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Abstract
Prior knowledge and symbolic rules in machine
learning are often expressed in the form of la-
bel constraints, especially in structured prediction
problems. In this work, we compare two common
strategies for encoding label constraints in a ma-
chine learning pipeline, regularization with con-
straints and constrained inference, by quantifying
their impact on model performance. For regular-
ization, we show that it narrows the generalization
gap by precluding models that are inconsistent
with the constraints. However, its preference for
small violations introduces a bias toward a subop-
timal model. For constrained inference, we show
that it reduces the population risk by correcting
a model’s violation, and hence turns the viola-
tion into an advantage. Given these differences,
we further explore the use of two approaches to-
gether and propose conditions for constrained in-
ference to compensate for the bias introduced by
regularization, aiming to improve both the model
complexity and optimal risk.

1. Introduction
Domain knowledge in machine learning is often framed as
constraints on the output label space. Such label constraints
have been widely identified in natural language process-
ing tasks (Roth & Yih, 2004; Martins et al., 2009b; Ning
et al., 2018a; Lu et al., 2022) and studied in the context of
structured prediction (Punyakanok et al., 2005; Chang et al.,
2007; 2008; Ganchev et al., 2010; Chang et al., 2012; Pan
et al., 2020). For example, in temporal reasoning (Ning
et al., 2018a) where the model is asked to label the relations
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(“before” or “after”) among a set of events, the assigned
labels will need to satisfy a transitivity constraint which
means, for example, the facts that an event E1 is after E2

and thatE2 is afterE3 imply thatE1 is afterE3. The central
question is how to encode such a constraint into a learning
algorithm to ensure better performance and generalization
of the learned model.

Practitioners have developed two techniques to encode a
label constraint in a machine learning pipeline. The first,
called regularization with constraints, penalizes a model for
its violation of the constraint in addition to the classification
loss (Ganchev et al., 2010; Li et al., 2019). The second,
called inference with constraints, modifies prediction rules
directly by enforcing strictly constrained inference (Roth &
Yih, 2004; Scholak et al., 2021) or balancing the original
model’s output with the constraint in a soft way (Chang
et al., 2008; 2012).

Although these two learning algorithms have been shown
to be empirically successful, we are not aware of theoreti-
cal analyses that elucidate each algorithm’s advantages or
disadvantages in comparison with the other one. Natural
questions include, how do these two differ in their impact
on the learned model? Moreover, in practice, the constraints
could be noisy i.e. (Hu et al., 2016; Wang et al., 2021). In
such cases, do they still improve the model performance? If
so, by how much?

Focusing on multiclass classification with label constraints,
we compare regularization with constraints and constrained
inference. For each algorithm, we quantify its optimal risk
(aka approximation error) and its generalization gap (aka
estimation error). Specifically, in Section 3, we show that
regularization with constraints achieves a smaller general-
ization error by reducing the model complexity but will
introduce a bias towards a suboptimal model if the risk mini-
mizer and violation minimizer does not coincide. In Section
4, we study a broad family of constrained inference model
called Constrained Conditional Model (CCM) (Chang et al.,
2008; 2012) and point out that the constrained inference
could reduce the risk of a model if and only if the model
violates the constraint more than the true data distribution.
This further suggests finding models with higher violation,
which contrasts the learning objective used in regularization
that discourages violation. Given these contrasts, we further
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study the combination and interaction of the two methods
in Section 5 and describe how constrained inference could
compensate for the bias introduced by regularization.

To the best of our knowledge, our analysis is the first to
provide a theoretical view on comparing the two approaches.
We believe in the importance of this comparison and hope to
bring this problem to the attention of the machine learning
community. In summary, our contributions include:

1. We provide an error bound (Theorem 3.6) that de-
scribes the tradeoff between the generalization gap
and the optimal risk when performing regularization
with constraints.

2. We propose a sufficient and necessary condition (Theo-
rem 4.3) for constrained inference to improve a model
by quantifying its reduction in risk. Based on this, we
further argue that constrained inference, when used at
training time, implicitly modifies the training objec-
tive in an opposite direction as in the regularization
approach (Proposition 4.6).

3. We study the combination of regularization and con-
strained inference, and propose sufficient (Theorem
5.1) as well as necessary (Theorem 5.2) conditions for
the combined algorithm to achieve improvement in
both optimal risk and model complexity.

Proofs of all the theoretical results are in the appendix.

2. Preliminaries
Our goal is to learn a mapping from the instance space X to
the output space Y. The learner has access to a set of labeled
training data SL of size mL, which contains i.i.d. samples of
a distribution P on X× Y. The marginal distribution of X
is denoted as PX . In this work, we assume the ground truth
label associated with x ∈ X is generated by a deterministic
mapping yora : X → Y (ora is short for oracle). We also
denote the true label as yora when the context is clear.

Model. The scoring class F contains scoring functions f :
X× Y→ R. We will also call a f ∈ F a classifier. Let ∆Y

be the |Y|-dimensional probability simplex. Each scoring
function induces a probabilistic predictionPf (·|x) ∈ ∆Y by
performing softmax inference as P(y|x) ∝ exp(f(x, y)).

Loss Function. The prediction of f at x is evaluated
by the classification error (or `1 loss) L(x, yora, f) :=
1 − Pf (yora|x), which is half the `1 distance the be-
tween the one-hot distribution eyora and Pf on ∆Y. It
can also be viewed as a smoothed version of the standard
zero-one loss in the sense that limt→∞ L(x, yora, tf) =
1{argmaxy∈Y f(x, y) 6= yora}. More background on

the definition of the `1 loss are provided in Appendix A.
A scoring function f is evaluated by its risk R(f) :=
E[L(x, yora, f)]. The empirical estimate of the risk using
the labeled examples in SL is denoted as R̂(f, SL). We
also consider the cross-entropy surrogate loss defined as
LCE(x, yora, f) := − logPf (yora|x) and refer its expecta-
tion RCE(f) = E[LCE(x, yora, f)] as cross-entropy risk.

Label constraint. A label constraint (or constraint for
short) is a deterministic mapping C : X → 2Y − {∅}.
Namely, C maps an instance x to a nonempty subset of Y,
which may or may not contain the true label yora(x). In
particular, we say a constraint C is noise-free if P(yora ∈
C(x)) = 1. Otherwise, C is said to be a noisy constraint
and its noise rate is denoted as Vora := P(yora(x) /∈ C(x)).

Violation. A constraint C is equipped a violation func-
tion, which is an indicator function vC(x, y) = 1{y /∈
C(x)}. We also overload the notation v and define the vi-
olation of a classifier f at an instance x as vC(x, f) :=
1 − Pf (C(x)|x) = ∑y/∈C(x)Pf (y|x). Its expectation is
VC(f) := E[vC(x, f)]. We elide the subscript C and
write them as v(x, y), v(x, f) and V (f) when the con-
text is clear. Similar to the classification error, we con-
sider a cross-entropy surrogate of the violation function
defined as vCE(x, f) := − logPf (C(x)) and its expecta-
tion VCE(f) = E[vCE(x, f)].

Rademacher complexity. We use the following version
of Rademacher complexity that is adopted from Cortes et al.
(2016) to characterize the generalization ability of the scor-
ing space of multiclass classifiers F:
Definition 2.1 (Rademacher complexity of F). The empiri-
cal Rademacher complexity of scoring class F with respect
to a set S = {xi}mi=1 that contains m samples of the in-
stance is defined as

R̂m(F;S) :=
1

m
Eε

[
sup
f∈F

m

∑
i=1

∑
y∈Y

εi,yf(xi, y)

]
(1)

where ε = (εi,y)i∈[m],y∈Y are independent Rademacher
random variables, each of which is uniformly distributed
over {−1,+1}. The Rademacher complexity of scoring
class F is the expectation of the empirical version:

Rm(F) := ES∼PmX [R̂m(F;S)] (2)

This definition of Rademacher complexity is a special case
of the factor graph complexity proposed by Cortes et al.
(2016), which is defined for more general structured predic-
tion models. It is hence possible to extend our results of the
generalization bounds to structured models by replacing the
Rademacher complexity with factor graph complexity. In
this work, we focus on multiclass classifiers for the simplic-
ity of presentation.
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3. Regularization with Constraints
In a standard machine learning algorithm, the learner re-
ceives a set of labeled data SL ∈ ∪∞m=1(X × Y)m and
finds the empirical risk minimizer, which is defined as
argminf∈F R̂(f ;SL). In this section, we consider a method
that modifies this learning objective by adding a regular-
ization term defined with the constraint C. Precisely, we
consider minimizing an augmented objective defined as
Lρ(f) := R(f) + ρV (f) where ρ ≥ 0 is a fixed tradeoff
parameter.

