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ABSTRACT

We introduce and study the computational problem of determining statistical
similarity between probability distributions. For distributions P and @ over
a finite sample space, their statistical similarity is defined as Sgat(P, Q) :=
>, min(P(x), Q(z)). Despite its fundamental nature as a measure of similar-
ity between distributions, capturing essential concepts such as Bayes error in
prediction and hypothesis testing, this computational problem has not been pre-
viously explored. Recent work on computing statistical distance has established
that, somewhat surprisingly, even for the simple class of product distributions,
exactly computing statistical similarity is #P-hard. This motivates the question of
designing approximation algorithms for statistical similarity. Our first contribution
is a Fully Polynomial-Time deterministic Approximation Scheme (FPTAS) for
estimating statistical similarity between two product distributions. Furthermore,
we also establish a complementary hardness result. In particular, we show that it is
NP-hard to estimate statistical similarity when P and () are Bayes net distributions
of in-degree 2.

1 INTRODUCTION

Given two distributions P and () over a finite sample space D, their statistical similarity, denoted
Sstat (P, Q), is defined as

Setat(P,Q) ==Y _ min(P(z), Q(x)). (1)
x€D
Statistical similarity serves as a fundamental measure in machine learning and statistical inference.
We defer a detailed discussion of motivating applications to Section 1.1.

When the sample space is small, computing S, is trivial. However, for high-dimensional distri-
butions, this computation presents significant challenges. Surprisingly, recent work (Bhattacharyya
et al., 2023) has established that computing Sgat is #P-hard even for the simple class of product
distributions. This hardness result is striking given that product distributions represent one of the most
basic high-dimensional distribution classes, where each dimension is independent of other dimensions.
The hardness of this elementary case raises fundamental questions about the computational nature of
statistical similarity: Can we develop efficient approximation algorithms for classes of distributions of
interest? In general, what is the boundary between tractable and intractable similarity computation?

The primary contribution of this work is to initiate a principled investigation of the computational
aspects of statistical similarity, identifying both tractable and intractable scenarios. Our first contri-
bution is a Fully Polynomial-Time deterministic Approximation Scheme (FPTAS) for estimating
Sstat between product distributions. To complement this algorithmic result, we establish sharp
computational boundaries by proving that approximating Sg;,; becomes NP-hard even for slightly
more general distributions. Specifically, we show that the problem is NP-hard to approximate for
Bayes net distributions with in-degree 2. Note that we work in a computational setting, where the
algorithms have access to a succinct description of distributions.

1.1 MOTIVATING APPLICATIONS

Statistical similarity plays a central role across multiple domains in machine learning and statistics.
We examine three key applications of statistical similarity: Its connection to Bayes error in prediction
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problems, its role in characterizing optimal decision rules in hypothesis testing, and its interpretation
through coupling theory. These applications demonstrate the significance of Sggat-

Statistical similarity arises naturally in the analysis of prediction problems through the notion of
Bayes error. Consider a binary prediction problem defined by a distribution P over X x {0,1},
where X is a finite feature space. When a classifier g : X — {0, 1} attempts to predict the label,
it incurs a 0-1 prediction error measured as Pr(, ). plg(z) # y|. The Bayes optimal classifier,
which outputs 1 if and only if P(1|z) > P(0|z), achieves the minimum possible error R*, known
as the Bayes error. This error represents a fundamental lower bound that no classifier can surpass.
The connection to statistical similarity manifests through a precise mathematical relationship: For
any prediction problem, the Bayes error exactly equals the statistical similarity between its scaled
likelihood distributions. Specifically, if we denote the prior probabilities P(0) and P(1) by « and
aq respectively, then R* = Sgiat (a9 P(X10), a1 P(X|1)) (a proof is given in Appendix A), where
P(X|i) represents the sub-distribution obtained by scaling P(i|X) with «;.

