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Abstract

This work introduces a novel approach, Pairwise Epistemic Estimators (PairEpEsts),
for epistemic uncertainty estimation in ensemble models for regression tasks using
pairwise-distance estimators (PaiDEs). By utilizing the pairwise distances between
model components, PaiDEs establish bounds on entropy. We leverage this capa-
bility to enhance the performance of Bayesian Active Learning by Disagreement
(BALD). Notably, unlike sample-based Monte Carlo estimators, PairEpEsts can
estimate epistemic uncertainty up to 100 times faster and demonstrate superior
performance in higher dimensions. To validate our approach, we conducted a
varied series of regression experiments on commonly used benchmarks: 1D sinu-
soidal data, Pendulum, Hopper, Ant, and Humanoid, demonstrating PairEpEsts’
advantage over baselines in high-dimensional regression active learning.

1 Introduction

In this paper, we propose Pairwise Epistemic Estimators (PairEpEsts) as a non-sample based method
for estimating epistemic uncertainty in deep ensembles with probabilistic outputs for regression tasks.
Epistemic uncertainty, often distinguished from aleatoric uncertainty, reflects a model’s ignorance and
can be reduced by increasing the amount of data available [26, 16, 29]. The significance of epistemic
uncertainty is particularly pronounced in safety-critical systems, where a single erroneous prediction
could lead to catastrophic consequences [43]. Moreover, leveraging epistemic uncertainty proves
beneficial as an acquisition criterion for active learning strategies [27].

Previously Monte Carlo (MC) methods have been employed for estimating epistemic uncertainty, in
regression tasks, due to the absence of closed-form expressions in most modeling scenarios [15, 4].
However, as the output dimension increases, these MC methods require a large number of samples to
get accurate estimates. PairEpEsts leverage Pairwise-Distance Estimators (PaiDEs), which provide a
non-sample-based alternative for estimating information-theoretic criteria in ensemble regression
models with probabilistic outputs [35].

Ensembles can be seen as committees, with each component acting as a member [50]. PairEpEsts syn-
thesize the consensus amongst a committee of probabilistic learners by calculating the distributional
distance between each pair of committee members. Aggregating these distances allows accurate
estimation of the mutual information between the model output and weight distribution. When
pairwise distances are efficiently computable, PairEpEsts offer a fast, sample-free method to estimate
epistemic uncertainty. Figure | shows committee members in agreement with low uncertainty (small
distance) and disagreement with high uncertainty (large distance).

This study demonstrates the use of PairEpEsts to estimate epistemic uncertainty in regression
ensembles with probabilistic outputs. Unlike classification, regression poses unique challenges
because entropy is harder to estimate for mixtures of continuous distributions than for categorical
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ones. To address this, we focus on Normalizing Flows (NFs), which can capture heteroscedastic
and multimodal aleatoric uncertainty [49, 33]. This capability is particularly relevant for robotic
locomotion, where nonlinear stochastic dynamics make data acquisition costly and active learning
essential. The proposed framework extends epistemic uncertainty estimation to high-dimensional
regression tasks that have been largely underserved in the literature. Our contributions are threefold:

* We introduce the framework PairEpEsts, which applies PaiDEs to estimate epistemic uncer-
tainty in deep ensembles with probabilistic outputs (Section 4).

* We extend previous epistemic uncertainty estimation methods to settings with higher-
dimensional output [4], and demonstrate how PairEpEsts outperform MC and other active
learning baselines in these settings with rigorous statistical testing (Section 5).

* We provide an analysis of the time-saving advantages offered by PairEpEsts compared to
MC estimators for epistemic uncertainty estimation (Section 5.4).

2 Problem Statement

Following a supervised learning framework for
i — {r. y N
regression, let D = {x;,y;};_, denote a dataset,

where z; € R™ and y; € RY, and our objective

is to approximate a complex multi-modal con-

ditional probability p(y|z). Let fp(y; z) denote '
our approximation to the conditional probabil-
ity density, where 6 is a set of parameters to be

learned and is distributed as p(6).

Leveraging a learned model, fo(y; x), we wish  Figure 1: Epistemic uncertainty in an ensemble
to estimate uncertainty which is typically viewed  of probabilistic learners is high when the mixture
from a probabilistic perspective [14, 29]. When  components disagree (left) and low when there is
capturing uncertainty in supervised learning, agreement (right).

one common measure is that of conditional dif-

ferential entropy,

H(yle) = — / p(y|z) In p(y|z)dy.

Utilizing conditional differential entropy, we can establish an estimate for epistemic uncertainty as
introduced by Houlsby et al. [27], expressed as:

I(y,0|z) = H(y|z) — H(y|z,0), 6]

where I(-) refers to mutual information (MI). Equation 1 demonstrates that epistemic uncertainty,
I(y,0|x), can be represented by the difference between total uncertainty, H (y|z), and aleatoric
uncertainty, H (y|x, #). MI measures the information gained about one variable by observing another.

To enable our methods to capture epistemic uncertainty, we employ ensembles to create p(6).
Ensembles leverage multiple models to obtain the estimated conditional probability by weighting the
output distribution from each ensemble component,

M M
folysw) =D mifo, (y; ) »omi=1, 2
j=1 j=1

where M, 0 < 7; < 1 and 6; are the number of model components, the component weights and the
parameters for the jth component, respectively. In order to create an ensemble, one of two ways is
typically chosen: randomization [5] or boosting [20]. While boosting has led to widely used machine
learning methods [10], randomization has been the preferred method in deep learning [39].

Utilizing our ensemble we can estimate epistemic uncertainty in decision-making scenarios such as
active learning. When all components produce the same fy, (y, x), I(y, #|x) is zero, indicating no
epistemic uncertainty. Conversely, when the components exhibit varied output distributions, epistemic
uncertainty is high. In an active learning framework, one chooses, at each iteration, what data points
to add to a training dataset such that the model’s performance improves as much as possible [41, 52].



In our context, one chooses the 2’s that maximize Equation | and adds those data points to the training
set as in Bayesian Active Learning by Disagreement (BALD) [27]. It’s worth noting that in the realm
of continuous outputs as in regression and ensemble models, Equation 1 often lacks a closed-form
solution, as the entropy of most mixtures of continuous distributions cannot be expressed in closed
form [35]. Hence, prior methods have resorted to MC estimators for the estimation of epistemic
uncertainty [15, 48]. One such MC method samples K points from the model, y; ~ fo(y;z), and
then estimates the total uncertainty,

Hyelyla) = Zhlfe (yj; 2

The MC approach approximates the intractable integral over the continuous domain requiring only
point-wise evaluation of the ensemble and its components. However, as the number dimensions
increases, MC methods typically require a greater number of samples which creates a greater
computational burden [51]. Note that the aleatoric uncertainty can be analytically computed as the
average of the entropies of each ensemble component distribution.

3 Pairwise-Distance Estimators

Unlike MC methods, PaiDEs eliminate sampling by using generalized distance functions between
ensemble components. They estimate the entropy of mixture distributions when pairwise distances
have closed-form expressions, enabling estimation of H (y|x) from Equation 1. We extend PaiDEs,
from Kolchinsky and Tracey [35], to supervised learning and epistemic uncertainty estimation.

3.1 Properties of Entropy

One can treat a mixture model as a two-step process: first, a component is drawn and, second, a
sample is taken from the corresponding component. Let p(y, 6|x) denote the joint of our output and
model components given input z,

p(y, 0lz) = p(0;|2)p(yl0;, ©) = m;p(yl0;, ).
Using this representation, following principles of information theory [14], we can write its entropy as,
H(y,0lz) = H(0ly,z) + H(y|x). ()
Additionally, one can show the following bounds for H (y|z),
H(ylo,x) < H(ylz) < H(y,b|z). ©)

Intuitively, the lower bound can be justified by the fact that conditioning on more variables can only
decrease or keep entropy the same. The upper bound follows from Equation 3, and H(6|z,y) > 0
since 6 is modeled as a discrete random variable (ensemble index), unlike = and y which are
continuous.

