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Abstract

Normative accounts of decision-making predict that people attempt to balance the
immediate reward associated with a correct response against the cost of deliberation.
However, humans frequently deliberate longer than normative models say they
should. We propose that people try to optimize not only their rate of material
rewards, but also their rate of information gain. A computational model that
combines this idea with a standard drift diffusion process reveals that an agent
programmed to maximize a combination of reward and information rates acts like
human decision makers, reproducing key patterns of behavior not predicted by
existing models. Moreover, if we assume that skill level is sensitive to deliberation
time, a novice agent who maximizes even a small amount of information rate will
often earn more reward in the long run than one who only maximizes reward rate.
Maximizing a combination of reward and information rate is a relatively simple
and myopic strategy, but approximates optimal behavior over learning, making it a
candidate heuristic for this difficult intertemporal choice problem.

1 Introduction

Motivation. Normative accounts of decision-making predict that humans attempt to maximize the
rate at which they are rewarded by optimizing how long they spend deliberating: long enough to
make informed decisions, but not so long as to waste precious time [10, 11]. Mysteriously, this
prediction is often violated. Humans systematically fail to maximize their reward rate by spending
too much time deliberating [5, 1]. Several accounts of why humans fail to maximize reward rate have
been offered [4, 23], but none provide a particularly good fit to the data. We propose a solution to
this puzzle, one that draws on evidence that when humans and non-human animals select between
competing options, they prefer informative over uninformative options [19, 2], even at the expense of
instrumental reward [3, 6, 9, 16]. Specifically, we suggest that the motivation to consume information
influences not only what people choose, but also how long people take to choose. In the specific case
of binary choice, we propose that when determining how long to deliberate, people try to optimize
not only their rate of reward, but also their rate of information gain.
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Figure 1: Model description and decision time analysis. (a) accumulator state. (b) p(stimulus ‘A’)
and p(correct) (x, confidence). (c) instantaneous info in via eq. 1. (d) total info (sum over in). (e)
within-trial reward rate r̂n (rps) and information rate în (bps) via eqs. 2,3. (f) scaled (0 to 1) bps and
rps are combined via a weighted sum where w (weight bps) controls the weight of bps relative to rps.
This reward-information rate mix m̂n is passed through a Kalman filter for smoothing. (g) a decision
is made when m̂n has peaked (dm̂n/dt = 0). (h) accumulator state at DT determines the outcome.
(i) DDM fits to model simulations. Insets: DDM data generated with the fitted parameters and re-fit.
p-value: simulation BICs larger (worse) than model’s BIC. (j) Fitted DDM parameters by w.

Background. In a standard drift-diffusion model (DDM), decision-makers accumulate noisy evidence
over time [18]. Given a set of prior beliefs about the evidence-generating process, decision-makers
can use the accumulated evidence to compute, at each moment in time, the posterior probability that
a given option is correct [10, 17, 8]. A decision is made once the accumulated evidence reaches
a predetermined bound [18], which denotes how confident a decision-maker needs to be about
which option is correct before making a decision. This bound can be constant or change over time
[10, 17], and its location will impact the agent’s reward rate. There exists an optimal bound for every
signal-to-noise ratio (SNR) and inter-trial interval that can be parametrized as a relation between
decision time (DT) and error rate (ER) called the optimal performance curve (OPC) [4].

2 Model & Results

Model overview. We propose a DDM whereby an agent makes a decision when a mixture of within-
trial reward rate and information rate is maximized. Both rates depend on the posterior probability of
a correct response at each moment of an accumulation process, which can be computed in closed
form [10, 17, 8]. Within-trial reward rate corresponds to the probability of a correct response over
time; within-trial information rate corresponds to the total amount of information gained over time.

Model description. An agent faced with a binary forced-choice task accumulates evidence according
to a standard DDM [18] (Fig.1a). Assuming a Bayesian observer, the accumulator state (i.e., the
total evidence accumulated) is used to compute, at every time step, the probability of each of the
two response options being correct [10, 17, 8] (Fig. 1b). These probabilities are used to compute
“confidence,” denoted as x ∈ [.5, 1): the probability of a correct decision assuming a “greedy”
response strategy of always choosing the most probable option. Hence, if q and 1 − q are the
probabilities that response “A” and “B” are correct, then x = max(q, 1− q). If k ∈ {0, 1} denotes
whether a decision is correct (k = 1) or incorrect (k = 0), then the probability distribution over
correctness is p(k) = xk(1−x)(1−k). We assume the agent has access to p(k) and uses it to estimate
both reward rate and information rate within-trial.

Let in ∈ R≥0 be the amount of information gained at time n,

in = DKL[p(k)n||p(k)n−1] (1)

p(k)n and p(k)n−1 denote the probability distributions over k conditional on all accumulator states
observed through time n and n − 1 respectively. DKL is Kullback-Leibler divergence, which, in
this case, quantifies the relative entropy from p(k)n−1 to p(k)n. In other words, in quantifies the
amount of information that the decision-maker’s nth accumulator state provides about her probability
of a correct response (Fig.1c). DKL is defined if p(k)n ̸= 0 and p(k)n−1 ̸= 0 for all k and n, which
is always the case (the noise in the accumulation process ensures that the probability of a correct
response never reaches 1).