The relationship between statistical similarity and optimal decision-making extends beyond prediction
problems to the domain of hypothesis testing (Lehmann & Romano, 2008; Nielsen, 2014). This setting
is particularly relevant to our computational focus, as it deals with known distributions representing
null and alternate hypotheses. A recent result (Kontorovich & Avital, 2024) establishes how statistical
similarity between product distributions determines the optimal error in hypothesis testing (Parisi
et al., 2014; Berend & Kontorovich, 2015). To illustrate this connection, consider a hypothesis testing
game where a random bit Y € {0, 1} is drawn with bias p; (letting po = 1 — p1), followed by an
i.i.d. sequence X1, ..., X,, where each X; € {0, 1} satisfies Pr[X; = 1|Y = 1] v; and Pr[X; =
1Y = 0] = 1), for parameters ¥,n € (0,1)". The optimal decmon rule fOFT : {0,1}" — {O 1}
that minimizes Pr[fOPT(X) # Y] achieves an error rate of Syiat(p1 Bern(v)), poBern(n)), where
Bern(t)) denotes the product distribution of individual Bern(v;) distributions.

These theoretical connections have significant practical implications. Since Bayes error represents the
theoretically optimal performance limit, statistical similarity serves as a benchmark for the evaluation
of machine learning models. This capability has spurred extensive research in estimating Bayes error
and statistical similarity (Fukunaga & Hostetler, 1975; Devijver, 1985; Noshad et al., 2019; Theisen
et al., 2021; Ishida et al., 2023).

Statistical similarity can be interpreted through coupling theory. For distributions P and @, a
coupling is a distribution (X,Y) where X ~ P and Y ~ Q. It is known that S, (P, Q) equals
the maximum over all couplings (X,Y"), Pr(X = Y). Coupling theory, introduced by Doeblin
(1938), has led to important results in computer science and mathematics (Lindvall, 2002; Levin
et al., 2006; Meyn & Tweedie, 2012). Finally, statistical similarity admits a characterization in the
form of statistical distance (also known as total variation distance) drv, defined as dry (P, Q) :=
maxscp(P(S) — Q(S)) = £ X ,cp |P(@) — Q(x)|. The identity Sgat(P, Q) = 1 — drv (P, Q),
known as Scheffé’s identity, establishes a duality (see Appendix B).

1.2 PAPER ORGANIZATION

We present some necessary background material in Section 2. We then present a survey of related
work in Section 3. Section 4 describes our primary contributions. Section 5 is dedicated to our
algorithmic result. The proof of NP-hardness of estimating the statistical similarity between in-
degree 2 Bayes net distributions is provided in Section 6. Section 7 gives some concluding remarks.
Appendix A discusses the connections between Bayes error and statistical similarity. Similarly,
Appendix B elaborates on the connection between TV distance and statistical similarity. Appendix C
contains the proof of Claim 11, used in the proof of Theorem 6.

2 PRELIMINARIES

We use [n] to denote the set {1,...,n}. We will use log to denote log,. The following notion of a
deterministic approximation algorithm is important in this work.

Definition 1. A function f : {0,1}" — R admits a fully polynomial-time approximation scheme
(FPTAS) if there is a deterministic algorithm A such that for every input x (of length n) and € > 0,
the algorithm A outputs a (1 + €)-multiplicative approximation to f(x), i.e., a value that lies in the
interval [f(z)/(1 +¢), (1 + €) f(x)]. The running time of A is poly(n, 1/¢).
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Definition 2. Given two distributions P and () over a finite sample space D, the statistical similarity
between P and @Q is Sstat (P, Q) := D, p min(P(x), Q(x)).

A product distribution P over [¢]" can be described by n functions p1, . . ., p, such that p;(x) € [0, 1]
is the probability that the i-th coordinate equals = € [¢]. For any y € [¢]", the probability of y with
respect to P is given by P(y) = [\, pi(y;)-

We require the following.

Proposition 3 (See also Lemma 3 in Kontorovich (2012)). For product distributions P = P ® - - - ®
Pyand Q = Q1 ® -+ ® Qu, it is the case that Ssyat (P, Q) > [T~ Sstat(Pi, Q:)-

Proof. We will utilize a coupling argument. Let O = (X, Y") be an optimal coupling between P and
Q,ie., Pro[X =Y] > Pr¢[X = Y] for any coupling C. Thus, Pro[X = Y] = Sstat (P, Q) (as
mentioned in Section 1.1). For 1 <i < mn,let O; = (X;,Y;) be an optimal coupling between P; and
Q;. Thatis, X; ~ P;,Y; ~ Q; and Pro,[X; = Y;] = Sstas(Pi, Q;). Let O’ be the coupling given
by the product of O;’s. Then

