is dedicated to our algorithmic result. The proof of NP-hardness of estimating the statistical similarity between in-degree 2 Bayes net distributions is provided in Section 6. Section 7 gives some concluding remarks. Appendix A discusses the connections between Bayes error and statistical similarity. Similarly, Appendix B elaborates on the connection between TV distance and statistical similarity. Appendix C contains the proof of Claim 11, used in the proof of Theorem 6.

2 PRELIMINARIES

We use $[n]$ to denote the set $\{1, \dots, n\}$. We will use \log to denote \log_2 . The following notion of a deterministic approximation algorithm is important in this work.

Definition 1. A function $f : \{0, 1\}^* \rightarrow \mathbb{R}$ admits a *fully polynomial-time approximation scheme (FPTAS)* if there is a *deterministic* algorithm \mathcal{A} such that for every input x (of length n) and $\varepsilon > 0$, the algorithm \mathcal{A} outputs a $(1 + \varepsilon)$ -multiplicative approximation to $f(x)$, i.e., a value that lies in the interval $[f(x)/(1 + \varepsilon), (1 + \varepsilon)f(x)]$. The running time of \mathcal{A} is $\text{poly}(n, 1/\varepsilon)$.

108 **Definition 2.** Given two distributions P and Q over a finite sample space D , the statistical similarity
 109 between P and Q is $S_{\text{stat}}(P, Q) := \sum_{x \in D} \min(P(x), Q(x))$.
 110

111 A product distribution P over $[\ell]^n$ can be described by n functions p_1, \dots, p_n such that $p_i(x) \in [0, 1]$
 112 is the probability that the i -th coordinate equals $x \in [\ell]$. For any $y \in [\ell]^n$, the probability of y with
 113 respect to P is given by $P(y) = \prod_{i=1}^n p_i(y_i)$.

114 We require the following.

115 **Proposition 3** (See also Lemma 3 in Kontorovich (2012)). *For product distributions $P = P_1 \otimes \dots \otimes$
 116 P_n and $Q = Q_1 \otimes \dots \otimes Q_n$, it is the case that $S_{\text{stat}}(P, Q) \geq \prod_{i=1}^n S_{\text{stat}}(P_i, Q_i)$.*
 117

118 *Proof.* We will utilize a coupling argument. Let $\mathcal{O} = (X, Y)$ be an *optimal* coupling between P and
 119 Q , i.e., $\Pr_{\mathcal{O}}[X = Y] \geq \Pr_{\mathcal{C}}[X = Y]$ for any coupling \mathcal{C} . Thus, $\Pr_{\mathcal{O}}[X = Y] = S_{\text{stat}}(P, Q)$ (as
 120 mentioned in Section 1.1). For $1 \leq i \leq n$, let $\mathcal{O}_i = (X_i, Y_i)$ be an optimal coupling between P_i and
 121 Q_i . That is, $X_i \sim P_i$, $Y_i \sim Q_i$ and $\Pr_{\mathcal{O}_i}[X_i = Y_i] = S_{\text{stat}}(P_i, Q_i)$. Let \mathcal{O}' be the coupling given
 122 by the product of \mathcal{O}_i 's. Then

$$124 \quad S_{\text{stat}}(P, Q) = \Pr_{\mathcal{O}}[X = Y] \geq \Pr_{\mathcal{O}'}[X = Y] = \prod_{i=1}^n \Pr_{\mathcal{O}_i}[X_i = Y_i] = \prod_{i=1}^n S_{\text{stat}}(P_i, Q_i). \quad \square$$

126 **Proposition 4.** Let $P = P_1 \otimes \dots \otimes P_n$ and $Q = Q_1 \otimes \dots \otimes Q_n$ be product distributions over
 127 $[\ell]^n$. Let τ_P be a lower bound on $P_i(x)$ for any i and $x \in [\ell]$ whereby $P_i(x)$ is nonzero. Similarly
 128 define τ_Q and let $\tau := \min(\tau_P, \tau_Q)$. Then if $\prod_{i=1}^n S_{\text{stat}}(P_i, Q_i) > 0$, then it is the case that
 129 $\prod_{i=1}^n S_{\text{stat}}(P_i, Q_i) \geq \tau^n$.
 130

131 *Proof.* It would suffice to show that $S_{\text{stat}}(P_i, Q_i) \geq \tau$, since the P_i 's and the Q_i 's are independent.
 132 Since $\prod_{i=1}^n S_{\text{stat}}(P_i, Q_i) > 0$, for all i there must be some x such that $P_i(x), Q_i(x) > 0$ and
 133 $\min(P_i(x), Q_i(x)) > \tau$. Therefore,

$$134 \quad S_{\text{stat}}(P_i, Q_i) = \sum_{x \in [\ell]} \min(P_i(x), Q_i(x)) \geq \tau. \quad \square$$

137 **Definition 5** (*J*-Sparsification (Feng et al., 2024)). Let S be a discrete random variable that takes
 138 values between 0 and B and J be a collection of intervals I_0, \dots, I_m that partition $[0, B]$. We define
 139 the *J-sparsification* of S , denoted by \tilde{S} , as follows: Given an interval I_j , let S_j be the conditional
 140 expectation of S conditioned on S lying in the interval I_j . That is, suppose that S takes values
 141 r_1, \dots, r_k in the interval I_j . Then $S_j = \sum_{i=1}^k \Pr[S = r_i] r_i / \sum_{i=1}^k \Pr[S = r_i]$. Now the sparsified
 142 random variable \tilde{S} takes value S_j with probability $\Pr[S \in I_j] = \sum_{i=1}^k \Pr[S = r_i]$.
 143

144 3 RELATED WORK

146 Estimating the Bayes error has been a topic of continued interest in the machine learning community
 147 Fukunaga & Hostetler (1975); Devijver (1985); Noshad et al. (2019); Theisen et al. (2021); Ishida
 148 et al. (2023). These works focus on the setting where distributions are only accessible through
 149 samples rather than explicitly specified, leading to techniques distinct from those needed in our
 150 setting of explicitly represented distributions.

