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Abstract
Classification is a cornerstone of machine learning
research. Most of the existing classifiers assume
that the concepts corresponding to classes can be
precisely defined. This notion diverges from the
widely accepted understanding in cognitive sci-
ence, which posits that real-world concepts are
often inherently ambiguous. To bridge this big
gap, we propose a Human Cognition-Inspired Hi-
erarchical Fuzzy Learning Machine (HC-HFLM),
which leverages a novel hierarchical alignment
loss to integrate rich class knowledge from hu-
man knowledge system into learning process. We
further theoretically prove that minimizing this
loss can align the hierarchical structure derived
from data with those contained in class knowl-
edge, resulting in clear semantics and high inter-
pretability. Systematic experiments verify that the
proposed method can achieve significant gains in
interpretability and generalization performance.

1. Introduction
Classification stands as one of the most fundamental and
extensively studied problems in machine learning. Over
the years, a vast array of classifiers has been developed
(Delgado et al., 2014), with their methodologies broadly
categorized into two main approaches. The first approach
relies directly on the discrete 0-1 loss, as seen in classi-
fiers such as k-nearest neighbors (Cover & Hart, 1967),
decision trees (Quinlan, 1986), and naive Bayes (Domin-
gos & Pazzani, 1997), etc. The second approach employs
continuous functions as proxies for the 0-1 loss, including
the hinge loss used in support vector machine (Cortes &
Vapnik, 1995), the exponential loss adopted by AdaBoost
(Freund & Schapire, 1997; Friedman et al., 2000), and the
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cross-entropy loss widely adopted in deep neural networks
(LeCun et al., 2015), etc. Despite their differences, these
loss functions share a common underlying assumption, i.e.,
the concepts corresponding to classes can be precisely de-
fined. This assumption inherently implies that class relation
are crispy, where any two classes are either identical or
distinct, leaving no room for ambiguity.

In the classification problem, each class corresponds to
a concept. Unlike existing classifiers, human solves the
classification problem mainly based on concept cognition
(Murphy, 2004). Over the centuries, the classical theory of
concept representation prevailed, positing that all concepts
can be precisely defined. However, in 1953, the philoso-
pher Ludwig Wittgenstein challenged this proposition by
exploring the concept of “game”, questioning whether a
precise definition of such a concept truly exists (Wittgen-
stein, 1953). This seminal inquiry sparked a paradigm shift,
leading the philosophy community to widely accept that
real-world concepts are often inherently ambiguous and
resist precise definition.

Building on the above consensus, modern cognitive sci-
ence has developed several influential theories for concept
representation. Prototype theory (Rosch, 1975) models a
concept using an idealized prototype that encapsulates its
most representative features. Exemplar theory (Medin &
Schaffer, 1978) represents a concept through a set of typical
and representative instances. Knowledge theory (Murphy
& Medin, 1985) posits that concepts are deeply embedded
within human knowledge system, asserting that human cog-
nition of a concept is inseparable from the contextual and
relational structure of this system. As the most sophisticate
framework, knowledge theory not only aligns closely with
human cognitive processes but also provides a compelling
foundation for advancing machine learning models that aim
to mimic human-like cognition.

Recently, we proposed a fuzzy learning machine (FLM)
inspired by concept cognition (Cui & Liang, 2022). FLM
leverages fuzzy set theory (Zadeh, 1965) to capture the
inherent fuzziness of concepts (McCloskey & Glucksberg,
1978; Marti et al., 2023) and employs exemplar theory to
capture the typicality effects (Smith et al., 1974), achieving
good interpretability, robustness, and generalization.

However, FLM still faces limitations in understanding con-
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cepts. While it employs exemplar theory for concept rep-
resentation, an approach well-suited to purely data-driven
machine learning. Unlike knowledge theory (Murphy &
Medin, 1985), it separates concept representation from hu-
man knowledge system, limiting its ability to form a pro-
found understanding of concepts. Recent research in cogni-
tive science further highlights that many concepts are under-
stood through their relations with other concepts (Piantadosi
et al., 2024).

Meanwhile, the community has accumulated a wealth of
digitized knowledge base, including the conventional knowl-
edge graph, e.g., WordNet (Miller, 1995), ConceptNet
(Speer et al., 2017), and the fashionable pre-trained language
model, e.g., Word2Vector (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), and GPT (OpenAI, 2023), etc.
These resources make it feasible to develop the knowledge-
driven method for concept cognition.

Accordingly, this paper explores relations between concepts
contained in human knowledge system and then leverages
these relations to guide the learning of concepts from data,
enhancing the model’s ability to understand and represent
concepts. The main contributions are as follows.

• We propose a unified modeling framework that rep-
resents various types of knowledge as fuzzy similar-
ity relation (FSR) on the class space, resulting in the
knowledge-infused concept representation.

• We design a novel hierarchical alignment (HA) loss in-
spired by the principles of concept cognition, enabling
the knowledge-infused concept representation to guide
the learning process.

• We introduce the FSR-based quotient space theory,
and then prove that minimizing the HA loss can align
the hierarchical structures derived from both data and
knowledge in quotient space.

• Extensive experiments verify the effectiveness of the
proposed method in improving interpretability and gen-
eralization performance.

2. Notions and Related Works
2.1. Problem Formalization

Task. Given a (X ,Y, fc)-classification problem, X ⊆ Rd,
Y , and fc : X → Y are input space, class space and un-
known classification function, respectively. To solve the
classification problem, we need to determine the unknown
classification function fc. For the sake of discussion, the
classes in Y are numbered as 1, 2, · · · , |Y|.

Data. Let D = X × Y be data space. In machine learning,
experience is often given in the form of training data, de-

noted as D = {(xi, yi) |xi ∈ X , yi = fc (xi) ∈ Y}ni=1 ⊂
D. The goal is to use D to get f̂c : X → Y as close
as possible to the unknown fc. ∀k ∈ Y , let Xk =
{xi | (xi, yi) ∈ D, yi = k } be the set of training samples
belonging to class k. Let X = {xi | (xi, yi) ∈ D} be the
set of all training samples.

Class knowledge. Let K be human knowledge system,
which contains various types of knowledge. In practice,
each class in Y corresponds to a concept, and the concept
name corresponds to a word in natural language. Therefore,
we can collect the class knowledge about Y by concept
name, denoted as K ⊂ K.

2.2. Preliminaries

Fuzzy similarity relation is the core notion of the proposed
method. Specifically,
Definition 2.1. (Bandler & Kohout, 1988) Given a set A,
the mapping F : A × A → [0, 1] is called a fuzzy binary
relation on A.
Definition 2.2. (Bandler & Kohout, 1988) Given a set A and
a fuzzy binary relation F on A. If F satisfies (1) reflexivity:
∀a ∈ A, R((a, a)) = 1, and (2) symmetry: ∀a, b ∈ A,
R((a, b)) = R((b, a)), the F is called a fuzzy similarity
relation (FSR) on A.

More preliminaries, including binary relation, fuzzy binary
relation, and fuzzy quotient space are given in Appendix A.

2.3. Fuzzy Learning Machine

In FLM (Cui & Liang, 2022), we achieve concept cognition
according to exemplar theory. Specifically,

Learning. The training process of FLM is

min
Θ

n∑
i,j=1,i̸=j

LFP (f ((xi, xj) ;Θ) , yi, yj)+γR(Θ), (1)

where LFP andR are fuzziness permissible loss and regu-
larization term, respectively. γ > 0 is trade-off parameter.
f ((·, ·) ;Θ) is a FSR on X with learnable parameters Θ.
The fuzziness permissible (FP) loss is defined as

LFP (sij , yi, yj) =

{
max (sij − α, 0) , yi ̸= yj
max (β − sij , 0) , yi = yj

, (2)

where sij = f ((xi, xj) ;Θ) is the predicting similarity
between xi and xj . 0 < α < β < 1 are hyper-parameters
to control the degree of concept fuzziness.

Concept representation. Let Θ◦ be the local optimal solu-
tion of formula (1). The FSR f ((·, ·) ;Θ◦) forms the basis
of concept representation. According to exemplar theory,
the set of exemplars of class k is defined as

Ek =

{
x| x ∈ Xk, µ (x, k) is the top-nexe

k

largest value in {µ (xi, k) | xi ∈ Xk }

}
, (3)
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where µ (x, k) = 1
|Xk|

∑
xj∈Xk

f ((x, xj) ;Θ
◦) and nexe

k is
a manually specified parameter.

Predicting. Given a test sample x ∈ X , FLM predicts the
class label of x according to the following formula

ŷ = argmax
k∈Y

1

|Ek|
∑

xi∈Ek

f ((x, xi) ;Θ
◦) . (4)

To sum up, FLM captures the fuzziness of concept well.
However, it ignores relations between concepts contained
in human knowledge system, limiting its ability to concept
cognition. This paper aims to alleviate the limitation.

3. Proposed Method
The overall framework of the proposed HC-HFLM is shown
in Figure 1, including method design and theory analysis.
The method design is given below, and the theory analysis
will be given in Section 4.

3.1. Method Design

We first introduce the following two definitions.

Definition 3.1. Given α ∈ (0, 1), a set A, and a FSR S on
A. If ∀a, b ∈ A, a ̸= b, 0 < S(a, b) < α, then S is called a
α-FSR on A.

Definition 3.2. Given a finite set A = {ai}|A|
i=1 ⊂ R.

∀ai ∈ A, let sort(ai;A) ∈ {1, 2, · · · , |A|} be the rank
of ai in A by ascending order. Let b = sortvec(A) =(
b1, b2, · · · , b|A|

)T ∈ R|A| be the vector formed by arrang-
ing the elements in ascending order A. Obviously, the fol-
lowing propositions are true.
(1) ∀ai, aj ∈ A, i ̸= j, ai > aj iff sort (ai;A) >
sort (aj ;A).
(2) ∀ai ∈ A, ai = bsort(ai;A).
(3) ∀i = 1, 2, · · · , |A|, bi ∈ A and sort (bi;A) = i.

(1) Mining Class FSR from Human Knowledge System

According to knowledge theory (Murphy & Medin, 1985),
to understand concepts profoundly we need to obtain the
knowledge-infused concept representation from human
knowledge system K. It is well known that K contains
various types of knowledge. In this paper, we do not limit
the type of class knowledge K ⊂ K. It can be the attribute
description vector of concept name used in literature (Lam-
pert et al., 2014). It can be the embedding vector of concept
name by pre-trained language models, such as Word2Vector
(Mikolov et al., 2013), GloVe (Pennington et al., 2014), GPT
(OpenAI, 2023), etc. It can be the knowledge graph, such
as WordNet (Miller, 1995), ConceptNet (Speer et al., 2017),
etc. It can also be human themselves.

To ensure the universality, different types of class knowledge
K are uniformly modeled as a α-FSR on Y , i.e., SK ∈

(0, 1]|Y|×|Y|, where ∀i, j ∈ Y ,

sKij =

{
1, i = j
sim(i, j;K), i ̸= j

, (5)

where sim(i, j;K) ∈ (0, α) is the similarity between
classes i and j measured by class knowledge K. α is fuzzi-
ness parameter. Appendix B.1 gives several types of class
knowledge and the corresponding sim(i, j;K).

In practice, the quality of class knowledge K varies signifi-
cantly, so we need to further refine the class FSR. Let

T =


SK , case 1 : K is of high quality

S(D,K)∗ , case 2 : K is of medium quality

S
(D,K)∗

coa , case 3 : K is of low quality

(6)

be the refined class FSR, where SK is obtained by formula
(5). case 1: SK needs no refinement. case 2: SK needs
to be calibrated by training data. Appendix B.2 gives the
procedure for computing S(D,K)∗ . case 3: SK needs to be
coarsened and then be calibrated by training data. Appendix
B.3 gives the procedure for computing S

(D,K)∗

coa .

In formula (6), T is a symmetric matrix. Each row of
T is a |Y|-dimensional embedding representation of one
concept, which is composed of relations between concepts.
Meanwhile, T is mined from human knowledge system.
Therefore, T can be regarded as the knowledge-infused
concept representation.

(2) Learning Sample FSR from Data

We design a novel hierarchical alignment (HA) loss, which
uses class FSR T, the knowledge-infused concept represen-
tation, to guide the learning of sample FSR from training
data, enhancing model’s ability to concept cognition.

HA loss. Let T be the α-FSR obtained by formula (6). Let

V = { tij | i, j ∈ Y} ,
U = V ∪ {0, α, β},
u = sortvec(U) =

(
u1, u2, · · · , u|U |

)T
,

(7)

where 0 < α < β < 1 are fuzziness parameters.
∀ (xi, yi) , (xj , yj) ∈ D, xi ̸= xj , let sij = f ((xi, xj) ;Θ)
be the predicting similarity between xi and xj . Based on
formula (7), the HA loss is defined as

LHA(sij , yi, yj)=

urij−1 − sij , sij ≤ urij−1

0, sij ∈
(
urij−1, urij

)
sij − urij , sij ≥ urij

, (8)

where rij = sort
(
tyiyj ;U

)
. The underlying cognitive

principles are as follows.

(a) In the ideal case, samples xi and xj can perfectly repre-
sent concepts yi and yj , respectively. The similarity sij can
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Figure 1. The overall framework of HC-HFLM

accurately depict the similarity between yi and yj . There-
fore, sij should be equal to the similarity between concepts
measured by class knowledge, i.e., sij = tyiyj

.

(b) In the real case, it is difficult that the sample perfectly
represent the corresponding concept. For example, it is al-
most impossible to find a cat in the real world that perfectly
represents the concept of “cat”. The sij cannot represent the
similarity between concepts yi and yj perfectly. Therefore,
sij should be less than the similarity between concepts mea-
sured by class knowledge, i.e., sij < tyiyj

= usort(tyiyj ;U)
.

(c) In the real case, although the similarity sij cannot per-
fectly represent the similarity between concepts yi and yj , it
hardly violates the rank. For example, it is difficult to find a
cat, a tiger, and a dog in the real world such that cat and dog
are more similar than cat and tiger. Therefore, sij should
not be too different from the similarity measured by class
knowledge, i.e., sij > usort(tyiyj ;U)−1 = max

w∈U, w<tyiyj

w.

(d) Combining (a)-(c), when sij falls into the interval(
usort(tyiyj ;U)−1, usort(tyiyj ;U)

)
, the loss is 0. Otherwise,

the nonzero loss should be generated.

Training. Based on the HA loss, the class FSR T can guide
the learning process. Formally, we have

min
Θ

n∑
i,j=1,i̸=j

LHA (f ((xi, xj) ;Θ) , yi, yj)+γR(Θ), (9)

where f ((·, ·) ;Θ) is a FSR on X with learnable parameters

Θ. R is regularization term. γ > 0 is trade-off parameter.
Formula (9) can be solved efficiently by stochastic gradient
descent method (Kingma & Ba, 2015).

Let Θ∗ be the local optimal solution of formula (9), then
f ((·, ·) ;Θ∗) forms a FSR on X . If HA loss of f ((·, ·) ;Θ∗)
is 0, then f ((·, ·) ;Θ∗) can effectively approximate the
fuzzy equivalence relation (FER). In theory, we have

Theorem 3.3 (see Appendix C.1.1 for proof). For a
(X ,Y, fc)-classification problem, Given
(a1) fuzziness parameters 0 < α < β < 1 (see formula (2)).
(a2) training data set D = {(xi, yi)|xi ∈ X , yi = fc(xi) ∈
Y}ni=1.
(a3) α-FSR T on Y constructed from class knowledge K
(see Definition 3.1 and formula (6)).
(a4) the local optimal solution Θ∗ of formula (9) and the
FSR f ((·, ·) ;Θ∗) on X .
Let
(b1) X = {xi | (xi, yi) ∈ D} be the set of training sam-
ples.
(b2) S ∈ [0, 1]n×n, ∀i, j = 1, 2, · · · , n, sij =
f ((xi, xj) ;Θ

∗) be the predicted FSR on X .
(b3) Ŝ = traclo(S) be transitive-closure of S (see Defini-
tion A.19) and also be a FER on X (see Theorem 4.1).
(b4) L1 =

∑n
i=1

∑n
j=1,j ̸=i LHA (sij , yi, yj) be the corre-

sponding HA loss of S (see formula (8)).
(b5) L2 =

∑n
i=1

∑n
j=1,j ̸=i LFP (sij , yi, yj) be the corre-

sponding fuzzy permissible loss of S (see formula (2)).
(b6) L3 =

∑n
i=1

∑n
j=1,j ̸=i LFP (ŝij , yi, yj) be the corre-
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sponding fuzzy permissible loss of Ŝ (see formula (2)).

If L1 = 0, then (1) L2 = 0, (2) L3 = 0.

Theorem 3.3 indicates that the HA loss is more stringent
than the FP loss and inherits the ability of PF loss in approx-
imating FER.