Saar(P,Q) =Pr(X =Y] > Pr(X =Y] = [[llgg[xi =Y = Hsstat(a,@) . O
Proposition 4. Let P = P, ® ---Q P, and Q = Q1 ® --- ® Q,, be product distributions over
[0]". Let Tp be a lower bound on P;(z) for any i and x € [{| whereby P;(z) is nonzero. Similarly
define 7 and let T := min(tp, 7). Then if [[;—, Sstat(P;, Qi) > O, then it is the case that

HZ':l Sstat(PLa Qz) > 7"

Proof. 1t would suffice to show that Sgiat (P, Qi) > T, since the P;’s and the ();’s are independent.
Since [ Sstat(P;, Qi) > 0, for all i there must be some x such that P;(z),Q;(x) > 0 and
min(P;(z), Q;(x)) > 7. Therefore,

Sstat(Pia Qz) = Z miD(Pi(l’), Ql(m)) Z T. 0
z€[(]

Definition 5 (J-Sparsification (Feng et al., 2024)). Let S be a discrete random variable that takes
values between 0 and B and J be a collection of intervals Iy, . . ., I,,, that partition [0, B]. We define

the J-sparsification of S, denoted by S, as follows: Given an interval I j» let S; be the conditional
expectation of S conditioned on S lying in the interval I;. That is, suppose that S takes values

r1,...,7 in the interval I;. Then S; = Zle Pr[S = ry 7”1‘/2?:1 Pr[S = r;]. Now the sparsified
random variable S takes value .S; with probability Pr[S € I;] = Zle Pr[S = ry].

3 RELATED WORK

Estimating the Bayes error has been a topic of continued interest in the machine learning community
Fukunaga & Hostetler (1975); Devijver (1985); Noshad et al. (2019); Theisen et al. (2021); Ishida
et al. (2023). These works focus on the setting where distributions are only accessible through
samples rather than explicitly specified, leading to techniques distinct from those needed in our
setting of explicitly represented distributions.

The computational complexity of statistical similarity was established through Scheffé’s identity
(Sstat (P, Q) + drv(P, Q) = 1) and the result of Bhattacharyya et al. (2023), where it is shown
that the exact computation of drvy (and thus Sgi,¢) is #P-hard even for product distributions. This
hardness naturally leads to the study of approximation algorithms, with multiplicative approximation
being stronger than additive approximation for measures bounded in [0, 1].

For distributions samplable by Boolean circuits, additive approximation of statistical similarity is
complete for SZK (Statistical Zero Knowledge) (Sahai & Vadhan, 2003), while the problem becomes
tractable for distributions that are both samplable and have efficiently computable point probabilities
(Bhattacharyya et al., 2020).

While recent work has made significant progress on multiplicative approximation of statistical distance
(also known as total variation distance), including an FPRAS (Feng et al., 2023) and an FPTAS (Feng
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et al., 2024) for product distributions, these results do not directly translate to statistical similarity.
This is because multiplicative approximation of statistical distance does not yield multiplicative
approximation of its complement (statistical similarity), necessitating new algorithmic techniques for
statistical similarity. Similarly, the NP-hardness result for multiplicatively approximating statistical
distance between Bayes nets (Bhattacharyya et al., 2023) does not immediately imply hardness for
statistical similarity.

It is perhaps worth remarking that technical barrier in translating multiplicative approximation of
statistical distance to statistical similarity is rather fundamental, i.e., it is not possible in general
to use an efficient multiplicative approximation algorithm for a function f in order to design an
efficient multiplicative approximation algorithm for 1 — f. In particular, even if there is an efficient
multiplicative approximation algorithm f, approximating 1 — f could be NP-hard. For instance,
let f be a function that takes as input a Boolean DNF formula ¢ and outputs the probability that a
random assignment satisfies ¢. It is known that there is a randomized multiplicative approximation
algorithm for estimating f Karp et al. (1989). However, a multiplicative approximation algorithm
for estimating 1 — f implies that all NP-complete problems have efficient randomized algorithms
(RP = NP). This is because the complement of a DNF formula is a CNF formula, and there is no
efficient randomized multiplicative approximation for estimating the acceptance probability of CNF
formulas unless RP = NP.