3.2 PaiDEs Definition

Let D,(p; || p;) denote a generalized distance function between the probability distributions p; and
p;» which for our case represent p; = p(y|z, 6;) and p; = p(y|x, 0;), respectively. More specifically,
D is referred to as a premetric, D,(p; || p;) > 0 and D,(p; || p;) = 0if p; = p;. The distance
function need not be symmetric nor obey the triangle inequality. As such, PaiDEs can be defined as,

H,(ylx) := H(y|0,x) — ZmanmeXp (i [ ). ©)

PaiDEs have many options for D,(p; || p;) (Kullback-Leibler divergence, Wasserstein distance,
Bhattacharyya distance, Chernoff a-divergence, Hellinger distance, etc.).



Theorem 3.1. As from Kolchinsky and Tracey [35], using the extreme distance functions,
Dmin(pi || pj) =0 VZ,]

0, if pi = pj,
Dmam(pi H pj) = {oo othle’l”’LUijSe

one can show that PaiDEs lie within bounds for entropy established in Equation 4.

Refer to Appendix A for the proof of Theorem 3.1. This provides a general class of estimators but a
distance function still needs to be chosen.

3.3 Tighter Bounds for PaiDEs

Let the Chernoff a-divergence, where « € [0, 1], be defined as [44],

De.(p: || pj) = —In / P (g, ) (yz. 6;)dy

Corollary 3.2. As from Kolchinsky and Tracey [35], when applying Chernoff a-divergence as our
distance function in Equation 5, we achieve a tighter lower bound than H (y|0, x) from Equation 4,

H(y|0,z) < He, (ylz) < H(ylz). (©6)

Refer to Appendix A for the proof of Corollary 3.2. In addition, the tightest lower bound can be
shown to be o = 0.5 for certain situations [35]. This is known as the Bhattacharyya distance,

Da(pillpy) = ~1n [ /otule,6p(ulz.0;)d. ™

In addition to the improved lower bound, there is an improved upper bound as well. Let Kullback-
Liebler (KL) divergence be defined as follows,

p (y ‘ T, 01)
Dics(p | 23) = [ plols. 090 B2
’ p (y ‘ z, 9] )

Note that the KL divergence is a not metric but does suffice as a generalized distance function.

Corollary 3.3. As from Kolchinsky and Tracey [35], when applying Kullback-Liebler divergence
as our distance function in Equation 5, we achieve a tighter upper bound than H(y,0|x) from
Equation 4,

H(ylz) < Hgp(ylz) < H(y,0z). ®)

Refer to Appendix A for the proof of Corollary 3.3.

4 Estimating Epistemic Uncertainty with Pairwise Epistemic Estimators

Our extension of prior methodologies enables the estimation of epistemic uncertainty, without the
need for sampling. We illustrate this capability for NFs in the main paper and for Probabilistic
Network Ensembles (PNEs) in Appendix E [39]. Note that our proposed estimators are applicable
to any ensemble model whose component output distributions have closed-form pairwise distances.
Since many models have these properties, we focus on Nflows Base for its expressiveness with
multimodal aleatoric uncertainty and on widely used PNEs.

4.1 Pairwise Epistemic Estimators

By applying our definition of PaiDEs to Equation 1, we obtain the following expression:

I,(y,0) = H,(ylz) — H(y|x,0) Zm anm exp (=D, (pi | ps))- ©)



PaiDEs estimate epistemic uncertainty using only pairwise component distances, removing reliance
on sampling. We propose two estimators:

M M
In(y,0) ==Y mnY mexp(—=Da(pi || ps)),
i=1 j=1

M M
Ixrn(y,0) == miln ) mexp(—Drr(pi || ps)),
i=1 j=1

where Dp(p; || pj) and Dgr(p; || p;) are defined for Gaussians in Appendix B. We refer to
I5(y, 0) as PairEpEst-Bhatt and I, (y, 0) as PairEpEst-KL.

4.2 Nflows Base

In this study, we utilize an ensemble technique known as Nflows Base, which has previously
demonstrated robust performance in estimating both aleatoric and epistemic uncertainty on simulated
robotic datasets by leveraging NFs to create ensembles [4].

NFs have traditionally been applied to unsupervised tasks [54, 53]. However, NFs have also been
adapted for supervised learning tasks, particularly for regression [59, 1]. Using the structure described
in Winkler et al. [59], a supervised NF is defined as:

Pylz(WlT) = Dojap(g; ' (v, 2) det(J (g, (y, 2)))],
1og(py 1z (y|z)) = 10g(Pyja,0(g; ' (v, 7)) + log(| det(J (g, (y, 2)))]),

where p, |, is the output distribution, py, ¢ is the base distribution with parameters 6, .J refers to the
Jacobian, and g(gl 1y X x +—> b is the bijective mapping with parameters ¢. For a complete review of
NFs, refer to Papamakarios et al. [47]. Nflows Base creates an ensemble in the base distribution,

Pylz.0(YlT,0;) = Dojao, (9, (. 2))| det(J (g, (y, 2)))],

where py;,0, (b7, 0;) = N(ue, (), Xe; (7)), po, () and g, () denote the mean and covariance for
input = and conditioned on ¢;. To encourage diversity in the ensemble, each member is initialized
with different random weights, trained on a bootstrapped subset of the data, and assigned a fixed
dropout mask sampled at the start of training (with p = 0.5), similar to [1]. This mask remains
constant throughout training and inference. By constructing the ensemble within the base distribution,
one can make use of closed-form pairwise-distance formulae as Berry and Meger [4] showed that
estimating epistemic uncertainty in the base distribution is equivalent to estimating it in the output
distribution.

Exploiting these closed-form pairwise distance formulae, Berry and Meger [4] showed that Nflows
Base outperforms naive NF ensemble methods when estimating epistemic uncertainty. The aleatoric
uncertainty from Equation | can be estimated in the base distribution space, and therefore can be
computed analytically. However, this approach does not extend to the total uncertainty in Equation 1,
which is why MC techniques have traditionally been used to estimate epistemic uncertainty.

4.3 Integrating Pairwise Epistemic Estimators with Nflows Base Ensembles

By combining Nflows Base and PairEpEsts, we construct an expressive non-parametric model capable
of capturing intricate aleatoric uncertainty in the output distribution while efficiently estimating
epistemic uncertainty in the base distribution. Equation 9 then becomes,

M M
I(y,0) = => miln Y mjiexp (=Dp(yjwe, || Pejas,))- (10)
i=1 j=1

Unlike previously proposed methods, we are able to estimate epistemic uncertainty without taking a
single sample. Figure 7 in the Appendix shows an example of the distributional pairs that need to
be considered in order to estimate epistemic uncertainty for an Nflows Base model. By applying
PairEpEsts in the base distribution space we are able to capture epistemic uncertainty in the output
space [4]. This approach enables the use of established formulae for computing distributional
distances.



PairEpEsts can in principle be extended to skewed or heavy-tailed base distributions, provided that the
pairwise premetric admits a closed-form expression. Recent work on tail-adaptive normalizing flows
[40, 25] offers a promising direction for incorporating heavy-tailed behavior into normalizing flows.
Integrating these approaches with PairEpEsts represents an important avenue for future research,
particularly in domains where tail risk is critical.

4.4 Integrating Pairwise Epistemic Estimators with Probabilistic Network Ensembles

In addition to Nflows Base ensembles, we extend PairEpEsts to PNEs, which are commonly used
for uncertainty quantification in regression [12, 38, 39]. PNEs comprise multiple components that
produce Gaussian predictive distributions with learned means and variances.