(3) Concept Representation and Predicting

By replacing f ((·, ·) ;Θ◦) in formulas (3) and (4) with
f ((·, ·) ;Θ∗), concept representation and predicting will
be completed.

Both f ((·, ·) ;Θ◦) learned by FLM and f ((·, ·) ;Θ∗)
learned by HC-HFLM are FSRs on X . Guided by the
knowledge-infused concept representation, the f ((·, ·) ;Θ∗)
integrates the class knowledge K, thus the cognition of
concepts is profounder. Therefore, f ((·, ·) ;Θ∗) can obtain
better concept representation and predicting result.

Appendix B.4 gives the algorithm description of the pro-
posed HC-HFLM.

4. Theory Analysis
This section demonstrates how the knowledge-infused con-
ceptual representation guides the learning process.

4.1. FSR-based Quotient Space Theory

Literature (Zhang & Zhang, 2014) introduces the FER-based
quotient space theory. In practice, it is difficult to obtain
FER directly. Hence, we leverage FSR as an alternative for
modeling data and knowledge. Consequently, we need to
develop the FSR-based quotient space theory.

Literature (Bandler & Kohout, 1988) introduces the
transitive-closure of fuzzy binary relation. This paper only
focuses on the transitive-closure of FSR, which satisfies the
following special properties.

Theorem 4.1 (see Appendix C.2.1 for proof). Given a finite
set A and a FSR S on A. The following propositions are
true. (1) ∀k = 0, 1, ..., S2k is a FSR on A. (2) ∀k = 0, 1, ...,
S2k ⊆ S2k+1

. (3) Sequence t(k) = S2k , k = 0, 1, · · · ,
converges to traclo(S). And traclo(S) is the transitive-
closure of S. (4) traclo(S) is a FER on A.

Based on Theorem 4.1 and the definitions of cut relation
and partition (see Definition A.17 and A.8), we have the
following theorem.

Theorem 4.2 (see Appendix C.2.2 for proof). Given a
finite set A and a FSR on A. ∀λ ∈ [0, 1], traclo(S)[λ] =
traclo(S[λ]).

Based on Theorem 4.2, we can construct a quotient space
from a FSR as follows.

Definition 4.3. Given a finite set A and a FSR on A.
Q (A,S) =

{
A/traclo

(
S[λ]

)∣∣λ ∈ [0, 1]
}

is called the
quotient space derived by S.

The meaning of Definition 4.3 is as follows.

(a) ∀λ ∈ [0, 1], S[λ] is the λ-cut relation of S (see Definition
A.17). According to Theorem A.18, S[λ] is a SR on A (see
Definition A.4).

(b) traclo
(
S[λ]

)
is the transitive-closure of S[λ] (see Defi-

nition A.19). According to Theorem 4.1, traclo
(
S[λ]

)
is

an ER on A (see Definition A.5).

(c) A/traclo
(
S[λ]

)
is the partition on A derived by

traclo
(
S[λ]

)
(see Definition A.6, A.7, and A.8).

(d) Combining (a)-(c), Q (A,S) is a set of partitions on A
that are derived by S.

(e) Given a finite set A and a FER T on A. ∀λ ∈ [0, 1],
according to Theorem A.18, T [λ] is an ER on A. Ac-
cording to Definition A.19, traclo

(
T [λ]

)
= T [λ]. Then

Q (A, T ) =
{
A/T [λ]

∣∣λ ∈ [0, 1]
}

degenerate into the hier-
archical structure given in literature (Zhang & Zhang, 2014).

The main properties of Definition 4.3 are as follows.
Theorem 4.4 (see Appendix C.2.3 for proof). Given a finite
set A and a FSR on A. Let V = {S((a, b))| a, b ∈ A}, then
Q (A,S) =

{
A/traclo

(
S[λ]

)∣∣λ ∈ V
}

.
Theorem 4.5 (see Appendix C.2.4 for proof). Given a finite
set A and a FSR on A, then Q (A,S) = Q (A, traclo(S)).

Theorem 4.5 establishes the connection between the quo-
tient space derived by FSR and FER. Due to the existence
and uniqueness of transitive-closures of FSR (Bandler &
Kohout, 1988), the theories developed based on FER in lit-
erature (Zhang & Zhang, 2014) can be easily extended to
the quotient space derived by FSR.
Theorem 4.6 (see Appendix C.2.5 for proof). Given a finite
set A, a FSR S on A, and⪯,≺ described in Definition A.10.
The following propositions are true. (1) (Q (A,S) ,⪯) is a
partially ordered set. (2) ∀P,Q ∈ Q (A,S), P ̸= Q, P and
Q are comparable under the sense of ≺.
Theorem 4.7 (see Appendix C.2.6 for proof). Given a finite
set A and a FSR S on A. Let U = {S((a, b))| a, b ∈ A}.
The following propositions are true. (1) ∀P,Q ∈ Q (A,S),
If P ̸= Q, then |P| ≠ |Q|. (2) |Q (A,S)| ≤ |A|. (3) If |U | >
|Q (A,S)|, then ∃V ⊂ U , |V | = |Q (A,S)|, such that
Q (A,S) =

{
A/traclo(S[λ])

∣∣λ ∈ V
}

. (4) If S satisfies
transitivity, i.e., S is FER on A, then |U | = |Q (A,S)|.
Theorem 4.8 (see Appendix C.2.7 for proof). Given a finite
set A and two FSRs R, S on A. If the ranking of elements
in R is consistent with that in S, i.e., ∀a, b, c, d ∈ A,{

R((a, b)) = R((c, d)) iff S((a, b)) = S((c, d))
R((a, b)) > R((c, d)) iff S((a, b)) > S((c, d))

, (10)
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then Q (A,R) = Q (A,S).

Given the above properties, we can construct a hierarchical
structure in the quotient space derived by FSR as follows.

Definition 4.9. Given a finite set A, a FSR S on A, and the
≺ described in Definition A.10. According to Theorem 4.6,
∀P,Q ∈ Q (A,S) ,P ̸= Q, P and Q are comparable under
the sense of ≺. According to Theorem 4.7, |Q (A,S) | ≤
|A|. Without loss of generality, letQ (A,S) = {Pi}|Q(A,S)|

i=1

and ∀i = 1, 2, · · · , |Q (A,S) | − 1, Pi ≺ Pi+1. The
(Q (A,S) ,≺) =

[
P1 ≺ P2 ≺ · · · ≺ P|Q(A,S)|

]
is called hi-

erarchical structure derived by S.

4.2. Represent Data and Knowledge in Quotient Space

Data representation. Guided by class FSR T, formula (9)
learns a FSR f ((·, ·) ;Θ∗) from D. Let S ∈ [0, 1]n×n,
∀i, j = 1, 2, · · · , n, sij = f ((xi, xj) ;Θ

∗) be the predict-
ing FSR on training samples set X . According to Definition
4.3 and 4.9, the hierarchical structure derived by S is

(Q (X,S) ,≺) =
[
Q1 ≺ Q2 ≺ · · · ≺ Q|Q(X,S)|

]
, (11)

denoted as D-representation.

Knowledge representation. In formula (6), class knowledge
K is modeled as a FSR T on Y . According to Definition
4.3 and 4.9, the hierarchical structure derived by T is

(Q (Y,T) ,≺) =
[
O1 ≺ O2 ≺ · · · ≺ O|Q(Y,T)|

]
, (12)

denoted as K-representation. It has clear semantics and high
interpretability. See Appendix B.5 for detailed analysis.

4.3. Align Data and Knowledge in Quotient Space

In Section 4.2, K-representation (Q (Y,T) ,≺) and D-
representation (Q (X,S) ,≺) are defined on Y and X , re-
spectively. Due to the gap between Y and X , it is not fea-
sible to align these two representations directly. Therefore,
we need to construct a bridge between them.

Definition 4.10. For a (X ,Y, fc)-classification problem,
given a set of samples ϕ ⊂ X ⊆ X and a fuzzy bi-
nary relation F on Y . ∀xi, xj ∈ X , let G ((xi, xj)) =
F ((fc (xi) , fc (xj))). G is called fuzzy binary relation
on X that is spanned by F and fc, denoted as G =
span(F, fc, X).

For a (X ,Y, fc)-classification problem, given the set of
training samples X and a class FSR T obtained by for-
mula (6). According to Definition 4.10, 4.3, and 4.9, the
hierarchical structure derived by span (T, fc, X) is

(Q (X, span (T, fc, X)) ,≺) =[
P1 ≺ P2 ≺ · · · ≺ P|Q(X,span(T,fc,X))|

], (13)

denoted as (D,K)-representation.

First, we align K-representation and (D,K)-representation
by the following theorem.

Theorem 4.11 (see Appendix C.2.8 for proof). Given
the symbols defined in Theorem 3.3, let (Q (Y,T) ,≺)
and (Q (X, span (T, fc, X)) ,≺) be the K-representation
given by formula (12) and the (D,K)-representation given
by formula (13), respectively. If ∀y ∈ Y , ∃x ∈ X , such that
fc(x) = y, then the alignment between (Q (Y,T) ,≺) and
(Q (X, span (T, fc, X)) ,≺) is as follows.

(1) |Q (Y,T)| = |Q (X, span (T, fc, X))|.

(2) ∀i = 1, 2, · · · , |Q (Y,T)|, the alignment re-
lation between Oi and Pi is (a) ∀O ∈ Oi,
{x | x ∈ X, fc(x) ∈ O} ∈ Pi, (b) ∀P ∈ Pi,
{fc(x) | x ∈ P } ∈ Oi, (c) |Oi| = |Pi|.

Then, we align D-representation and (D,K)-representation
by the following theorem.

Theorem 4.12 (see Appendix C.2.9 for proof). Given
the symbols defined in Theorem 3.3, let (Q (X,S) ,≺)
and (Q (X, span (T, fc, X)) ,≺) be the D-representation
given by formula (11) and the (D,K)-representation given
by formula (13), respectively. If the HA loss of S is
0, then ∀i = 1, 2, · · · , |Q (X, span (T, fc, X))|, ∃j ∈
{1, 2, · · · , |Q (X,S)|}, such that Pi = Qj .

At last, we align D-representation and K-representation by
the following corollary.

Corollary 4.13. Given the symbols defined in Theo-
rem 3.3, let (Q (Y,T) ,≺) and (Q (X,S) ,≺) be the K-
presentation given by formula (12) and the D-presentation
given by formula (11), respectively. If ∀y ∈ Y , ∃x ∈ X ,
such that fc(x) = y, and the HA loss of S is 0, then

(Q (Y,T) ,≺)
Align

←−−−−−−−−−−−−→
See Theorem 4.11

(Q (X, span (T, fc, X)) ,≺)

Align
←−−−−−−−−−−−−→
See Theorem 4.12

(Q (X,S) ,≺) .

(14)

Corollary 4.13 shows that minimizing HA loss can align
the hierarchical structures of data and class knowledge. This
means that the class knowledge contained in human knowl-
edge system is effectively integrated into the learned sam-
ple FSR f ((·, ·) ;Θ∗). Thus HC-HFLM can utilize human
knowledge system to enhance its understanding of concepts.

5. Experiments
5.1. Interpretability Analysis

We show the working mechanism of the HC-HFLM on
the data set MNIST (LeCun et al., 1998). The class space
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Table 1. Class knowledge and its representation on handwritten digit classification task
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Q
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)
,≺

)

consist of 10 digit characters. For the sake of display, 10
samples are randomly selected for each class to form a
training data set. Ten volunteers are recruited to construct
a class FSR SK . Then the calibrated class FSR S(D,K)∗

is obtained by formula (26). Appendix D.1 gives more
experiment details. We analyze the experimental results
from the following three aspects.

(1) Class Knowledge Representation

Table 1 shows the process of class knowledge representation.
We have the following observations.

(a) SK is the class FSR constructed by 10 volunteers.(
Q
(
Y,SK

)
,≺

)
is the hierarchical structure derived by

SK . It can be observed that each class forms an equiva-
lence class in the finest partition O1. In O1, the similarity
between classes “6” and “9” is the biggest. They are merged
to get the second partition O2. And so on. Finally all the
classes are merged into one equivalence class, resulting in
the coarsest partition O9.

(b) SD is the estimated class FSR by the pre-trained
f ((·, ·); Θ◦) (see formula (25)). Comparing SD and SK , it
can be observed that the scale of SD obtained from data and
SK obtained from knowledge is quite different. In addition,
the ranking of elements is also different.

(c)
(
Q
(
Y,SD

)
,≺

)
is the hierarchical structure derived by

SD. Comparing
(
Q
(
Y,SD

)
,≺

)
and

(
Q
(
Y,SD

)
,≺

)
, it

can be observed that the difference between SD and SK

directly determines the difference between the hierarchi-
cal structure derived by them. Therefore, the hierarchical
structure can capture the difference of FSR.

(d) S(D,K)∗ is the optimal solution of formula (26)).(
Q
(
Y,S(D,K)∗

)
,≺

)
is the hierarchical structure derived

by S(D,K)∗ . Comparing SK and S(D,K)∗ , the ranking of el-
ements in them are the same. Comparing

(
Q
(
Y,SK

)
,≺

)
and

(
Q
(
Y,S(D,K)∗

)
,≺

)
, these two hierarchical structures

are also the same (see Theorem 4.8).

(2) Data Representation

The left part of Figure 2 gives the hierarchical structure
(Q (X,S) ,≺) derived by S. S ∈ [0, 1]100×100 is the pre-
dicting FSR by f ((·, ·); Θ∗). (Q (X,S) ,≺) contains 100
partitions, which is equal to the training samples (see Theo-
rem 4.7). In the finest partition Q1, each sample forms an
equivalence class. In the coarsest partition Q100, all sam-
ples form an equivalence class. Q91 contains 10 equivalence
classes. And each equivalence class is just the set of training
samples of a class.

(3) Alignment between Data and Class Knowledge

In Figure 2, the left part and the right part are the hierarchical
structure of data and class knowledge in quotient space,
respectively, i.e., (Q (X,S) ,≺) and

(
Q
(
Y,S(D,K)∗

)
,≺

)
.

The alignment between them is as follows.

(a) In the partition O1, each equivalence class corresponds
to a class. In the partition Q91, each equivalence class
corresponds to a set of training samples belonging to a class.
The two correspond one by one, see the black dotted line.

(b) Based on the alignment between Q91 and O1, the left
and right equivalence classes are merged in the same way,
forming coarser partitions Q92 and O2, respectively. There-
fore, Q92 and O2 are aligned. Analogously, Q93 and O3,
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Figure 2. The alignment between data and class knowledge on handwritten digit classification task

Table 2. The basic information of data sets

TASK
DATA CLASS KNOWLEDGE

DATA SET SAMPLE FEATURE CLASS CLASS DESCRIPTION VECTOR
Tree(Z, E) DERIVED

FROM WORDNET

COARSE GRAINED
CLASSIFICATION

APY 15399 2048 32 64-D
DOMAIN EXPERT

18 LAYERS, 97 NODES

IMAGENET1K 1331167 2048 1000 768-D
LLMS

18 LAYERS, 1814 NODES

MEDIUM GRAINED
CLASSIFICATION

AWA1 30475 2048 50 85-D
DOMAIN EXPERT

17 LAYERS, 111 NODES
AWA2 37322 2048 50 85-D

DOMAIN EXPERT

FINE GRAINED
CLASSIFICATION

FLO 8189 2048 102 1024-D
LLMS

N/A

CUB 11788 2048 200 312-D
DOMAIN EXPERT

N/A

Q94 and O4 are also aligned.

(c) Based on the alignment between Q94 and O4, the left
equivalence classes are merged twice to get a coarser par-
tition Q96. The right equivalence classes are merged once
to get coarser partition O5, see the red dot line. Therefore,
Q96 and O5 is aligned.

(d) Based on the alignment between the partitions Q96 and
O5, the equivalence classes on the left and right continue
to merge in the same way. Therefore, ∀k = 1, 2, · · · , 4,
Q96+k and O5+k are aligned.

(e) According to (a)-(d), the substructure of the left hier-
archical structure [Q91 ≺ · · · ≺ Q94 ≺ Q96 ≺ · · · ≺ Q100]
is the common data-knowledge hierarchical structure
(Q (X, span (T, fc, X)) ,≺) in formula (13), Theorem
4.11, and Theorem 4.12.

In summary, this experiment demonstrates that the HC-
HFLM models the class knowledge and the traning data as
hierarchical structures in quotient space and further aligns
these two hierarchical structures.

5.2. Generalization Analysis

Data sets. This section verifies the generalization perfor-
mance of the HC-HFLM on 6 public data sets. Two types of
knowledge, i.e., class description vector (CK1) and Word-
Net (Miller, 1995) (CK2), are integrated into the HC-HFLM,
denoted as CK1-HFLM and CK2-HFLM, respectively. Ta-
ble 2 gives the basic information of data sets, where NA
denotes that the CK2 cannot be obtained for the data set.