The connection between statistical similarity and hypothesis testing has been explored in several
works. While Kontorovich & Avital (2024) provides analytical bounds on statistical similarity for
product distributions in the context of hypothesis testing, these bounds do not yield multiplicative
approximation algorithms.

4  QOUR RESULTS

Our first contribution is the design of a deterministic polynomial-time approximation scheme to
estimate the statistical similarity between product distributions.

Theorem 6. There is an FPTAS for estimating Ssiat (P, Q) whereby P and Q) are product distributions
succinctly represented by their parameters.

Theorem 6 is proved by adapting the ideas of Feng et al. (2024). We define a random variable
R = P||Q which is the ratio of P and ) and then partition its range into a sequence of intervals.
Every one of these intervals is subsequently “sparsified,” in the sense that we only take into account
the average value of R over this interval. This allows us to efficiently estimate statistical similarity, as
we show in the proof.

A natural question is whether Theorem 6 can be extended to more general distributions such as Bayes
net distributions. Our second result is a hardness result.

Theorem 7. Given two probability distributions P and @) that are defined by Bayes nets of in-
degree two, it is NP-complete to decide whether Sgat (P, Q) # 0 or not. Hence the problem of
multiplicatively estimating Sgiat, is NP-hard.

Theorem 7 is proved by adapting the proof of hardness of approximating TV distance between Bayes
net distributions presented in Bhattacharyya et al. (2023).

5 ESTIMATING STATISTICAL SIMILARITY

We prove Theorem 6. Let P, () be distributions and D be the common domain of P, () and let R
be a ratio random variable that takes the value P(z) /Q(z) > 0 with probability Q(z). We can
assume Q(x) > 0, as R only takes value when z is such that Q(x) > 0. We denote this by writing
R := PJ|Q. Forratios Ry = Py||Q1, Ry = P»||Q2 we define their independent product R; - Rs as a
random variable that takes the value (P;(z) /Q1(x)) (P2(y) /Q2(y)) with probability Q1 (x) Q2(y).

Moreover, we overload notation and for a ratio random variable R = P||Q, we let Sgiat (R) denote
the functional E[min(R, 1)]. Then

Sstat (R) - E[mm(R, 1)}
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= E min(P(2) /Q(x) 1)

=Y min(P(x) /Q(2),1) Q) = Y min(P(z),Q(x)) = Sstar (P, Q)

Setting and Algorithm Definition. We denote by ¢ the desired accuracy parameter. Let 7p be a
lower bound on P;(x) for any i and = € [¢] whereby P;(x) is nonzero. Similarly define 7¢ and let

T :=min(7p, 7q). Letalso B:=1/7",§ := (1 + 6/2)1/" —1,andy := 72" (£/2) 5/ (n (1 +6)™).
We require the following.
Proposition 8. It is the case that Pr[0 < R < B] = 1.

Proof. By definition, R > 0. Since R takes the value P(z) /Q(z) with probability Q(x), we get
that R is at most max,,(P(z) /Q(z)) < 1/7™ = B with probability 1. O

We now define a set of intervals

J = {0}, 1o := (0,7], i == (v, 7(L+ )],y Lo == (Y(1 +8)™ 71, 9(1 4+ 6)™ = B},
whereby m := (log(B/7v)) /log(1 4 0). Define Ry, ..., R, to be the ratios for each coordinates,
that is, R; := P;||Q;. We define a set of random variables Y; for 1 < i < n. Define Y7 = R; and
Y11 =Y -R;y1 where Y] is the J-sparsification of Y;. Also, for convenience, set Z; := R;+1-...-R,

and Z,, = 1. The output of our algorithm is Sstat(?n - Zn) = Sstat (Y ). See Algorithm 1.

Algorithm 1 The pseudocode of our algorithm.

Require: Product distributions P, () through their marginal distributions Py, ..., Py, Q1,...,Qp,
each over [¢], and an accuracy error parameter .

Ensure: The output Sgias (Yn) is an e-approximation of Sg¢at (P, Q).