151 The computational complexity of statistical similarity was established through Scheffé's identity
 152 ($S_{\text{stat}}(P, Q) + d_{\text{TV}}(P, Q) = 1$) and the result of Bhattacharyya et al. (2023), where it is shown
 153 that the exact computation of d_{TV} (and thus S_{stat}) is $\#P$ -hard even for product distributions. This
 154 hardness naturally leads to the study of approximation algorithms, with multiplicative approximation
 155 being stronger than additive approximation for measures bounded in $[0, 1]$.

157 For distributions samplable by Boolean circuits, additive approximation of statistical similarity is
 158 complete for SZK (Statistical Zero Knowledge) (Sahai & Vadhan, 2003), while the problem becomes
 159 tractable for distributions that are both samplable and have efficiently computable point probabilities
 160 (Bhattacharyya et al., 2020).

161 While recent work has made significant progress on multiplicative approximation of statistical distance
 (also known as total variation distance), including an FPRAS (Feng et al., 2023) and an FPTAS (Feng

162 et al., 2024) for product distributions, these results do not directly translate to statistical similarity.
 163 This is because multiplicative approximation of statistical distance does not yield multiplicative
 164 approximation of its complement (statistical similarity), necessitating new algorithmic techniques for
 165 statistical similarity. Similarly, the NP-hardness result for multiplicatively approximating statistical
 166 distance between Bayes nets (Bhattacharyya et al., 2023) does not immediately imply hardness for
 167 statistical similarity.

168 It is perhaps worth remarking that technical barrier in translating multiplicative approximation of
 169 statistical distance to statistical similarity is rather fundamental, i.e., it is not possible in general
 170 to use an efficient multiplicative approximation algorithm for a function f in order to design an
 171 efficient multiplicative approximation algorithm for $1 - f$. In particular, even if there is an efficient
 172 multiplicative approximation algorithm f , approximating $1 - f$ could be NP-hard. For instance,
 173 let f be a function that takes as input a Boolean DNF formula ϕ and outputs the probability that a
 174 random assignment satisfies ϕ . It is known that there is a randomized multiplicative approximation
 175 algorithm for estimating f Karp et al. (1989). However, a multiplicative approximation algorithm
 176 for estimating $1 - f$ implies that all NP-complete problems have efficient randomized algorithms
 177 (RP = NP). This is because the complement of a DNF formula is a CNF formula, and there is no
 178 efficient randomized multiplicative approximation for estimating the acceptance probability of CNF
 179 formulas unless RP = NP.

180 The connection between statistical similarity and hypothesis testing has been explored in several
 181 works. While Kontorovich & Avital (2024) provides analytical bounds on statistical similarity for
 182 product distributions in the context of hypothesis testing, these bounds do not yield multiplicative
 183 approximation algorithms.

184 4 OUR RESULTS

187 Our first contribution is the design of a deterministic polynomial-time approximation scheme to
 188 estimate the statistical similarity between product distributions.

189 **Theorem 6.** *There is an FPTAS for estimating $S_{\text{stat}}(P, Q)$ whereby P and Q are product distributions
 190 succinctly represented by their parameters.*

192 Theorem 6 is proved by adapting the ideas of Feng et al. (2024). We define a random variable
 193 $R = P \parallel Q$ which is the ratio of P and Q and then partition its range into a sequence of intervals.
 194 Every one of these intervals is subsequently “sparsified,” in the sense that we only take into account
 195 the average value of R over this interval. This allows us to efficiently estimate statistical similarity, as
 196 we show in the proof.

197 A natural question is whether Theorem 6 can be extended to more general distributions such as Bayes
 198 net distributions. Our second result is a hardness result.

199 **Theorem 7.** *Given two probability distributions P and Q that are defined by Bayes nets of in-
 200 degree two, it is NP-complete to decide whether $S_{\text{stat}}(P, Q) \neq 0$ or not. Hence the problem of
 201 multiplicatively estimating S_{stat} is NP-hard.*

202 Theorem 7 is proved by adapting the proof of hardness of approximating TV distance between Bayes
 203 net distributions presented in Bhattacharyya et al. (2023).

206 5 ESTIMATING STATISTICAL SIMILARITY

208 We prove Theorem 6. Let P, Q be distributions and D be the common domain of P, Q and let R
 209 be a ratio random variable that takes the value $P(x) / Q(x) \geq 0$ with probability $Q(x)$. We can
 210 assume $Q(x) > 0$, as R only takes value when x is such that $Q(x) > 0$. We denote this by writing
 211 $R := P \parallel Q$. For ratios $R_1 = P_1 \parallel Q_1, R_2 = P_2 \parallel Q_2$ we define their independent product $R_1 \cdot R_2$ as a
 212 random variable that takes the value $(P_1(x) / Q_1(x)) (P_2(y) / Q_2(y))$ with probability $Q_1(x) Q_2(y)$.