Setting. 6 different classifiers are choose for comparison.
Among them, k-nearest neighbors (KNN), decision tree
(DT), support vector machine (SVM) and naive Bayes (NB)
are 4 classical classifiers. Cross entropy classifier (CEC)
and FLM are based on deep neural network. Appendix D.2
gives more experiment details.

Results and analysis. Table 3 records the test accuracy of
8 methods on 6 data sets, where −− denotes that the result
can not been obtained within 7 days. We have the following
observations.

(a) Compared with the classifiers KNN, DT, SVM and NB,

8



Human Cognition-Inspired Hierarchical Fuzzy Learning Machine

Table 3. The test accuracy of different methods (%)

APY IMAGENET1K AWA1 AWA2 FLO CUB
KNN 85.35 75.49 86.61 89.83 83.39 47.30
DT 63.13 −− 63.47 70.09 42.65 21.64

SVM 84.54 −− 84.26 89.06 86.56 43.89
NB 76.13 73.66 84.67 87.68 85.53 60.27

CEC 89.08 75.62 88.48 91.67 93.58 61.49
FLM 89.42 76.02 89.95 92.79 94.05 66.19

CK1-HFLM 90.23 76.16 91.10 93.59 95.06 68.78
CK2-HFLM 90.21 76.20 90.87 93.35 N/A N/A

CEC achieves better performance due to the powerful ex-
pression ability of the deep neural networks. When the
backbone network is the same, the performance of FLM
is superior to CEC. This is because FLM designs more
reasonable optimization objective according to the concept
cognition principles.

(b) Compared with FLM, CK1-HFLM and CK2-HFLM
achieve better performance, which shows that the concept
cognition of the proposed method has been improved under
the guidance of class knowledge. Especially on the fine-
grained classification data set CUB, significant performance
improvement is obtained by integrating class knowledge.

(c) On APY, AWA1, and AWA2, the performance of CK1-
HFLM integrated with class description vector is superior
to CK2-HFLM integrated with WordNet knowledge. On
these three data sets, class description vector are constructed
by domain experts. Compared with WordNet, the class
description vector is more suitable for these tasks.

(d) On ImageNet1K, the performance of CK2-HFLM in-
tegrated with WordNet knowledge is superior to the CK1-
HFLM integrated with class description vector. The class
space is subset (Russakovsky et al., 2015) of words in Word-
Net. Compared with the class description vector obtained
by the pre-trained language model, the class knowledge
contained in WordNet is more suitable for this task.

In summary, the HC-HFLM obtains significant performance
improvement benefiting from the guidance of the class
knowledge. Meanwhile, the more class knowledge meets
the requirements of the task, the greater the performance
gain is obtained.

6. Conclusion
Inspired by human cognition, we propose a hierarchi-
cal fuzzy learning machine. The method constructs the
knowledge-infused concept representation by mining class
fuzzy similarity relation from human knowledge system
and employs a novel hierarchical alignment loss to guide
the learning process. Meanwhile, we introduce the fuzzy
similarity relation-based quotient space theory. Based on

this theory, we prove that the proposed method can align
the hierarchical structures of data and knowledge, which
guarantees that the proposed method can leverage human
knowledge system to enhance concept cognition. Exper-
imental results validate the proposed method’s ability to
improve both interpretability and generalization. With its
capability to learn from human knowledge system, the pro-
posed method holds great promise for open-world learning
tasks, such as zero-shot learning and continual learning.
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A. Preliminaries
A.1. Binary Relation

To unify the expression, we adopt the form of mapping to
define binary relation and fuzzy binary relation.

Definition A.1. (Bandler & Kohout, 1988) Given a set A,
the mapping R : A×A→ {0, 1} is called a binary relation
on A.

Definition A.2. (Bandler & Kohout, 1988) Given a set A
and a binary relation R on A, the three properties of R are
defined as:
(1) reflexivity: ∀a ∈ A, R((a, a)) = 1,
(2) symmetry: ∀a, b ∈ A, R((a, b)) = R((b, a)),
(3) transitivity: ∀a, b, c ∈ A, if R((a, b)) = 1, R((b, c)) =
1, then R((a, c)) = 1.
Obviously, transitivity can be equivalently defined as
∀a, b ∈ A, R((a, b)) ≥ max

c∈A
min[R((a, c)), R((c, b))].

Definition A.3. (Bandler & Kohout, 1988) Given a set A.
Let R and S be two binary relations on A.
(1) R ⊆ S iff ∀a, b ∈ A, R((a, b)) ≤ S((a, b)),
(2) R ⊂ S iff R ⊆ S and ∃a, b ∈ A, such that R((a, b)) <
S((a, b)).

Definition A.4. (Bandler & Kohout, 1988) Given a set A
and a binary relation R on A, if R satisfies reflexivity and
symmetry, then R is called a similarity relation (SR) on A.

Definition A.5. (Bandler & Kohout, 1988) Given a set A
and a SR R on A, if R satisfies transitivity, then R is called
an equivalence relation (ER) on A.

Definition A.6. (Rosen, 2007) Given twos set A and
P = {P1, P2, · · · , Pm}, m ≥ 1, if P satisfies the following
properties:
(1) ∀Pi ∈ P, Pi ̸= ϕ,
(2)

⋃
Pi∈P = A,

(3) ∀Pi, Pj ∈ P, if i ̸= j, then Pi ∩ Pj = ϕ,
then P is called a partition on A. Partition is a special type
of quotient set.

Definition A.7. (Rosen, 2007) Given a set A and an ER R
on A. ∀a ∈ A, [A]R = {b| b ∈ A,R((a, b)) = 1} is called
an equivalence class of a derived by R.

Definition A.8. Given a set A and an ER R on A. Obvi-
ously, A/R = {[a]R| a ∈ A} is a partition on A. And A/R
is called a partition on A derived by R.

Remark A.9. According to Definition A.6, A.7 and A.8,
given a set A, the ERs on A and the partitions on A can
form a one-to-one mapping. Based on it, in Proposition
1 of literature (Cui & Liang, 2022), we model the classifi-
cation problem as the equivalent relation problem on the
input space, which establishes the equivalence between the
classification problem and binary classification problem.

Definition A.10. Given a set A and two partitions P, Q on
A, if ∀P ∈ P, ∃Q ∈ Q, such that P ⊆ Q, we call that Q is

11
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coarser than P, denoted as P ⪯ Q. Equivalently, we call that
P is finer than Q, denoted as Q ⪰ P. Additionally, if P ⪯ Q
and ∃P ∈ P,∃Q ∈ Q, such that P ⊂ Q, we call that Q is
coarser than P strictly, denoted as P ≺ Q, Equivalently, we
call that P is finer than Q strictly, denoted as Q ≻ P.

Remark A.11. According to Remark A.9 and Definition
A.10, the following propositions are true.
(1) Given a set A and two ERs R, S on A, if R ⊆ S, then
A/R ⪯ A/S.
(2) Given a set A and two partitions P, Q on A. Let R and
S be the ERs corresponding to P and Q respectively. If
P ⪯ Q, then R ⊆ S.

Remark A.12. Given a set A. Let P be the set of partitions
on A. Obviously, the ⪯ described in Definition A.10 satis-
fies the following properties.
(1) Reflexivity: ∀P ∈ P , P ⪯ P.
(2) Antisymmetry: ∀P,Q ∈ P , if P ⪯ Q and Q ⪯ P, then
P = Q.
(3) Transitivity: ∀P,Q,R ∈ P , if P ⪯ Q and Q ⪯ R, then
P ⪯ R.
In summary, ⪯ is a order relation on P .

Lemma A.13. Given a set finite A. Let P and Q be two
partitions on A. If P ̸= Q and P ⪯ Q, then |P| ≠ |Q|.

Proof. Reduction to absurdity.

Assume that |P| = |Q| = m.

Because |P| = |Q| = m, without losing generality, let P =
{P1, P2, · · · , Pm}, Q = {Q1, Q2, · · · , Qm}. Meanwhile,
because P ⪯ Q, without losing generality, let

∀i = 1, 2, · · · ,m, Pi ⊆ Qi, (15a)
∀i = 1, 2, · · · ,m, |Pi| ≤ |Qi| , i.e. |Qi| − |Pi| ≥ 0. (15b)

Because P and Q are both partition on A, according to
Definition A.6,

|A| =
m∑
i=1

|Pi| , (16a)

|A| =
m∑
i=1

|Qi| . (16b)

Subtracting the left and right sides of formula (16a) and
(16b) respectively,

0 =

m∑
i=1

(|Qi| − |Pi|) . (17)

According to formula (17) and (15b),

∀i = 1, 2, · · · ,m, |Qi| − |Pi| = 0, i.e., |Qi| = |Pi| . (18)

According to formula (18) and (15a),

∀i = 1, 2, · · · ,m, Pi = Qi. (19)

According to formula (19) and (15), P = Q. It contradicts
with P ̸= Q. Therefore, the original proposition is true.

In this paper, we use O to represent the partition on class
space Y , use P and Q to represent the partitions on the set of
training samples X . Based on them, we use O ∈ O, P ∈ P,
and Q ∈ Q to represent the equivalence classes in partition
O, P, and Q, respectively.

A.2. Fuzzy Binary Relation

Definition A.14. (Bandler & Kohout, 1988) Given a set A,
the mapping F : A × A → [0, 1] is called a fuzzy binary
relation on A.

Comparing Definition A.1 and A.14, the binary relation is
a special type of fuzzy binary relation.
Definition A.15. (Bandler & Kohout, 1988) Given a set A
and a fuzzy binary relation F on A. If F satisfies
(1) reflexivity: ∀a ∈ A, R((a, a)) = 1,
(2) symmetry: ∀a, b ∈ A, R((a, b)) = R((b, a)),
F is called a Fuzzy Similarity Relation (FSR) on A.
Definition A.16. (Bandler & Kohout, 1988) Given a set A
and a FSR S on A. If F satisfies transitivity: ∀a, c ∈ A,
F ((a, c)) ≥ max

b∈A
min[F ((a, b)), F ((b, c))], F is called a

fuzzy equivalence relation (FER) on A.

The following definition intuitively establishes the connec-
tion between binary relation and fuzzy binary relation.
Definition A.17. (Zhang & Zhang, 2014) Given a set A
and a fuzzy binary relation F on A, ∀λ ∈ [0, 1], the binary
relation, ∀a, b ∈ A,

F [λ]((a, b)) = I[F ((a, b)) ≥ λ] =

{
1, F ((a, b)) ≥ λ
0, otherwise

,

is called the λ-cut binary relation, or λ-cut relation for short.

Based on Definition A.17, the following theorem further
establishes the connection between FSR (FER) and SR (ER).
Theorem A.18. (The proof is intuitive and omitted.) Given
a set A and a fuzzy binary relation F on A, ∀λ ∈ [0, 1], let
F [λ] be the λ-cut relation of F .
(1) If F is a FSR on A, then F [λ] is a SR on A.
(2) If F is a FER on A, then F [λ] is an ER on A.
Definition A.19. (Bandler & Kohout, 1988) Given a set
A and a fuzzy binary relation F on A. If the fuzzy binary
relation G on A satisfies
(1) transitivity,
(2) F ⊆ G,
(3) ∀ fuzzy binary relation H on A, F ⊆ H , if H satisfies
transitivity, then G ⊆ H ,
G is called the transitive-closure of F , denoted as G =
traclo(F ). Obviously, if F satisfies transitivity, then
traclo(F ) = F .
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Literature (Bandler & Kohout, 1988) gives general defini-
tions of P -closure. The Definition A.19 is a special case
among them. Moreover, this paper only focuses on the
transitive-closure of FSR.

Definition A.20. (Bandler & Kohout, 1988) Given a set A.
Let R and S be two fuzzy binary relation on A. The product
fuzzy binary relation of R and S is defined as T = R⊗ S,
∀a, b ∈ A, T ((a, b)) = max

c∈A
min[R((a, c)), S((c, b))].

Given ⊗, we can define the power of fuzzy binary relation
as follows.

Definition A.21. Given a set A and a fuzzy binary relation
F on A. F 1 = F , F 2 = F 1 ⊗ F , F 3 = F 2 ⊗ F , · · · , and
so on.

Definition A.22. Given a finite set A and a fuzzy binary
relation F on A. Without losing generality, we can sequen-
tially number the elements in A as a1, a2, · · · , a|A|. Based
on it, F can be equivalently represented by a matrix, i.e.,

F ∈ [0, 1]|A|×|A|,∀i, j = 1, 2, · · · , |A|, fij = F ((ai, aj)) .

Definitions A.19-A.22 are also applicable to binary relation.
In this paper, we use matrices SK , SD, S(D,K), T ∈
[0, 1]|Y|×|Y| to represent the FSRs on class space Y , use
matrix S ∈ [0, 1]n×n to represent the FSR on the set of
training samples X , and use f((·, ·); Θ) to represent the
parameterized FSR on input space X .

A.3. Fuzzy Quotient Space

Based on the preliminaries given in Appendix A.1 and A.2,
literature (Zhang & Zhang, 2014) systematically develops
the FER-based fuzzy quotient space theory. We list the
contents used in this paper as follows.

Theorem A.23. (Zhang & Zhang, 2014) Given a set A, the
following assertions are equivalent.
(1) Given a FER on A (see Definition A.16).
(2) Given a a normalized isosceles distance d on A, where

• normalized: ∀a, b ∈ A, d(a, b) ∈ [0, 1],

• isosceles: ∀a, b, c ∈ A, d(a, b), d(b, c), and d(a, c)
form a an isosceles triangle and and its congruent legs
are the longest side.

(3) Given a hierarchical structure on A, i.e.,

• a set of partitions on A, and

• these partitions form an ordered queue under the sense
of ≺ described in Definition A.10.

According to Definition A.16, FER needs to satisfy transi-
tivity. In practice, it is relatively difficult to directly obtain

fuzzy binary relation that satisfy transitivity. Therefore, we
develop the FSR-based quotient space theory (see Section
4.1). Based on it, the class knowledge and data are repre-
sented as hierarchical structures in the quotient space (see
Section 4.2). And by designing a appropriate loss, we align
these two hierarchical structures (see Section 4.3). As a
result, the understanding of class concepts contained in the
class knowledge is integrated into the model.

B. Details of Method
B.1. Knowledge Modeling

This section discusses different types of class knowledge
and the corresponding methods for calculating class FSR.

Algorithm 1 Generate Class Tree Structure from WordNet,
dDenoted as WordNet2ClassTree(· · · )
Input: (1) Knowledge base WordNet.

(2) Class space Y . ∀k ∈ Y , let wk be the concept name of
class k. ∀y1, y2 ∈ Y , there is no hypernym relation between
wy1 and wy2 .

Output: A tree structure Tree (Z, E) on Y , where Z is the set
of nodes, E is the set of edges, and Y ⊂ Z is set of leaves.

1: Initialize the set of words corresponding to class space Y:
W ← {wy|y ∈ Y};

// (1) Mark the nodes corresponding to the words in W .
2: Initialize queue: Q ← {WordNet.entity.n.01}; //

entity.n.01 is the common hypernym of other words.
3: while Q is not empty do
4: node← Q.out(); // Out of the queue
5: if node.word belongs to W then
6: Mark node and its hypernym nodes as valid, recursively;
7: else
8: Mark node as invalid;
9: end if

10: node set← node.hyponyms(); // The set of hyponyms
of node

11: for node ∈ node set do
12: Q.In(node); // Entering the queue
13: end for
14: end while

// (2) Delete the invalid nodes.
15: Initialize queue: Q← {WordNet.entity.n.01};
16: while Q is not empty do
17: node← Q.out();
18: if node is valid then
19: node set← node.hyponyms();
20: for node ∈ node set do
21: Q.In(node);
22: end for
23: else
24: Delete the edge between node and its hypernym node;
25: end if
26: end while
27: Return the tree with WordNet.entity.n.01 as the root;

(1) K =
{

ai
∣∣ ai ∈ RdK , i ∈ Y

}
, where ai is a description

vector of class i. It can be designed by domain experts.
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Algorithm 2 Generate Hierarchical Structure from Class
Tree Structure, denoted as ClassTree2HieStru(· · · )
Input: (1) Class space Y .

(2) Class tree structure Tree (Z, E), where Z is the set of
nodes, E is the set of edges, and Y ⊂ Z is set of leaves.

Output: A set of partitions on Y .
1: Initialize the set of partitions H ← ϕ;
2: Initialize the partition P← ϕ;
3: Initialize the set of nodes N ⇐ {Tree (Z, E) .root};
4: while |P| < |Y| do
5: P′ ← ϕ, N ′ ← ϕ;
6: for node ∈ N do
7: P′ ← P′ ⋃{node.leaf set};
8: N ′ ← N ′ ⋃node.child set;
9: end for

10: P← P′, N ← N ′,
11: H ← H

⋃
{P}; // The duplicate partitions are deleted.