Applying PairEpEsts to PNEs leverages the closed-form pairwise distances between these Gaussian
outputs to estimate epistemic uncertainty without sampling. Formally, the estimator is:

M M
Ip(ya 9) = - Z m; In Z Uy eXp(_Dp(py\m,Gj H py|m,9i))7
i=1 J=1

where p,|; 9, denotes the i-th output distribution. Our experiments in Appendix E show that
PairEpEsts with PNEs achieve comparable or better epistemic uncertainty estimates than base-
lines, especially in high-dimensional settings. Although PNEs are less expressive than normalizing
flow ensembles, their combination with PairEpEsts offers a practical and efficient framework for
scalable uncertainty quantification across diverse ensemble models.

5 Experimental Results
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‘We evaluated our estimators on two 1D bench-

marks, hetero and bimodal. The ground-truth  Fjoure 2: In the right graphs, the brown dots are
data for hetero and bimodal can be seen in Fig-  gampled from Nflows Base and the cyan dots are
ure 2 on the right graphs with the cyan dots. For  the ground-truth data. The left graphs depict the
hetero, there are two regions with low density (2 epistemic uncertainty estimates corresponding to
and -2) as can be seen by the green bar chartin - our two proposed estimators and the density of the

the left graph which corresponds to the density  ground-truth data in the green histogram.
of the ground-truth data. In these regions, one

would expect a model to have high epistemic uncertainty. For bimodal, the number of data points
drops off as x increases, thus we would expect a model to have epistemic uncertainty grow as x does.
All details for data generation are contained in Appendix C.

In addition to the 1D environments, we tested our methods on four multi-dimensional environments:
Pendulum, Hopper, Ant, and Humanoid [55]. Replay buffers were collected and the dynamics for
each environment was modeled, fy(s:, a;) = §;+1. The choice of multi-dimensional environments is



Table 1: Mean RMSE on the test set for the last (100%") Acquisition Batch for Nflows Base. Experi-
ments were across ten different seeds and the results are expressed as mean + standard deviation.
The best means are in bold and results that are statistically significant are highlighted.

hetero bimodal Pendulum Hopper Ant Humanoid

Output Dim. 1 1 3 11 32 257
Random 1.56+0.14 64+062 0.15+£0.04 097£0.2 1.05+0.1 6.59+1.54
BatchBALD 1.54+0.16 6.42+£0.65 0.13+0.05 0.87£0.27 0.94+£0.03 533£1.2
BADGE 1.44+£0.12 6.01+£0.04 034+0.15 1.11£027 091+£0.04 7.31+£3.11
BAIT 1.51+0.14 6.26+033 0.17£0.05 1.06£05 094+0.04 11.01£0.23
MC (BALD) 1.54+£0.17 6.01+0.04 0.06+0.01 032+£0.02 1.01+0.05 10.71+0.43

KL (ours) 147+0.15 6.01£0.04 0.05£0.04 03£0.03 0.9+0.07 34+£048

Bhatt (ours) 1.55+0.31 6.0+£0.04 0.05+0.01 0.29+£0.03 0.93+0.08 3.37+£0.44

p < 0.05 p < 0.01 p < 0.001

motivated by their common use as benchmarks and their higher-dimensional output space, providing
a robust validation of our methods. Note that, for Ant and Humanoid, the dimensions representing
their contact forces were eliminated due to a bug in Mujoco-v2.

In the Mujoco environment, the input consists of the current state and action, which are used to predict
the next state based on the dynamics of the environment. In the hetero- and bimodal environments,
we simplify the task to take a single input variable x, and predict the output variable y.

5.2 1D Experiments

Our 1D environments provide empirical proof that PairEpEsts can accurately measure epistemic
uncertainty. Figure 2 depicts that both PairEpEsts are proficient at estimating the epistemic uncertainty
as each method shows an increase in epistemic uncertainty around 2 and -2 on the hetero setting.
This can be seen from the blue and orange lines with both estimators performing similarly.

A similar pattern can be seen for the bimodal setting in Figure 2, which shows that both PairEpEsts can
accurately capture epistemic uncertainty. Each estimator shows the pattern of increasing epistemic
uncertainty where the data is more scarce. Both examples show accurate epistemic uncertainty
estimation with no loss in aleatoric uncertainty representation, as demonstrated in the right graphs
in Figure 2: the brown dots closely match the cyan dots. Note that for visual clarity, the epistemic
uncertainty has been scaled to 0-1, while ensuring that the relative properties of the estimators
are preserved. Further discussion on over- and underestimation is provided in Section 6. While
simple count-based heuristics may suffice in toy 1D settings like Figure 2, they fail to scale to
higher-dimensional spaces where data is sparse and frequency statistics are uninformative. Moreover,
they cannot exploit learned representations of the model, which are essential for structured, high-
dimensional control tasks such as Hopper, Ant, and Humanoid. For these reasons, principled
estimators such as PairEpEsts are required in realistic settings.

5.3 Active Learning

While the 1D experiments provide evidence of our estimators’ effectiveness for estimating epistemic
uncertainty, the active learning experiments extend this evaluation to higher-dimensional data and for
a decision-making task. In order to benchmark our method, we compare against four state-of-the-art
active learning frameworks: BatchBALD which maximizes information gain over batches using MC
approximations [34], BADGE which uses gradient-based selection to identify the most informative
data points for model improvement [3] and BAIT selects data based on uncertainty estimation
through Bayesian active learning [2]. Additionally, a random baseline is included. The training set is
initialized with 100 or 200 data points for 1D and multi-dimensional environments, respectively. In
each acquisition batch, 10 points are added. For the MC estimator, 10® candidate inputs were sampled
to construct each acquisition batch, with their epistemic uncertainties estimated using X = 5000.
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Figure 3: Mean RMSE on the test set as additional data is incorporated into the training set for Nflows
Base. Both proposed methods perform comparably or significantly better than baselines, particularly

in high-dimensional settings.

In the Humanoid environment, only 100 candidates were used due to computational constraints. In
contrast, PairEpEsts sampled 10* candidate inputs and estimated their epistemic uncertainties for
each environment including Humanoid. This underscores one advantage of our estimators over MC
estimators, as they can estimate epistemic uncertainty over larger regions at a lower computational
cost than their MC counterparts. Note that the other benchmarks each sampled 10* inputs as well
and their respective acquisition functions applied. The RMSE on the test set was calculated at each

acquisition batch.

Table 1 shows the performance of each frame-
work on the 100th acquisition batch. Welch’s
t-test, with a Holm—Bonferroni correction (see
Appendix G), compares our estimators to base-
lines in each environment. PairEpEsts achieve
lower or comparable RMSEs, demonstrating
their efficacy in estimating epistemic uncertainty.
In higher dimensions, our estimators signifi-
cantly outperform other methods, as shown in
Humanoid. Learning curves are presented in
Figure 3. Note that in the bimodal setting, all
methods converge to similar performance and
are indistinguishable in the plot. BatchBALD
and BADGE, originally designed for classifica-
tion, required adaptation for regression, facing
challenges due to differences in uncertainty mea-
sure computation. Similarly, BAIT, designed
for 1D regression, did not perform well in high-
dimensional settings. The dashed line indicates
the performance of our model when trained on
the full dataset, serving as an upper bound for
comparison.
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Figure 4: RMSE on the test set at the 100" acqui-
sition batch of the MC estimator on the Hopper
environment for Nflows Base as the number of
samples, K, per input, =, increases. Experiment
were run across 10 seeds and the mean and stdev
is being reported.
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K = 5000 samples per acquisition candidate

across all environments.