The idea of regularizing the model by adding a penalty for
the violation of the constraints on an unlabeled dataset is
widely adopted in the literature. In particular, the cross
entropy violation is known as the semantic loss (Xu et al.,
2018) in the context of logical constraints. Other designs
of the regularization term include using the KL-divergence
on the probability space in the posterior regularization al-
gorithm (Ganchev et al., 2010) and using the t-norms from
fuzzy logic (Li et al., 2019).

We will show this algorithm improves the generalization
error by reducing the complexity of the scoring space (The-
orem 3.6), but in general leads to a larger classification risk
in the long run (Proposition 3.2), thus resulting in a tradeoff
between estimation and approximation errors.

3.1. Semi-supervised Regularization with Constraints

We consider a semi-supervised approach where the learner
has access to an unlabeled dataset SU that contains mU

independent samples of the instance X , resulting in the
following definition.

Definition 3.1 (ERVM). Given a labeled dataset SL of size
mL and an unlabeled dataset SU of sizemU, a scoring space
F and a tradeoff parameter ρ ≥ 0, we define and denote the
empirical risk and violation minimizer (ERVM) as:

f̂ρ(SL, SU) := argmin
f∈F

(
1

mL
∑

(x,y)∈SL

L(x, y, f)

+
ρ

mU
∑
x∈SU

vC(x, f)

)
.

(3)

We also denote the expected version as:

fρ := argmin
f∈F

R(f) + ρVC(f). (4)

For example, with our notation, f̂0 is the ERM and f∞ is the
minimizer of the expected violation function. Notice that
the minimizer in general is non-unique. Therefore, when
we state any proposition that is related to fρ or f̂ρ, we mean
the proposition will hold for any of the minimizers.

3.2. Deviation from The Optimal Risk

In this section, we study how the risk of the minimizer
fρ will deviate from the optimal risk in F. The reason
that we are interested in bounding R(fρ) is that in general
the minimizer R(fρ) is non-unique and may have different
values of risks. Therefore, to describe the risk of ERVM in
the long run (in Theorem 3.4), we provide an upper bound
for all the possible risks of fρ.

Proposition 3.2 (Deviation from the optimal risk). For any
constraint C and ρ ≥ 0, the following holds.

R(f0) ≤ R(fρ) ≤ R(f0) + ρ(V (f0)− V (f∞)). (5)

The same relation also holds for the empirical estimates
R̂ and V̂ . Moreover, for any ρ > 0, there exists a scoring
space and data distribution so that the RHS can be reached
even with a noise-free constraint C.

This result shows the minimizer of the regularized objective
in general has a suboptimal risk over F. On the other hand, if
the risk minimizer is simultaneously a violation minimizer,
i.e., V (f0) = V (f∞), this relation implies consistency, i.e.,
R(fρ) = R(f0). This quantity V (f0) can be small when the
noise rate Vora is small and the model is expressive enough
(e.g., a deep neural net) to approximate the true model.

3.3. Generalization Bounds

Now we discuss how regularization could reduce the com-
plexity of the hypothesis class. The first step is to show that
the violation of the target hypothesis is not too large. In
particular, the following bound is a direct consequence of
minimizing the regularized objective:

Lemma 3.3 (Regularization implies small violation). Let
fρ be the regularized learning objective defined as in (4). If
the minimum violation in F is upper bounded by a known
constant u ≥ 0, i.e., V (f∞) ≤ u, then V (fρ) ≤ 1/ρ+ u.

The upper bound u can be set to arbitrarily small by adding
a baseline model defined as ft(x, y) = t · 1{y ∈ C(x)}
and driving t to infinite. This construction is possible due
to the fact that the mapping C is known to the learner. The
benefits of knowing C will be further explored in Section 4
when we discuss inference with constraints.

For any B ≥ 0, we let FB := {f ∈ F|V (f) ≤ B} be
the set of classifiers with small violation. From the above
discussion, we know that the target hypothesis fρ will lie
in a smaller space Fu+1/ρ, which is characterized by the
violation function and hence can be identified only with
unlabeled data. To this end, we describe how the violation
as well as the risk can be estimated with data.

Lemma 3.4 (Generalization gap of `1 loss and violation).
Given a labeled dataset SL of size mL, for any δ > 0, with
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probabilistic at least 1− δ, the following inequality holds
uniformly for f ∈ F:

R(f) ≤ R̂(f ;SL) + RmL
(F) +

√
log(1/δ)

2mL

(6)

Given a unlabeled dataset SU of size mU, for any δ > 0,
with probabilistic at least 1 − δ, the following inequality
holds uniformly for f ∈ F:

V (f) ≤ V̂ (f ;SU) + RmU
(F) +

√
log(1/δ)

2mU

(7)

The proof of this result relies on a contraction lemma estab-
lished in Cortes et al. (2016), which was used to analyze
the argmax inference with margin losses. Our analysis ex-
tends their results to softmax inference, which may be of
independent interest.

Furthermore, if the size of the constrained set C(x) is a
constant, namely |C(x)| = c0 < c = |Y| for all x ∈ X, then
the Rademacher complexity term of equation (7) can be
improved to

√
2
2

√
1

c−c0 + 1
c0
RmU

(F) (see the discussion in
the proof). This term is symmetric with the transformation
c0 7→ c− c0, due to the fact that estimating the violation VC
of a constraint C is equivalent to estimating VY−C . In par-
ticular, when c0 < c/2, if the constraint is more restrictive
and informative (so that c0 is small), it can be more difficult
to estimate the violation.

Remark 3.5 (Relation to cross-entropy loss). Assuming
limm→∞ Rm(F) = 0, this result implies Lρ can be approx-
imated by its empirical version L̂ρ with sufficient amount of
data. On the other hand, since L̂ρ is upper bounded by its
cross-entropy surrogate R̂CE + ρV̂CE, we further have that

Lρ(f) ≤ R̂CE(f, SL) + ρV̂CE(f, SU) + omL,mU
(1) (8)

where omL,mU
(1) converges to 0 as mL,mU → ∞. There-

fore, in practice one can minimize this upper bound by
solving the convex surrogate problem

min
f∈F

R̂CE(f, SL) + ρV̂CE(f, SU). (9)

where R̂CE(f, SL) and VCE(f, SU) are the empirical aver-
age of the cross-entropy loss and violation.

Finally, using these results, we bound the risk of the classi-
fier learned by ERVM. For simplicity, we will denote the

generalization gap B(δ,m,F) := Rm(F) + 2
√

log(1/δ)
2m .

Theorem 3.6 (Error bound). We have with probability at

least 1− 6δ that

R(f̂ρ) ≤ R(f0) + ρV (f0)− ρV (f∞)

+ RmL
(F1/ρ+u+B(δ,mU,F))

+ ρRmU
(F1/ρ+u+B(δ,mU,F))

+ 2

√
log(2/δ)

2mL
+ 2ρ

√
log(2/δ)

2mU

(10)

where R(·) is the Rademacher complexity defined in (2).

Proof sktech. First, we show f̂ρ and fρ both lie in the sub-
space F1/ρ+u+B(δ,mU,F) with high probability since the vi-
olation can be well-approximated, according to Lemma 3.4.
Then, the gap between the objective L(fρ) and L(f̂ρ) is con-
trolled by the Rademacher complexity of F1/ρ+u+B(δ,mU,F).
Finally, we use the inequalities established in Lemma 3.2
to further upper bound the term L(fρ) using the risk and
violation of f0.

Using the same proof technique, this result can be extended
to other choices of loss function as long as: (a) The loss is
bounded so that the optimal regularized model has a small
violation, as in Lemma 3.3. (b) The loss is Lipschitz with
the model scores so that a generalization bound associated
with the loss holds, as in Lemma 3.4.

Reducing the generalization gap. The bound (10) con-
tains three parts: the first line is the worst risk that can
be achieved by fρ as we described in Proposition 3.2, the
second and the third line is the complexity of the classi-
fiers that have a small violation, and the last line is the
errors that are independent of the model. This bound (10)
is most preferable when a large set of unlabeled data is
available so that the approximation errors of violations
(i.e., term B(δ/2,mU,F), RmU

(F1/ρ+u+B(δ/2,mU,F)) and√
log(1/δ)
2mU

) are all small. Then, the model complexity is
mainly described by the term RmL

(F1/ρ+u), which is the
Rademacher complexity of a proper subset of F. In this
sense, the regularization method reduces the generalization
gap by reducing the model complexity of the scoring space.