213 Moreover, we overload notation and for a ratio random variable $R = P \parallel Q$, we let $S_{\text{stat}}(R)$ denote
 214 the functional $\mathbf{E}[\min(R, 1)]$. Then

$$215 S_{\text{stat}}(R) = \mathbf{E}[\min(R, 1)]$$

$$\begin{aligned}
216 &= \mathbf{E}_{x \sim Q} [\min(P(x) / Q(x), 1)] \\
217 \\
218 &= \sum_x \min(P(x) / Q(x), 1) Q(x) = \sum_x \min(P(x), Q(x)) = S_{\text{stat}}(P, Q).
\end{aligned}$$

221 **Setting and Algorithm Definition.** We denote by ε the desired accuracy parameter. Let τ_P be a
222 lower bound on $P_i(x)$ for any i and $x \in [\ell]$ whereby $P_i(x)$ is nonzero. Similarly define τ_Q and let
223 $\tau := \min(\tau_P, \tau_Q)$. Let also $B := 1/\tau^n$, $\delta := (1 + \varepsilon/2)^{1/n} - 1$, and $\gamma := \tau^{2n} (\varepsilon/2) \delta / (n(1 + \delta)^n)$.
224 We require the following.

225 **Proposition 8.** *It is the case that $\Pr[0 \leq R \leq B] = 1$.*

228 *Proof.* By definition, $R \geq 0$. Since R takes the value $P(x) / Q(x)$ with probability $Q(x)$, we get
229 that R is at most $\max_x (P(x) / Q(x)) \leq 1/\tau^n = B$ with probability 1. \square

231 We now define a set of intervals

$$233 \quad J := \{ \{0\}, I_0 := (0, \gamma], I_1 := (\gamma, \gamma(1 + \delta)], \dots, I_m := (\gamma(1 + \delta)^{m-1}, \gamma(1 + \delta)^m = B] \},$$

235 whereby $m := (\log(B/\gamma)) / \log(1 + \delta)$. Define R_1, \dots, R_n to be the ratios for each coordinates,
236 that is, $R_i := P_i \| Q_i$. We define a set of random variables Y_i for $1 \leq i \leq n$. Define $Y_1 = R_1$ and
237 $Y_{i+1} = \tilde{Y}_i \cdot R_{i+1}$ where \tilde{Y}_i is the J -sparsification of Y_i . Also, for convenience, set $Z_i := R_{i+1} \cdots R_n$
238 and $Z_n = 1$. The output of our algorithm is $S_{\text{stat}}(\tilde{Y}_n \cdot Z_n) = S_{\text{stat}}(\tilde{Y}_n)$. See Algorithm 1.

240 **Algorithm 1** The pseudocode of our algorithm.

241 **Require:** Product distributions P, Q through their marginal distributions $P_1, \dots, P_n, Q_1, \dots, Q_n$,
242 each over $[\ell]$, and an accuracy error parameter ε .

243 **Ensure:** The output $S_{\text{stat}}(\tilde{Y}_n)$ is an ε -approximation of $S_{\text{stat}}(P, Q)$.

244 1: {We can compute n by parsing the input.}
245 2: **for** $i \leftarrow 1, \dots, n$ **do**
246 3: $R_i \leftarrow P_i \| Q_i$
247 4: {Computing $S_{\text{stat}}(R_i)$ takes time $O(\ell)$.}
248 5: **if** $S_{\text{stat}}(R_i) = 0$ **then**
249 6: **return** 0
250 7: **end if**
251 8: **end for**
252 9: $\delta \leftarrow (1 + \varepsilon/2)^{1/n} - 1$
253 10: $\tau_P \leftarrow \min\{P_i(x) \mid i \in [n], x \in [\ell], P_i(x) > 0\}$ {This step takes time $O(n\ell)$.}
254 11: $\tau_Q \leftarrow \min\{Q_i(x) \mid i \in [n], x \in [\ell], Q_i(x) > 0\}$ {This step takes time $O(n\ell)$.}
255 12: $\tau \leftarrow \min(\tau_P, \tau_Q)$
256 13: $\gamma \leftarrow \tau^{2n} (\varepsilon/2) \delta / (n(1 + \delta)^n)$
257 14: $J \leftarrow \{\{0\}, \{(0, \gamma]\}\}$
258 15: **for** $i \leftarrow 1, \dots, m$ **do**
259 16: $J \leftarrow J \cup \left\{ \left(\gamma(1 + \delta)^{i-1}, \gamma(1 + \delta)^i \right] \right\}$
260 17: **end for**
261 18: $Y_1 \leftarrow R_1$
262 19: **for** $i \leftarrow 1, \dots, n$ **do**
263 20: $\tilde{Y}_i \leftarrow J$ -sparsification of Y_i {This step takes time $O(m\ell)$.}
264 21: **if** $i < n$ **then**
265 22: $Y_{i+1} \leftarrow \tilde{Y}_i \cdot R_{i+1}$ {This step takes time $O(m\ell)$.}
266 23: **end if**
267 24: **end for**
268 25: **return** $S_{\text{stat}}(\tilde{Y}_n)$ {Computing $S_{\text{stat}}(\tilde{Y}_n)$ takes time $O(m)$.}

270 **Running Time.** Note that $S_{\text{stat}}(R_i) = S_{\text{stat}}(P_i, Q_i)$ can be computed in time $O(\ell)$ by following
 271 the equality $S_{\text{stat}}(R_i) = \mathbf{E}[\min(R_i, 1)]$ and utilizing the fact that R_i may assume ℓ values. Moreover,
 272 the sparsification step can be computed in time $O(m\ell)$. This is because, firstly, in Line 22 we generate
 273 $m\ell$ many ratios and then in Line 20 (sparsification step) we crunch them into m ratios. Finally, and
 274 similarly to $S_{\text{stat}}(R_i)$, the output $S_{\text{stat}}(\tilde{Y}_n)$ can be computed in time $O(m)$ by utilizing the fact that
 275 \tilde{Y}_n may assume $m + 1$ values (as there are $m + 1$ intervals in J).
 276