12: end while

Algorithm 3 Generate FER from Class Hierarchical Struc-
ture, denoted as ClassHieStru2FER(· · · )
Input: (1) Class space Y .

(2) A hierarchical structure H on Y .
(3) Fuzzy parameter 0 < α < 1.0.
(4) A strictly monotonically increasing function f :
{1, 2, · · · , |Y| − 1} → (0, α).

Output: A α-FSR on Y .
1: Initialize the FSR S ∈ {0}|Y|×|Y|;
2: Sort the partitions in H according to “≺” described in Defini-

tion A.10. Let P1 ≺ · · · ≺ P|H| be the sorted result;
3: for i = 1, 2, · · · , |Y| do
4: sii ← 1;
5: for j = i+ 1, i+ 2, · · · , |Y| do
6: for k = |H| − 1, |H| − 2, · · · , 1 do
7: if ∃A ∈ Pk, such that i, j ∈ A then
8: sij ← f (|Pk|), sji ← f (|Pk|);
9: break; //Theorem 2.5 in (Zhang & Zhang, 2014).

10: end if
11: end for
12: end for
13: end for

It can also be obtained from pre-trained language models.
Given K, ∀i, j ∈ Y, i ̸= j, the similarity between classes i
and j can be calculated as follows1.

sim(i, j;K) =
α

2

(
1 +

aTi aj

∥ai∥2 × ∥aj∥2

)
∈ (0, α). (20)

(2) K is a knowledge graph, e.g., WordNet (Miller, 1995).
Each class label corresponding to a word in WordNet. Cur-
rently, a large number of methods have been proposed to cal-
culate the semantic similarity between two words based on
WordNet (Lastra-Dı́az & Garcı́a-Serrano, 2015; AlMousa
et al., 2021). Given the WordNet, ∀i, j ∈ Y, i ̸= j, the simi-

1In practice, we can introduce a small constant ϵ > 0 to make
the value of sim(·, ·; ·) fall into the interval (0, α).

larity between classes i and j can be calculated as follows2.

sim(i, j;K) =
α

z
WordNet (wi, wj) ∈ (0, α), (21)

where wi and wj are the words corresponding to class i and
j, respectively. WordNet (wi, wj) is the semantic similarity
between wi and wj . And z is the normalization factor.

In addition, WordNet stores the hypernym relation to repre-
sent the “Is-A” relation. For example, the hypernym of ‘cat’
is ‘animal’, the corresponding to the semantic is that “cat is
a type of animal”. Based on the hypernym relation, we can
obtain the tree structure on class space by Algorithm 1.

Tree(Z, E)=WordNet2ClassTree(WordNet,Y), (22)

where Z is the set of nodes, E is the set of edges. In
this paper, we assume that there is no hypernym relation
between classes in Y . Obviously, Y ⊂ Z is the set of leaves.
Given a Tree(Z, E) on Y , we can generate FERs on Y
from Tree(Z, E), see Algorithm 2 and 3.

(3) In many applications, there is a natural hierarchical
structure between classes (Silla & Freitas, 2011; Wang et al.,
2022). The class knowledge K can be represented as a tree
structure Tree(Z, E) on Y , where Z is the set of nodes,
E is the set of edges. If there is no hypernym relation
between classes in Y , then Y ⊂ Z is the set of leaves. By
Algorithm 2, we can drive a hierarchical structure on Y
from Tree(Z, E), i.e.,

H = ClassTree2HieStru(Tree(Z, E)). (23)

Given the above hierarchical structure H on Y , according
to Theorem A.23, we can obtain a α-FER on Y , i.e.,

S = ClassHieStru2FER(H) (see Algorithm 3). (24)

Let SK = S, which is the required α-FER on Y .

The following example demonstrates how to use the hyper-
nym relation in WordNet to construct a class FSR.

Example B.1. Given the class space Y =
{car, airplane, tiger, cat, dog} and WordNet 3.0. Fig-
ure 3 shows the process of sequentially calling Algorithm
1, 2, and 3 to obtain a FSR on Y .

(1) As shown in Figure 3(a), the WordNet tree with “entity.
n.01” as the root node has a total of 96308 nodes, of which
74897 are leaf nodes, and the depth is 20.

(2) Input Y and WordNet into Algorithm 1. By deleting
nodes that are not related to Y , Algorithm 1 obtains a tree
structure Tree(Z, E) on Y (see Figure 3(b)). Its depth is 15,
and there are 31 nodes and 5 leaves. Each leaf corresponds
to a class in Y . In Tree(Z, E), the position of classes can

2Same as 1.
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3 0.5 

1st layer entity.n.01

2nd layer physical_entity.n.01

3rd layer object.n.01

4th layer whole.n.02

5th layer artifact.n.01 living_thing.n.01

6th layer instrumentality.n.03 organism.n.01

7th layer container.n.01 conveyance.n.03 animal.n.01

10th layer motor_vehicle.n.01 aircraft.n.01 mammal.n.01

11th layer car.n.01 heavier-than-air_craft.n.01 placentall.n.01

12th layer airplane.n.01 carnivore.n.01

13th layer feline.n.01

8th layer wheeled_vehicle.n.01 vehicle.n.01 chordate.n.01 domestic_animal.n.01

9th layer self-propelled_vehicle.n.01 craft.n.02 vertebrate.n.01 dog.n.01

15th layer tiger.n.02

14th layer big_cat.n.01 cat.n.01

  1 car,airplane, tiger,cat,dogP

  2 car,airplane, tiger,cat,dogP

  3 car,airplane, tiger,cat,dogP

  4 car,airplane, tiger,cat,dogP

    5 car,airplane , tiger,cat,dogP

    6 car,airplane , tiger,cat,dogP

      7 car , airplane , tiger,cat,dogP

        8 car , airplane , tiger,cat , dogP

        9 car , airplane , tiger,cat , dogP

        10 car , airplane , tiger,cat , dogP

        11 car , airplane , tiger,cat , dogP

        12 car , airplane , tiger,cat , dogP

        13 car , airplane , tiger,cat , dogP

          14 car , airplane , tiger , cat , dogP

          15 car , airplane , tiger , cat , dogP

  5 car,airplane, tiger,cat,dogO

    4 car,airplane , tiger,cat,dogO

        2 car , airplane , tiger,cat , dogO

      3O car , airplane , tiger,cat,dog

          1 car , airplane , tiger , cat , dogO

5 0.1 

4 0.3 

2 0.7 

1 1.0 

(a) WordNet  ( ) ,b Tree EZ ( ) c H ( ) d S
 WordNet2ClassTree   ClassTree2HieStru   HieStru2FER 

Figure 3. The execution processes of Algorithm 1, 2, and 3

reflect the semantic similarity between them. For example,
the path between “cat” and “tiger” is shorter than the path
between “cat” and “dog”, which indicates that the semantic
similarity between “cat” and “tiger” is bigger.

(3) Next, we input Tree(Z, E) into Algorithm 2. We show
intermediate results of Algorithm 2 between Figure 3(b)
and Figure 3(c). There are 5 different partitions among 15
layers in Tree(Z, E).

P1 = · · · = P4 = {{car, airplane, tiger, cat, dog}},
P5 = P6 = {{car, airplane}, {tiger, cat, dog}},
P7 = {{car}, {airplane}, {tiger, cat, dog}}
P8 = · · · = P13 = {{car}, {airplane}, {tiger, cat}, {dog}},
P14 = P15 = {{car}, {airplane}, {tiger}, {cat}, {dog}}.

Obviously, the above 5 partitions form a ordered queue
under the sense of ≺ (see Figure 3(c)).

(4) We input H into Algorithm 3. We show intermediate
results of Algorithm 3 between Figure 3(c) and Figure 3(d).
Given the hierarchical structure H and the set of thresholds
{λi}5i=1, by executing lines 3-12 of Algorithm 3, we can
obtain a FSR S on Y , as shown in Figure 3(d). Obviously,
S is also a FER on Y .

B.2. Knowledge Calibration

In practice, the sources of data D and class knowledge
K are different, so the scales by which they characterize
class similarity are not entirely the same. In addition, there
may be certain differences in the class similarity reflected
by data and knowledge (Wang et al., 2020). For example,
“whales” and “sharks” have significant visual similarities.

In the biology, “whales” and “sharks” belong to two major
categories, “mammal” and “fish”, respectively. Therefore, it
is necessary to calibrate SK obtained by formula (5) before
using it guide the learning process,

B.2.1. OPTIMIZATION MODELING

By solving the formula (1), FLM can learn FSR on input
space X from the training data D. Let Θ◦ be the (local) op-
timal solution of formula (1). We can use f ((·, ·); Θ◦) and
training data D to estimate the similarity between classes,
i.e., SD ∈ [0, 1]|Y|×|Y|, ∀i, j ∈ Y ,

sDij =

{
1, i = j∑

xk∈Xi

∑
xl∈Xj

f((xk,xl);Θ
◦)

|Xi|×|Xj | , i ̸= j
. (25)

Then, we design the following optimization problem3

min
S(D,K)

∥∥S(D,K) − SD
∥∥2
F

s.t. s
(D,K)
ij = s

(D,K)
kl , ∀i, j, k, l ∈ Y, sKij = sKkl

s
(D,K)
ij > s

(D,K)
kl , ∀i, j, k, l ∈ Y, sKij > sKkl

s
(D,K)
ii = 1, ∀i ∈ Y
s
(D,K)
ij = s

(D,K)
ji , ∀i, j ∈ Y, i ̸= j

0 < s
(D,K)
ij < α, ∀i, j ∈ Y, i ̸= j

. (26)

For formula (26), we have the following statements.
(1) The objective function measures the closeness between
variable S(D,K) and SD.

3In practice, a small constant ϵ > 0 can be introduced to ensure
strict inequality constraints
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(2) The first two constraints ensure that the ranking of el-
ements in optimization variable S(D,K) is consistent with
that in SK , which can maintain the hierarchical structure
derived by SK (see Theorem 4.8 and Definition 4.9).
(3) The last three constraints require that optimization vari-
able S(D,K) is a α-FSR on Y (see Definition 3.1).
(4) It can be transformed into a standard convex quadratic
programming problem (Boyd & Vandenberghe, 2004).

B.2.2. OPTIMIZATION SOLVING

In formula (26), the size of the optimization variable and
constraint condition are O

(
|Y|2

)
and O

(
|Y|4

)
, respec-

tively. When |Y| is large, solving it directly faces huge
time costs and space costs. Fortunately, we can transform it
into the following.

min
t∈R|V K |

tTDt− 2s̄TDt

s.t. ti < ti+1, ∀i, j = 1, 2, · · · ,
∣∣V K

∣∣− 1
0 < ti < α, ∀i = 1, 2, · · · ,

∣∣V K
∣∣ , (27)

where

V K =
{
sKij

∣∣ i, j ∈ Y, i ̸= j
}
, (28a)

∀i = 1, 2, · · · ,
∣∣V K

∣∣ ,
Ii =

{
(k, l)

∣∣ k, l ∈ Y, sort (sKkl;V K
)
= i

}
,

(28b)

∀i = 1, 2, · · · ,
∣∣V K

∣∣ , s̄i = ∑
(k,l)∈Ii

sDkl

|Ii|
, (28c)

s̄ =
(
s̄1, s̄2, · · · , s̄|V K |

)T ∈ R|V
K |, (28d)

D ∈ R|V
K |×|V K |,∀i, j = 1, 2, · · · ,

∣∣V K
∣∣ ,

dij =

{
|Ii| , i = j
0, i ̸= j

.
(28e)

According to (28),
∣∣V K

∣∣ < 1
2 |Y|

2. In practice, class knowl-
edge K is usually expressed by higher-order semantic in-
formation i.e.,

∣∣V K
∣∣≪ 1

2 |Y|
2. Therefore, formula (27) can

be solved more efficiently. Importantly, by solving formula
(27), we can obtain the optimal solution of formula (26).

Theorem B.2 (see Appendix C.3.1 for proof). Let t∗

be the optimal solution of formula (27). Let S(D,K)∗ ∈
[0, 1]|Y|×|Y|, ∀i, j ∈ Y ,

s
(D,K)∗

ij =

{
1, i = j
t∗
sort(sKij ;V K)

, i ̸= j . (29)

The following propositions are true.
(1) S(D,K)∗ is a α-FSR on Y .
(2) S(D,K)∗ is the optimal solution of formula (26).

B.3. Knowledge Coarsening and Calibration

In practice, the SK obtained by formula (5) may contain
a large number of elements with small differences. These

may be caused by insufficient quality of K, or by the char-
acteristics of formula (5). It is necessary to pre-processing
SK appropriately before using it.

First, we introduce coarsening function fcoa : V K → [0, 1]
which needs to satisfy the following conditions.

∀u, v ∈ V K , u < v, fcoa(u) ≤ fcoa(v), (30a)

∃u, v ∈ V K , u < v, such that fcoa(u) = fcoa(v). (30b)

Second, we use fcoa to coarsen SK as follows.

SK
coa ∈ [0, 1]|Y|×|Y|,∀i, j ∈ Y, sKcoaij = fcoa

(
sKij

)
. (31)

Third, we replace SK in formula (26) with the coarsening
result SK

coa. According to Theorem B.2, we can obtain

min
r∈R|V K |

rT D̂r− 2ŝT D̂r

s.t. ri < ti+1, ∀i, j = 1, 2, · · · ,
∣∣V K

coa

∣∣− 1
0 < ri < α, ∀i = 1, 2, · · · ,

∣∣V K
coa

∣∣ , (32)

where

V K
coa =

{
fcoa

(
sKij

)∣∣ i, j ∈ Y, i ̸= j
}
, (33a)

∀i = 1, 2, · · · ,
∣∣V K

coa

∣∣ ,
Îi=

{
(k, l)

∣∣k, l ∈ Y,sort (fcoa (sKkl) ;V K
coa

)
= i

}
,

(33b)

∀i = 1, 2, · · · ,
∣∣V K

coa

∣∣ , ŝi = ∑
(p,q)∈Îi

sDpq∣∣∣Îi∣∣∣ , (33c)

ŝ =
(
ŝ1, ŝ2, · · · , ŝ|V K

coa|
)T ∈ R|V

K
coa|, (33d)

D̂ ∈ R|V
K
coa|×|V K

coa|,∀i, j = 1, 2, · · · ,
∣∣V K

coa

∣∣ ,
dij =

{∣∣∣Îi∣∣∣ , i = j

0, i ̸= j
.

(33e)

Compared with formula (32) and (27), the size of opti-
mization variables and constraints in formula (32) are both
O
(∣∣V K

coa

∣∣). According to formula (30b), (31), and (33a),∣∣V K
coa

∣∣ < ∣∣V K
∣∣. In practice, by setting appropriate coarsen-

ing functions fcoa, we can achieve
∣∣V K

coa

∣∣ ≪ ∣∣V K
∣∣. This

can not only reduce the scale of optimization problem, but
also make more rational use of class knowledge K.

At last, let r∗ be the optimal solution of formula (32).
Similar to (29), we can obtain a calibrated α-FSR on Y .
S
(D,K)∗

coa ∈ [0, 1]|Y|×|Y|, ∀i, j ∈ Y ,

s(D,K)∗

coarse ij
=

{
1, i = j
r∗
sort(fcoa(sKij);V K

coa)
, i ̸= j . (34)

S
(D,K)∗

coa is not the optimal solution to the formula (26).
However, S(D,K)∗

coa selectively preserves the more robust
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sorting information contained in SK . In addition, let SK

be obtained by formula (5). And let U =
{
sKij

∣∣ i, j ∈ Y}.
According to Theorem 4.4 and 4.7, if |U | > |Y|, then there
are at least |U | − |Y| redundant elements in U . Therefore,
the coarsening of SK→Y is reasonable.

B.4. Algorithm Description of HC-HFLM

Algorithm 4 shows the workflow of the proposed method.

B.5. The Interpretability of Knowledge Representation

The following example demonstrates the FSR and hierarchi-
cal structure derived by class knowledge.
Example B.3. Given a class space Y = {cat, tiger, dog}.

(1) Based on the concept names corresponding to the classes,
we can collect class knowledge K related to Y from human
knowledge system Y . Assuming that the class FSR con-
structed from class knowledge K is

T ((cat, cat)) = T ((tiger, tiger)) = T ((dog, dog)) = 1 >
T ((cat, tiger)) = T ((tiger, cat)) = 0.7 >
T ((cat, dog)) = T ((dog, cat)) = 0.6 >
T ((tiger, dog)) = T ((dog, tiger)) = 0.3.

The matrix representation of T is

T =

 1 0.7 0.6
0.7 1 0.3
0.6 0.3 1

 .

(2) The view of Euclidean space. Given the class FSR matrix
T, each row of T corresponds to a description vector of a
concept. And the feature of every dimension corresponds to
a concept, which has clear semantics. Therefore, the FSR
matrix T has high interpretability.