Tradeoff in regularization. In situations where mU is
large, the tradeoff parameter ρ balances two quantities: a
larger ρ leads to a smaller scoring space F1/ρ+u, but brings
more bias depending on the suboptimality of f0 in violation,
measured by V (f0)− V (f∞). The benefit of regularization
is greater if fewer classifiers can achieve a violation that is
close to the optimal value V (f∞).

We provide the following example to illustrate how the
Rademacher complexity can be reduced in linear models.

Example 3.7 (Logistic Regression). Consider a linear
model for multiclass classification where Y = [c] and

4



On Regularization and Inference with Label Constraints

f(x, j) = wT
j x with ∑c

j=1 ‖wj‖22 ≤ 1. Suppose x ∈ Rp
is distributed in the unit sphere ‖x‖2 ≤ 1 with expectation
E[x] = α ∈ Rp and covariance matrix σ2Ip×p. Without
constraint, the Rademacher complexity is upper bounded
as Rm(F) ≤

√
c/m as in Cortes et al. (2016) (Theorem 2).

Now, consider a constraint that removes exactly one label
so that C(x) ≡ [c − 1]. With regularization, for sufficient
small t < 1/(c+ 2), we have the following bound

Rm(Ft) ≤
1

2

(√
c

m
+

√
c− σ2 − ‖α‖22

m

)
(11)

which is strictly tighter than the standard bound. Intuitively,
if x is concentrated around the origin 0, the prediction by
any classifier will tend to be a uniform distribution. There-
fore, a large bias and variance in x (captured by σ2 +‖α‖22)
help to distinguish models with different levels of violation.

Compare to existing results. Previous works mostly con-
sider a zero-one loss for both classification and violation
under the assumption that the risk minimizer also achieves
zero violation. Then, one can simply preclude all the clas-
sifiers f ∈ F that have nonzero empirical violations on the
unlabeled dataset and find the ERM among the remaining
classifiers. This approach has been theoretically studied in
Balcan & Blum (2005; 2010) for binary classification and
Tulab et al. (2014) in a similar manner for regression by
characterizing the complexity of the reduced set of hypothe-
ses that achieve zero violation. Conceptually, we can regard
this algorithm as a special case of problem (4) when ρ =∞.
Our study, therefore, extends previous works with a soft
learning objective to multiclass classification problems.

4. Inference with Constraints
An inference algorithm is a mapping F × X → ∆Y. By
default, we define it as the softmax inference: (f, x) 7→
Pf (·|x). When performing inference with constraints (or
constrained inference), we modify this softmax mapping for
the given function f using the additional information of C.

In this section, we study the Constrained Conditional Model
(CCM) (Chang et al., 2008; 2012), a broad family of models
that perform inference with constraints. We show at testing
time, whether CCM reduces the risk depends on whether
the model’s expected violation is larger than the noise rate
of the constraint Vora (Theorem 4.3). In particular, when the
constraint is noise-free, CCM always achieves a smaller or
equal risk. Furthermore, we show better risks are achieved
if the constrained inference is also performed at training
time, and pursuing this optimal risk leads to a learning ob-
jective that contrasts with the one used in the regularization
approach (Proposition 4.6).

To make distinguishment, we will refer to a model in the

original spaces F as a base model and refer to an augmented
model as a constrained model.

4.1. Constrained Conditional Model

CCM augments existing scoring functions using a linear
combination with the violation function. Precisely, given a
vanilla scoring space F, the scoring space of CCM is defined
as follows.

Definition 4.1 (Constrained conditional model (Chang et al.,
2008; 2012)). Given a scoring space F, a constraint C and
a fixed tradeoff parameter µ ∈ [0,∞], the scoring space of
the Constrained Conditional Model (CCM) is defined as:

Fµ := {(x, y) 7→ f(x, y)− µvC(x, y)|f ∈ F} (12)

We will also denote

fµ(x, y) := f(x, y)− µvC(x, y) (13)

to be the augmented scoring function for a given f ∈ F. In
particular, setting µ = ∞ will assign a score −∞ to any
y /∈ C(x), which implies Pf∞(y|x) = 0, namely forcing
strictly-constrained inference.

The tradeoff parameter µ allows CCM to improve the base
model f despite noisy constraints, as we will discuss in
detail in the following sections. Otherwise, if the noise rate
is large, performing strictly-constrained inference can be
harmful because it assigns 0 probability mass to any label
y that is outside C(x) and hence has a classification loss
L(x, yora, f

∞) = 1 at any x where yora /∈ C(x).

The learner can choose whether or not to perform the con-
strained inference either at the training time. This choice
leads to the following two different approaches:

1. On-training approach: perform constrained inference
both at training and testing time, and directly find the
ERM over Fµ using labeled data (also known as (In-
ference Based Training in (Punyakanok et al., 2005))

2. Post-training approach: first find the ERM over the
vanilla F using labeled data, and then perform con-
strained inference at the testing time (also known as
Learning Plus Inference in (Punyakanok et al., 2005)).

For both approaches, the generalization ability of CCM is
characterized by the complexity of Fµ. So, we first point out
that CCM does not increase the Rademacher complexity.

Proposition 4.2 (Rademacher Complexity of CCM). For
any fixed µ ≥ 0 and m ∈ N, we have the following identity:

Rm(Fµ) = Rm(F) (14)
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4.2. Post-training Constrained Inference

For a given and fixed classifier f (presumably trained with
data), how does performing constrained inference impact
the model performance? In this section, we study the change
in risk when the learner chooses to augment f as a CCM
fµ defined in (13). It is most convenient to characterize
the risk of a CCM using the cross-entropy loss, although
we will also conduct the same analysis for the hinge and `1

losses, as we will point out later. To start with, for any f
and µ ∈ [0,∞], we let

∆µ
CE(f) := RCE(f)−RCE(fµ) (15)

be the difference in the risk between the base model and the
CCM (the larger the better).

Theorem 4.3 (Change in cross-entropy risk). We have:

(a) For any fixed model f , there exists an µ0 > 0 such that
RCE(fµ0) < RCE(f) if and only if

V (f) > Vora (16)

(b) The change in risk can be lower bounded as

∆µ
CE(f) ≥ V (f)(1− e−µ)− µVora (17)

(c) In particular, if the constraint is noise-free, we have

∆∞CE(f) = VCE(f) (18)

The first result describes the sufficient and necessary con-
dition for constrained inference to be helpful. It requires f
to have a larger violation (measured by `1 violation) than
the true data on average so that it has the potential to be
improved. This condition is easier to satisfy when the con-
straint is less noisy.

The second result further quantifies the risk reduction as
an explicit function of µ. The last result shows that in the
noise-free case, the maximum risk reduction is exactly the
expected violation measured by cross-entropy. Its conse-
quences will be further discussed in the next section.

Remark 4.4 (CCM with alternative losses). We present the
counterparts of Theorem 4.3 for hinge loss and `1 loss in
the Appendix D. The information delivered by those results
is consistent with Theorem 4.3 in the sense that (1) whether
CCM can reduce the risk depends on the comparison be-
tween the violation of the original model and the oracle. (2)
the reduction can be described or lower bounded by some
measures of the violation.

The drawback of the hinge loss is its non-smoothness due to
the discontinuity of the argmax inference. The drawback of
the `1 loss is that the range of µ such that R(fµ) ≤ R(f)
can be disconnected and difficult to describe. Therefore,
we provide weaker results by deriving only sufficient or
necessary conditions for CCM to reduce the risks.

As an application of Theorem 4.3, we derive a sufficient
condition under which CCM achieves smaller risks.

Corollary 4.5 (Choice of µ). Assuming V (f) ≥ Vora, then
RCE(fµ) ≤ RCE(f) if the following condition holds:

µ ≤W (−η/eη) + η (19)

where η := V (f)/Vora is the relative violation rate and W
is the Lambert W function whose value W (t) is defined to
be the solution to the equation wew = t of w.

The RHS of (19) increases with η and vanishes as η → 1.
In particular, when the constraint is noise-free, one should
encourage strictly-constrained inference and set µ =∞. We
also provide a plot of the RHS in the proof in the appendix.

4.3. On-training Constrained Inference

In this subsection, we study the on-training approach where
we perform constrained inference both at the training and
testing time. We use the results we established in the last sub-
section to describe the learning objective of the on-training
approach, and argue that it achieves better risks than the
post-training approach. Based on this, we further show that
minimizing the cross entropy over CCM encourages a large
violation of the base model, which contrasts the learning
objective (9) that is used in regularization.