2



D
T

(m
s)

300

 n
or

m
. D

T .15

ER

.5

SNR .01750 .01750 .01750 .01750

320

100 280

400

300

2000

1000

.2

.5

.2

.6

1

2

500
1000

1500 RSI

effect of SNR & RSI

iRR-optimal threshold policy model
weight bps = 0 weight bps = 0.5 weight bps = 1a b c d

.05

0
SNR SNR SNR

no
rm

al
iz

ed
de

ci
si

on
 ti

m
e 

(D
T)

0

2.5

RSI = 1500 ms
OPC

iRR-optimal

1

0.75
0.5 0.25

0

weight bps

model deviations from iRR-optimality
in speed-accuracy space
e

error rate 0.50

RSI = 1000 ms

RSI = 500 ms

0

2.5

0

2.5

Figure 2: Effects of SNR and RSI on speed and accuracy (a) iRR-optimal threshold policy was
used to simulate DT, normalized DT and ER over SNR. This policy predicts faster responses for low
SNR. (b,c,d) model predicts relatively faster responses for low SNR as w increases. However, the
range of DTs across RSI is lower because model is less sensitive to RSI. (e) ER & DT as functions
of SNR (dots), RSI (columns), and w (warm tones) in speed-accuracy space. iRR-optimal policy in
grey. OPC in blue.

We assume that decision-makers track their rate of information gain at each time step n, denoted as
în ∈ R≥0, which equals the total information gained through the current time step (Fig.1d) divided by
time spent accumulating n, non-decision time t0, and the mean response-to-stimulus interval (RSI).
We express în in units of bits-per-second (bps) (Fig.1e). We also assume decision-makers similarly
track their within-trial rate of reward r̂n, or rewards-per-second (rps), via their confidence (Fig.1e).

bps = în =

∑n
j=0 ij

n+ t0 + RSI
(2) rps = r̂n =

p(k = 1)n
n+ t0 + RSI

(3)

According to our model, decision-makers attempt to maximize a mixture of reward rate and rate
of information gain by stopping the accumulation process when this mixture, m̂n, is maximized
(Fig.1f). The two quantities are first scaled separately so they are comparable, and then mixed through
a weighted sum, m̂n = wîscaledn + (1 − w)r̂scaledn , where w determines how much to prioritize
information over reward, which could be plausibly learned as a prior over time. We assume the agent
tracks the (smoothed) derivative of m̂n via Kalman filtering, and makes a choice at the time n when
the (smoothed) derivative is equal to zero, indicating that a local maximum has been reached (Fig.1g).
The accumulator state at that time determines the outcome (Fig. 1h). We evaluate this model for
different values of w. We also compare our results to those of an idealized policy that perfectly
adheres to the OPC by maximizing instantaneous reward rate (i.e., an iRR-optimal policy).

Model produces realistic response time distributions. A hallmark of the standard DDM is that it
predicts DT distributions that closely match behavior [18]. For different w, we fit 1000 simulated
trials with a simple DDM, finding reasonable fits and plausible decision times (Fig. 1i). As expected,
the DDM fits predicted increasing threshold with increasing w, and intriguingly a U-shaped function
for drift, perhaps indicating accumulation is more challenging when split across objectives (Fig. 1j).

0 100trial

iR
R

0 250trial

300

420

D
T 

(m
s)

0.5
0.25
0

error rate 0.50 0.6

no
rm

al
iz

ed
de

ci
si

tio
n 

tim
e 

(D
T)

0

0.5

trial0 1000 trial0 1000

trial0 1000trial0 1000trial0 1000

SN
R

0

.014

de
ci

si
on

 ti
m

e 
(m

s)

0

1600

in
st

an
t. 

re
w

ar
d

ra
te

 (i
R

R
)

.00025

.0005

cu
m

ul
at

iv
e 

re
w

ar
d

0

0.5

er
ro

r r
at

e

0

0.5 weight
bps

OPC

iRR-optimal

1
0.75

0.5 0.25
0

a c e

b d f

model provides faster learning and higher reward

0 100trial

cu
m

. r
ew

.

Figure 3: Model provides faster learning and higher reward. (a,b,c,e,f) SNR, ER, DT, iRR and
cumulative reward over trials, separated by w (weight bps, warm tones) and iRR-optimal policy
(grey). (d) trajectory in speed-accuracy space during learning. Insets: closeups of regions in grey.