(3) The view of quotient space. Given the class FSR T ,
according to Definition 4.3 and 4.9, we can obtain the hier-
archical structure derived by T , i.e.,

(Q (Y, T ) ,≺) =

O1 = {{cat}, {tiger}, {dog}} ≺
O2 = {{cat, tiger}, {dog}} ≺
O3 = {{cat, tiger, dog}}

 .

For (Q (Y, T ) ,≺), we have the following observations.

• When threshold λ = 1, we obtain the finest partition
O1 = Y/traclo

(
T [1]

)
. In O1, each class forms an

equivalent class.

• When threshold λ = 0.7, “cat” and “tiger” are merged
to obtain an equivalent class {cat, tiger}. So we obtain
the coarser partition O2.

• When threshold λ = 0.6, “cat” and “dog” are merged
to obtain an equivalent class {cat, tiger, dog}. So we
obtain the coarsest partition O3.

• When threshold λ ∈ [0, 0.6), we obtain the coarsest
partition O3.

From the above process, we can seen that the “>” relation
of class similarity is transformed into the “≺” relation be-
tween partitions in quotient space. And the a set partitions
forms a hierarchical structure in quotient space. According
to Theorem 4.8, the same class similarity ranking can lead
to the same hierarchical structure. Therefore, the hierarchi-
cal structure can effectively capture the understanding of
concepts contained in class knowledge K.

In addition, each element in the hierarchical structure is
a partition on Y , and each element in the partition is a
subset of Y , both of which have clear semantics and high
interpretability.

C. Proofs
C.1. Proofs of Theorems in Section 3

C.1.1. PROOF OF THEOREM 3.3

Proof. For proposition (1).

For sake of discussion, we copy formula (7) as follows.

V = { tij | i, j ∈ Y} , U = V ∪ {0, α, β},

u = sortvec(U) =
(
u1, u2, · · · , u|U |

)T
.

Because T is a α-FSR onY , therefore ∀i ∈ Y , tii = 1 and
∀i, j ∈ Y, i ̸= j, 0 < tij = tji < α, therefore 0 /∈ V ,
α /∈ V , β /∈ V . Based on it, according to Definition 3.2,

sort(1;U) = |U |, u|U | = 1, (35a)
sort(β;U) = |U | − 1, u|U |−1 = β, (35b)
sort(α;U) = |U | − 2, u|U |−2 = α, (35c)
sort(0;U) = 1, u1 = 0, (35d)
∀v ∈ V, 2 ≤ sort(v;U) ≤ |U |. (35e)

According to the definition of L1, L1 = 0, iff{
L1a =

∑n
i,j=1,i̸=j,yi=yj

LHA (sij , yi, yj) = 0,

L1b =
∑n

i,j=1,i̸=j,yi ̸=yj
LHA (sij , yi, yj) = 0.

Because L1a = 0, according to (8), ∀i, j =
1, 2, · · · , n, i ̸= j, yi = yj , LHA (sij , yi, yj) = 0, i.e.,

sij ∈
[
usort(tyiyi ;U)−1, usort(tyiyi ;U)

]
.

Because T is a FSR on Y , therefore tyiyi
= 1. According

to formula (35a) and (35b),

usort(tyiyi ;U)−1 = usort(1;U)−1 = u|U |−1 = β,

usort(tyiyi ;U)
= usort(1;U) = 1,
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Algorithm 4 Human Cognition-Inspired Hierarchical Fuzzy Learning Machine, denoted as HC-HFLM
Input: Task. The (X ,Y, fc)-classification problem.

Data. The training data D = {(xi, yi) | xi ∈ X , yi = fc (xi) ∈ Y }ni=1 and the test data Dte = {xj | xj ∈ X}n+m
j=n+1.

Knowledge. The class knowledge K related to the concepts in class space Y .
Setting. The hyper-parameters for controlling the degree of fuzziness 0 < α < β < 1. The network architecture of FLM
f((·, ·);Θ) = g((h(·; Θ), h(·; Θ))). The regular termR(·). The trade-off parameter γ. The number of examples required for each
concept ∀k ∈ Y, nexek . The way to pre-processing K, i.e., the value of “case” in formula (6).

Output: The predicting result {(xj , ŷj) |xj ∈ Dte}.

// (1) Pre-training FLM (see Section 2.3)
1: Initialize the learnable parameters Θ randomly;
2: Using stochastic gradient descent method to solve formula (1) and obtain the local optimal solution Θ◦;

// (2) Mining class FSR from class knowledge K (see Section 3)
3: Initialize class FSR T← NULL;
4: Construct class FSR SK from class knowledge K by formula (5) and Appendix B.1;
5: if case = case1 of formula (6) then
6: T← SK

7: else
8: Compute SD from D and f((·, ·);Θ◦) by formula (25);
9: if case = case2 of formula (6) then

10: Construct formula (27) from SK and SD by formula (28);
11: Solve formula (27) and obtain optimal solution t∗;
12: Construct S(D,K)∗ from t∗ by formula (29);
13: T← S(D,K)∗ ;
14: else if case = case3 of formula (6) then
15: Coarsening SK by formula (31) and obtain SK

coa;
16: Construct formula (32) from SK

coa and SD by formula (33);
17: Solve formula (32) and obtain optimal solution r∗;
18: Construct S(D,K)∗

coa from r∗ by formula (34);
19: T← S

(D,K)∗
coa ;

20: end if
21: end if

// (3) Learning sample FSR, guided by T (see section 3)
22: Initialize the learnable parameters Θ← Θ◦;
23: Using stochastic gradient descent method to solve formula (9) and obtain local optimal solution Θ∗;

// (4) Concept representation and prediction (see section 3)
24: Using f(·, ·);Θ∗) to select exemplar set for each class in Y by formula (3) and obtain Ek, ∀k ∈ Y;
25: ∀xj ∈ Dte, using f(·, ·);Θ∗) and Ek, ∀k ∈ Y to obtain the predicted class label ŷj by formula (4);

Therefore sij ∈ [β, 1]. According to formula (2),
LFP (sij , yi, yj) = max [β − sij , 0] = 0. Therefore

L2a =

n∑
i=1

n∑
j=1,j ̸=i,yi=yj

LFP (sij , yi, yj) = 0.

Because L1b = 0, according to formula (8), ∀i, j =
1, 2, · · · , n, i ̸= j, yi ̸= yj , LHA (sij , yi, yj) = 0, i.e.,

sij ∈
[
usort(tyiyi ;U)−1, usort(tyiyi ;U)

]
.

Because T is a α-FSR on Y , therefore 0 < tyiyj < α.
According to Definition 3.2 and formula (35e), we have
2−1 ≤ sort (tyiyi

;U)−1 < sort (tyiyi
;U) < sort (α;U),

and 0 = u1 ≤ usort(tyiyi ;U)−1 < usort(tyiyi ;U)
<

usort(α;U) = α, Therefore sij ∈ [0, α). According to for-
mula (2), LFP (sij , yi, yj) = max [sij − α, 0] = 0. There-

fore

L2b =

n∑
i=1

n∑
j=1,j ̸=i,yi ̸=yj

LFP (sij , yi, yj) = 0.

Therefore, L2 = L2a + L2b = 0 + 0 = 0. So proposition
(1) is proven.

For proposition (2).

Because L1 = 1, according to proposition (1) L2 = 0.
According to Theorem 2 in literature (Cui & Liang, 2022),
L3 = 0. So proposition (2) is proven.

In summary, proposition (1) and (2) are proven.
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C.2. Proofs of Theorems in Section 4

C.2.1. PROOF OF THEOREM 4.1

(1) We give some properties of the ⊗ operation described
in Definition A.20.

Lemma C.1. Given a set A and a fuzzy binary relation F
on A. The following propositions are true.

(1) If F satisfies reflexivity, then F 2 = F ⊗ F satisfies
reflexivity.

(2) If F satisfies reflexivity, then F ⊆ F 2 = F ⊗ F .

(3) If F satisfies symmetry, then F 2 = F ⊗ F satisfies
symmetry.

(4) F satisfies transitivity iff F 2 = F ⊗ F ⊆ F .

Proof. For proposition (1).

If F satisfies reflexivity, i.e., ∀a ∈ A, F ((a, a)) = 1, then
∀b ∈ A,

F 2((b, b))
= max

c∈A
min[F ((b, c)), F ((c, b))]

= max

{
max

c∈A,c ̸=b
min[F ((b, c)), F ((c, b))],

min[F (b, b), F ((b, b))]

}
= max

{
max

c∈A,c ̸=b
min[F ((b, c)), F ((c, b))], 1

}
= 1

,

i.e., F 2 satisfies reflexivity. So proposition (1) is proven.

For proposition (2).

If F satisfies reflexivity, i.e., ∀c ∈ A, F ((c, c)) = 1, then
∀a, b ∈ A,

F 2((a, b))
= max

c∈A
min[F ((a, c)), F ((c, b))]

= max

{
max

c∈A,c ̸=a
min[F ((a, c)), F ((c, b))],

min[F ((a, a)), F ((a, b))]

}

= max

{
max

c∈A,c ̸=a
min[F ((a, c)), F ((c, b))],

min[1, F ((a, b))]

}
= max

{
max

c∈A,c ̸=a
min[F ((a, c)), F ((c, b))], F ((a, b))

}
≥ F ((a, b))

,

i.e., F ⊆ F 2. So proposition (2) is proven.

For proposition (3).

If F satisfies symmetry, i.e., ∀a, b ∈ A, F ((a, b)) =

F ((b, a)), then ∀c, d ∈ A,

F 2((c, d)) = max
e∈A

min[F ((c, e)), F ((e, d))]

= max
e∈A

min[F ((e, d)), F ((c, e))]

= max
e∈A

min[F ((d, e)), F ((e, c))]

= F 2((d, c))

,

i.e., F 2 satisfies symmetry. So proposition (3) is proven.

For proposition (4).

F 2 ⊆ F ⇐⇒ ∀a, b ∈ A,F ((a, b)) ≥ F 2((a, b)) =
max
c∈A

min [F ((a, c)), F ((c, b))], i,e., proposition (4) is
proven.

In summary, proposition (1)-(4) are proven.

Lemma C.2. Given a set A and two fuzzy binary relation
R,S on A. If R ⊆ S, then R2 ⊆ S2.

Proof. Because R ⊆ S, according to Definition A.3,
∀a, b ∈ A, R((a, b)) ≤ S((a, b)). Therefore ∀c, d ∈ A,

R2((c, d)) = max
e∈A

min[R((c, e)), R((e, d))]

≤ max
e∈A

min[S((c, e)), S((e, d))] = S2((c, d))
,

i.e., R2 ⊆ S2.

(2) Based on these conclusions, we prove Theorem 4.1.

Proof. Using mathematical induction to prove proposition
(1).

When k = 0, S2k = S1 = S is a FSR on A.

When k = 1, S21 = S2 = S⊗S. Because S is a FSR on A,
therefore S satisfies reflexivity and symmetry. According to
proposition (1) and (3) of Lemma C.1 S2 satisfies reflexivity
and symmetry. Therefore S2 is a FSR on A.

When k = m > 1, assume that S2m is a FSR on A.

When k = m+1, S2m+1

= S2m ⊗S2m . Because S2m is a
FSR on A, therefore S2m satisfies reflexivity and symmetry,
According to proposition (1) and (3) of Lemma C.1 S2m+1

satisfies reflexivity and symmetry. Therefore S2m+1

is a
FSR on A. So proposition (1) is proven.

For proposition (2).

∀k = 0, 1, 2, · · · , S2k+1

= S2k ⊗ S2k . Because S is a
FSR on A, according to proposition (1), S2k is a FSR on
A. Therefore S2k satisfies reflexivity. According to propo-
sition (2) of Lemma C.1 S2k ⊆ S2k ⊗ S2k = S2k+1

. So
proposition (2) is proven.

For proposition (3).
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First, let’s prove the convergence. According to proposi-
tion(1) ∀t = 0, 1, 2, · · · , t(k) is a FSR on A. According
to Definition A.14, the sequence t(k) has an upper bound.
According to proposition (2), the sequence t(k) is monotoni-
cally increasing. Therefore the sequence t(k) is convergent.

Second, let’s prove that the sequence t(k) converges to the
transitive-closure of S. Without losing generality, assume
that t(k̂) = t(k̂ + 1), i.e., S2k̂ = S2k̂+1

= S2k̂ ⊗ S2k̂ .
(a) Because S2k̂+1

= S2k̂ , therefore S2k̂+1 ⊆ S2k̂ . Ac-
cording to proposition (4) of Lemma C.1, S2k̂ satisfies
transitivity.
(b) According to proposition (2), S ⊆ S2k̂ .
(c) ∀ fuzzy binary relation T on A, assume that S ⊆ T
and T satisfies transitivity. Because S ⊆ T , according to
Lemma C.2

S ⊆ T =⇒S2 ⊆ T 2=⇒S4 ⊆ T 4=⇒· · ·S2k̂ ⊆ T 2k̂ . (36)

Meanwhile, because T satisfies transitivity, according to
proposition (4) of Lemma C.1, T 2 ⊆ T . According to
Lemma C.2,

T 2 ⊆ T =⇒ T 4 ⊆ T 2 =⇒ · · ·T 2k̂ ⊆ T 2k̂−1

. (37)

Combining formula (36) and (37),

S2k̂ ⊆ T 2k̂ ⊆ T 2k̂−1

⊆ · · · ⊆ T 2 ⊆ T.

(d) Combining (a)-(c), S2k̂ satisfies the three propositions
in Definition A.19. Therefore S2k̂ is the transitive-closure
of S. So proposition (3) is proven.

For proposition (4).

According to proposition (3), traclo(S) can be written in
the form of S2k̂ . And then, according to proposition (1),
traclo(S) is a FSR on A. Because traclo(S) satisfies tran-
sitivity, according to Definition A.16, traclo(S) is a FER
on A. So proposition (4) is proven.

In summary, proposition (1)-(4) are proven.

C.2.2. PROOF OF THEOREM 4.2

(1) We introduce the following lemma.
Lemma C.3. Given a finite set A and a SR matrix S on
A. Let G = (A,S) be the unweighted graph, where A is
the set nodes and S is the adjacency matrix of the graph.
∀k ∈ 1, 2, ..., ∀a, b ∈ A, Sk((a, b)) = 1⇐⇒ in graph G,
there is a path ⟨a, · · · , b⟩ and the length of ⟨a, · · · , b⟩ is k.

Proof. Using mathematical induction to prove.

When k = 1, Sk = S1 = S. ∀a, b ∈ A,
S((a, b)) = 1 ⇐⇒ in graph G, there is a edge (a, b) ⇐⇒

in graph G, there is a path ⟨a, b⟩ and the length of path
⟨a, b⟩ is 1.

When k = 2, S2 = S ⊗ S. ∀a, b ∈ A,
S2((a, b)) = 1 ⇐⇒ max

c∈A
min[S((a, c)), S((c, b))] =

1 ⇐⇒ ∨
c∈A

I[min[S((a, c)), S((c, b))] = 1] = 1 ⇐⇒
∨

c∈A
(I[S((a, c)) = 1] ∧ I[S((c, b)) = 1]) = 1⇐⇒ in graph

G, there are two edges (a, c) and (c, b) ⇐⇒ in graph G,
there is a path ⟨a, c, b⟩ and the length of path ⟨a, c, b⟩ is 2.

When k = m > 2, assume that ∀a, b ∈ A, Sm((a, b)) = 1
⇐⇒ in graph G, there is a path ⟨a, · · · , b⟩ and the length of
path ⟨a, · · · , b⟩ is m.

When k = m + 1, Sm+1 = Sm ⊗ S.
∀a, b ∈ A, Sm+1((a, b)) = 1 ⇐⇒
max
c∈A

min[Sm((a, c)), S((c, b))] = 1 ⇐⇒
∨

c∈A
I[min[Sm((a, c)), S((c, b))] = 1] = 1 ⇐⇒

∨
c∈A

(I[Sm((a, c)) = 1] ∧ I[S((c, b)) = 1]) = 1 ⇐⇒
in graph G, there is a path ⟨a, · · · , c⟩ and the length of
⟨a, · · · , c⟩ is m and in graph G, there is a edge (c, b)⇐⇒
in graph G, there is a path ⟨a, · · · , b⟩ and the length of path
⟨a, · · · , b⟩ is m+ 1.

In summary, the lemma is proven.

Remark C.4. Comparing Definition A.1 and A.14, it can
be seen that binary relation is a special type of fuzzy binary
relation. Therefor, Definition A.19, A.20, and A.21 are
applicable to binary relation. Based on it, Lemma C.1 and
C.2 are applicable to binary relation. Therefor, Theorem
4.1 is applicable to binary relation. According to Theorem
4.1, given a finite set A and a similarity relation (SR) S on
A, the the transitive-closure of S can also be written as S2k .

