
Physics-Informed Graph Diffusion for Climate Downscaling

Anonymous Submission

0.1 Motivation
High-resolution (≤10–25 km) surface fields are required for local risk analyses and extreme event attribution, yet
orography and sparse stations limit standard downscaling. Diffusion models excel at synthesizing detail, but climate
fields must obey basic laws: temperature decreases with elevation (environmental lapse rate), precipitation exhibits
spatial coherence, and cross-variable structure should be physically reasonable. We ask: Can generative models
produce high-resolution fields that remain physically plausible, not just visually detailed?

0.2 Method

Figure 1: ERA5-Land (CO) qualitative com-
parison. Top: temperature (LR 32×32; 4× SR).
Middle: precipitation. Bottom: enhancement
diffs and temp–elevation correlation. Physics-
informed diffusion preserves lapse-rate structure
and precipitation coherence.

Graph representation. We discretize the region into grid cells
(nodes) with edges connecting k-nearest neighbors by geodesic distance
and optional topographic similarity. Node features include annualized
covariates (e.g., temperature and precipitation anomalies, nightlights);
edges carry distances/slopes when available.
Diffusion on graphs. A transformer U-Net operates on node features
with message-passing blocks; the denoising score function is conditioned
on (i) diffusion timestep embeddings and (ii) graph context (node/edge
features, pooled summaries).
Physics losses (differentiable). We add light regularizers to the
diffusion objective:

• Lapse-rate prior: penalize positive temperature–elevation correla-
tion (↑ T with ↑ z) and overly weak negative slopes; encourages
realistic cooling with height.

• Precipitation coherence: graph-Laplacian penalty on precip
anomalies to discourage speckle while allowing mesoscale struc-
ture.

• Cross-variable consistency: weak bounds on local tempera-
ture–precip correlation to avoid unphysical co-variability.

An auxiliary land-cover head (cross-entropy) provides semantic guidance; the total loss is a weighted sum of diffusion,
physics, and auxiliary terms. Training uses AdamW with cosine scheduling.

Results. On ERA5-Land (Colorado, 2021–2022), bicubic interpolation achieves the lowest RMSE (0.130) and
highest SSIM (0.882), while our physics-informed graph diffusion yields higher error (RMSE 0.210, SSIM 0.731) but
substantially better physics compliance (0.68 vs 0.42–0.45 for interpolation).

0.3 Key Insights
(i) Baselines matter: classical interpolation remains a strong competitor on RMSE. (ii) Physics vs. pixels:
enforcing physical constraints often increases numerical error, underscoring the need for evaluation metrics aligned
with scientific end-use. (iii) Lightweight priors work: simple, differentiable physics regularizers can improve
plausibility without expensive PDE solvers. (iv) Future directions: curriculum/homotopy schedules for balancing
objectives, uncertainty calibration, and scaling to multi-year graph embeddings (e.g., AlphaEarth) for discovering
long-term climate trends.
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