For a deeper analysis of our method, we compared our estimators to MC estimators with a varying
sample size, K, in the Hopper environment. As expected, MC estimators perform on par with
PairEpEsts with a sufficient number of samples. This trend is illustrated in Figure 4. The MC
estimator reaches the peak performance of our estimators given enough samples but does not perform
better than PairEpEsts, suggesting that our estimators are sufficient to estimate epistemic uncertainty.

5.4 Time Analysis

In addition to benchmarking our estimators on active learning experiments, we provide an analysis of
the time gains across our experiments. Figure 5 depicts the speed increase that can be gained using
PairEpEsts over an MC approach. PairEpEsts provide a 1-2 order of magnitude runtime improvement
over Monte Carlo approaches. The estimates are obtained from the active learning experiments.

6 Limitations

PairEpEsts have quadratic computational cost as the number of components grows. For asymmetric
distances like KL-divergence, M? — M pairwise distances are computed, while symmetric distances
like Bhattacharyya require only WT’M Figure 6 shows timing as ensemble size increases. Bhat-
tacharyya’s cost could be further reduced using symmetry. Despite this, deep learning ensembles
usually have few components (5-10) [45, 12], making the complexity manageable. The limitation is

more relevant in large ensembles, such as weather forecasting [57].

PairEpEsts introduce a small bias absent in MC estimators. However, since active learning depends
on the relative ordering of acquisition scores, this bias does not affect performance. As shown in
Appendix D, the rankings are well preserved (Table 5). The relationships are illustrated in Figure 8,
with epistemic uncertainty values normalized between 0 and 1 in Figure 2.

7 Related Work

Bayesian neural networks with information-based criteria are widely used for active learning in
image classification [21, 32, 34], while others use gradient embeddings [3, 2]. Most focus on
classification, with few methods extending to 1D regression [2]. Our work tackles active learning
in high-dimensional regression, filling a gap relevant to robotic locomotion. Despite limitations of
mutual information in classification [58], we demonstrate its value in high-dimensional regression.

Ensembles have been harnessed for epistemic uncertainty estimation [39, 11, 12]. Specifically related
to our work, ensembles have been leveraged to quantify epistemic uncertainty in regression problems
and active learning [15, 48, 4]. Depeweg et al. [15] employed Bayesian neural networks to model
mixtures of Gaussians and demonstrated their ability to measure uncertainty in low-dimensional
environments (1-2D). Building upon this foundation, Postels et al. [48] and Berry and Meger [4]



extended the research by developing efficient NF ensemble models that capture epistemic uncertainty.
Our work advances this line of research by eliminating the need for sampling to estimate epistemic
uncertainty, resulting in a faster and more effective method, especially in higher dimensions.

In addition to Bayesian neural networks and ensemble methods, the concept of Credal Bayesian Deep
Learning has been introduced to enhance uncertainty quantification [7]. Furthermore, distributionally
robust statistical verification has been proposed for high-dimensional autonomous systems using
Imprecise Neural Networks, which provide uncertainty quantification guarantees [19].

Entropy estimators, which do not rely on sampling, is an active area of research [30, 31, 28, 35].
Kulak et al. [37] and Kulak and Calinon [36] demonstrated the utility of PaiDEs within Bayesian
contexts, employing PaiDEs to estimate conditional predictive posterior entropy. In contrast, our
approach provides a more general estimate of epistemic uncertainty, as defined in Equation 1, which
can be applied to both ensemble, Bayesian methods and deep learning models.

Several methods have emerged in the literature for estimating epistemic uncertainty without relying
on sampling techniques [56, 8]. Both Van Amersfoort et al. [56] and Charpentier et al. [8] focus on
classification tasks with 1D categorical outputs. Charpentier et al. [9] extends the work of Charpentier
et al. [8] to regression tasks but is limited to modeling outputs as members of the exponential family.
In contrast, our approach can handle more complex output distributions by directly considering the
outputs from NFs and can be applied to a larger space of regression models.

8 Conclusions

In this study, we introduced epistemic uncertainty estimators and applied them to Active Learning. We
depicted how our method can be used to more efficiently quantify uncertainty by leveraging closed-
form formulae instead of sampling. This led to improvements in computational speed and accuracy.
As learning becomes pervasive in high-dimensional tasks in society, our method is well-placed to
enable epistemic uncertainty awareness without unnecessary compute.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction align with the paper’s
contributions and scope. The paper introduces PaiDEs as a non-sample based method for
estimating epistemic uncertainty in regression tasks using ensembles, and it discusses its
benefits in terms of computational efficiency and accuracy.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations of PaiDEs, particularly with respect to the
quadratic computational complexity as the number of components increases, and the bias
introduced by PaiDEs, which does not affect the relative relationships between data points
Section 6.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results, assumptions, and proofs are provided in the appendix
of the paper, with detailed discussions of the assumptions for each result.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code is included in the supplementary material, and all necessary details,
including the experimental setup and hyperparameters are provided in the paper to ensure
the experiments can be reproduced.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided with the paper, and the data will be made publicly
available upon publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details, including data splits, hyperparameters, and training
settings, are thoroughly discussed in the paper and appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars, p-values, and statistical significance tests, such as
Welch’s t-tests, across various experimental settings to ensure the robustness of the results.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides details about the computational resources used for experi-
ments, including the type of compute workers (CPUs and GPUs), memory requirements,
and execution times.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper follows the NeurIPS Code of Ethics,
ensuring fairness, transparency, and responsibility in the handling of experiments.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: The paper discusses both the potential positive impacts of improving epistemic
uncertainty estimation in active learning scenarios. To the best of our knowledge, there are
no potential negative societal impact to epistemic uncertainty estimation.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The data used in this paper is just simulated robotics data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets (such as datasets and code) used in the paper are properly credited,
and the license and terms of use are respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper are well documented in the supplementary
material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects was involved in this study.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No research with human subjects was conducted in this paper.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used as a core method in this paper, only in the writing process.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A  Proofs

The proofs follow from the steps of Kolchinsky and Tracey [35].
Proof of Theorem 3.1

Proof. Applying D,,in(p; || pj) as our distance in PaiDEs,

H(Y|X)=H(Y|X,0) - Zman% exp (—Diin(pi || p;))

H(Y|X,0) Zmanﬂ']
=H(Y|X,0).

Note the last line follows from the fact that the component weights must sum to one, Zﬁl m; = 1.
Next using Doz (pi || pj)s

H(Y|X)=H(Y|X,0) - ZMIHZ% exp (—Diaz (pi || p5))

Y‘X @ Zmln 7TL+Z7TJ eXp max(pi || pj))
J#i

=H(Y|X,0) Zmlnm

= H(Y|X,0) + H(®|X)
— H(Y,0|X).