277 Therefore, the running time of Algorithm 1 is
 278

$$\begin{aligned} 279 \quad O(n\ell m) &= O(n\ell (\log(B/\gamma)) / \log(1 + \delta)) \\ 280 &= O\left(n\ell \left(\log\left(\left(1/\tau^n\right) / \left(\tau^{2n} (\varepsilon/2) \delta / (n(1 + \delta)^n)\right)\right)\right) / \log\left(1 + (1 + \varepsilon/2)^{1/n} - 1\right)\right) \\ 281 &= \tilde{O}\left(n^3 \ell \log\left(\left(1 + \varepsilon\right) / \left(\varepsilon\tau\right)\right) / \varepsilon\right). \end{aligned}$$

283 **Correctness.** We will prove the this algorithm outputs a quantity that is an ε -approximation to
 284 $S_{\text{stat}}(P, Q)$. This is accomplished by Lemma 9 and Lemma 10.
 285

286 **Lemma 9.** *We have that $S_{\text{stat}}(\tilde{Y}_n) \leq (1 + \varepsilon) S_{\text{stat}}(P, Q)$.*
 287

288 *Proof.* We will first show that $S_{\text{stat}}(\tilde{Y}_i \cdot Z_i) \leq (1 + \delta) S_{\text{stat}}(Y_i \cdot Z_i) + \gamma B$. To this end, we have
 289

$$\begin{aligned} 290 \quad S_{\text{stat}}(\tilde{Y}_i \cdot Z_i) &= \mathbf{E}\left[\min\left(\tilde{Y}_i \cdot Z_i, 1\right)\right] \\ 291 &= \mathbf{E}\left[\sum_{j=0}^m \min\left(\tilde{Y}_i \cdot Z_i, 1\right) \mathbf{1}[Y_i \in I_j]\right] \\ 292 &= \mathbf{E}\left[\sum_{j=1}^m \min\left(\tilde{Y}_i \cdot Z_i, 1\right) \mathbf{1}[Y_i \in I_j]\right] + \mathbf{E}\left[\min\left(\tilde{Y}_i \cdot Z_i, 1\right) \mathbf{1}[Y_i \in I_0]\right] \\ 293 &\leq \sum_{j=1}^m \mathbf{E}\left[\min\left(\tilde{Y}_i \cdot Z_i, 1\right) \mathbf{1}[Y_i \in I_j]\right] + \gamma B \\ 294 &\leq \sum_{j=1}^m \mathbf{E}\left[\left((1 + \delta) \min(Y_i \cdot Z_i, 1)\right) \mathbf{1}[Y_i \in I_j]\right] + \gamma B \\ 295 &\leq \sum_{j=1}^m (1 + \delta) \mathbf{E}[\min(Y_i \cdot Z_i, 1) \mathbf{1}[Y_i \in I_j]] + \gamma B \\ 296 &= (1 + \delta) \sum_{j=1}^m \mathbf{E}[\min(Y_i \cdot Z_i, 1) \mathbf{1}[Y_i \in I_j]] + \gamma B \\ 297 &\leq (1 + \delta) \sum_{j=0}^m \mathbf{E}[\min(Y_i \cdot Z_i, 1) \mathbf{1}[Y_i \in I_j]] + \gamma B \\ 298 &= (1 + \delta) \mathbf{E}[\min(Y_i \cdot Z_i, 1)] + \gamma B = (1 + \delta) S_{\text{stat}}(Y_i \cdot Z_i) + \gamma B, \end{aligned}$$

316 The first part of the first inequality follows from the linearity of the expectation. For the second
 317 part, note that since $I_0 = (0, \gamma]$, the maximum value \tilde{Y}_i can take in I_0 is at most γ . The maximum
 318 value of Z_i is B , thus $\mathbf{E}\left[\min\left(\tilde{Y}_i \cdot Z_i, 1\right) \mathbf{1}[Y_i \in I_0]\right] \leq \gamma B$. For the second inequality, suppose that
 319 $Y_i \in I_j = (\gamma(1 + \delta)^{j-2}, \gamma(1 + \delta)^{j-1}]$. The maximum value \tilde{Y}_i can take is $\gamma(1 + \delta)^{j-1}$ and the Y_i is
 320 larger than $\gamma(1 + \delta)^{j-2}$. Thus $\tilde{Y}_i \leq (1 + \delta) Y_i$.
 321

322 Therefore,
 323

$$S_{\text{stat}}(\tilde{Y}_n) = S_{\text{stat}}(\tilde{Y}_n \cdot Z_n) \leq \gamma B + (1 + \delta) S_{\text{stat}}(Y_n \cdot Z_n) = \gamma B + (1 + \delta) S_{\text{stat}}(\tilde{Y}_{n-1} \cdot Z_{n-1})$$

324 so that inductively, we will get
 325

$$\begin{aligned} 326 \quad S_{\text{stat}}(\tilde{Y}_n) &\leq \gamma B \sum_{k=0}^{n-2} (1+\delta)^k + (1+\delta)^{n-1} S_{\text{stat}}(Y_1 \cdot Z_1) \\ 327 \\ 328 \\ 329 \end{aligned}$$

$$\leq \gamma B(1+\delta)^n / \delta + (1+\delta)^n S_{\text{stat}}(P, Q),$$

330 since $S_{\text{stat}}(Y_1 \cdot Z_1) = S_{\text{stat}}(R_1 \cdot \dots \cdot R_n) = S_{\text{stat}}(P, Q)$. What is left is to show that $\gamma B(1+\delta)^n / \delta + (1+\delta)^n S_{\text{stat}}(P, Q) \leq (1+\varepsilon) S_{\text{stat}}(P, Q)$. However, this readily follows from the definitions of γ, δ, B as well as Proposition 3 and Proposition 4. Let us elaborate on these calculations. By the fact that $\delta = (1+\varepsilon/2)^{1/n} - 1$, we get $(1+\delta)^n S_{\text{stat}}(P, Q) \leq (1+\varepsilon/2) S_{\text{stat}}(P, Q)$. So what is left is to show that $\gamma B(1+\delta)^n / \delta \leq (\varepsilon/2) S_{\text{stat}}(P, Q)$. By Proposition 3 and Proposition 4, it would suffice to show that $\gamma B(1+\delta)^n / \delta \leq (\varepsilon/2) \tau^n$, which follows directly from the definitions of γ and B . \square