We provide a simplified analysis for the noise-free setting
where we choose µ =∞ and perform strictly-constrained
inference. Then, the on-training approach aims to find the
optimal (in terms of cross entropy) base model as follows:

fon := argmin
f∈F

RCE(f∞) (20)

(recall f∞ means performing strictly-constrained inference
with f ) We characterize the behavior of fon with the follow-
ing results, which are direct corollaries of Theorem 4.3.

Proposition 4.6 (Learning Optimal CCM; Post-training vs
On-training). Assuming C is noise-free, we can reformulate
the learning objective (20) as

fon = argmin
f∈F

RCE(f)− VCE(f) (21)

A fundamental difference. Surprisingly, the reformu-
lated learning objective (21) is opposite to the surrogate
regularized objective defined in (9) in their attitudes towards
violations. This contrast suggests a fundamental difference
between regularization and constrained inference: the reg-
ularization method views violation as a bad thing and it
precludes classifiers with substantial violations. But con-
strained inference corrects a model from its violation, so a
large violation means a great potential to be improved.

6
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On-training vs post-training. Loosely speaking, this re-
sult also suggests that in general, the best constrained model
is not the constrained best model. To be more precise, sup-
pose we perform post-training constrained inference for
the cross-entropy risk minimizer in the vanilla model, i.e.,
fpost := argminf∈F RCE(f). Then, we can reformulate
the definition of fpost as

fpost := argmin
f∈F

(RCE(f)− VCE(f))︸ ︷︷ ︸
objective in (21), post-training risk

+VCE(f)
(22)

which can be regarded as a “regularized” version of (21).
Therefore, similar to Proposition 3.2, we can argue that
the risk minimizer fpost over F, as a base model of CCM,
contains a bias towards a higher risk than the on-training
method’s as follows:

RCE(f∞on) ≤ RCE(f∞post) ≤ RCE(fon)−min
f∈F

VCE(f)

(23)
The proof is included in the proof of Proposition 4.6.

Computational considerations. In practical structured
prediction problems where the output is sequential or graphi-
cal, performing constrained inference during training time is
typically expensive due to the complexity of the constraints.
For example, as pointed out by Xu et al. (2018), when the
constraint is defined by a logical expression over several
output variables, computing the probability of constraint be-
ing satisfied corresponds to the problem of weighted model
counting (WMC) and is #P-complete (Roth, 1996). There-
fore, to implement the on-training approach in practice,
one can alternatively use approximate inference to ensure
tractability. For example, strictly constrained inference,
formulated as Integer Linear Programming (Roth & Yih,
2004), can be further relaxed as Linear Programming (Mar-
tins et al., 2009a). Another example is amortized inference
(Chang et al., 2015), which accelerates the convergence to
the optimal model while only performing exact inference in
every τ > 1 iterations.

Compare to existing results. There has been limited the-
oretical work discussing the impact of performing con-
strained inference. The most related one is Punyakanok et al.
(2005), which derives VC-style generalization bounds for
linear structured models to argue that (1) performing strictly
constrained inference in a post-training manner (Learning
Plus Inference in the paper) improves the model perfor-
mance and (2) the on-training approach (Inference Based
Training in the paper) further reduces the error in the long
run. Our approach directly analyses the classification risk
and extends the comparison to noisy constraints and soft-
constrained inference with CCM.

Figure 1. A summary of the established results, as motivations to
the problems of this section. In Section 5.1, we describe how CCM
can reduce the additional risk introduced by regularization. In sec-
tion 5.2, we claim that the decrease of violation with regularization
can make post-training constrained inference unnecessary.

5. Regularization with Constrained Inference
We have seen that regularization and constrained inference
have different impacts on the generalization gap and the risk.
On one hand, CCM has an equal Rademacher complexity
(Proposition 4.2) as the original model R(F), which can
be reduced by regularization. So, performing regularized
algorithm to CCM also reduces the generalization gap. On
the other hand, their impacts on the risks are contradicting,
as summarized in figure 1. In this section, we aim to describe
how these impacts can interact with each other by applying
our established results to explore the usage of these two
methods together.

We show both positive and negative results for the combina-
tion. On one hand, we propose sufficient conditions under
which the bias introduced by regularization can be compen-
sated by performing constrained inference (Proposition 5.1).
On the other hand, we study if post-training constrained
inference can reduce the risk of the optimal classifier fρ.
We show with a noisy constraint, choosing a large value of
ρ in the regularized objective (4) will make CCM incapable
to reduce the risk (Proposition 5.2).

5.1. CCM Compensates for Regularization Bias

As the red part of Figure 1 summarizes, we have shown that
the regularization and constrained inference have contra-
dicting influences on the risk. Moreover, the regularization
bias is controlled by the violation of the risk minimizer
(Proposition 3.2), which can be reduced by constrained in-
ference. This suggests the possibility for CCM to reduce
the additional risk introduced by regularization.

7
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We formally describe this phenomenon by considering the
following combination: an on-training approach that aims
to find the minimizer of the following regularized surrogate
objective over the CCM Fµ:

fµ? := argmin
g∈Fµ

RCE(g) + ρVCE(g) (24)

Recall that RCE(fpost) is the minimum cross-entropy risk
that can be achieved in F. We show that unlike the vanilla
regularized objective (4), it is possible for this algorithm to
achieve a smaller risk than RCE(fpost) as follows.

Theorem 5.1 (Regularization with on-training constrained
inference). If CCM improves fpost so that ∆µ

CE(fpost) > 0,
then letting

ρ <
VCE(fpost)− µVora

VCE(fµpost)
− 1 (25)

will imply RCE(fµ? ) < RCE(fpost).

This result shows a small choice of ρ allows the regular-
ized optimizer fµ? to achieve better cross-entropy. A less
noisy constraint allows more choices of ρ to make this hap-
pen. In particular, when the constraint is noise-free, since
VCE(fµpost) → 0 as µ → ∞, driving µ to ∞ will make
R(fµ? ) < R(fpost) for all ρ > 0. As a cost, regularization
will be less effective in reducing the Rademacher complex-
ity with a large value of µ. In the extreme case, all the
classifiers in F∞ make zero violation, and hence cannot be
distinguished by the regularization objective.

5.2. Post-regularized-training Constrained Inference

Finally, as the blue part of Figure 1 summarizes, we have
shown that post-training inference is beneficial only if the
average violation of f is larger than Vora (Theorem 4.3).
However, the minimizer of the regularized objective fρ tends
to have a small violation (Proposition 3.3) scaled with 1/ρ.
Therefore, it is possible that choosing a large value of ρ will
make post-training incapable to reduce the risk with a noisy
constraint. Formally, assuming a model is already trained
with the vanilla regularized `1 objective as in (4), we have
the following holds.

Theorem 5.2 (When post-training inference is not help-
ful for regularized model). Recall V (f∞) is the mini-
mal expected violation that can be achieved by F. If
Vora ≥ V (f∞) and

ρ ≥ 1

Vora − V (f∞)
(26)

then the minimizer fρ of the regularized objective (4) will
not be improved by post-training constrained inference for
any µ ∈ (0,∞] in the sense that RCE(fρ) ≤ RCE((fρ)

µ).

The RHS of (26) shrinks with a larger noise rate Vora and
smaller V (f∞). Intuitively, a more noisy constraint is less
helpful (Theorem 4.3), while a small value of V (f∞) allows
fρ to violate less (Proposition 3.3) and hence gains fewer
benefits from constrained inference (Theorem 4.3). As a
consequence, with a noisy constraint, choosing a large ρ in
the regularized objective will make post-training constrained
inference unnecessary or even harmful.

6. Related Works
Regularization with constraints. In the context of struc-
tured prediction, the Posterior Regularization (PR) frame-
work (Ganchev et al., 2010) proposed to regularize the log-
likelihood by adding a distance of the probabilistic predic-
tion to the constrained subspace of distributions. The CoDL
algorithm (Chang et al., 2007; 2012) is a semi-supervised
algorithm that repetitively assigns constrained pseudo-labels
to the unlabeled dataset and uses pseudo-labels to retrain
the model. CoDL and PR are further unified in Samdani
et al. (2012) as special cases of a parameterized EM algo-
rithm. More recent works have proposed injecting logical
constraints into deep models by augmenting the training
objective with explicitly defined violation functions, such
as the semantic loss (Xu et al., 2018), the DL2 loss (Fischer
et al., 2019) and the inconsistency loss (Li et al., 2019),
which motivate our theoretical formulation in (4).