This shows the upper bound with D,,q,(p; || p;) and the lower bound with Dy, (p; || p;). Note
that in our case H(O|X) = H(O) as the distribution of weights does not depend on our input. [

Proof of Corollary 3.2

Proof. To show the upper bound from Equation 6 we use a derivation from Haussler and Opper [23],

H(Y|X)=H(Y|X,0) /Zmpz yla)1 p;f{;ﬁﬁf)dy

_ B o (ule) In py|x (ylz)
=H(Y|X,0) /; ipi(yle) 1 pi(y|$)1_a2jijj(y|$)1_ady

M l—«
s
- / 3 mupilyle) n 2

i=1

pi(ylz)~

M s (yle)—e
H(Y|X,0) - / Zmpi(y\x)ln 2 ;f();%a) dy

H(Y|X,0) Zmln/pz ylz)® ZWJPJ (ylar)'~d

H(Y|X,©) Zm lnzm exp (—Cal(pi [ p;))-

The two inequalities follow from Jensen’s inequality. O
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Proof of Corollary 3.3

Proof. The lower bound can be shown using the definition of entropy for a mixture,
H(Y|X) = ZmE 1nZ7r]pJ (yl)
< - Zm IHZWJ exp (Ep, [Inp;(y|z)])
:—Zmlnzﬁgexp H(pi | p;))
— Z: mH(p:) — Z e 1nZ: mjexp (=K L(pi || p;))

H(Y|X,0) Zmlnzmexp —KL(pi || p;))

where E,, refers to the expectation when Y is distributed as p; and H (p; || p;) indicates the cross
entropy. The inequality in line 2 follows from Hershey and Olsen [24] and Paisley [46]. O

A.1 PairEpEst-KL vs EPKL

In addition to the previous results from Kolchinsky and Tracey [35], we provide a unique proof to
our paper demonstrating that the PairEpEst-KL estimator provides a strictly tighter upper bound on
MI than the Expected Pairwise KL (EPKL) introduced by Malinin and Gales [42]. EPKL is another
uncertainty measure that captures epistemic uncertainty by averaging the pairwise Kullback-Leibler
divergences between predictive distributions of ensemble members. It quantifies how diverse the
ensemble’s predictions are, reflecting the model’s uncertainty due to lack of knowledge or data. EPKL
serves as an upper bound on MI. Our PairEpEst-KL estimator leverages a log-sum-exp formulation,
yielding a sharper (tighter) upper bound on MI, which leads to more precise uncertainty quantification.

Specifically, consider an ensemble of M predictive distributions p1(y), ..., pas(y). The EPKL is
defined as the average pairwise Kullback-Leibler divergence between distinct ensemble components:

1
EPKL:= s ;DKL (i (W)llp; ()-

Our PairEpEst-KL estimator, denoted by B, is given by
1M
Bi=—5:> In ZeXp — Dxw(pi(v)Ip; (1))
i=1

The following theorem formalizes the relationship between these two quantities and establishes that
B < EPKL,

meaning that PairEpEst-KL yields a strictly sharper upper bound on MI compared to EPKL.
Theorem A.1. Let p1(y),...,pnm(y) be probability distributions, and define

A= ZDKL (ri(W)llpi(y)),

2751
and

Zln MZeXp — Dxw(pi(y)lp; ()
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Then,
B < 7ZDKL Pi(W)llp; (y)) < A,

and in particular,

B < A.

Proof. Define
sij == —Dxu(pi(y)llp; (y)) < 0.
By Jensen’s inequality applied to the concave function In(-), for each fixed i,

M Z V) = ar s
j:l
Multiplying both sides by —1 reverses the inequality:
M M
Mzgesij S_Mz:lsij'
j= i=

Substituting back for s;;, we get

M
Zexp D) lps ) | < 17 D D (i) s ()

j=1
Averaging over i, it follows that
M ] MM
— — —Dxr(p:llps) — Al
= Z | = Z KL <P ;jﬂ Dy (pillps)-

Since Dkr,(p;||pi) = 0, the double sum over all 4, j is equal to the sum over i # j:

M M
DO Dxwpillps) =D Dxwu(pillpy)-
i=1 j=1 i#£]
Note that L 1
M2>M(M—1):>W<m,
SO
B<— ZDKL (pillp;) < ( ZDKL (pillp;) =
i#£] L#J

which establishes the strict inequality
B < A,

completing the proof.

B Compute and Hyper-parameter Details

The Nflows Base model employed one nonlinear transformation, g, with a single hidden layer
containing 20 units, utilizing cubic spline flows as per [17]. The base network consisted of two
hidden layers, each comprising 40 units with ReLU activation functions. It is important to note
that all base distributions were Gaussian. The PNEs adopted an architecture of three hidden layers
each with 50 units and ReLLU activation functions. Model hyperparameters remained consistent
across all experiments. The base distribution and the bijective mapping are trained simultaneously.
Each base distribution network is mapped through the same bijective mapping, which is shared
across all ensemble components. Every time a base distribution network takes a training step,
the bijective mapping is updated accordingly. This approach ensures that the bijective mapping
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Algorithm 1 Active Learning Using PairEpEsts

Input: training dataset Dy,qin, oracle dataset D,.qc1e, number of iterations 7', sample size S, and
batch size B
for i=1,2,...,.7 do
Randomly initialize each ensemble component 6;.
Train our ensemble on D;,.4;, using bootstrapped samples.
Sample S points from Dy,.4¢1 uniformly, Dg.
Calculate the top B values according to Equation 9 from Dg, Dp.
Add Dp to the training dataset while removing it from the oracle dataset, Dy,qin, = D UDirain
and Doracte = Doracle \ Dp
end for
train final model on Dy,gin,.

Nflows Base : Epistemic Uncertainty

N~

Base Distributions Output Distributions Base Distributions Pairwise Distances

Figure 7: Nflows Base as an ensemble of 3 components with one bijective transformation on the left
and an example of the pairwise comparisons needed to estimate epistemic uncertainty for said model
on the right. Note the base distributions, instead of the output distributions, from Nflows Base are
used to estimate the epistemic uncertainty which are highlighted by the blue bar.

is consistent across all components of the ensemble. This methodology is similar to previous
approaches, such as those proposed by Osband et al. [45], where shared mappings are utilized
within ensemble-based models. Training was conducted using 16GB RAM on Intel Gold 6148
Skylake @ 2.4 GHz CPUs and NVidia V100SXM2 (16G memory) GPUs. For each experimental
setting, PNEs and Nflows Base were executed with five ensemble components. The MC estimator
sampled 1000 and 5000 points for Nflows Base and PNEs, respectively, for each = conditioned
on. The nflows library [18] was employed with minor modifications. Our code can be found at
https://github.com/nwaftp23/pairflow-uncertainty.

Note that for the Bhatt estimator, the Bhattacharyya distance between two Gaussians is,

1 1 det X
Dg(pillp;) = < (ttije — t512) S (lije — 115 ~1 :
5 (pillps) = (e = Hjla) 7 (e ugx)+2n< detEi|xdet2jx>
_ Zile + Zjje

2
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Also note that for the KL estimator, the KL divergence between two Gaussians is,

det Ej\a: Ta1
det Zzz) * (,uj|:v o ,Uz|a:) 2:j|ar:('u]‘\95 - .uz|:v) )

1 _

where tr(-) refers to the trace of a matrix.

To complement the per-step acquisition runtimes reported in Figure 3, we also provide end-to-end
active learning runtimes in Table 3 and Table 4. These results reflect the total wall-clock time
required for a full active learning loop in each environment. These tables reinforce the efficiency
advantage of PairEpEsts: across both architectures, KL and Bhatt estimators consistently require less
total runtime than MC, particularly in higher-dimensional environments such as Ant and Humanoid.
Notably, the runtime gap widens with dimensionality, reflecting the scalability of PairEpEsts relative
to sampling-based methods.

To justify our choice of five ensemble components, we conducted an additional experiment analyzing
the effect of ensemble size on active learning performance. This experiment was performed on the
Hopper environment, with performance measured as RMSE at the final acquisition batch. Results
are reported in Table 2. Performance improves markedly when increasing from 3 to 5 members,
but remains stable for larger ensembles, suggesting that five components provide a strong balance
between efficiency and accuracy.

Table 2: RMSE at the final acquisition batch for different ensemble sizes on Hopper.
3 4 5 7 10

KL 0.51 043 030 031 0.29
Bhatt 050 045 029 028 0.30

Table 3: Total active learning runtimes (minutes) for Nflows Base across environments.

Hetero Bimodal Pendulum Hopper Ant Humanoid

KL 58.14 58.22 76.02 77.06 80.21 96.28
Bhatt  57.72 58.04 76.86 76.94 78.54 95.58
MC 61.87 61.82 94.44 98.66  117.40 155.34

Table 4: Total active learning runtimes (minutes) for PNEs across environments.