338 Similarly, we have the following.
 339

340 **Lemma 10.** *We have that $S_{\text{stat}}(\tilde{Y}_n) \geq S_{\text{stat}}(P, Q) / (1+\varepsilon)$.*
 341

342 To prove Lemma 10 we will utilize the following claim (proved in Appendix C).

343 **Claim 11.** *It is the case that $S_{\text{stat}}(Y_i \cdot Z_i) \leq (1+\delta) S_{\text{stat}}(\tilde{Y}_i \cdot Z_i) + \gamma B$.*
 344

345 *Proof of Lemma 10.* By Claim 11, and since $S_{\text{stat}}(\tilde{Y}_n) = S_{\text{stat}}(\tilde{Y}_n \cdot Z_n)$, we have
 346

$$347 \quad S_{\text{stat}}(\tilde{Y}_n) \geq S_{\text{stat}}(Y_n \cdot Z_n) / (1+\delta) - \gamma B / (1+\delta).$$

350 Inductively, we get
 351

$$\begin{aligned} 352 \quad S_{\text{stat}}(\tilde{Y}_n) &\geq S_{\text{stat}}(Y_1 \cdot Z_1) / (1+\delta)^n - \gamma B \sum_{k=1}^{n-1} 1 / (1+\delta)^k \\ 353 \\ 354 \\ 355 \end{aligned}$$

$$\geq S_{\text{stat}}(P, Q) / (1+\delta)^n - n\gamma B.$$

356 What is left is to show that $S_{\text{stat}}(P, Q) / (1+\delta)^n - n\gamma B \geq S_{\text{stat}}(P, Q) / (1+\varepsilon)$ which is equivalent to $S_{\text{stat}}(P, Q) (1+\varepsilon) \geq n\gamma B (1+\delta)^n (1+\varepsilon) + S_{\text{stat}}(P, Q) (1+\delta)^n$. However, similarly to what we did in Lemma 9, this inequality readily follows from the definitions of γ, δ, B as well as Proposition 3 and Proposition 4. \square

361 This concludes the proof of Theorem 6.
 362

363 *Remark 12.* We note that the above estimation algorithm also works for estimating similarity
 364 for sub-product distributions. Let P' and Q' be product distributions and $P = \alpha P'$ and $Q = \beta Q'$ for constants α, β . In this case, to estimate similarity between P and Q , we will estimate
 365 $\mathbf{E}_{x \sim Q'} [\min(\alpha P'(x) / Q'(x), \beta)]$.

366 *Remark 13.* While our algorithmic technique is inspired by the work of Feng et al. (2024), the details
 367 of our algorithm are different. Specifically, the sparsification procedure is defined differently there,
 368 tailored to d_{TV} estimation instead of S_{stat} . The analysis here is more direct and arguably simpler.
 369

370 6 NP-HARDNESS OF ESTIMATING STATISTICAL SIMILARITY

373 We show that it is NP-hard to efficiently multiplicatively estimate $S_{\text{stat}}(P, Q)$ for arbitrary Bayes net
 374 distributions P, Q . That is, we prove Theorem 7. We first formally define Bayes nets.
 375

376 6.1 BAYES NETS

377 For a directed acyclic graph (DAG) G and a node v in G , let $\Pi(v)$ denote the set of parents of v .
 378

378 **Definition 14** (Bayes nets). A *Bayes net* is specified by a DAG over a vertex set $[n]$ and a collection
 379 of probability distributions over symbols in $[\ell]$, as follows. Each vertex i is associated with a random
 380 variable X_i whose range is $[\ell]$. Each node i of G has a Conditional Probability Table (CPT) that
 381 describes the following: For every $x \in [\ell]$ and every $y \in [\ell]^k$, where k is the size of $\Pi(i)$, the CPT
 382 has the value of $\Pr[X_i = x | X_{\Pi(i)} = y]$ stored. Given such a Bayes net, its associated probability
 383 distribution P is given by the following: For all $x \in [\ell]^n$, $P(x)$ is equal to

$$385 \quad \Pr_P[X = x] = \prod_{i=1}^n \Pr_P[X_i = x_i | X_{\Pi(i)} = x_{\Pi(i)}].$$

388 Here, X is the joint distribution (X_1, \dots, X_n) and $x_{\Pi(i)}$ is the projection of x to the indices in $\Pi(i)$.
 389

390 Note that $P(x)$ can be computed in linear time by using the CPTs of P to retrieve each
 391 $\Pr_P[X_i = x_i | X_{\Pi(i)} = x_{\Pi(i)}]$.
 392

393 6.2 PROOF OF THEOREM 7

395 The proof is similar to the proof of hardness of approximating TV distance between Bayes net
 396 distributions presented in Bhattacharyya et al. (2023). However, the present proof gives more tight
 397 relationship between the number of satisfying assignments of a CNF formula and statistical similarity
 398 of Bayes net distributions.
 399