Inference with constraints. The idea of injecting prior
knowledge directly into a predictive model dates back to
Roth & Yih (2004), which formulates the problem of infer-
ence with hard constraints as Integer Linear Programming
(ILP). The idea of constrained inference has been followed
and developed by NLP researchers and empirically shown
to be effective in various problems such as summarization
(Clarke & Lapata, 2008), temporal reasoning (Ning et al.,
2018b), semantic parsing (Scholak et al., 2021) and text
generation (Lu et al., 2022). Chang et al. (2008; 2012) fur-
ther defines the CCM to incorporate soft constraints into
linear models. Another related work is Enrique Sucar et al.
(2014), which uses Bayesian networks to model the label
correlations and define an order to the labels. The order
information is then taken as extended features at inference
time. Theoretically, Punyakanok et al. (2005) provides a
comparison between the on-training and post-training con-
strained inference using VC-style error bounds.

Semi-supervised learning theory. Several theoretical
semi-supervised learning frameworks such as Balcan &
Blum (2005; 2010) and Tulab et al. (2014) illustrate how
hard constraints on the hypothesis space could reduce the
generalization error. A detailed comparison can be seen in
the discussion at the end of Section 3.

8



On Regularization and Inference with Label Constraints

Learning with partial labels. The problem of learning
with constraints is closely related to the problem of learning
from partial labels (also known as superset labels) (Cour
et al., 2011; Liu & Dietterich, 2014; Cid-Sueiro, 2012; Ca-
bannes et al., 2020) where each instance x in the dataset
is assigned with a partial label s which also takes value
in 2Y. The difference is that the constraint mapping itself
is known to the learner and hence can be encoded in the
inference algorithm directly, for example, via the CCM. An-
other difference is that the partial labels are typically more
informative and can guarantee learnability alone (Liu &
Dietterich, 2014; Wang et al., 2020). In contrast, the con-
straints that appear in practice typically provide only side
information and need to be used with gold labels together.

7. Conclusion and Future Works
In this paper, we presented a theoretical study of two meth-
ods to encode label constraints into a learning system: reg-
ularization and constrained inference. We compared these
two approaches by quantifying their impact on the optimal
risk as well as the generalization error. Our study revealed
that the success of these two approaches replies on different
data assumptions: the regularization method requires the
optimal classifier in the model to have a small violation
while constrained inference requires the true data to have
a small violation. We further elucidated the detrimental
consequences that arise when these assumptions fail to hold.
Finally, we demonstrate how their impacts on the model can
interact when used together.

We have focused on multiclass classification, aiming to pro-
vide a starting point for understanding the different mech-
anisms of the two methods. For future work, we will ex-
tend the discussion to structured prediction problems where
complex constraints are naturally defined. In particular,
while the presence of constraints can improve the model
performance, it also suggests a strong dependency inside the
structure, which may hurt the generalization performance,
as pointed out by London et al. (2016).
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Appendix
A. Details on Loss Function
The `1 loss is a smoothed alternative to the zero-one loss and has been used in the theoretical analysis for the generalization
error, see, for example, in London et al. (2016) (Section 6.2). It can be related to other common loss functions as follows.

As distances on the probability simplex. Let ey ∈ R|Y| be a one-hot vector with the yth coordinate be 1 and all others
be 0. We then have that

L(x, yora, f) := 1−Pf (yora|x) =
1

2
‖eyora −Pf‖1

Moreover, since our label space Y is of finite cardinality, we further have that 1
2‖eyora −Pf‖1 = TV(eyora ,Pf ), the total

variation distance.

Relation to zero-one loss. By introducing a temperature parameter t ∈ R≥0 to the softmax function, it is well known
that limt→∞ softmax(tu) = argmax(u) for a vector u. This implies

lim
t→∞

L(x, yora, tf) = 1− 1{argmax
y∈Y

f(x, y) = yora} = 1{argmax
y∈Y

f(x, y) 6= yora}

which is the zero-one loss. Since performing softmax inference with temperature t can be equivalently regarded as
performing softmax inference for the scoring space tF, for the simplicity of our presentation, we omit the temperature
parameter in the softmax inference.

Relation to cross-entropy. The total variation distance to a one-hot probability can be lower bounded by cross-entropy
due to Pinsker’s inequality. More directly, in our case, we have 1− p ≤ − log(p) for any p ∈ [0, 1] from basic inequality.
This implies L(x, y, f) ≤ LCE(x, y, f).

In conclusion, the `1 loss is a `1 and total variation distance on the probability space, is a smoothed version of the zero-one
loss, and is upper bounded by cross-entropy. It is differentiable and bounded so that we can derive generalization bounds
with Rademacher complexity. Another reason that we are interested in softmax inference will be clearer in the discussion
for constrained inference, where in Theorem 4.3, D.1 and D.4, the change of expected cross entropy and `1 loss can be
lower bounded by a smooth function. But with the argmax inference, the risk is in general not continuous and needs to be
assumed to be Lipschitz to obtain similar results.

B. Proofs from Section 3
B.1. Proof of Proposition 3.2

The first inequality is straightforward. For the second inequality, by definition (4) we have

R(fρ) + ρV (fρ) ≤ R(f0) + ρV (f0)

and
V (fρ) ≥ V (f∞).

Combining the two above inequalities yields

R(fρ) + ρV (f∞) ≤ R(f0) + ρV (f0).

The desired inequality follows by rearranging these terms. This argument also holds if we replace the expectations with
empirical estimates.

To see how the RHS bound can be reached, consider the following scoring space that contains two classifiers, f0 and f∞,
and an instance space X that only contains one point x. Let C(x) = {yora, y′}. Let f0 be such that Pf0(yora) = a ∈ (0, 1)
and Pf0(y′) = b. Let f∞ be such that Pf∞(yora) = a− ε1 and Pf∞(y′) = b+ ε2 so that ε1 < ρε2. Then

R(f∞) + ρV (f∞) ≤ 1− (a− ε1) + ρ(b− ε2) < 1− a+ ρb = R(f0) + ρV (f0) (27)

which means f∞ will be preferred to f0 by the regularized objective.
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B.2. Proof of Lemma 3.3

By definitions, we have
ρV (fρ) ≤ R(fρ) + ρV (fρ)

≤ R(f∞) + ρV (f∞)

≤ 1 + ρV (f∞)

≤ 1 + ρu

(28)

Therefore, we have that V (fρ) ≤ u+ 1/ρ.

B.3. Proof of Lemma 3.4

To prove this theorem, we need the following lemmas. The first one is a contraction inequality established in (Cortes et al.,
2016).

Lemma B.1 (Lemma 5 from (Cortes et al., 2016)). Let H be a set of functions mapping X toRN . Suppose Φi is µi-Lipschtz
with the 2-norm, i.e.,

|Φi(v′)− Φi(v)| ≤ µi‖v′ − v‖2 ∀v, v′ ∈ RN (29)

Then for any set of m points x1, . . . , xm ∈ X, the following inequality holds

1

m
Eσ

[
sup
h∈H

m

∑
i=1

σiΦi(h(xi))

]
≤
√

2

m
Eε

[
sup
h∈H

m

∑
i=1

N

∑
j=1

εijµihj(xi)

]
(30)

where σis and εijs are independent Rademacher variables uniformly distributed over {−1,+1}.

The second one computes the Lipschitz constants of the `1 losses by bounding its gradient’s 2-norm.

Lemma B.2 (Lipschitzness). Given a scoring function f : X× Y→ R, let f(x) = [f(x, y)]y∈Y ∈ R|Y| be the vector of
scores for each label. For any two scoring functions f, f ′ and data (x, y), we have that

|Pf (y|x)−Pf ′(y|x)| ≤
√

2

4
‖f(x)− f ′(x)‖2 (31)

Furthermore, for any constraint C, we have

|Pf (C|x)−Pf ′(C|x)| ≤ 1

4

√
1 +

1

|C(x)|
‖f(x)− f ′(x)‖2 (32)

where Pf (C|x) = Pf (C(x)|x) = ∑y∈C(x)Pf (y|x).