Hetero Bimodal Pendulum Hopper Ant  Humanoid

KL 22.68 22.50 28.44 28.60  30.58 35.24
Bhatt  22.50 22.36 28.24 28.88  30.14 36.04
MC 24.42 24.62 35.22 46.42  66.96 84.30

C Data

The hetero dataset was generated using a two step process. Firstly, a categorical distribution with
three values was sampled, where p; = % Secondly, x was drawn from one of three different Gaussian

distributions (N (—4, 2), N(0, 35), N(4, 2)) based on the value of the categorical distribution. The

corresponding y was then generated as follows:
y = Tsin(x) + 3z ’cos (g)‘ .

On the other hand, the bimodal dataset was created by sampling = from an exponential distribution
with parameter A = 2, and then sampling n from a Bernoulli distribution with p = 0.5. Based on the
value of n, the y value was determined as:

~ [10sin(z) + 2 n=0
~ |10cos(z) +2+20—z n=1"
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Note that for both bimodal and hetero data z ~ N (0, 1).

Regarding the multi-dimensional environments, namely Pendulum, Hopper, Ant, and Humanoid,
the training sets and test sets were collected using different approaches. The training sets were
obtained by applying a random policy, while the test sets were generated using an expert policy. This
methodology was employed to ensure diversity between the training and test datasets. Distribution
shift is an inherent challenge in robotic dynamics, where data generated from different policies can
vary significantly. These shifts, such as those observed in sim2real and imitation learning contexts.
Notably, the OpenAl Gym library was utilized, with minor modifications [6].

D Additional Results

In addition to Table 1, we present Figure 3 show-
ing the full active learning curves and Table 7
detailing additional acquisition batches. The
trend of PairEpEsts outperforming or perform-
ing comparably to baselines is consistent across
environments and acquisition batches. We also
evaluated log-likelihood, a proper scoring rule

Uncertainty

'IIIMiIi!ih:!Iiﬂi!!i;:ii

[22], with results shown in Figure 9. Using 10 x X
seeds, we report means and standard deviations.
The PairEpEst-KL and PairEpEst-Bhatt estima- mmmm MC  =mm Bhatt KL |

tors perform similarly or better than the MC

estimator on all environments. Figure 8: The bias introduced by PairEpEsts for

For the high-dimensional Humanoid setting, Nflows Base compared to the MC method on the
however, log-likelihood did not improve as data 1D environments.

was added. This limitation arises because com-

puting ensemble log-likelihood requires evaluating each component’s likelihood and summing them,
a process prone to numerical underflow as values round to zero. As in Table 1, selected acquisition
batches are reported in Table 8. We further compare the MC estimator and PairEpEsts on Hopper
as the number of drawn samples increases (Figure 10). Additionally, we assessed the consistency
of active learning rankings by computing Spearman’s rank correlation between the MC estimator
and PairEpEsts. As shown in Table 5, correlations are close to 1 across all models and datasets, indi-
cating strong preservation of relative ordering despite small biases. All correlations are statistically
significant with extremely low p-values (maximum p = 1.11 x 107%3),

As summarized in Table 6, Monte Carlo methods achieve comparable runtime to PairEpEsts with
roughly 10 samples in Hopper, and with even fewer samples in higher-dimensional environments
such as Ant and Humanoid. This suggests that small-sample MC can, in principle, be competitive in
terms of computational cost. However, PairEpEsts provide robust and consistent uncertainty estimates
without the need for sample tuning, making them particularly advantageous in high-dimensional
tasks where both runtime efficiency and estimator stability are critical. Moreover, the accuracy of MC
estimates deteriorates as the number of samples decreases, whereas PairEpEsts maintain reliability at
low computational cost.

Table 5: Spearman’s rank correlation coefficients comparing active learning rankings between MC
and PairEpEsts, demonstrating that our estimators preserve relative ranking of points.

Model Dataset KL Corr. Bhatt Corr.

NFlows Base Bimodal 0.9958 0.9958
NFlows Base Hetero 0.9976 0.9986
PNEs Bimodal  0.9893 0.9893
PNEs Hetero 0.9943 0.9972
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Table 6: Number of MC samples that matched the runtime of PairEpEsts across environments.

Environment Dimensionality MC Samples (Runtime Matched)

Hetero 1 500
Bimodal 1 500
Pendulum 3 100
Hopper 11 10
Ant 27 5
Humanoid 257 5

Table 7: Mean RMSE on the test set for certain Acquisition Batches for Nflows Base. Experiments
were across ten different seeds and the results are expressed as mean plus minus one standard
deviation.

Random BatchBALD BADGE BAIT MC (BALD) KL (ours) Bhatt (ours)
Env Acquisition Batch

10 1.76£0.17 1864035 1844036 1924028 148+02  1.66+0.2 1.56 +0.26

hetero 25 1.69+£045 1.66+026 1.74+£025 1714053 144401  142+0.12  142+0.11
50 1.64+£022 1.54+£0.18 1.55+0.0 164022  145+0.12 1494029 142+0.11

100 156+£0.14 1544+0.16 1444012 1514014 1544017 147+0.15 1.55+031

10 S4L338 737138 6I1L01 691L145 602L£005 60IL005 601L0.05

vimodal 2 6.1+£008 674+066 602+£004 685+146 6.04+004 6.02+005 6.01+0.04
50 6.57+072 6424066 6.01+004 6614097 6.01+0.04 601+004 6.0+004

100 64+£062 64242065 601+£004 6262033 601+£004 601£004 60004

10 0281006 0322023 032£027 042£0.19 0.2£004 0.15£006 0.17£0.08

Pondutim 2 0224008 0.174+006 031+0.19 0.194007 0.09+0.03 0.09+0.03  0.09+0.02
50 0.18£0.08 0.15£0.06 0.28+0.14 0.17£0.06 0.06+0.03 0.06£0.05  0.05+0.01

100 0.15+£0.04 0.134£0.05 034+0.15 0.174+005 0.04+£001 005+004 0.05+0.01

10 162019 131026 1451028 136E0.19 0551009 066L008 0.69L0.1

H 25 124+£026 13+033 1372023 1.18£029 036006 038+£0.05 0.39+0.06
opper 50 1.14£0.16 106403 1264023 1.05+027 031£004 033+£003  0.34+0.04
100 097402 0874027 111+£027 106405  029+002 0.3+0.03 0.29 -+ 0.03

10 133200 I[3[L0.11 I121L£0.14 1255008 124L0.13 LO9L0.1 T.I3£0.09

Ant 25 1.13£0.09 1094003 1.05+£004 1084004 1.13+0.1 1.0 +0.07 1.03+£0.08
50 1.054£0.05 1.014+003 1.024£006 098+0.03 1.05+£0.03 093+£0.05  0.94+0.07

100 1.05£0.1 0944+0.03 091+£0.04 0944004 101005 0.9+0.07 0.93£0.08

10 879LI.17 826L191 86+243 1097£015 10.69L1.05 682L134 751163

Humanoid 2 697+148 659+181 678+£324 11.01+0.17 1065+081 511+134 53+151
50 704134 6424155 7874292 11074025 10944058 4274094 4.08+0.8
100 6594154 533+£12 7314311 11014023 10712043 344048 3372044

p < 0.05 p < 0.01 p < 0.001
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Figure 9: Mean Log Likelihood on test set as data was added to the training sets for Nflows Base.
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Figure 10: Log-Likelihood on the test set at the
100" acquisition batch of the MC estimator on
the Hopper environment as the number of samples
increases, K, for Nflows Base. Experiment run
across 10 seeds and the mean is being reported.
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Table 8: Log Likelihood of a held out test set during training at different acquisition batches for
Nflows Base. Experiments were across ten different seeds and the results are expressed as mean plus
minus one standard deviation.