400 The reduction takes a CNF formula ϕ on n variables and produces two Bayes net distributions P and
 401 Q (with in-degree at most 2) so that

$$402 \quad S_{\text{stat}}(P, Q) = \frac{|\text{Sol}(\phi)|}{2^n},$$

405 where $\text{Sol}(\phi)$ is the set of satisfying assignments for ϕ .
 406

407 Let ϕ be a CNF formula. Without loss of generality, view ϕ as a Boolean circuit (with AND,
 408 OR, NOT gates) of fan-in at most two with n input variables $\mathcal{X} = \{X_1, \dots, X_n\}$ and m internal
 409 gates $\mathcal{Y} = \{Y_1, \dots, Y_m\}$. Let G_ϕ be the DAG representing this circuit with vertex set $\mathcal{X} \cup \mathcal{Y}$.
 410 So in total there are $n + m$ nodes in G_ϕ . Assume $\mathcal{X} \cup \mathcal{Y}$ is topologically sorted in the order
 411 $X_1, \dots, X_n, Y_1, \dots, Y_m$, whereby Y_m is the output gate. For every internal gate node Y_i , there is
 412 directed edge from node Y_i to node Y_j if the gate/variable corresponding to Y_i is an input to Y_j .
 413

414 We will define two Bayes net distributions P and Q on the same DAG G_ϕ . Let X_i be a binary random
 415 variable corresponding to the input variable node X_i for $1 \leq i \leq n$ and Y_j be a binary random
 416 variable corresponding to the internal gate Y_j for $1 \leq j \leq m$. The distributions P and Q on G are
 417 given by Conditional Probability Tables (CPTs) defined as follows. The CPTs of P and Q will only
 418 differ in Y_m .
 419

420 For both P and Q , each X_i ($1 \leq i \leq n$) is a uniform random bit. For each Y_i ($1 \leq i \leq m-1$), its
 421 CPT is the deterministic function defined by its associated gate. For example, if Y_i is an OR gate
 422 in G_ϕ , then $Y_i = 1$ with probability 1 except when the inputs are 00, in which case $Y_i = 0$ with
 423 probability 1. The CPTs for AND and NOT nodes are similar.
 424

425 For P , the value of Y_m is given by the deterministic function of the output gate Y_m in G_ϕ . For Q , the
 426 value of Y_m is 1 (independently of the input).
 427

428 Note that even though the sample space is $\{0, 1\}^{n+m}$, there are only 2^n strings in the support of P
 429 and Q . In particular, a point z in the sample space $\{0, 1\}^{n+m}$ can be written as xy where x is the
 430 first n bits and y is the last m bits. By construction, it is clear that for every x , there is only one y
 431 (which are the gate values for the input assignment x) for which xy has positive probability in both
 432 the distributions, and this probability is exactly $\frac{1}{2^n}$. For any x , let $f_P(x)$ (respectively, $f_Q(x)$) denote
 433 this unique y in P (respectively, in Q). The crucial observation is that $f_P(x)$ and $f_Q(x)$ are the same
 434 if and only if x is in $\text{Sol}(\phi)$. In this case, denote $f_P(x) = f_Q(x) = f(x)$.
 435

436 Consider $z = xy \in \{0, 1\}^{n+m}$. If xy is not in the support of both P and Q , then the minimum of
 437 $P(z)$ and $Q(z)$ is 0, so assume that xy is in the support of at least one.
 438

432 **Case 1.** Assume that x is a not a satisfying assignment of ϕ . Then $z = xf_P(x)$ is in the support of
 433 P , however, it is not in the support of Q as the last bit of $z = 0$. Similarly $xf_Q(x)$ is in the support
 434 of Q but not in P . Hence, $\min(P(z), Q(z)) = 0$.

436 **Case 2.** Assume that x is a satisfying assignment of ϕ . In this case the last bit of $z = xf_P(x)$ is 1 and
 437 hence is in the support on both P and Q and has a probability of $\frac{1}{2^n}$. Thus $\min(P(z), Q(z)) = \frac{1}{2^n}$.
 438 Hence we have

$$\begin{aligned} S_{\text{stat}}(P, Q) &= \sum_{z \in \{0,1\}^{n+m}} \min(P(z), Q(z)) \\ &= \sum_{x \in \text{Sol}(\phi)} \min(P(xf(x), Q(xf(x))) + \sum_{x \notin \text{Sol}(\phi)} \min(P(xf_P(x), Q(xf_P(x)))) \\ &\quad + \sum_{x \notin \text{Sol}(\phi)} \min(P(xf_Q(x)), Q(xf_Q(x))) = \frac{|\text{Sol}(\phi)|}{2^n} + 0 + 0 = \frac{|\text{Sol}(\phi)|}{2^n}. \end{aligned}$$

447 This concludes the proof.
 448

449 7 CONCLUSION

452 Statistical similarity (S_{stat}) between distributions is a fundamental quantity. In this work, we initiated
 453 a computational study of S_{stat} . Prior results on statistical distance computation imply that the exact
 454 computation of S_{stat} for high-dimensional distributions is computationally intractable.

455 Our first contribution is a fully polynomial-time deterministic approximation scheme (FPTAS) for
 456 estimating statistical similarity between two product distributions. Notably, the existing FPTAS
 457 for statistical distance (Feng et al., 2024) does not directly yield an FPTAS for S_{stat} . We also
 458 establish a complementary hardness result: Approximating S_{stat} for Bayes net distributions is NP-
 459 hard. Extending our results beyond product distributions to more structured settings, such as tree
 460 distributions, remains a significant and promising research direction.