Proof. We start with the second claim. Suppose C(x) = Y, then Pf (C|x) = 0 for any scoring function f , so the inequality
trivially holds. Next, we assume C(x) ⊂ Y. Given a constraint C : X→ 2Y, the derivative of its violation function with
respect to the score for a label y is

dPf (C|x)

df(x, y)
= ∑
y′∈C(x)

dPf (y′|x)

df(x, y)

= ∑
y′∈C(x)

Pf (y|x)1{y′ = y} −Pf (y|x)Pf (y′|x)
(33)

The 2-norm of the gradient of the mapping f(x) 7→ Pf (y|x) is then∑
y∈Y

(
∑

y′∈C(x)

Pf (y|x)1{y′ = y} −Pf (y|x)Pf (y′|x)

)2
1/2

(34)
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which is maximized when Pf (y|x) = 1
2|C(x)| for all y ∈ C(x) and Pf (y|x) = 1

2(Y−|C(x)|) for all y /∈ C(x) (so that
Pf (C|x) = 1/2). The maximum is then ∑

y∈C(x)

(
∑

y′∈C(x)

Pf (y|x)1{y′ = y} −Pf (y|x)Pf (y′|x)

)2

+ ∑
y/∈C(x)

(
∑

y′∈C(x)

Pf (y|x)Pf (y′|x)

)2
1/2

=

√
|C(x)|

(
1

4|C(x)|

)2

+ |Y− C(x)|
(

1

2|Y− C(x)|

)2

=

√
1

16|C(x)|
+

1

16|Y− C(x)|

≤

√
1

16|C(x)|
+

1

16

=
1

4

√
1 +

1

|C(x)|

(35)

The boundedness of the gradient implies that the function f(x) 7→ Pf (C|x) is Lipschitz with a Lipschitz constant
1
4

√
1 + 1

|C(x)| .

The first claim then follows by considering the special constraint C(x) := {yora(x)} so that |C(x)| = 1.

Next, we present the proof of the theorem. By standard Rademacher complexity bounds, given a labeled dataset S of size m,
for any δ > 0, with probability at least 1− δ, the following inequality holds uniformly for f ∈ F:

R(f) ≤ R̂(f ;SL) + 2Rm(H) +

√
log(1/δ)

2m
(36)

where
H := {(x, y) 7→ 1−Pf (y|x) : f ∈ F} (37)

By the contraction lemma and Lipschitzness, we have

Rm(H) =
1

m
ESEσ

[
sup
f∈F

m

∑
i=1

σi (1−Pf (yi|xi))

]

≤
√

2

m
ESEε

[
sup
f∈F

m

∑
i=1

∑
y∈Y

εiy

√
2

4
f(x, y)

]

=
1

2m
ESEε

[
sup
f∈F

m

∑
i=1

∑
y∈Y

εiyf(x, y)

] (38)

This implies

R(f) ≤ R̂(f ;SL) + Rm(F) +

√
log(1/δ)

2m
(39)

The proof for the generalization bound of violation follows from the same argument. In particular, if the size of the
constrained set C(x) is a constant, namely |C(x)| = c0 < c = |Y| for all x ∈ X, then from Equation (35), we know that the

mapping x 7→ 1−Pf (y|x) is Lipschitz with a Lipschitz constant 1
4

√
1
c0

+ 1
c−c0 . So in this case, the generalization bound

for the violation function can be improved as

V (f) ≤ V̂ (f ;SU) +

√
2

2

√
1

c0
+

1

c− c0
RmU

(F) +

√
log(1/δ)

2mU

(40)
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B.4. Proof of Theorem 3.6

Step 1. Showing the expected violation of f̂ρ is bounded.

First, we have with probability 1− δ,

ρV̂ (f̂ρ) ≤ R̂(f̂ρ) + ρV̂ (f̂ρ)

≤ R̂(f∞) + ρV̂ (f∞)

≤ 1 + ρV̂ (f∞)

≤ 1 + ρ

u+

√
log(1/δ)

2mU


(41)

where the last step follows by applying Hoeffding’s inequality to V̂ (f∞). This result implies V̂ (f̂ρ) ≤ 1
ρ + u+

√
log(1/δ)
2mU

.

Second, Theorem 3.4 claims that with probability 1− δ, the following inequality holds:

V (f̂ρ)− V̂ (f̂ρ) ≤ RmU
(F) +

√
log(1/δ)

2mU

(42)

Putting these two inequalities together using union bound, we know with probability 1− 2δ,

V (f̂ρ) ≤
1

ρ
+ u+ RmU

(F) +

√
log(1/δ)

2mU
+

√
log(1/δ)

2mU

=
1

ρ
+ u+B(δ,mU,F)

(43)

Namely, with probability no less than 1− 2δ, f̂ρ lies in F1/ρ+u+B(δ,mU,F), which is a fixed hypothesis class.

Step 2. Bounding the generalization gap of Lρ.

Since f̂ρ ∈ F1/ρ+u+B(δ,mU,F), we can bound the generalization gap of Lρ using the uniform convergence property of
F1/ρ+u+B(δ,mU,F). By standard decomposition,

Lρ(f̂ρ)− Lρ(fρ) = Lρ(f̂ρ)− L̂ρ(f̂ρ)︸ ︷︷ ︸
(∗)

+ L̂ρ(f̂ρ)− L̂ρ(fρ)︸ ︷︷ ︸
≤0

+ L̂ρ(fρ)− Lρ(fρ)︸ ︷︷ ︸
(∗∗)

(44)

For term (∗), combining the two inequalities in Lemma 3.4 and Step 1 via union bound, we know with probability 1− 4δ,

(∗) ≤ RmL
(F1/ρ+u+B(δ,mU,F)) +

√
log(1/δ)

2mL
+ ρ

RmU
(F1/ρ+u+B(δ,mU,F)) +

√
log(1/δ)

2mU

 (45)

For term (∗∗), using Hoeffding’s inequality for the risk and violation separately, we have with probability 1− 2δ,

(∗∗) ≤

√
log(2/δ)

2mL
+ ρ

√
log(2/δ)

2mU

(46)

By union bound, with probability 1− 6δ,

Lρ(f̂ρ)− Lρ(fρ) ≤ RmL
(F1/ρ+u+B(δ,mU,F)) + ρRmU

(F1/ρ+u+B(δ,mU,F)) + 2

√
log(2/δ)

2mL
+ 2ρ

√
log(2/δ)

2mU︸ ︷︷ ︸
for convenience, denote these terms asB′

(47)
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Step 3. Bounding the risk of fρ.

By Step 2, we have with probability 1− 6δ,

R(f̂ρ) ≤ R(fρ) + ρV (fρ)− ρV (f̂ρ) +B′

≤ R(f0) + ρV (f0)− ρV (f̂ρ) +B′

≤ R(f0) + ρV (f0)− ρV (f∞) +B′
(48)

We conclude that with probability 1− 6δ,

R(f̂ρ) ≤ R(f0) + ρV (f0)− ρV (f∞)

+ RmL
(F1/ρ+u+B(δ,mU,F)) + ρRmU

(F1/ρ+u+B(δ,mU,F)) + 2

√
log(2/δ)

2mL
+ 2ρ

√
log(2/δ)

2mU

(49)

as claimed.

B.5. Proof of Example 3.7

The normalizing factor ∑c
j=1 ew

T
j x is maximized at w1 = x = [1, 0, 0, . . . , 0] and w2 = · · · = wc = 0 so that

c

∑
j=1

ew
T
j x ≤ e + (c− 1) ≤ c+ 2 (50)

This implies Pw(yc) ≥ (ew
T
cx)/(c + 2). Therefore, E[Pw(yc)] ≤ t implies t(c + 2) ≥ E[ew

T
cx] ≥ eE[wT

cx] = eα
Twc , or

equivalently αTwc ≤ log(t(c+ 2)). Therefore, given a set of data S = {xi}mi=1 and Rademacher random variables ε, the
inner supremum in the definition of Rademacher complexity can be upper bounded by solving the following program

max
m

∑
i=1

c

∑
j=1

εi,jw
T
j xi

s.t.
c

∑
j=1

wT
j wj ≤ 1

αTwc ≤ log(t(c+ 2))

(51)

Consider its Lagrangian

L(w, λ, µ) =
m

∑
i=1

c

∑
j=1

εi,jw
T
j xi + λ

(
1−

n

∑
j=1

wT
j wj

)
+ ν

(
log(t(c+ 2))− αTwc

)
(52)

Denote ξj := ∑m
i=1 εi,jxi. The Lagrangian is then maximized at wj = ξj/(2λ) for j < c and wc = (ξc − να)/(2λ). The

dual function then writes:

g(λ, ν) = ν log(t(c+ 2)) + λ+
c−1

∑
j=1

‖ξj‖22
4λ

+
‖ξc − να‖22

4λ
≥ ν log(t(c+ 2)) +

√√√√c−1

∑
j=1

‖ξj‖22 + ‖ξc − να‖22 (53)