(2) Based on the above lemma, we prove Theorem 4.2.

Proof. According to Remark C.4, ∃k ∈ {0, 1, 2, · · · }, such
that traclo(S) = S2k . Because S is a FSR on A, ac-
cording to Theorem A.18, ∀λ ∈ [0, 1], S[λ] is a SR on
A. According to Remark C.4, ∃l ∈ {0, 1, 2, · · · }, such that

traclo(S[λ]) = S[λ]2
l

. Let m = max[2k, 2l]. According to
Theorem 4.1 traclo(S) = Sm and traclo(S[λ]) = S[λ]m .
Therefore, to prove

∀λ ∈ [0, 1], tracol(S)[λ] = tracol(S[λ]),

we need to prove

∀λ ∈ [0, 1], Sm[λ]

= S[λ]m ,

we need to prove

∀λ ∈ [0, 1], ∀a, b ∈ A, Sm[λ]

((a, b)) = S[λ]m((a, b)).
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According to Definition A.17 ∀λ ∈ [0, 1], ∀a, b ∈ A,
Sm[λ]

((a, b)) ∈ {0, 1}, S[λ]m((a, b)) ∈ {0, 1}, Therefore,
we need to prove

∀λ ∈ [0, 1], ∀a, b ∈ A,

Sm[λ]

((a, b)) = 1⇐⇒ S[λ]m((a, b)) = 1
. (38)

Next, we prove the formula (38).

Given the unweighted G =
(
A,S[λ]

)
. ∀a, b ∈ A,

according to Lemma 2 of literature (Cui & Liang,
2022), Sm[λ]

((a, b)) = I [Sm((a, b)) ≥ λ] = 1 ⇐⇒
Sm((a, b)) ≥ λ⇐⇒ in graph G, there is a path ⟨a, · · · , b⟩
and the length of path ⟨a, · · · , b⟩ is m. Meanwhile, accord-
ing to Lemma C.3, in graph G there is a path ⟨a, · · · , b⟩ and
the length of path ⟨a, · · · , b⟩ is m⇐⇒ S[λ]m((a, b)) = 1.
That is to say, the formula (38) is proven. So the theorem is
proven.

C.2.3. PROOF OF THEOREM 4.4

Proof. According to Definition A.14 ∀a, b ∈ A,
S((a, b)) ∈ [0, 1]. Therefore V = {S((a, b))| a, b ∈ A} ⊆
[0, 1]. And then, according to Definition 4.3, Q (A,S) ={
A/traclo

(
S[λ]

)∣∣λ ∈ V
}⋃
{A/traclo

(
S[λ]

)
|λ ∈ [0, 1]

−V }. Therefore, to prove

Q (A,S) =
{
A/traclo

(
S[λ]

)∣∣∣λ ∈ V
}
,

we need to prove{
A/traclo

(
S[λ]

)∣∣∣λ ∈ [0, 1]− V
}
⊆{

A/traclo
(
S[λ]

)∣∣∣λ ∈ V
}
,

we need to prove ∀λ ∈ [0, 1], λ /∈ V,∃ω ∈ V, such that

A/traclo
(
S[λ]

)
= A/traclo

(
S[ω]

)
.

According to Definition A.8, we need to prove ∀λ ∈
[0, 1], λ /∈ V,∃ω ∈ V , such that

traclo
(
S[λ]

)
= traclo

(
S[ω]

)
.

According to Definition A.19, we need to prove

∀λ ∈ [0, 1], λ /∈ V, ∃ω ∈ V, such that S[λ] = S[ω].

According to Definition A.17, we need to prove ∀λ ∈
[0, 1], λ /∈ V, ∃ω ∈ V , such that ∀a, b ∈ A,

S[λ]((a, b)) = I(S((a, b)) ≥ λ) = I(S((a, b)) ≥ ω)

= S[ω]((a, b)).
(39)

∀λ ∈ [0, 1], λ /∈ V , Let ω = min
v∈V, v>λ

v. Obviously, λ < ω

and ω ∈ V .

Next we prove formula (39) in two cases. ∀a, b ∈ A,

(a) If I(S(a, b) ≥ λ) = 1, i.e., S(a, b) ≥ λ. Because λ /∈ V
and S((a, b)) ∈ V , Therefore S(a, b) > λ, Therefore

S((a, b)) ≥ min
v∈V, v>λ

v = ω, i.e., I(S(a, b) ≥ ω) = 1.

(b) If I(S(a, b) ≥ λ) = 0, i.e., S((a, b)) < λ. Because λ <
ω, therefore S((a, b)) < λ < ω, i.e., I(S(a, b) ≥ ω) = 0.

Combining (a) and (b), the formula (39) is true. So the
theorem is proven.

C.2.4. PROOF OF THEOREM 4.5

Proof. According to Definition 4.3,

Q (A,S) =
{
A/traclo(S[λ])

∣∣λ ∈ [0, 1]
}
,

Q (A, traclo(S)) =
{
A/traclo

(
traclo(S)[λ]

)∣∣λ ∈ [0, 1]
}

=
{
A/traclo(S)[λ]

∣∣λ ∈ [0, 1]
}
.

Therefore, to prove Q (A,S) = Q (A, traclo(S)), we need
to prove ∀λ ∈ [0, 1], A/traclo(S[λ]) = A/traclo(S)[λ].
According toDefinition A.8, we need to prove ∀λ ∈
[0, 1], traclo(S[λ]) = traclo(S)[λ], According to The-
orem 4.2, the above formula is true. So the theorem is
proven.

C.2.5. PROOF OF THEOREM 4.6

Proof. For proposition (1).

According to Definition 4.3, Q (A,S) is a set of partitions
on A. Meanwhile, according to Remark A.12 ⪯ is a order
relation on the partitions on A. Therefore (Q (A,S) ,⪯) is
a partial ordered set. So proposition (1) is proven.

For proposition (2).

Let T = tracol(S). According to Theorem 4.5
Q (A,S) = Q (A, T ) =

{
A/T [λ]

∣∣λ ∈ [0, 1]
}

. According
to Theorem 4.1, T is a FER on A. According to Theorem
A.18, ∀λ ∈ [0, 1], T [λ] is an ER on A. ∀0 ≤ λ1 < λ2 ≤ 1,
obviously, T [λ2] ⊂ T [λ1]. According to Remark A.11
A/T [λ2] ≺ A/T [λ1]. So proposition (2) is proven.

In summary, the theorem is proven.

C.2.6. PROOF OF THEOREM 4.7

Proof. For proposition (1).

Because P,Q ∈ Q (A,S) and P ̸= Q, according to proposi-
tion (2) of Theorem 4.6, P and Q are comparable under the
sense of ≺. Without losing generality, assume that P ≺ Q,
then P ⪯ Q. According to Lemma A.13, |P| ̸= |Q|. So
proposition (1) is proven.
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For proposition (2).

According to Definition 4.3, ∀P ∈ Q (A,S), P is a partition
on A. And then, according to Definition A.6,

1 = |{A}| ≤ |P| ≤ |{{a}| a ∈ A}| = |A|. (40)

Combing proposition (1) and formula (40), |Q (A,S)| ≤
|A|. So proposition (2) is proven.

For proposition (3). Let

C = { |P||P ∈ Q (A,S)} , (41a)

∀c ∈ C, π(c)=
{
u
∣∣∣u ∈ U,

∣∣∣A/traclo
(
S[u]

)∣∣∣ = c
}
, (41b)

V =

{
max
u∈π(c)

u

∣∣∣∣ c ∈ C

}
. (41c)

First, we prove |V | = |Q (A,S)|. According to proposition
(1) |C| = |Q (A,S)|. And then, according to formula (41),
|C| = |V |. Therefore, |V | = |Q (A,S)|.

Second, we prove V ⊂ U . According to formula (41), V ⊆
U . Because |U | > |Q (A,S)| = |V |, therefore, V ⊂ U .

At last, we prove Q (A,S) =
{
A/traclo

(
S[λ]

)∣∣λ ∈ V
}

.
According to Theorem 4.4, Q (A,S) ={
A/traclo

(
S[λ]

)∣∣λ ∈ U
}

. Therefore, we need to
prove{
A/traclo

(
S[λ]

)∣∣∣λ ∈ U
}
=

{
A/traclo

(
S[λ]

)∣∣∣λ ∈ V
}
,

we need to prove{
A/traclo

(
S[λ]

)∣∣∣λ ∈ U
}
⊇
{
A/traclo

(
S[λ]

)∣∣∣λ ∈ V
}
,

(42a){
A/traclo

(
S[λ]

)∣∣∣λ ∈ U
}
⊆
{
A/traclo

(
S[λ]

)∣∣∣λ ∈ V
}
.

(42b)

Because V ⊂ U , therefore, (42a) is true.

Next, we prove formula (42b). To prove formula (42b), we
need to prove ∀u ∈ U,∃v ∈ V , such that

A/traclo
(
S[u]

)
= A/traclo

(
S[v]

)
.

∀u ∈ U , ∃c ∈ C, such that
∣∣A/traclo

(
S[u]

)∣∣ = c. Accord-
ing to formula (41), ∃v ∈ V such that

∣∣A/traclo
(
S[v]

)∣∣ =
c, i.e., ∀u ∈ U , ∃v ∈ V such that

∣∣A/traclo
(
S[u]

)∣∣ =∣∣A/traclo (S[v]
)∣∣. According to the inverse negation of

proposition (1), A/traclo
(
S[u]

)
= A/traclo

(
S[v]

)
, i.e.,

formula (42b) is true.

So far, formula (42a) and formula (42b) are proven. So
proposition (3) is proven.

For proposition (4).

According to Theorem 4.4, Q (A,S) ={
A/traclo

(
S[λ]

)∣∣λ ∈ U
}

, therefore |U | ≥ |Q (A,S) |.
Therefore, to prove |U | = |Q (A,S) |, we need to prove
∀λ1, λ2 ∈ U, λ1 < λ2,

A/traclo
(
S[λ1]

)
̸= A/traclo

(
S[λ2]

)
,

Because S is a FER on A, according to Theorem A.18,
∀u ∈ U , S[u] is an ER on A. Therefore S[u] satisfies transi-
tivity. According to Definition A.19, traclo

(
S[u]

)
= S[u],

therefore we need to prove

∀λ1, λ2 ∈ U, λ1 < λ2, A/S[λ1] ̸= A/S[λ2].

According to Definition A.8, we need to prove

∀λ1, λ2 ∈ U, λ1 < λ2, S
[λ1] ̸= S[λ2],

we need to prove ∀λ1, λ2 ∈ U, λ1 < λ2,

∃a, b ∈ A, such that S[λ1]((a, b)) ̸= S[λ2]((a, b)).

Because λ1 ∈ U , therefore, ∃a, b ∈ A, such that
S((a, b)) = λ1. In this case,

S[λ1]((a, b)) = I[S((a, b)) ≥ λ1] = I[λ1 ≥ λ1] = 1

̸= S[λ2]((a, b)) = I[S((a, b)) ≥ λ2] = I[λ1 ≥ λ2] = 0
,

therefore proposition (4) is proven.

In summary, propositions (1)-(4) are proven. So the theorem
is proven.

C.2.7. PROOF OF THEOREM 4.8

Proof. Let

U = {R((a, b))| a, b ∈ A} ,
u = sortvec(U) =

(
u1, u2, · · · , u|U |

)T
,

V = {S((a, b))| a, b ∈ A} ,
v = sortvec(V ) =

(
v1, v2, · · · , v|V |

)T
.

According to formula (10),

|U | = |V |, (43a)
∀a, b ∈ A, sort(R((a, b));U)=sort(S((a, b));V ), (43b)

∀a, b, c, d ∈ A,

R((a, b)) < R((c, d)) iff S((a, b)) < S((c, d)).
(43c)

According to Theorem 4.4, Q (A,R) ={
A/traclo

(
R[λ]

)∣∣λ ∈ U
}
, Q (A,S) ={

A/traclo
(
S[λ]

)∣∣λ ∈ V
}
. Therefore, to prove

Q (A,R) = Q (A,S), we need to prove{
A/traclo

(
R[λ]

)∣∣∣λ ∈ U
}
=
{
A/traclo

(
S[λ]

)∣∣∣λ ∈ V
}
,
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we need to prove{
A/traclo

(
R[λ]

)∣∣∣λ ∈ U
}
⊆
{
A/traclo

(
S[λ]

)∣∣∣λ ∈ V
}
,

(44a){
A/traclo

(
S[λ]

)∣∣∣λ ∈ V
}
⊆
{
A/traclo

(
R[λ]

)∣∣∣λ ∈ U
}
.

(44b)

First, we prove formula (44a). To prove formula (44a), we
need to prove ∀u ∈ U, ∃v ∈ V , such that

A/traclo
(
R[u]

)
= A/traclo

(
S[v]

)
,

according to Definition A.8, we need to prove ∀u ∈
U, ∃v ∈ V, such that

traclo
(
R[u]

)
= traclo

(
S[v]

)
,

according toDefinition A.19, we need to prove

∀u ∈ U, ∃v ∈ V, such that R[u] = S[v],

according to Definition A.17, we need to prove ∀u ∈
U, ∃v ∈ V , such that ∀a, b ∈ A, R[u]((a, b)) =
S[v]((a, b)), i.e.,

I (R((a, b)) ≥ u) = I (S((a, b)) ≥ v) . (45)

According to Definition 3.2 and formula (43a),
sort(u;U) ∈ {1, 2, · · · , |U |} = {1, 2, · · · , |V |},
therefore, let v = vsort(u;U) ∈ V . ∀u ∈ U ,
Because u ∈ U , therefore, ∃c, d ∈ A, such that
u = R((c, d)). According to (43b), sort(S((c, d));V ) =
sort(R((c, d));U) = sort(u;U) = sort(v;V ), therefore
v = vsort(u;U) = vsort(S((c,d));V ) = S((c, d)).

Next, we prove formula (45) in two cases.

(a) I (R((a, b)) ≥ u) = 1, i.e., R((a, b)) ≥ u = R((c, d)).
According to (10), S((a, b)) ≥ S((c, d)) = v, i.e.,
I (S((a, b)) ≥ v) = 1.

(b) I (R((a, b)) ≥ u) = 0, i.e., R((a, b)) < u = R((c, d)).
According to(43c), we have S((a, b)) < S((c, d)) = v, i.e.,
I (S((a, b)) ≥ v) = 0.

Combining (a) and (b), formula (45) is true. So formula
(44a) is true. Similarly, we can prove formula (44b). So far,
formula (44) is proven. So the theorem is proven.

C.2.8. PROOF OF THEOREM 4.11

(1) We introduce the following lemmas.
Lemma C.5. For a (X ,Y, fc)-classification problem, given
a set of samples ϕ ⊂ X ⊆ X and a fuzzy binary relation
S on Y . Let span(S, fc, X) be the fuzzy binary relation on

X described in Definition 4.10. The following propositions
are true.

(1) If S satisfies reflexivity, then span (S, fc, X) satisfies
reflexivity.

(2) If S satisfies symmetry, then span (S, fc, X) satisfies
symmetry.

(3) If S satisfies transitivity, then span (S, fc, X) satisfies
transitivity.

(4) ∀λ ∈ [0, 1], span (S, fc, X)
[λ]

= span
(
S[λ], fc, X

)
.

(5) The span(·, ·, ·) can be directly applied to binary relation
and proposition (1)-(4) are also true for binary relation.

Proof. For proposition (1).

Because S satisfies reflexivity, i.e., ∀y ∈ Y , S((y, y)) = 1.
∀x ∈ X , span (S, fc, X) ((x, x)) = S ((fc(x), fc(x))) =
1, i.e., span (S, fc, X) satisfies reflexivity. So proposition
(1) is proven.

For proposition (2).

Because S satisfies symmetry, i.e., ∀y1, y2 ∈ Y ,
S((y1, y2)) = ((y2, y1)). ∀x1, x2 ∈ X ,

span (S, fc, X) ((x1, x2)) = S ((fc(x1), fc(x2)))
= S ((fc(x1), fc(x2)))
= span (S, fc, X) ((x1, x2)),

i.e., span (S, fc, X) satisfies symmetry. So proposition (2)
is proven.

For proposition (3).

Because X ⊂ X , therefore Y = {fc(x)| x ∈ X} ⊆
Y . Because S satisfies transitivity, i.e., ∀y1, y3 ∈
Y , S((y1, y3)) ≥ max

y2∈Y
min [S((y1, y2)), S((y2, y3))].

∀x1, x3 ∈ X ,

span (S, fc, X) (x1, x3)
= S ((fc (x1) , fc (x3)))
≥ max

y2∈Y
min [S ((fc (x1) , y2)) , S ((y2, fc (x3)))]

≥ max
y2∈Y

min [S ((fc (x1) , y2)) , S ((y2, fc (x3)))]

= max
x2∈X

min [S ((fc (x1) , fc (x2))) , S ((fc (x2) , fc (x3)))] ,

i.e. span (S, fc, X) satisfies transitivity. So proposition (3)
is proven.