461 We believe S_{stat} computation is a compelling problem from a complexity theory perspective. Interest-
 462 ingly, for product distributions, both S_{stat} and its complement ($1 - S_{\text{stat}} = d_{\text{TV}}$) admit FPTAS,
 463 making it one of the rare problems with this property. A deeper complexity-theoretic study of
 464 functions f in $\#P$ with range in $[0, 1]$, where both f and $1 - f$ have approximation schemes, is an
 465 intriguing direction for future research. Finally, this work is limited to the algorithmic foundational
 466 aspects of S_{stat} computation. We leave the experimental evaluation of the algorithm for future work.

468 REFERENCES

- 470 Daniel Berend and Aryeh Kontorovich. A finite sample analysis of the naive Bayes classifier. *J.
 471 Mach. Learn. Res.*, 16:1519–1545, 2015.
- 472 Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, and N. V. Vinodchandran. Efficient distance
 473 approximation for structured high-dimensional distributions via learning. In *Proc. of NeurIPS*,
 474 2020.
- 476 Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, and N. V.
 477 Vinodchandran. On approximating total variation distance. In *Proceedings of IJCAI*, 2023.
- 478 Pierre A. Devijver. A multiclass, k -NN approach to Bayes risk estimation. *Pattern Recognition
 479 Letters*, 3(1):1–6, 1985. doi: 10.1016/0167-8655(85)90035-2.
- 481 Wolfgang Doeblin. Exposé de la théorie des chaînes simples constantes de markova un nombre fini
 482 d'états. *Mathématique de l'Union Interbalkanique*, 2(77-105):78–80, 1938.
- 484 Weiming Feng, Heng Guo, Mark Jerrum, and Jiaheng Wang. A simple polynomial-time approxima-
 485 tion algorithm for the total variation distance between two product distributions. *TheoretCS*, 2,
 2023.

- 486 Weiming Feng, Liqiang Liu, and Tianren Liu. On deterministically approximating total variation
 487 distance. In *Proceedings of SODA*, 2024.
- 488
- 489 Keinosuke Fukunaga and Larry D. Hostetler. k -nearest-neighbor Bayes-risk estimation. *IEEE*
 490 *Transactions on Information Theory*, 21(3):285–293, 1975.
- 491
- 492 Takashi Ishida, Ikko Yamane, Nontawat Charoenphakdee, Gang Niu, and Masashi Sugiyama. Is
 493 the performance of my deep network too good to be true? A direct approach to estimating
 494 the Bayes error in binary classification. In *The Eleventh International Conference on Learning*
 495 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
<https://openreview.net/forum?id=FZdJQgy05rz>.
- 496
- 497 Richard M. Karp, Michael Luby, and Neal Madras. Monte-Carlo approximation algorithms for
 498 enumeration problems. *J. Algorithms*, 10(3):429–448, 1989.
- 499
- 500 Aryeh Kontorovich and Ariel Avital. Sharp bounds on aggregate expert error, 2024. URL <https://arxiv.org/abs/2407.16642>.
- 501
- 502 Leonid Kontorovich. Obtaining measure concentration from Markov contraction, 2012. URL
<https://arxiv.org/abs/0711.0987>.
- 503
- 504 Erich Leo Lehmann and Joseph P. Romano. *Testing Statistical Hypotheses, Third Edition*. Springer
 505 texts in statistics. Springer, 2008.
- 506
- 507 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. *Markov chains and mixing times*. American
 508 Mathematical Society, 2006.
- 509
- 510 Torgny Lindvall. *Lectures on the coupling method*. Courier Corporation, 2002.
- 511
- 512 Sean P Meyn and Richard L Tweedie. *Markov chains and stochastic stability*. Springer Science &
 513 Business Media, 2012.
- 514
- 515 Frank Nielsen. Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-
 516 arithmetic means. *Pattern Recognit. Lett.*, 42:25–34, 2014.
- 517
- 518 Morteza Noshad, Li Xu, and Alfred Hero. Learning to benchmark: Determining best achievable
 519 misclassification error from training data. *arXiv preprint arXiv:1909.07192*, 2019. URL <https://arxiv.org/abs/1909.07192>.
- 520
- 521 Fabio Parisi, Francesco Strino, Boaz Nadler, and Yuval Kluger. Ranking and combining multiple
 522 predictors without labeled data. *Proceedings of the National Academy of Sciences*, 111(4):1253–
 523 1258, 2014.
- 524
- 525 Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. *J. ACM*, 50(2):
 526 196–249, 2003.
- 527
- 528 Ryan Theisen, Huan Wang, Lav R. Varshney, Caiming Xiong, and Richard Socher. Evaluating state-of-
 529 the-art classification models against bayes optimality. In *Advances in Neural Information Processing*
 530 *Systems*, volume 34, pp. 29808–29820, 2021. URL <https://proceedings.neurips.cc/paper/2021/file/4e0ccd2b894f717df5ebc12f4282ee70-Paper.pdf>.
- 531
- 532 Alexandre B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer series in statistics.
 533 Springer, 2009. ISBN 978-0-387-79051-0. doi: 10.1007/B13794. URL <https://doi.org/10.1007/b13794>.
- 534
- 535
- 536 **A BAYES ERROR AND STATISTICAL SIMILARITY**
- 537
- 538 A *binary prediction problem* is a distribution P of $X \times \{0, 1\}$ where X is a (finite) feature space.
 539 A *classifier* is a deterministic function $g : X \rightarrow \{0, 1\}$. The 0-1 *error* of the predictor g is
 $\Pr_{(x,y) \sim P}[g(x) \neq y]$.
- 540
- 541 The *Bayes optimal classifier* is the classifier that outputs 1 if and only if $P(1|x) \geq P(0|x)$. The error
 542 of Bayes optimal classifier denoted as R^* is called the *Bayes error*. Bayes error is the minimum

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
error possible in the sense that the error of any classifier is at least Bayes error. It is known that for a prediction problem P , its Bayes error R^* is given by the following marginal expectation:

$$R^* = \mathbf{E}_X[\min(P(0|X), P(1|X))].$$

Let the prior probabilities $P(0)$ and $P(1)$ be denoted by α_0 and α_1 respectively. Note that α_0 and α_1 are constants that sum up to 1. We call P *balanced* if $P(0) = P(1) = 1/2$. For simplifying notation, we will also denote the likelihood distributions $P(X|0)$ and $P(X|1)$ as P_0 and P_1 respectively.