By weak duality, we have that

R̂m(Ft) ≤
1

m
Eε

min
ν≥0

ν log(t(c+ 2)) +

√√√√c−1

∑
j=1

‖ξj‖22 + ‖ξc − να‖22

 (54)

Assuming t < 1/(c+ 2) so that log(t(c+ 2)) < 0. We can upper bound (54) as

1

m
Eε

min
ν≥0

√√√√c−1

∑
j=1

‖ξj‖22 + ‖ξc − να‖22

 (55)
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The function ∑c−1
j=1 ‖ξj‖22 + ‖ξc − να‖22 is minimized at ν = 0 if ξTc α ≤ 0 and ν = ξTc α/‖α‖22 otherwise. Denote the event

ξTc α ≤ 0 as E. By symmetry, we have that P(E) = 1/2 so that

1

m
Eε

min
ν≥0

√√√√c−1

∑
j=1

‖ξj‖22 + ‖ξc − να‖22

 =
1

2
Eε

[√
c

∑
j=1

‖ξj‖22

∣∣∣∣∣E
]

+
1

2
Eε

[√
c

∑
j=1

‖ξj‖22 −
(ξTc α)2

‖α‖22

∣∣∣∣∣E
]

(56)

Again by symmetry, the quantity (ξTc α)2 is independent of E. Therefore, by Jensen’s inequality, we have that

ES,ε

[√
c

∑
j=1

‖ξj‖22 −
(ξTc α)2

‖α‖22

∣∣∣∣∣E
]
≤

√√√√ES,ε [ c

∑
j=1

‖ξj‖22 −
(ξTc α)2

‖α‖22

]

≤

√
cm−ES,ε

[
(ξTc α)2

‖α‖22

]

=

√
cm− Var(ξTc α)

‖α‖22

=

√
cm−mσ2‖α‖22 + ‖α‖42

‖α‖22

=
√

(c− σ2 − ‖α‖22)m

(57)

Similarly, we can use Jensen’s inequality to bound ES,ε
[√

∑c
j=1 ‖ξj‖22

∣∣∣E] ≤ √cm. Putting these together, we have that

Rm(Ft) = Ex[R̂m(Ft)] ≤
1

2

√
c

m
+

1

2

√
c− σ2 − ‖α‖22

m
(58)

C. Proofs from Section 4
C.1. Proof of Propostion 4.2

First, we show the Rademacher complexity of the singleton mapping is zero:

Rm({(x, y) 7→ −µv(x, y)}) =
1

m
Ex,ε

[
m

∑
i=1

∑
y∈Y
−εi,yµv(xi, y)

]

=
1

m
Ex

[
m

∑
i=1

∑
y∈Y
−E[εi,y]µv(xi, y)

]
= 0

(59)

Second, we use the linearity of Rademacher complexity to obtain the desired result.

Rm(Fµ) =
1

m
Ex,ε

[
sup
f∈F

m

∑
i=1

∑
y∈Y

εi,y(f(xi, y)− µv(xi, y))

]

=
1

m
Ex,ε

[
sup
f∈F

m

∑
i=1

∑
y∈Y

εi,yf(xi, y)

]
+

1

m
Ex,ε

[
m

∑
i=1

∑
y∈Y
−εi,yµv(xi, y)

]
= Rm(F) + Rm({(x, y) 7→ −µv(x, y)}) = Rm(F)

(60)
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C.2. Proof of Proposition 4.3

(a) Given any scoring function f , let ZCf (x) := ∑y∈C(x) exp(f(x, y)) and Z−Cf (x) := ∑y/∈C(x) exp(f(x, y)). We have

d

dµ
∆µ

CE(f) =
d

dµ
E

[
log

exp(f(x, yora)− µv(x, yora))

ZCf (x) + Z−Cf (x)/eµ

]

= E

[
d

dµ
log

exp(f(x, yora)− µv(x, yora))

ZCf (x) + Z−Cf (x)/eµ

]

= E

[
Z−Cf (x)/eµ

ZCf (x) + Z−Cf (x)/eµ
− v(x, yora)

]
= V (fµ)− Vora

(61)

Moreover,
d

dµ
V (fµ) =E

[
d

dµ

Z−Cfµ (x)

Zfµ(x)

]

=E

[
Zfµ(x)(−ZCfµ(x)) + (ZCfµ(x))2

(Zfµ(x))
2

]
=E

[
P

2
fµ(−C)−Pfµ(−C)

]
(62)

which is negative and bounded, implying V (fµ)− Vora is decreasing and Lipschitz with µ. Therefore, there is a µ > 0
such that RCE(fµ) < RCE(f) if and only if the derivative is positive at µ = 0, i.e., V (f) > Vora.

(b) By (61),

∆µ
CE(f) =

∫ µ

0

(
V (f t)− Vora

)
dt

= E

[∫ µ

0

Z−Cf (x)/et

ZCf (x) + Z−Cf (x)/et
dt

]
− µVora

≥ E

[∫ µ

0

Z−Cf (x)/et

ZCf (x) + Z−Cf (x)
dt

]
− µVora

= (1− e−µ)E

[
Z−Cf (x)

ZCf (x) + Z−Cf (x)

]
− µVora

= (1− e−µ)V (f)− µVora

(63)

(c) If Vora = 0, we have

∆∞CE(f) =

∫ ∞
0
E

[
Z−Cf (x)/et

ZCf (x) + Z−Cf (x)/et

]
dt

= E

[∫ ∞
0

Z−Cf (x)/et

ZCf (x) + Z−Cf (x)/et
dt

]

= E

[
log

(
ZCf (x) + Z−Cf

ZCf

)]
= VCE(f)

(64)

C.3. Proof of Corollary 4.5

Using Proposition 4.3 (b), this result follows by solving the following equation

(1− e−µ)V (f)− µVora ≥ 0 (65)
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It is known that the solution to the inequaltiy u ≤ a + becu of u is u ≤ a − 1
cW (−bceac). Substituting a = η =

V (f)/Vora = −b and c = −1 yields the desired result:

µ ≤W (−η/eη) + η (66)

where the RHS is positive only when η > 1. A plot of this solution as a function of η is presented below in Figure 2.

Figure 2. Choice of µ as a function of η = V (f)/Vora.

C.4. Proof of Proposition 4.6

This claim follows from the fact that RCE(f∞) = RCE(f)− VCE(f) from Proposition 4.3 (c).

For equation (23), the first inequality follows from the optimality of fon. For the second inequality, by definition we have

RCE(f∞post) + VCE(fpost) = RCE(fpost) ≤ RCE(fon)

⇒RCE(f∞post) ≤ RCE(fon)− VCE(fpost) ≤ RCE(fon)−min
f∈F

VCE(f)
(67)

D. Analysis for Hinge Loss and `1 Loss
D.1. Hinge Loss

The margin of a scoring function f at a sample (x, yora) is defined as

m(x, yora, f) := max
y∈Y
{f(x, y)} − f(x, yora) (68)

We denote its expectation as M(f) = E[m(x, yora, f)].

Given a loss function ` : Y× Y→ R, the structured hinge loss (London et al., 2016; Meshi et al., 2019) is defined as the
margin of the loss augmented scoring function f + ` : (x, y) 7→ f(x, y) + `(y, yora). Namely,

Lhinge(x, yora, f) := m(x, yora, f + `) (69)

Therefore, we can study the impact of constrained inference on the hinge loss via the impact on the margin. Let ∆µ
margin(f) =

M(f)−M(fµ). We present the following result.
Theorem D.1 (Change of Margin). The following results hold:

(a) For any fixed model f , there exists an µ0 > 0 such that M(fµ) ≤M(f) only if

V01(f) > Vora (70)

where V01(f) is the zero-one style violation defined as E[1{argmaxy∈Y f(x, y) 6= yora}].

(b) In particular, if the constraint is noise-free, we have

∆∞margin(f) = E

[
max
y∈Y

f(x, y)− max
y∈C(x)

f(x, y)

]
= E

[(
max
y/∈C(x)

f(x, y)− max
y∈C(x)

f(x, y)

)
+

] (71)
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Proof. (a) The derivative of the change of the margin is

d

dµ
∆µ

margin(f) = − d

dµ
M(fµ) = − d

dµ
E

[
max
y∈Y
{f(x, y)− µv(x, y)} − f(x, yora) + µv(x, yora)

]
= E[v(x, yfµ)− v(x, yora)]

(72)

where yfµ := argmaxy∈Y{f(x, y)− µv(x, y)} is the argmax inference output of CCM. Moreover, this derivative is
non-increasing with µ. Therefore, a necessary condition for CCM to reduce the margin is

E[v(x, yf )] = V01(f) > Vora (73)

(b) This follows directly by taking the difference between M(f) and M(f∞).