For proposition (4).

∀λ ∈ [0, 1], ∀x1, x2 ∈ X ,

span (S, fc, X)
[λ]

(x1, x2)
= I (span (S, fc, X) (x1, x2) ≥ λ)
= I (S (fc (x1) , fc (x2)) ≥ λ)
= S[λ] (fc (x1) , fc (x2)) = span

(
S[λ], fc, X

)
,
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i.e., proposition (4) is proven.

For proposition (5).

Obviously, the above proofs of proposition (1)-(4) are also
valid under the sense of binary relation.

In summary, proposition (1)-(5) are proven. So the lemma
is proven.

Lemma C.6. For a (X ,Y, fc)-classification problem, given
a set of samples ϕ ⊂ X ⊆ X and a fuzzy binary relation S
on Y . Let span(S, fc, X) be the fuzzy binary relation on X
described in Definition 4.10. If ∀y ∈ Y , ∃x ∈ X , such that
fc(x) = y, then span (S, fc, X)

2
= span

(
S2, fc, X

)
.

Proof. Because ∀y ∈ Y , ∃x ∈ X , such that fc(x) = y,
therefore, Y = {fc(x)| x ∈ X} = Y . ∀x1, x3 ∈ X ,

span (S, fc, X)
2
((x1, x3))

= max
x2∈X

min

[
span (S, fc, X) ((x1, x2)) ,

span (S, fc, X) ((x2, x3))

]
= max

x2∈X
min [S ((fc(x1), fc(x2))) , S ((fc(x2), fc(x3)))]

= max
y∈Y=Y

min [S ((fc(x1), y)) , S ((y, fc(x3)))]

= S2 ((fc(x1), fc(x3)))
= span

(
S2, fc, X

)
((x1, x3)),

i.e., the lemma is proven.

Lemma C.7. For a (X ,Y, fc)-classification problem, given
a set of samples ϕ ⊂ X ⊆ X and a FSR S on Y . Let
span(S, fc, X) be the fuzzy binary relation on X described
in Definition 4.10. If ∀y ∈ Y , ∃x ∈ X , such that fc(x) = y,
then traclo (span (S, fc)) = span (traclo (S) , fc, X).

Proof. Because S is a FSR on Y , therefore, S satisfies
reflexivity and symmetry. According to Lemma C.5,
span (S, fc, X) satisfies reflexivity and symmetry, i.e.,
span (S, fc, X) is a FSR on X .

According to Theorem 4.1, traclo (S) can be written
in form of S2k , k ≥ 0, and traclo (span (S, fc, X))

can be Written in form of span (S, fc, X)
2l , l ≥

0. Let m = max (k, l), then traclo (S) = S2m ,
traclo (span (S, fc, X)) = span (S, fc, X)

2m .

Therefore, to prove

traclo (span (S, fc)) = span (traclo (S) , fc, X) ,

we need to prove

span (S, fc, X)
2m

= span
(
S2m , fc, X

)
. (46)

According to Lemma C.6,

∀y ∈ Y,∃x ∈ X, such that fc(x) = y

⇒ span (S, fc, X)
2
= span

(
S2, fc, X

)
⇒ span (S, fc, X)

4
= span

(
S4, fc, X

)
⇒ · · ·
⇒ span (S, fc, X)

2m−1

= span
(
S2m−1

, fc, X
)

⇒ span (S, fc, X)
2m

= span
(
S2m , fc, X

)
,

i.e., formula (46) is true. So the lemma is proven.

Lemma C.8. For a (X ,Y, fc)-classification problem, given
a set of samples ϕ ⊂ X ⊆ X and an ER R on Y . Let O =
Y/R be the partition Y derived by R. Let span(R, fC , X)
be the binary relation on X described in Definition 4.10.
According to Lemma C.5, span(R, fC , X) is an ER on
X . Let P = X/span(R, fc, X) be the partition on X
derived by span(R, fc, X). If ∀y ∈ Y , ∃x ∈ X such that
fc(x) = y, then the following propositions are true.

(1) ∀O ∈ O, {x | x ∈ X, fc(x) ∈ O} ∈ P.

(2) ∀P ∈ P, {fc(x)| x ∈ P} ∈ O.

(3) |O| = |P|.

Proof. For proposition (1).

∀O ∈ O, obviously, ϕ ̸= O ⊆ Y . ∀y∗ ∈ O, according to
Definition A.7 and A.8,

O = [y∗]R = {y : y ∈ Y, R((y∗, y)) = 1} . (47)

Because ∀y ∈ Y , ∃x ∈ X such that fc(x) = y. Without
losing generality, assume that x∗ ∈ X and fc(x

∗) = y∗.
And then,

[x∗]span(R,fc,X)

= {x | x ∈ X, span (R, fc, X) ((x∗, x)) = 1}
= {x | x ∈ X,R((fc(x

∗), fc(x))) = 1}
= {x | x ∈ X,R((y∗, fc(x))) = 1}
= {x | x ∈ X, fc(x) ∈ [y∗]R = O} .

According to Definition A.8, [x∗]span(R,fc,X) ∈ P, i.e.,
proposition (1) is proven.

For proposition (2).

∀P ∈ P, obviously, ϕ ̸= P ⊆ X , ∀x∗ ∈ P , according to
Definition A.7 and A.8,

P = [x∗]span(R,fc,X)

= {x | x ∈ X, span(R, fc, X)((x∗, x)) = 1}
. (48)

Let y∗ = fc(x
∗), obviously, y∗ ∈ Y , then

[y∗]R = {y | y ∈ Y, R((y∗, y)) = 1}
= {y | y ∈ Y, R((fc(x

∗), y)) = 1}
= {f(x) | x ∈ X,R((fc(x

∗), f(x))) = 1}
= {f(x) | x ∈ X, span(R, fc, X)((x∗, x)) = 1}
=

{
f(x)

∣∣ x ∈ X,x ∈ [x∗]span(R,fc,X) = P
}
.
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According to Definition A.8, [y∗]R ∈ O, i.e., proposition
(2) is proven.

For proposition (3).

Proposition (1) and proposition (2) actually establish a one-
to-one mapping between the equivalence classes in O and
the equivalence classes in P, therefore, |O| = |P|.

In summary, proposition (1)-(3) are proven. So the lemma
is proven.

Lemma C.9. For a (X ,Y, fc)-classification problem, given
a set of samples ϕ ⊂ X ⊆ X and two FSRs R, S on
Y . If Q(Y, R) = Q(Y, S) and ∀k ∈ Y , ∃x ∈ X ,
such that fc(x) = k, then Q (X, span (R, fc, X)) =
Q (X, span (S, fc, X)).

Proof. To prove Q (X, span (R, fc, X)) =
Q (X, span (S, fc, X)), according to Theorem 4.5,
we need to prove Q (X, traclo (span (R, fc, X))) =
Q (X, traclo (span (S, fc, X))). Because ∀k ∈ Y ,
∃x ∈ X , such that fc(x) = k, according to Lemma C.7,
we need to prove

Q (X, span (traclo (R) , fc, X)) =

Q (X, span (traclo (S) , fc, X)) .
(49)

Because R and S are both FSR on Y . According to The-
orem 4.1, traclo(R) and traclo(S) are both FER on Y .
According to Lemma C.5, span (traclo (R) , fc, X) and
span (traclo (S) , fc, X) are both FER on X . According
to Theorem A.18, ∀µ ∈ [0, 1], span (traclo (R) , fc, X)

[µ]

and span (traclo (S) , fc, X)
[µ] are both ER on X . Ac-

cording to Definition 4.3, to prove formula (49), we need
to prove{

X/span (traclo (R) , fc, X)
[λ]
∣∣∣λ ∈ [0, 1]

}
={

X/span (traclo (S) , fc, X)
[ω]

∣∣∣ ω ∈ [0, 1]
}
.

According to Definition A.8, we need to prove{
span (traclo (R) , fc, X)

[λ]
∣∣∣λ ∈ [0, 1]

}
={

span (traclo (S) , fc, X)
[ω]

∣∣∣ ω ∈ [0, 1]
}
.

According to Lemma C.5, we need to prove{
span

(
traclo (R)

[λ]
, fc, X

)∣∣∣λ ∈ [0, 1]
}
={

span
(
traclo (S)

[ω]
, fc, X

)∣∣∣ ω ∈ [0, 1]
}
.

According to Definition 4.10, we need to prove{
traclo (R)

[λ]
∣∣∣λ∈ [0, 1]}={traclo (S)[ω]

∣∣∣ω∈ [0, 1]} . (50)

Next, we prove formula (50). Because Q(Y, R) =
Q(Y, S), according to Theorem 4.5, Q(Y, traclo(R)) =
Q(Y, traclo(S)). Because R and S are both FSR
on Y , according to Theorem 4.1, traclo(R) and
traclo(S) are both FER on Y . Based on it, accord-
ing to Definition 4.3,

{
Y/traclo(R)[λ]

∣∣λ ∈ [0, 1]
}

={
Y/traclo(S)[ω]

∣∣ ω ∈ [0, 1]
}

. Because traclo(R) and
traclo(S) are both FER on Y , according to Theorem A.18,
∀µ ∈ [0, 1], traclo(R)[µ] and traclo(S)[µ] are both ER on
Y . According to Definition A.8,{
traclo(R)[λ]

∣∣∣λ ∈ [0, 1]
}
=
{
traclo(S)[ω]

∣∣∣ ω ∈ [0, 1]
}
,

i.e., formula (50) is proven. So formula (49) is proven. So
the lemma is proven.

(2) Based on these conclusions, we prove Theorem 4.11.

Proof. Let traclo(T) be the transitive-closure of T (see
Definition A.19). Let

U = { traclo(T)ij | i, j ∈ Y} , (51a)

V =
{
span (traclo(T), fc, X)ij

∣∣∣ xi, xj ∈ X
}
. (51b)

And then,

V =
{
span (traclo(T), fc, X)ij

∣∣∣ xi, xj ∈ X
}

=
{
traclo(T)fc(xi)fc(xj)

∣∣ xi, xj ∈ X
}

=
{
traclo(T)yiyj

∣∣ yi, yj ∈ Y
}

= U.

(52)

Because T is a FSR on Y , according to Theorem 4.1,
traclo(T) is a FER on Y . According to Theorem A.18,
∀λ ∈ [0, 1], traclo(T)[λ]is an ER on Y . And then, accord-
ing to Definition A.19,

∀λ ∈ [0, 1], traclo
(
traclo(T)[λ]

)
= traclo(T)[λ]. (53)

Meanwhile, because traclo(T) is FER on Y , accord-
ing to Lemma C.5 span (traclo(T), fc, X) s a FER
on X . According to Theorem A.18, ∀λ ∈ [0, 1],
span (traclo(T), fc, X)

[λ] is an ER on X . And then, ac-
cording to Definition A.19, ∀λ ∈ [0, 1],

traclo
(
span (traclo(T), fc, X)

[λ]
)
=

span (traclo(T), fc, X)
[λ]

.
(54)
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Given V , Q (Y,T) can be written as follows

Q (Y,T)=Q (Y, traclo(T))

=
{
Y/traclo

(
traclo (T)

[λ]
)∣∣∣λ ∈ [0, 1]

}
=
{
Y/traclo (T)

[λ]
∣∣∣λ ∈ [0, 1]

}
=
{
Y/traclo (T)

[λ]
∣∣∣λ ∈ U

}
=
{
Y/traclo (T)

[λ]
∣∣∣λ ∈ V

}
.

(55)

Given V , Q (X, span(T, fc, X)) can be written as follows

Q (X, span(T, fc, X))
=Q (X, traclo (span (T, fc, X)))
=Q (X, span (traclo (T) , fc, X))

=
{
X/traclo

(
span (traclo (T) , fc, X)

[λ]
)∣∣∣λ ∈ [0, 1]

}
=
{
X/span (traclo (T) , fc, X)

[λ]
∣∣∣λ ∈ [0, 1]

}
=
{
X/span (traclo (T) , fc, X)

[λ]
∣∣∣λ ∈ [0, 1]

}
=
{
X/span (traclo (T) , fc, X)

[λ]
∣∣∣λ ∈ V

}
=
{
X/span (traclo (T) , fc, X)

[λ]
∣∣∣λ ∈ [0, 1]

}
=
{
X/span

(
traclo (T)

[λ]
, fc, X

)∣∣∣λ ∈ V
}
.

(56)

For proposition (1).

In formula (55), because traclo(T) is a FER on Y , accord-
ing to Theorem 4.7, |Q (Y,T)| = |V |. In formula (56),
because span (traclo(T), fc, X) is a FER on X , according
to Theorem 4.7, |Q (X, span(T, fc, X))| = |V |. Sopropo-
sition (1) is proven.

For proposition (2).

Without losing generality, we arrange the ele-
ments in the set V in descending order to obtain
λ1 > λ2 > · · · > λ|V |. According to Defini-
tion A.17, ∀i = 1, 2, · · · , |V | − 1, traclo (T)

[λi] ⊂
Y/traclo (T)

[λi+1], span
(
traclo (T)

[λi] , fc, X
)

⊂

span
(
traclo (T)

[λi+1] , fc, X
)

. And then, ac-

cording to Theorem 4.6, Y/traclo (T)
[λi] ≺

Y/traclo (T)
[λi+1], X/span

(
traclo (T)

[λi] , fc, X
)
≺

X/span
(
traclo (T)

[λi+1] , fc, X
)

. Based on it, according
to Definition 4.3 and 4.9,

(Q (Y,T) ,≺) =


O1 = Y/traclo (T)

[λ1] ≺
O2 = Y/traclo (T)

[λ2] ≺
· · · ≺
O|V | = Y/traclo (T)[

λ|V |]

 , (57)

(Q (X, span (T, fc, X)) ,≺) =
P1 = X/span

(
traclo (T)

[λ1] , fc, X
)
≺

P2 = X/span
(
traclo (T)

[λ2] , fc, X
)
≺

· · · ≺
P|V | = X/span

(
traclo (T)[

λ|V |] , fc, X
)


. (58)

In formula (57) and (58), because T is a FSR on Y , ac-
cording to Theorem 4.1, traclo(T) is a FER on Y . And
then, according to Theorem A.18, ∀i = 1, 2, · · · , |V |,
traclo (T)

[λi] is an ER on Y . Meanwhile, because ∀y ∈ Y ,
∃x ∈ X such that fc(x) = y. Based on it, ∀i =
1, 2, · · · , |V |, according to Lemma C.8, Oi and Pi satisfy
the three conditions in proposition (2). So proposition (2) is
proven.

In summary, proposition (1) and (2) are proven. So the
theorem is proven.

C.2.9. PROOF OF THEOREM 4.12

Proof. For sake of discussion, let T̄ = span (T, fc, X).
According to Definition 4.3 and 4.9, to prove ∀i =
1, 2, · · · ,

∣∣Q (
X, T̄

)∣∣, ∃j ∈ {1, 2, · · · , |Q (X,S)|}, such
that Pi = Qj we need to prove ∀P ∈ Q

(
X, T̄

)
, ∃Q ∈

Q (X,S), such that P = Q. we need to prove

Q
(
X, T̄

)
⊆ Q (X,S) . (59)

Next, we prove formula (59). For sake of discussion, we
copy formula (7) as follows

V = { tij | i, j ∈ Y} , U = V ∪ {0, α, β},

u = sortvec(U) =
(
u1, u2, · · · , u|U |

)T
.

According to Definition 4.10, let

V̄ =
{̄
tij

∣∣∣t̄ij=span (T, fc, X)ij= tyiyj , i, j=1, · · · , n
}
,

and V̄ ⊆ V . And then, according to Theorem 4.4,

Q
(
X, T̄

)
=

{
X/traclo

(
T̄[λ]

)∣∣∣λ ∈ V̄
}
.

Therefore, to prove formula (59), we need to prove ∀λ ∈ V̄ ,
∃ω ∈ [0, 1], such that X/traclo

(
T̄[λ]

)
= X/traclo

(
S[ω]

)
.