1: {We can compute n by parsing the input.}

2: fort < 1,...,ndo

3: R; + Pz”Qz

4:  {Computing Sstat (R;) takes time O(¢).}

5: if Sstat (Rz) = 0 then

6: return 0

7:  endif

8: end for

9: 6+ (14¢/2)"/" 1

10: 7p < min{P;(z) | i € [n],x € [{], Pi(z) > 0} {This step takes time O(n/¢).}
11: 7 + min{Q;(z) | i € [n],z € [{], Q:(x) > 0} {This step takes time O(n¢).}

12: 7 < min(7p, 7Q)

13: v« 72" (g/2)6/ (n(1+6)")

14: J < {{0},{(0,7}}

15: fori < 1,...,mdo

16:  J+« JU {(7(1+5)“1 ,7(1+6)1}

17: end for

18: Y1 + Ry

19: fort: < 1,...,ndo

20: Y; < J-sparsification of Y; {This step takes time O(mf).}
21:  ifi < n then

22: Yip1 <Y Ry {This step takes time O(m/).}
23:  endif

24: end for

25: return Sgia; (Yn> {Computing Sstat (Yn) takes time O(m).}
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Running Time. Note that Sgat(R;) = Sstat (Pi, @) can be computed in time O(¢) by following
the equality Sstat (R;) = E[min(R;,1)] and utilizing the fact that R; may assume ¢ values. Moreover,
the sparsification step can be computed in time O(m?). This is because, firstly, in Line 22 we generate
m¥ many ratios and then in Line 20 (sparsification step) we crunch them into m ratios. Finally, and

similarly to Sstat (R; ), the output Sggat ( ) can be computed in time O(m) by utilizing the fact that
17" may assume m + 1 values (as there are m + 1 intervals in J).

Therefore, the running time of Algorithm 1 is

O(ntm) = O(nt (log(B/~)) / log(1 + 9))
= O(nt (log((1/7)/ (" (=/2)8/ (n (1 +9)")))) /low(1+ (1 +/2) " ~1))

= O0(n*tlog((1 +¢) / (e7)) /¢) -

Correctness. We will prove the this algorithm outputs a quantity that is an e-approximation to
Sstat (P, Q). This is accomplished by Lemma 9 and Lemma 10.

Lemma 9. We have that St <}7n) < (1+¢) Sstat (P, Q).

Proof. We will first show that St (171 . Z,») < (14 0) Sstat(Y: - Z;) + vB. To this end, we have

St (Vi Zi) = B[ min (Vi - 2;,1))]
-E Zmin(f@ - Z;, 1) 1[Y; € ;]

-E Zmin(m 7 1) 1]Y; € I;] —|—E[min(}7i 7 1) 1]Y; 10]}

< iE[min@ -7 1) 1[Y; € Ij]} +4B
< SOBI(L+ ) min(Y, - Zu 1) 1Y, € L] 45

i (1+6)Emin(Y; - Z;, 1) 1]Y; € L;]] + B

j=1

= (14+8) S Blmin(Y; - Z D UY; € 1] + B
j=1

<(149) i Emin(Y; - Z;,1) 1[Y; € I;]] + B

<.
Il
o

= (1+0)Emin(Y; - Z;, )] + vB = (1 + ) Sstat (Vi - Z;) + 7B,

The first part of the first inequality follows from the linearity of the expectation. For the second
part, note that since Iy = (0, ], the maximum value Y; can take in Iy is at most . The maximum

value of Z; is B, thus E {min (}N/Z - Z;, 1) 1[y; € IO}} < ~B. For the second inequality, suppose that

Y; € I; = (v(1+6)772,v(1+ )7 ~']. The maximum value Y; can take is v(1 + §)7~! and the Y; is
larger than (1 + §)=2. Thus Y; < (1 + ) Y;

Therefore,

Sstat(?n) = Sstat(i;n : Zn) <~vB+ (1 + 5)Sstat(yn : Zn) =B+ (1 + 5)Sstat(}7n—1 : Zn—l)
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so that inductively, we will get

n—2
Sstat(i;n) S 'YB Z(l + 6)k + (1 + 6)”_1Sstat(}/1 . Zl)
k=0

<AB(L+8)" /5 + (14 0)" S (P, Q),

since Sseat (Y1 Z1) = Sstat (R1+- . .- Ry) = Sstas (P, Q). Whatis left is to show that yB(1 + §)" /5 +
(14 0)"Sstat (P, Q) < (1 4 €) Sstat (P, Q). However, this readily follows from the definitions of
v, 9, B as well as Proposition 3 and Proposition 4. Let us elaborate on these calculations. By the

fact that § = (1 +2/2)"/™ — 1, we get (1 + 6)"Stat (P, Q) < (1 + £/2) Ssear (P, Q). So what is
left is to show that yB(1 + §)" /8§ < (£/2) Sstat (P, Q). By Proposition 3 and Proposition 4, it would
suffice to show that yB(1 + 6)" /6 < (¢/2) 7™, which follows directly from the definitions of ~ and
B. O

Similarly, we have the following.