Remark D.2. Due to the discontinuous nature of the argmax inference, the function v(x, yfµ) is in general not continuous
with µ. On the other hand, if we assume µ 7→ E[v(x, yfµ)] is Lipschitz continuous, the condition proposed in (a) is also
sufficient, as in the analysis for cross-entropy.

The impact of constrained inference on the hinge loss can be investigated by substituting f by f + `. For example, a sufficient
for improving the average hinge loss will be V01(f + `) > Vora.

The quantity
(
maxy/∈C(x) f(x, y)−maxy∈C(x) f(x, y)

)
+

is closely related to the integrality loss defined in Meshi et al.
(2019). It is a hinge-stye surrogate loss function for the zero-one style violation function of f with argmax inference:

P

{
max
y/∈C(x)

f(x, y)− max
y∈C(x)

f(x, y) ≥ 0

}
= V01(f) (74)

D.2. `1 Loss

To facilitate our discussion, we first present the following lemmas that will be useful in this section.
Lemma D.3 (Gradients of CCM). For any constraint C we have the following:

1. The derivative of the predicted probability is

d

dµ
Pfµ(y|x) = Pfµ(y) (Pfµ(−C|x)− v(x, y)) (75)

2. The second order derivative of the probability is

d

dµ
Pfµ(−C|x) = Pfµ(y|x)

(
(Pfµ(−C|x)− v(x, y))

2
+P2

fµ(−C|x)−Pfµ(−C|x)
)

(76)

Proof. Recall that given any scoring function f , we denote

ZCf (x) := ∑
y∈C(x)

exp(f(x, y))

and
Z−Cf (x) := ∑

y/∈C(x)

exp(f(x, y))

We also let Zf (x) = ZCf (x) + Z−Cf (x).

(a) The pointwise derivative of CCM’s l1 risk with respect to µ is then

d

dµ
Pfµ(y|x) =

d

dµ

ef(x,y)−µv(x,y)

Zfµ(x)

=
1

(Zfµ(x))
2

(
Zfµ(x)(−v(x, y)ef(x,y)−µv(x,y)) + Z−Cfµ (x)ef(x,y)−µv(x,y)

)
=Pfµ(y) (Pfµ(−C)− v(x, y))

(77)

where the second equality follows from the fact that d
dµZfµ(x) = −Z−Cfµ (x).
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(b) Based on (a),

d2

d2µ
Pfµ(y|x) = (Pfµ(y) (Pfµ(−C)− v(x, y))) (Pfµ(−C)− v(x, y))

+Pfµ(y)
(
P

2
fµ(−C)−Pfµ(−C)

)
= Pfµ(y|x)

(
(Pfµ(−C|x)− v(x, y))

2
+P2

fµ(−C|x)−Pfµ(−C|x)
) (78)

Now we discuss the change in `1 risk that is defined as ∆µ(f) := R(f)−R(fµ).

Theorem D.4 (Change of `1 Risk). The following results hold:

(a) For any fixed model f , there exists an µ0 > 0 such that R(fµ) < R(f) if

E[Pf (yora)Pf (−C)] > E[Pf (yora)v(x, yora)] (79)

(b) The change of risk can be lower bounded by

∆µ(f) ≥ 1− e−2µ

2
Ex[Pf (yora)Pf (−C)]− µVora (80)

(c) In particular, if the constraint is noise-free, we have

∆∞(f) ≥ Ex[Pf (yora)Pf (−C)] (81)

Proof. (a) From Lemma D.3 (a) we know the derivative of the risk with respect to µ at µ = 0 is

E[Pf (yora)Pf (−C)]−E[Pf (yora)v(x, yora)] (82)

Further, Lemma D.3 (b) implies this derivative is Lipschitz with respect to µ since for any µ,∣∣∣Pfµ(y|x)
(

(Pf (−C|x)− v(x, y))
2

+P2
fµ(−C|x)−Pfµ(−C|x)

)∣∣∣ ≤ 1 (83)

Therefore, a sufficient condition for the existence of an µ0 > 0 such thatR(fµ) < R(f) is thatE[Pf (yora)Pf (−C)] >
E[Pf (yora)v(x, yora)].

(b) First, we note for any y and µ that

Pfµ(y)Pfµ(−C) =
ef(x,y)−µv(x,y)Z−Cf (x)/eµ

(Zfµ(x))
2

≥
ef(x,y)−µv(x,y)Z−Cf (x)/eµ

(Zf (x))
2

≥
ef(x,y)−µZ−Cf (x)/eµ

(Zf (x))
2

= Pf (y)Pf (−C)e−2µ

(84)

Also,
E[Pf (yora)v(x, yora)] ≤ E[v(x, yora)] = Vora (85)

Integrating the derivative gives

∆µ(f) ≥
∫ µ

0
E
[
Pf (yora)Pf (−C)e−2t − Vora

]
dt

=
1− e−2µ

2
Ex[Pf (yora)Pf (−C)]− µVora

(86)
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(c) With noise-free constraints,

Pfµ(yora)Pfµ(−C) =
ef(x,yora)Z−Cf (x)/eµ

(Zfµ(x))
2

≥
ef(x,yora)Z−Cf (x)/eµ

(Zf (x))
2

= Pf (yora)Pf (−C)e−µ

(87)

Integrating both sides gives

∆µ(f) ≥
∫ µ

0
E
[
Pf (yora)Pf (−C)e−t

]
dt

= Ex[Pf (yora)Pf (−C)]
(88)

The term Ex[Pf (yora)Pf (−C)] plays a key role in these results, and it measures the average violation of the model f ,
weighted by the model’s confidence of the true label. The first result shows that if this weighted average violation is larger
than that of the true data distribution, then CCM is helpful. The last result shows that a model with a larger weighted
violation obtains more benefits from strictly constrained inference.

E. Proofs from Section 5
E.1. Proof of Theorem 5.1

Recall fµ? = argming∈Fµ RCE(g) + ρVCE(g) is the optimal CCM for the regularized surrogate objective and fpost is the
cross entropy risk minimizer in F. According to our notation, fµpost is the constrained model with base model fpost. By this
definition, we have

RCE(fµ? ) + ρVCE(fµ? ) ≤ RCE(fµpost) + ρVCE(fµpost) (89)

Therefore,
RCE(fµ? ) ≤ RCE(fµpost) + ρ(VCE(fµpost)− VCE(fµ∞))

≤ RCE(fµpost) + ρVCE(fµpost)

≤ RCE(fpost)−∆µ
CE(fpost) + ρVCE(fµpost)

(90)

Therefore, a sufficient condition for RCE(fµ? ) ≤ RCE(fpost) is that ρVCE(fµpost) < ∆µ
CE(fpost). Furthermore, recall for

any scoring function f , we define ZCf (x) := ∑y∈C(x) exp(f(x, y)) and Z−Cf (x) := ∑y/∈C(x) exp(f(x, y)). We then have

VCE(f)− VCE(fµ) = E

[
− log

(
ZCf (x)

ZCf (x) + Z−Cf (x)

)]
−E

[
− log

(
ZCf (x)

ZCf (x) + Z−Cf (x)/eµ

)]

= E

[
− log

(
ZCf (x) + Z−Cf (x)/eµ

ZCf (x) + Z−Cf (x)

)]

=

∫ µ

0
E

[
Z−Cf (x)/et

ZCf (x) + Z−Cf (x)/et

]
dt

= ∆µ
CE(f) + µVora (compare to equation (61))

(91)

Therefore, ∆µ
CE(fpost) = VCE(fpost)− VCE(fµpost)− µVora. So, the sufficient condition can be reformulated as

ρ <
VCE(fpost)− VCE(fµpost)− µVora

VCE(fµpost)
(92)
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E.2. Proof of Theorem 5.2

We have seen in Theorem 4.3 that for any scoring function f , there is a µ > 0 such that RCE(fµ) < RCE(f) if and only if
V (f) ≥ Vora. On the other hand, we know from Lemma 3.3 that

V (fρ) ≤ V (f∞) +
1

ρ
(93)

Therefore, if

ρ ≥ 1

Vora − V (f∞)
(94)

we must have V (fρ) ≤ Vora, which implies there is no µ > 0 such that RCE((fρ)
µ) < RCE(fρ).
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