Env Acq. Batch Random BatchBALD BADGE BAIT MC (BALD) KL (ours) Bhatt (ours)
10 0.54+027 0.21+1.04 067 +2.48 0.27+0.7 0.95+0.12 0.93+0.14 0.99+0.12
hetero 25 0.79+0.18 0.72+0.37 0.77+0.26 0.66+0.47 1.06 +0.06 1.06 +0.12 1.1140.09
50 0.8+0.18 0.99+0.17 0.95+0.18 0.92+0.25 1.08 £ 0.04 1.0740.16 1.1540.14
100 0.86+0.14 111£0.15 0.8+£0.7 1.140.14 1.09+0.1 112401 1.1440.13
10 3057 +£12.61  -53.07+7.95 -5.87+8.38 5774 11.26 1.08 +0.09 1.11+0.1 1.11+0.1
bimodal 25 -16.55+9.04  -40.63 4 18.86 1.0+£0.33 414+ 14.8 1.21+0.09 1.17+0.1 1.27 +0.09
50 21085485  -22.17+13.04 1.21+0.15 3298+ 13.61  1.2240.11 1.2+0.1 1.21+0.11
100 -6.19 + 8.66 13544135 1314016  -12.65+£1191  1.26+0.13 126+0.1 1.26+0.14
10 555+6.8 47.16+31.67 -53.04+2671 -61.82+3852  581+3.29 6.17+1.86 58+ 1.41
Pendulum 25 0784592  -1234+1657  -280+16.65  -22.15+8.47 8.72+0.45 8.45+0.55 8.3+0.7
50 377+1.8 2.5145.06 743 46.72 -8.46+4.94 9.77+0.36 9.95+0.5 9.59+0.27
100 5194245 3.04+238 229429 4414531 10.16+0.7 10.49 40.23 9.58+0.8
10 -136.85+53.59 -147.16+77.99 -12043+77.99 -201.21+50.44 13.94+554 11.59+432 1144 +231
Honper 25 28042816  -9448+71.55 -118.09+6533 -88.87+71.52  23.18+1.41 22.71+0.86 22.29+0.95
opPpe 50 055+6.82  -1933+2502 -3816+25.17  -17.249.63 2643+137  25.72+1.04 250+ 1.6
100 8.67 +3.39 4.53+531 4.1646.1 1.06 +3.61 26.62+1.14 2696+ 1.11 26.88 +0.91
10 -0.5+16.68 -80.2+4622  -44.85+2071 -72.13+37.99  2448+5838  25.41+5.08 21.59+9.0
Ant 25 31.08+5.4 1706 £13.16 ~ 21.22+10.61  23.12+11.37 39774334  40.62+285 37.58+2.37
! 50 43374 1.85 43.43+4.81 40.05 +6.86 40.89+7.56  45.67+1.76  45.07+1.62 4477 +1.39
100 47524136 5438+323 55.48+1.72 51.56+3.68 49294078  48.12+205 46.52+2.42
10 200.61+£20.02  -243.1+6.03  -18246+99.5 -230.61+9.92  -249.14+0.69 -221.09+10.68 -201.28+22.78
Humanoid 25 2235441372 221224942  -173.12+89.96  -24586+1.8  -247.84+1.74 246294192  -247.16+1.04
umanot 50 244154152 -23624+587 1920747755 248414093 -247.76+2.11 -24939+043  -249.57+0.62
100 247824128  -24458+2.1  -163.78+1249 249714032 -24647+299 -249.76+04  -249.97+0.05
p < 0.05 p < 0.01 p < 0.001
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Figure 12: Mean RMSE on test set as data was added to the training sets for PNEs.

E Probabilistic Network Ensembles

In addition to ensembles of normalizing flows,
we also explored the use of probabilistic net-
work ensembles (PNEs) as a common approach
for capturing uncertainty [12, 38, 39]. The
PNEs were constructed by employing fixed
dropout masks, where each ensemble compo-
nent modeled a Gaussian distribution. The
models were trained using negative log like-
lihood, with weights randomly initialized and
bootstrapped samples from the training set to
create diversity amongst the componenents. Our
findings paralleled those of Nflows Base, in that
PairEpEsts performed similarly or better than
baselines and statistically significantly in higher
dimensions. These results are presented in Fig-
ure 12 and Figure 13, as well as Table 9 and
Table 10. Note that PNEs did not perform as
well as Nflows Base as they are not as expres-
sive this can be seen for the bimodal setting in
Figure 11. Furthermore, we have included the
1D graphs illustrating the performance of PNEs
in hetero and bimodal in Figure 11. Similarly to
before, we also provide a comparison of the MC
estimator as the number of samples increased in
Figure 14. While we could have implemented
ensembles with different output distributions to
better fit the data, we decided to stick with Gaus-
sians as they seem to be the most frequent choice
[12, 38, 39]. Moreover, in order to pick the best

Uncertainty & Density

Uncertainty & Density

(b) bimodal

'— Bhatt = = KL @ groundtruth ° modell

Figure 11: In the right graphs, the cyan dots are the
ground-truth data and the brown dots are sampled
from PNEs. The 2 lines depict epistemic uncer-
tainty corresponding to different estimators. The
left graphs depicts the ground-truth data as the blue
dots and its corresponding density as the orange
histogram. Note the legend refers to the lines in
the right graphs.

distributional fit would require a hyper-parameter search or apriori knowledge whereas NFs will learn

the best distributional fit.
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Figure 13: Mean Log Likelihood on the test set as data was added to the training sets for PNEs.
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Figure 14: RMSE and Log-Likelihood on the test set at the 100*" acquisition batch of the MC
estimator on the Hopper environment as the number of samples increases, K, for PNEs. Experiment
run across 10 seeds and the mean is being reported.
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Table 9: Mean RMSE on the test set for certain Acquisition Batches for PNEs. Experiments were
across ten different seeds and the results are expressed as mean plus minus one standard deviation.
Note that nothing was bolded for bimodal as many methods performed similarly.

Env Acq. Batch Random BatchBALD BADGE BAIT MC (BALD) KL (ours) Bhatt (ours)
10 39+147 69+1.15 691 +£1.77 6.9+1.58 1.94+0.34 2.11+£0.34 2.36+£0.75

hetero 25 442+143  443+2381 4.06+2.58 5.02+2091 1.75+0.27 1.86 £0.39 1.96 £0.44
50 396+ 1.71 406+2.64 512+278 522+293 1.78 £ 0.51 1.68 +0.34 1.67 +£0.27

100 4.28+1.45 5.1+£292 4.54+2.89 6.01£2.82 1.66 + 0.31 1.83+£0.51 1.98 £0.81

10 6.52+088 6.05+0.07 6.19+027 6.11+0.15 6.01 £0.04 6.02 +£0.04 6.01 £0.04

bimodal 25 6.1£0.08 626+£0.75 631+£0.83 6.3+£0.88 6.01 £0.04 6.01 £0.04 6.01 £0.04
50 6.13+£0.13 6.04+£0.07 6.02+0.03 6.01+£0.04 6.01+£0.04 6.01 £0.04 6.01 £0.04

100 6.06+0.08 6.01+£0.03 6.03+0.03 6.01+0.04 6.01+0.04 6.01 £0.04 6.01 £0.04

10 0.31+0.11 0.15+£0.02 0.16+0.05 015+0.03 0.19+0.04 0.18 +£0.06 0.2£0.07

Pendulum 25 0.27+£0.09 011£0.03 0.12£0.03  0.11£0.03 0.16+0.02 0.12+0.04 0.13+£0.04
50 0.25+0.07 0.08+0.02 0.09+0.02 0.08+0.02 0.15+0.03 0.08 £ 0.02 0.09 £0.03