Lemma 10. We have that Ssiat (i}n) > Sstat (P, Q) / (1 +¢).

To prove Lemma 10 we will utilize the following claim (proved in Appendix C).

Claim 11. It is the case that Ssa(Y; - Zi) < (1 + 8) Seat (TQ : ZZ-) +4B.

Proof of Lemma 10. By Claim 11, and since Sgtas ()7”> = Sgtat (?n . Zn) , we have

Sstat (va'n) Z Sstat(Yn N Zn) / (1 + 5) - ’YB/ (1 + 6) .

Inductively, we get

n—1
Sutat (Vo) = Sstat (Vi - Z1) / (1+0)" = VB3 1/ ()
> Setat(P,Q) / (1+6)" —nyB.

What is left is to show that Sgat (P, Q) / (1 +6)" — nyB > Sstat (P, Q) / (1 + €) which is equiva-
lent to Sstat (P, Q) (1 +¢) > nyB (1 +6)" (1 + €) + Sstat (P, Q) (1 + 6)". However, similarly to
what we did in Lemma 9, this inequality readily follows from the definitions of v, , B as well as
Proposition 3 and Proposition 4. O

This concludes the proof of Theorem 6.

Remark 12. We note that the above estimation algorithm also works for estimating similarity
for sub-product distributions. Let P’ and @’ be product distributions and P = aP’ and Q =
BQ’ for constants v, 5. In this case, to estimate similarity between P and @, we will estimate
E;~q [min(aP'(z) /Q'(2) , B)].

Remark 13. While our algorithmic technique is inspired by the work of Feng et al. (2024), the details
of our algorithm are different. Specifically, the sparsification procedure is defined differently there,
tailored to drv estimation instead of Sg;.¢. The analysis here is more direct and arguably simpler.

6 NP-HARDNESS OF ESTIMATING STATISTICAL SIMILARITY

We show that it is NP-hard to efficiently multiplicatively estimate Sgtat (P, @) for arbitrary Bayes net
distributions P, Q. That is, we prove Theorem 7. We first formally define Bayes nets.

6.1 BAYES NETS

For a directed acyclic graph (DAG) G and a node v in G, let II(v) denote the set of parents of v.
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Definition 14 (Bayes nets). A Bayes net is specified by a DAG over a vertex set [n] and a collection
of probability distributions over symbols in [¢], as follows. Each vertex i is associated with a random
variable X; whose range is [¢]. Each node i of G has a Conditional Probability Table (CPT) that
describes the following: For every = € [¢] and every y € [{]*, where k is the size of I1(i), the CPT
has the value of Pr[X; = 2|Xy(;) = y] stored. Given such a Bayes net, its associated probability
distribution P is given by the following: For all 2 € [¢]", P(z) is equal to

F}’Dr[X =z = HI?DI‘ [Xi = 2i| Xnu) = g -

=1

Here, X is the joint distribution (X1, ..., X,,) and 2yy(;) is the projection of x to the indices in I1(7).

Note that P(x) can be computed in linear time by using the CPTs of P to retrieve each
PI‘p [XZ = ‘Ti|XH(i) = xn(i)].

6.2 PROOF OF THEOREM 7

The proof is similar to the proof of hardness of approximating TV distance between Bayes net
distributions presented in Bhattacharyya et al. (2023). However, the present proof gives more tight
relationship between the number of satisfying assignments of a CNF formula and statistical similarity
of Bayes net distributions.

The reduction takes a CNF formula ¢ on n variables and produces two Bayes net distributions P and
@ (with in-degree at most 2) so that

[Sol(¢)]

Sstat(Pa Q) = on 3

where Sol(¢) is the set of satisfying assignments for ¢.