Theorem 15. *For a prediction problem P , its Bayes error is given by*

$$R^* = S_{\text{stat}}(\alpha_0 P_0, \alpha_1 P_1).$$

In particular, for a balanced prediction problem P , its Bayes error is given by $R^* = S_{\text{stat}}(P_0, P_1)/2$.

Proof. The proof is a simple application of the Bayes theorem. That is,

$$\begin{aligned} R^* &= \mathbf{E}_X[\min(P(0|X), P(1|X))] \\ &= \sum_{x \in X} P(x) \cdot \min(P(0|x), P(1|x)) \\ &= \sum_x P(x) \cdot \min\left(\frac{P(x|0)P(0)}{P(x)}, \frac{P(x|1)P(1)}{P(x)}\right) \\ &= \sum_x \min(P(x|0)P(0), P(x|1)P(1)) = S_{\text{stat}}(\alpha_0 P_0, \alpha_1 P_1). \end{aligned}$$

The balanced case follows from the fact that $\alpha_0 = \alpha_1 = \frac{1}{2}$. \square

B TOTAL VARIATION DISTANCE AND STATISTICAL SIMILARITY

Statistical similarity can be proved to be equal to the complement of statistical distance, which is commonly called total variation distance (denoted by d_{TV}). See below.

Definition 16. For distributions P, Q over a sample space D , the *total variation (TV) distance between P and Q* is

$$d_{\text{TV}}(P, Q) := \sum_{x \in D} \max(0, P(x) - Q(x)).$$

Proposition 17 (Scheffé's identity, see also (Tsybakov, 2009)). *Let P, Q be distributions over a sample space D . Then $S_{\text{stat}}(P, Q) = 1 - d_{\text{TV}}(P, Q)$.*

Proof. We have that

$$\begin{aligned} S_{\text{stat}}(P, Q) &= \sum_{x \in D} \min(P(x), Q(x)) \\ &= \sum_{x \in D} \min(P(x), P(x) + Q(x) - P(x)) \\ &= \sum_{x \in D} P(x) + \sum_{x \in D} \min(0, Q(x) - P(x)) \\ &= 1 - \sum_{x \in D} \max(0, P(x) - Q(x)) = 1 - d_{\text{TV}}(P, Q). \end{aligned} \quad \square$$

C PROOF OF CLAIM 11

We have

$$S_{\text{stat}}(Y_i \cdot Z_i) = \mathbf{E}[\min(Y_i \cdot Z_i, 1)]$$

$$\begin{aligned}
&= \mathbf{E} \left[\sum_{j=0}^m \min(Y_i \cdot Z_i, 1) \mathbb{1}[Y_i \in I_j] \right] \\
&= \mathbf{E} \left[\sum_{j=1}^m \min(Y_i \cdot Z_i, 1) \mathbb{1}[Y_i \in I_j] \right] + \mathbf{E}[\min(Y_i \cdot Z_i, 1) \mathbb{1}[Y_i \in I_0]] \\
&\leq \sum_{j=1}^m \mathbf{E}[\min(Y_i \cdot Z_i, 1) \mathbb{1}[Y_i \in I_j]] + \gamma B \\
&\leq \sum_{j=1}^m \mathbf{E} \left[\left((1 + \delta) \min(\tilde{Y}_i \cdot Z_i, 1) \right) \mathbb{1}[Y_i \in I_j] \right] + \gamma B \\
&\leq \sum_{j=1}^m (1 + \delta) \mathbf{E} \left[\min(\tilde{Y}_i \cdot Z_i, 1) \mathbb{1}[Y_i \in I_j] \right] + \gamma B \\
&= (1 + \delta) \sum_{j=1}^m \mathbf{E} \left[\min(\tilde{Y}_i \cdot Z_i, 1) \mathbb{1}[Y_i \in I_j] \right] + \gamma B \\
&\leq (1 + \delta) \sum_{j=0}^m \mathbf{E} \left[\min(\tilde{Y}_i \cdot Z_i, 1) \mathbb{1}[Y_i \in I_j] \right] + \gamma B \\
&= (1 + \delta) \mathbf{E} \left[\min(\tilde{Y}_i \cdot Z_i, 1) \right] + \gamma B = (1 + \delta) S_{\text{stat}}(\tilde{Y}_i \cdot Z_i) + \gamma B,
\end{aligned}$$

The first part of the first inequality follows from the linearity of the expectation. For the second part, note that the interval $I_0 = (0, \gamma]$. Thus, the maximum value Y_i can take in this interval is almost γ . The maximum value of Z_i is B , thus $\mathbf{E}[\min(Y_i \cdot Z_i, 1) \mathbb{1}[Y_i \in I_0]] \leq \gamma B$. For the second inequality, suppose that $Y_i \in I_j = (\gamma(1 + \delta)^{j-2}, \gamma(1 + \delta)^{j-1}]$. The maximum value Y_i can take is $\gamma(1 + \delta)^{j-1}$ and the \tilde{Y}_i is larger than $\gamma(1 + \delta)^{j-2}$. Thus $Y_i \leq (1 + \delta) \tilde{Y}_i$.

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647