100 0.28+£0.06 0.07£0.03 0.07£0.02 0.08£0.02 0.16+£0.03 0.09 £ 0.06 0.08 £0.05

10 1.85+0.14 1.4440.31 1.12+£0.29 1.16+£0.37  0.94+0.16 1.19+£0.21 1.14£0.18

Hopper 25 1.9+0.14 0.6+0.13 0.66+0.19 0.55+0.12 0.734+0.13 0.72 +0.08 0.71 £0.1
PP 50 1.83+£0.13  054£0.15 055£0.15 051£0.12  0.57+0.06 0.57 £0.06 0.57+£0.05
100 1.72+£0.14 0.4+ 0.05 049+0.13  043+£0.05 0.5+0.04 0.44 +0.04 0.49+£0.05

10 1.89+0.12 227+0.13 224+0.12 2.15£0.18 1.87+0.25 1.62+0.16 1.52+0.18

Ant 25 1.74+0.13  2.15+£0.21 2.14+0.18  2.12+0.25 1.67+£0.25 1.43+0.12 1.39+0.12
50 1.55+0.1 22+0.13 2.16+0.14  2.11+£0.18 1.61+£0.22 1.29 + 0.06 1.3+£0.04

100 1.5+£0.12 2.01+£0.2 1.99+0.2 1.97£0.15 1.73+0.22 1.26 £+ 0.08 1.24 +0.04
10 10.73+£0.32 11.63+£0.19 11.22+0.29 1095+0.17 10.414+0.53 9.95+1.1 10.65+0.84

Humanoid 25 10.38+£0.22 11.36+£0.26 11.07£0.26 1091+£0.25 1044+0.55 6.54+2.13 8.22+£247
50 1029£0.19 113703 1098£022 1094+0.25 10.34+0.81 4.91+0.24 6.33+£2.24

100 10.17£03 11.324+0.16 10.994+0.26 11.05+0.21 10.57+0.41 4.84+0.24 6.25+£2.32

p < 0.05 p < 0.01 p < 0.001
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Figure 15: The bias introduced by PairEpEsts for
PNEs compared to the MC method on the 1D envi-
ronments.
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Table 10: Log Likelihood on the test set during training at different acquisition batches for PNEs.
Experiments were across ten different seeds and the results are expressed as mean plus minus
one standard deviation. Note that no values were highlighted for Hopper despite the results being
statistically significant. In this case, the results are statistically significantly worse and we found it
misleading to highlight.

Env Acq. Batch Random BatchBALD BADGE BAIT MC (BALD) KL (ours) Bhatt (ours)
10 0.13+£0.57 0.67+0.55 0.724+0.61 -0.78 +0.59 0.89+£0.1 0.87+0.15 074403
hetero 25 0.03+0.47 0.33+0.76 0.38+0.76 0.13+0.82 1.02+0.11 0.95+0.14 0.92+0.24
50 0.234+0.57 0.48+0.71 0.14+0.77 0.11+0.85 1.014+0.15 L1011 1.094+0.12
100 0.23+0.42 0.23+0.78 0.28+0.85 0.03+0.74 1L1+0.11 1.11£0.17 1.08+£0.2
10 -17.71£1001  032+0.33 0.41+0.21 -1.36+£4.14 0.6+0.1 0.59+0.14 0.61+0.07
bimodal 25 -20.78 +5.64 0.61+0.19 0.48+0.23 0.57+021 0.66+0.03 0.66+0.03 0.67 +0.04
50 -12.93+8.55 0.66 +0.09 0.59+0.16 0.61+0.18 0.69 +0.02 0.69 +0.03 0.69 +0.03
100 -5.79+£7.19 0.66+0.1 0.64+0.11 0.68 +0.08 0.7+0.02 0.7+ 0.02 0.7+ 0.02
10 2354294 -1076+728  -1525+886  -9.76+9.09  4.94+048 551+0.72 5.21+0.61
Pondulum 25 4.19+0.89 0.4+ 14.08 0.2+ 13.03 4.68+2.98 5.45+0.43 6.21+0.98 6.23+0.84
i 50 434+0.75 8.344+0.83 7.97+0.74 8.68+0.72 5.9240.32 765405 7.15+0.76
100 4.69+0.56 9.53 +0.96 7.07+5.49 8.8+1.23 6.09+0.42 7.66+0.64 7.77+0.68
10 319442824 266541557  -1296+9.55  -10.81+£425  9.36+1.79 8.55+1.34 8.55+1.88
" 25 5.74£2.66 12.62+4.32 13884227  1729+£345 1331423 139413 1393+ 1.6
opper 50 231+3.08 2728 +2.42 23494297  28.08+276  1643+1.27 17.6+ 1.89 16,93+ 1.43
100 1.75+2.83 3035+ 1.44 2654+2.19  2844+152  185+0.65 20.19 +1.37 18.54+1.23
10 11834229 49141237 3294643 1024557 13.8£5.87 22.1343.11 23324273
Ant 25 17.78 +£2.28 5.79+7.68 8.4443.68 11.97+541  18.69+£9.06 2698+ 1.64 27.66 +1.78
50 22214211 12244325 1494 +33 1616432 2054888  29.84+1.09 29.62+0.7
100 2344185 1526465 16.87+£3.75 19.6+£207  20.03+£9.87  31.24+1.09 31.63+0.9
10 23041+19.87 -156.59+82.79 -210.52+5323 -24205+£296 -247.83+171 -22642+4674 -19478+73.74
" " 25 245454224 2249543712 245824503 24734126 -247.83+1.19 -247.3943.18  -232.34+42.02
wmanot 50 24691128  -24738+3.28 249284052  -2492+0.52 -248.06+1.82 -249.41:£0.73 -223.49+77.83
100 24774406  -24897+1.1 2494406  -249.664+0.53 24725336  -249914+0.12  -223.29-+79.8
p < 0.05 p < 0.01 p < 0.001
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F Introduction to Normalizing Flows

NFs are powerful non-parametric models that have demonstrated the ability to fit flexible multi-
modal distributions [54, 53]. These models achieve this by transforming a simple base continuous
distribution, such as Gaussian or Beta, into a more complex one using the change of variable formula.
By enabling scoring and sampling from the fitted distribution, NFs find application across various
problem domains. Let B represent the base distribution, a D-dimensional continuous random vector
with pp(b) as its density function, and let Y = ¢(B), where g is an invertible function with an
existing inverse ¢!, and both g and ¢! are differentiable. Leveraging the change of variable
formula, we can express the distribution of Y as follows:

py (y) = palg~" ()| det(J (g~  (v)))], (11)

where J(-) denotes the Jacobian, and det signifies the determinant. The first term on the right-hand
side of Equation 11 governs the shape of the distribution, while |det(.J(g~!(y)))| normalizes it,
ensuring the distribution integrates to one. Complex distributions can be effectively modeled by
making g(b) a learnable function with tunable parameters 6, denoted as gy (b). However, it is essential
to select g carefully to guarantee its invertibility and differentiability. For examples of suitable
choices, please refer to [47].

G Hypothesis Testing Details

We conducted Welch’s t-tests to compare means (1;, 1t;) between different estimators, as this test
relaxes the assumption of equal variances compared to other hypothesis tests [13]. The means for
both KL and Bhatt were compared to each of the baseline methods: BatchBALD, BADGE, BAIT,
MC and random. To control the family-wise error rate (FWER), we performed a Holm-Bonferroni
correction across each setting, environment, and acquisition batch. This follows best practices to
ensure our results are statistically significant and do not occur just by random chance.
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