Let ¢ be a CNF formula. Without loss of generality, view ¢ as a Boolean circuit (with AND,
OR, NOT gates) of fan-in at most two with n input variables X = {X;,..., X,,} and m internal
gates Y = {Y1,....Y,,}. Let G4 be the DAG representing this circuit with vertex set X U ).
So in total there are n + m nodes in Gg. Assume X U Y is topologically sorted in the order
Xi,..., X0, Y1,..., Y, whereby Y,, is the output gate. For every internal gate node Y;, there is
directed edge from node Y; to node Y if the gate/variable corresponding to Y is an input to Y.

We will define two Bayes net distributions P and () on the same DAG G . Let X; be a binary random
variable corresponding to the input variable node X; for 1 < ¢ < n and Y; be a binary random
variable corresponding to the internal gate Y; for 1 < j < m. The distributions P and @) on G are
given by Conditional Probability Tables (CPTs) defined as follows. The CPTs of P and () will only
differ in Y,,,.

For both P and @), each X; (1 < i < n) is a uniform random bit. Foreach Y; (1 <i < m — 1), its
CPT is the deterministic function defined by its associated gate. For example, if Y; is an OR gate
in G, then Y; = 1 with probability 1 except when the inputs are 00, in which case Y; = 0 with
probability 1. The CPTs for AND and NOT nodes are similar.

For P, the value of Y}, is given by the deterministic function of the output gate Y;,, in G 4. For (), the
value of Y, is 1 (independently of the input).

Note that even though the sample space is {0, 1}"™, there are only 2" strings in the support of P
and Q. In particular, a point z in the sample space {0,1}"™ can be written as xy where z is the
first n bits and y is the last m bits. By construction, it is clear that for every z, there is only one y
(which are the gate values for the input assignment x) for which xy has positive probability in both
the distributions, and this probability is exactly 5. For any x, let fp(x) (respectively, fq(z)) denote
this unique y in P (respectively, in (). The crucial observation is that fp(x) and fg(z) are the same
if and only if x is in Sol(¢). In this case, denote fp(z) = fo(x) = f(x).

Consider z = xy € {0,1}""™. If xy is not in the support of both P and @, then the minimum of
P(z) and Q(z) is 0, so assume that zy is in the support of at least one.
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Case 1. Assume that z is a not a satisfying assignment of ¢. Then z = z fp(x) is in the support of
P, however, it is not in the support of () as the last bit of z = 0. Similarly x fg(x) is in the support
of @ but not in P. Hence, min(P(z), Q(z)) = 0.

Case2. Assume that x is a satisfying assignment of ¢. In this case the lastbitof z = z fp(x)is 1 and
hence is in the support on both P and @ and has a probability of 5. Thus min(P(z), Q(z)) =
Hence we have

Saat(P,Q) = Y min(P(2),Q(2))

on - ﬁ

ze{0,1}ntm
= Y min(P(zf(z),Qf(z)+ Y, min(P(zfp(z),Q(zfr(x)))
zeSol(¢) zZSol(¢)

b Y min(Plefo@). Qo) = BRI oo = BAOL

z¢Sol(¢)

This concludes the proof.

7 CONCLUSION

Statistical similarity (Sg;at) between distributions is a fundamental quantity. In this work, we initiated
a computational study of Sg¢,¢. Prior results on statistical distance computation imply that the exact
computation of Sy, for high-dimensional distributions is computationally intractable.

Our first contribution is a fully polynomial-time deterministic approximation scheme (FPTAS) for
estimating statistical similarity between two product distributions. Notably, the existing FPTAS
for statistical distance (Feng et al., 2024) does not directly yield an FPTAS for Sg;. We also
establish a complementary hardness result: Approximating Stat for Bayes net distributions is NP-
hard. Extending our results beyond product distributions to more structured settings, such as tree
distributions, remains a significant and promising research direction.