According to Definition A.8, we need to prove ∀λ ∈ V̄ ,
∃ω ∈ [0, 1], such that traclo

(
T̄[λ]

)
= traclo

(
S[ω]

)
. Ac-

cording to Theorem 4.1, we need to prove ∀λ ∈ V̄ ,
∃ω ∈ [0, 1], such that, T̄[λ] = S[ω]. According to Defi-
nition A.17, we need to prove ∀λ ∈ V̄ , ∃ω ∈ [0, 1], such
that ∀i, j = 1, 2, · · · , n, I [t̄ij ≥ λ] = I [sij ≥ ω]. Accord-
ing to Definition 4.10, ∀i, j = 1, 2, · · · , n, t̄ij = tyiyj .
Therefore, we need to prove ∀λ ∈ V̄ , ∃ω ∈ [0, 1], such that
∀i, j = 1, 2, · · · , n,

I
[
tyiyj ≥ λ

]
= I [sij ≥ ω] . (60)
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Next, we prove formula (60). ∀λ ∈ V̄ ⊆ V , according
to formula (35e), 2 ≤ sort (λ,U) ≤ |U |. Therefore 1 ≤
sort (λ,U)−1 ≤ |U |−1. Let ω = usort(λ,U)−1, according
to formula (35d) and (35a), 0 = u1 ≤ ω < λ ≤ u|U | =
1, i.e., ω ∈ [0, 1). Because L1 = 0, therefore, ∀i, j =
1, 2, · · · , n, i ̸= j, LHA (sij , yi, yj ;α, β,T) = 0, i.e., 4

sij ∈
(
usort(tyiyi ;U)−1, usort(tyiyi ;U)

)
. (61)

Next, we prove that ∀i, j = 1, 2, · · · , n, I
[
tyiyj ≥ λ

]
=

I [sij ≥ ω].

(a) If i = j. Because T is a FSR on Y , S is a FSR on
X , therefore, I [tyiyi

≥ λ] = I [1 ≥ λ] = 1 = I [1 ≥ ω] =
I [sii ≥ ω].

(b) If i ̸= j, I
[
tyiyj ≥ λ

]
= 1, i.e., tyiyj ≥ λ. Accord-

ing to formula (7), sort
(
tyiyj

;U
)
≥ sort (λ;U), then

sort
(
tyiyj

;U
)
−1 ≥ sort (λ;U)−1. And then, according

to formula (61), sij > usort(tyiyi ;U)−1 ≥ usort(λ;U)−1 =

ω, i.e., I [sij ≥ ω] = 1.

(c) If i ̸= j, I
[
tyiyj

≥ λ
]
= 0, i.e., tyiyj

< λ. According
to formula (7), sort

(
tyiyj ;U

)
< sort (λ;U), therefore

sort
(
tyiyj

;U
)
≤ sort (λ;U) − 1. And then, according

to formula (61), sij < usort(tyiyi ;U)
≤ usort(λ;U)−1 = ω,

i.e., I [sij ≥ ω] = 0.

Combining (a)-(c), formula (60) is true. Therefore, formula
(59) is true. So the theorem is proven.

C.3. Proofs of Theorems in Appendix B

C.3.1. PROOF OF THEOREM B.2

(1) To prove the theorem B.2, we introduce the following
derivation process.
Remark C.10. Given the following convex quadratic pro-
gramming problem

min
r

J1(r) =
∑m

i=1 (ri − si)
2

s.t. ri = ti+1,∀i = 1, 2, · · · ,m− 1
a < ri < b,∀i = 1, 2, · · · ,m

. (62)

∀i = 1, 2, · · · ,m, let t = ri. Meanwhile, let s̄ =
∑m

i=1 si
m .

And then

J2(r) =
∑m

i=1 (ri − si)
2

=
∑m

i=1

(
r2i − 2risi + s2i

)
=

∑m
i=1 r

2
i − 2

∑m
i=1 risi +

∑m
i=1 s

2
i

= mt2 − 2 (
∑m

i=1 si) t+
∑m

i=1 s
2
i

= mt2 − 2ms̄t+
∑m

i=1 s
2
i

= m
(
t2 − 2s̄t

)
+
∑m

i=1 s
2
i

= m (t− s̄)
2 −ms̄2 +

∑m
i=1 s

2
i

.

4According to (8), sij should fall into the close interval. In
practice, we can introduce a small constant ϵ > 0 into formula (8)
such that sij falls in the open interval.

Let J2(t) = (t− s̄)
2, J3(s) =

(∑m
i=1 s

2
i

)
− ms̄2, then

J1(r) = mJ2(t) + J3(s). Substituting them into the for-
mula (62), we obtain the following optimization problem

min
r

J1(r) =
∑m

i=1 (ri − si)
2

s.t. ri = ti+1,∀i = 1, 2, · · · ,m− 1
a < t < b

⇐⇒ min
t

mJ2(t) + J3(s)
s.t. a < t < b

⇐⇒ min
t

mJ2(t)
s.t. a < t < b.

Obviously, the last optimization problem in the above equa-
tion is a convex quadratic programming problem. Let t∗ be
the optimal solution of it. Then

r∗ ∈ Rm, ∀i = 1, 2, · · · ,m, r∗i = t∗,

is the optimal solution of formula (62).

(2) Based on the above derivation process, we prove Theo-
rem B.2.

Proof. For proposition (1).

According to formula (29), S(D,K)∗ satisfies reflexivity and
symmetry. Because t∗ is the optimal solution of formula
(27), therefore,

∀i = 1, 2, · · · , |V K |, 0 < t∗i < α.

According to formula (29), ∀i, j ∈ Y, i ̸= j, 0 <

s
(D,K)∗

ij < α. Therefore, S(D,K)∗ is a α-FSR on Y . So-
proposition (1) is proven.

For proposition (2).

Because SK and SD both satisfy reflexivity and symmetry.
Therefore, we can eliminate the third and fourth constraints
and ignore the elements of the main diagonal and lower
triangle positions of the matrix of the objective function
in the formula (26). Therefore, we obtain the following
equivalent optimization problem

min
S(D,K)

∑
i∈Y

∑
j∈Y,j>i

(
s
(D,K)
ij − sDij

)2

s.t. s
(D,K)
ij < s

(D,K)
jk ,∀i, j, k ∈ Y, i < j < k,

sKij < sKjk

s
(D,K)
ij = s

(D,K)
jk ,∀i, j, k ∈ Y, i < j < k,

sKij = sKjk

0 < s
(D,K)
ij < α, ∀i, j ∈ Y, i < j

. (63)

In formula (63), the S(D,K) satisfies the first two constraints
iff the sorting of the triangular elements of S(D,K) is consis-
tent with the sorting of the triangular elements of SK . Let
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V K =
{
sKij

∣∣ i, j ∈ Y, i ̸= j
}

. Considering the situation
where the triangular elements of SK have duplicates, let
Ii =

{
(k, l)

∣∣k, l ∈ Y, k < l, sort
(
sKkl;V

K
)
= i

}
. Substi-

tuting V K and Ii into the formula (63), we can obtain the
following equivalent optimization problem

min
S(D,K)

∑|V K |
i=1

∑
(k,l)∈Ii

(
s
(D,K)
kl − sDkl

)2

s.t. s
(D,K)
pq < s

(D,K)
rs ,∀i, j = 1, 2, · · · ,

∣∣V K
∣∣ ,

i < j, (p, q) ∈ Ii, (r, s) ∈ Ij

s
(D,K)
pq = s

(D,K)
rs ,∀i = 1, 2, · · · ,

∣∣V K
∣∣ ,

(p, q), (r, s) ∈ Ii, (p, q) ̸= (r, s)

0 < s
(D,K)
ij < α, ∀i, j ∈ Y, i < j.

(64)

∀i = 1, 2, · · · ,
∣∣V K

∣∣, let s̄i =
∑

(p,q)∈Ii
sDpq

|Ii| . According to
Remark C.10, we can can eliminate the equality constraints
in the formula (64) and obtain the following equivalent
optimization problem.

min
t∈R|V K |

J1(t) =
∑|V K |

i=1 |Ii| (ti − s̄i)
2

s.t. ti < ti+1, ∀i, j = 1, 2, · · · ,
∣∣V K

∣∣− 1
0 < ti < α, ∀i = 1, 2, · · · ,

∣∣V K
∣∣ . (65)

Substituting s̄ given in formula (28) and D into formula (65),
we can obtain the following optimization problem

J1(t) = tTDt− 2s̄TDt+ s̄TDs̄

By removing the unrelated s̄TDs̄ and let J2(t) = tTDt−
2s̄TDt, we can obtain the following optimization problem

min
t∈R|V K |

J2(t) = tTDt− 2s̄TDt

s.t. ti < ti+1, ∀i, j = 1, 2, · · · ,
∣∣V K

∣∣− 1
0 < ti < α, ∀i = 1, 2, · · · ,

∣∣V K
∣∣ . (66)

In formula (66), according to formula (28), D is a symmet-
ric positive definite matrix. Therefore J2(t) is a convex
function w.r.t. t. Meanwhile, only linear inequality con-
straints are involved in the constraint conditions of formula
(66). Therefore, formula (66) is a standard convex quadratic
programming problem. Let t∗ be the optimal solution of for-
mula (66). And then, let S(D,K)∗ ∈ R|Y|×|Y|, ∀i, j ∈ Y ,
we have

s
(D,K)∗

i,j =

{
1, i = j
t∗
sort(sKij ;V K)

, i ̸= j .

Obviously, S(D,K)∗ satisfies the all constraint conditions
of formula (26). Meanwhile, according to Remark C.10,
S(D,K)∗ is the optimal solution of formula (26). So proposi-
tion (2) is proven.

In summary, proposition (1) and (2) are proven. So the
theorem is proven.

D. Details of Experiments
D.1. Details of Interpretability Analysis Experiments

(1) Task. To show the working mechanism of the proposed
method, we conduct the experiments on handwritten digit
classification task. The class space is Y = {0, 1, · · · , 9},
which is familiar 10 numbers for human beings. There-
fore, it is possible to evaluate the experimental results with
common sense.

(2) Data. We adopt handwritten digit data set MNIST (Le-
Cun et al., 1998), consisting of 60,000 training samples
and 10,000 test samples. Each sample is a 28×28 pixel
grayscale image containing a handwritten number. For the
convenience of presentation, 10 samples were randomly
selected for each class to form the training data set.

(3) Class Knowledge. In this experiment, we recruit 10
volunteers. each volunteer is asked to construct a 10× 10
rating matrix that is used to measure the similarity between
different digits. The score range is {0, 1, 2, · · · , 10}. The
constructed rating matrix is averaged and normalized, de-
noted as SK . The human knowledge system K is the under-
standing of visual features of digital characters in the minds
of 10 volunteers, and class knowledge K is the rating matrix
constructed by 10 volunteers.

(4) Settings. Feature extraction network h : R28×28 → R10
+

adopts a 5-layer convolutional neural network. FSR network
g : R10

+ × R10
+ → [0, 1] adopts cosine similarity. We adopt

case 2 in formula (6) to obtain the final FSR T. The fuzzi-
ness parameters α = 0.7, β = 0.9. No regularization term
was used in the experiment. We adopt Adam (Kingma & Ba,
2015) to solve formula (1) and (9), where the learning rate is
set as 10−3. We implement the code based on Pytorch5 and
conduct all experiments on an NVIDIA A100-PCIE-40GB
GPU.

D.2. Details of Generalization Analysis Experiments

To verify the effectiveness of the proposed method, we
conduct experiments on 6 public data sets compared with 6
different classifiers.

(1) Task. APY and Image-Net1K data sets contain 32 and
1000 classes respectively, involving different classes such
as animals, furniture and vehicles. The differences among
the classes are large, which are coarse-grained classification
tasks. AWA1 and AWA2 data sets share the same class
space, which contains 50 species of animals, such as horses,
whales, tigers, etc. There are certain differences between the
classes. Thus, they are medium-granularity classification
tasks. FLO and CUB data sets contain 102 different species
of flowers and 200 different species of birds, respectively.

5https://pytorch.org/
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Table 4. The comparison methods and their settings

Method Abbreviation Setting
K-Nearest Neighbor KNN We adopt Euclidean distance. The number of nearest neighbors is selected within {1, 3, 5, 7, 9, 11}.

Decision Tree DT We adopt two criterion, i.e., Entropy and Gini, to select split feature. We adopt two strategies, i.e., global search and random
split, to determine the split threshold.

Support Vector Machine SVM We adopt one-to-rest to deal with multiple classification problem. We adopt Gaussian kernel function and the parameters of
kernel function are default. The trade-off parameters are selected within {0.01, 0.1, 1, 10, 100}.

Naive Bayes NB We adopt four different distribution assumptions to estimate the probability density, i.e., Gaussian, Multinomial, Complement
and Bernoulli.

Cross Entropy Classifier CEC

Feature extraction network is designed as h(x; Θ) = ReLU (ReLU (xW1 + b1) W2 + b2) W3 + b3, where Θ =

{W1 ∈ R2048×1024, b1 ∈ R1024, W2 ∈ R1024×512, b2 ∈ R512, W3 ∈ R512×|Y|, b2 ∈ R|Y|} is the set of
learnable parameters. We adopt cross entropy loss of Softmax (h(x)) and true labels to train network. We adopt Adam
(Kingma & Ba, 2015) as optimizer. The size of batch is set to 256. The number of epoch is set to 200. The initial learning rate is
set to 1e-3 and decays by 0.5 times every 20 epochs.

Fuzzy Learning Machine FLM

The overall network is f ((·, ·) ; Θ) =
φ(·;Θ)T φ(·;Θ)

∥φ(·;Θ)∥2×∥φ(·;Θ)∥2
, where φ (·; Θ) = Sigmoid (h (·; Θ)). h is the same as

in CEC. We adopt Adam (Kingma & Ba, 2015) as optimizer. The size of batch is set to 1000. The number of epoch is set to 200.
The initial learning rate is set to 1e-3 and decays by 0.5 times every 50 epochs. The fuzziness parameters α = 0.2, β = 0.8.
Regularization term is not used in the experiment.

HC-HFLM with K1 CK1-HFLM

The overall network is the same as FLM. The pretrained FLM is used as the initial point. We adopt Adam (Kingma & Ba, 2015)
as optimizer. The size of batch is set to 1000. The number of epoch is set to 50. On ImageNet1K data set, the initial learning
rate is set to 1e-9. On the remaining data sets, the initial learning rate is set to 1e-3. The learning rate decays by 0.5 times every
30 epochs. For class description vector, we adopt formula (20) in Appendix B.1 to calculate the FSR SK . We adopt case 3
in formula 6 to get final FSR T. On ImageNet1K data set, SK is coarsened as 50 levels. On the remaining data sets, SK is
coarsened as 100 levels.

HC-HFLM with K2 CK2-HFLM Different from CK1-HFLM, Algorithm 1, 2 and 3 are called successively to get FSR SK (see Appendix B.1). The number of
levels is determined by knowledge graph (see Table 2). Based on it, we adopt case2 in formula 6 to get the final FSR T.

There are small differences between classes. Thus, they are
fine-grained classification tasks.

(2) Data. For ImageNet1K data set, we adopt common data
partition, which contains 1,281,167 training samples and
50,000 test samples. We record the test accuracy of all meth-
ods. The remaining 5 data sets are evaluated using 5-fold
cross-validation for each method, and the mean accuracy
are recorded.

As is known to all, the way of extracting features from im-
ages seriously affects the performance of image classifica-
tion. The focus of this paper is how to integrate knowledge
to improve the classification performance rather than de-
signing a better method of extracting features. In order to
eliminate the influence of the feature extraction process,
the 2048 dimensional features extracted by literature (Xian
et al., 2019) are used in the whole experiments for all data
sets. The detail information of data sets is summarised in
Table 2.

(3) Class Knowledge. In this experiment, we adopt two
types of knowledge, denoted as K1 and K2.

K1 represents the class description vector. For ImageNet1K
data set, the class description vector is obtained by GloVe
(Pennington et al., 2014). For the remaining 5 data sets,
the class description vectors are designed by domain expert.
The detailed descriptions can be found in literature (Xian
et al., 2019). We adopt formula (20) in Appendix B.1 to
calculate class similarity relation SK .

K2 represents knowledge graph. WordNet (Miller, 1995) is
adopted in this experiment. Algorithm 1, and 2 and 3 (see

Appendix B.1) are called successively to get the class FSR
SK . The class spaces of FLO and CUB data sets are the sets
of different followers and different birds, respectively. This
makes it difficult to match with WordNet and take advantage
of the knowledge provided by WordNet.

(4) Comparison Methods and Settings. In this experiment,
we adopt 6 different classifiers as comparison methods. K-
nearest neighbor (KNN), decision tree (DT), support vector
machine (SVM), and naive Bayes (NB) are classical and
non-deep neural network methods. Cross entropy classifier
(CEC) and FLM are methods based on deep neural network.
Because the input features are extracted by the pre-trained
deep neural network, we adopt 3 fully-connected layers as
backbone for CEC and FLM.

In the proposed HC-HFLM, two types of knowledge K1 and
K2 are integrated into FLM, respectively, denoted as CK1-
HFLM and CK2-HFLM. For fair comparison, the network
architecture is the same as the FLM.

For each method, different parameter settings are adopted
and the best experimental results are recorded. For the
first four methods, we adopt the implementations by the
Scikit-learn library6. The remaining methods are imple-
mented based on Pytorch. We conduct all experiments on
an NVIDIA A100-PCIE-40GB GPU. More details are listed
in Table 4.

6https://scikit-learn.org/stable/index.
html
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