We believe Sgiat computation is a compelling problem from a complexity theory perspective. Inter-
estingly, for product distributions, both Sg¢,¢ and its complement (1 — Sgay = dry) admit FPTAS,
making it one of the rare problems with this property. A deeper complexity-theoretic study of
functions f in #P with range in [0, 1], where both f and 1 — f have approximation schemes, is an
intriguing direction for future research. Finally, this work is limited to the algorithmic foundational
aspects of Sgt,¢ computation. We leave the experimental evaluation of the algorithm for future work.
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A BAYES ERROR AND STATISTICAL SIMILARITY

A binary prediction problem is a distribution P of X x {0,1} where X is a (finite) feature space.
A classifier is a deterministic function g : X — {0,1}. The 0-1 error of the predictor g is

Pr(z,y)wp[g(m) 7& y]

The Bayes optimal classifier is the classifier that outputs 1 if and only if P(1|z) > P(0|x). The error
of Bayes optimal classifier denoted as R* is called the Bayes error. Bayes error is the minimum
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error possible in the sense that the error of any classifier is at least Bayes error. It is known that for a
prediction problem P, its Bayes error R* is given by the following marginal expectation:

R* = E{J[min(P(O\X), P(11X))].
Let the prior probabilities P(0) and P(1) be denoted by g and oy respectively. Note that «g and o

are constants that sum up to 1. We call P balanced if P(0) = P(1) = 1/2. For simplifying notation,
we will also denote the likelihood distributions P(X|0) and P(X|1) as Py and P; respectively.

Theorem 15. For a prediction problem P, its Bayes error is given by
R* = Sstat (o Po, a1 Pr).

In particular, for a balanced prediction problem P, its Bayes error is given by R* = Sgat(Po, P1)/2.

Proof. The proof is a simple application of the Bayes theorem. That is,
R* = Efmin(P(0]X), P(1X)

= Y P(x) - min(P(0z), P(1]x))

rxeX
N i (PEDPO) PEDPO)
=2 P ( Pl Pla) )

= me (2]0)P(0), P(x|1)P(1)) = Sstat (o Po, 1 Py).

The balanced case follows from the fact that cg = a1 = % O]

B TOTAL VARIATION DISTANCE AND STATISTICAL SIMILARITY

Statistical similarity can be proved to be equal to the complement of statistical distance, which is
commonly called total variation distance (denoted by drv). See below.

Definition 16. For distributions P, ) over a sample space D, the fotal variation (TV) distance
between P and () is

drv(P,Q) =Y max(0, P(z) — Q(x)).

xzeD

Proposition 17 (Scheffé’s identity, see also (Tsybakov, 2009)). Let P, Q) be distributions over a
sample space D. Then Sgot (P, Q) = 1 — dpv (P, Q).

Proof. We have that

stat P Q Z mln ((E))

zeD

—Zmln P(z)+ Q(x) — P(x))
€D

=Y P+ Y min(0.Q() - P(@)
zED xzeD

=1- Zmax(O,P(x)—Q(I)) =1—drv(P,Q). 0

xeD

C PROOFOFCLAIM 11

‘We have
Sstat(YPi . Zz) == E[mln(}/z : Zia 1)]

11
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m
=E|> min(Y;-Z,1)1[Y; € I}]
j=0

|
&=

m
> min(Y; - Z;, 1) 1[Y; € ;]| + E[min(Y; - Z;,1) 1[Y; € Io]]

Jj=1

-

Emin(Y; - Z;,1) 1[Y; € I;]] + vB

j=1

< ;E[((l +0)min(¥; - 2, 1)) 1[Y; € L] + 4B
< ;(1 +0)B[min(¥; - 2;,1) 1[Y; € ]| + B
- +§);E{min(Yi Zi, 1) 1Y; € ]| + 4B
<Q +§)iE[min(ffi : Zi,l) 1[Y; Ij]} +4B

<
Il
o

=(1+ §)E[min<}~ﬁ- . Zi,l)} +vB = (1 4+ 0) Sstat ()N/; . ZZ-) + B,

The first part of the first inequality follows from the linearity of the expectation. For the second part,
note that the interval Iy = (0, 7]. Thus, the maximum value Y; can take in this interval is almost ~.
The maximum value of Z; is B, thus E[min(Y; - Z;,1) 1[Y; € Iy]] < ~B. For the second inequality,
suppose that Y; € I; = (y(1+8)772, (1 + §)’~!]. The maximum value Y; can take is y(1 + §)7~*

and the Y is larger than (1 + 6)7~2. Thus Y; < (14 6) Y;.
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