3



Empirical support. Effects of SNR and RSI on speed and accuracy. Among human and nonhuman
decision-makers, speed and accuracy relate to signal-to-noise ratio (SNR: drift/noise) and inter-trial
time (RSI) in ways that any viable model must reproduce. Figure 2a-d displays the independent
effects of SNR and RSI on speed and accuracy for different w. As w increases, speed becomes an
increasing function of SNR and a decreasing function of RSI. Notably, this is true neither for the
iRR-optimal policy nor for w = 0, both of which predict faster DTs for low SNR, a violation of the
standard finding that people respond more slowly as noise increases [5, 23, 1]. However, the DTs for
w = 0 are still considerably larger than those from an iRR-optimal policy. For all mixture weights
w, accuracy is an increasing function of SNR, consistent with empirical findings. We find, however,
that the model is less sensitive to RSI than an iRR-optimal policy, evinced by the large difference in
normalized DTs (DT/(t0 + RSI)) across RSIs. This lack of sensitivity could be due in part to the
settings on the Kalman filter when calculating m̂n, preventing very-fast choices.

Deviations from optimality. Across all parameter settings, but especially for large values of w, our
model reproduces a suboptimality commonly observed in humans and nonhuman animals: overly
slow responding (Fig. 2e) [5, 23, 1, 14]. Slower-than-optimal responding is most pronounced at high
ERs and least pronounced at low ERs—a pattern also observed in the empirical data.

Normative support. Faster learning and higher reward. To measure the potential benefits of a
decision policy that prioritizes information, we assume that skill level improves as a function of
deliberation time; the longer an agent deliberates, the more they are able to learn and, in turn, improve
their future performance (see Appendix). Under this assumption, our model learns faster than an
iRR-optimal agent because, as noted above, it spends more time deliberating (Fig. 3a,b). Because
of its learning advantage, our model eventually achieves a higher iRR and earns more cumulative
reward than an iRR-optimal agent endowed with the same ability to learn (Fig. 3e,f). A key to our
model’s success is that it deliberates more on early trials when learning is possible and less on later
trials when learning has plateaued and deliberation is less valuable (Fig. 3c). These findings suggest
that our model has a normative basis. In addition, they align with recent empirical results: rats, like
our model, have been found to outperform an iRR-optimal policy in terms of cumulative reward by
making overly slow responses on early decision-making trials, and speeding up as their learning
plateaus [14].

3 Discussion

We have proposed an alternative decision strategy to a threshold during an evidence accumulation
process based on the maximization of reward and information rates. Our model qualitatively recreates
observed behavior in human and non-human subjects. Notably, our model predicts slow responses
when noise is high. Current models miss this pattern on two levels. (1) Within-trials, a well-known
limitation of the standard DDM [18, 13] and related models [22, 7, 21] is that increasing noise
results in fast responses because the accumulator is more likely to randomly hit a response boundary.
Our model eliminates this misprediction by introducing a novel dependency between noise and DT:
as noise increases it takes longer for în to reach its maximum value. (2) Across-trials, normative
models advocate for fast responses when noise is high [4], but behavioral responses fail to match this
prediction.

Beyond empirical support, our model enjoys normative support when learning is taken into account,
leading to faster learning and higher rewards. Maximizing a mix of reward and information rates–both
based on decision confidence, a plausibly accessible quantity to decision-makers during a choice
[10, 17, 8]–is a relatively simple and myopic strategy that solves the difficult intertemporal choice
problem of how to weigh present rewards against information that can help with future rewards.
Previous work has proposed solving this problem via cognitive control, assigning more “effort” to
prioritize information over reward when the expectation to learn is high [15], but this strategy, requires
a prediction of future discounted reward and is computationally expensive. Our model provides a
candidate heuristic that solves this problem naturally and myopically.

Moving forward, research can explore novel questions that our model raises about the role of
information seeking in the speed-accuracy trade-off. Do people attempt to select weights on reward
and information rates that optimize long-run cumulative reward, or something else? Whatever is
being optimized, how is the optimization implemented algorithmically and neurally? Addressing
these questions would provide crucial insight into the nature of human decision-making.

4



A Appendix

A.1 Decision time

Decision time (DT) is defined as reaction time (RT) minus non-decision time t0. Normalized DT is
defined as DT divided by t0 and RSI.

DT = RT − t0 (4) normDT =
DT

t0 + RSI
(5)

A.2 Drift rate & SNR

Drift rate is defined as

v = ψ(µA − µB)
dt

df
(6)

where ψ is the stimulus sensitivity, µA and µB are the means of two normally distributed stimuli A
and B, dt is the size of a timestep in the accumulation process (e.g., 1 ms) and df is the stimulus
sampling time (e.g., time between frames on a screen, which would be 16 ms at 60 Hz).

The drift rate v increases with increasing ψ, because ψ improves the agent’s ability to extract
information from the stimuli.

SNR is defined as

SNR = v2/s2d (7)

A.3 Model description detail

An agent accumulates samples according to a standard two-choice drift-diffusion process [18] (Fig.1a).
Assuming a Bayesian observer, the accumulator state is converted to a log-posterior ratio of stimulus
probability (equation 18 in [8], derived by [17] following [10]).

LLRt=n = log
p(S = A|y0:n)
p(S = B|y0:n)

=
2v

∑n
t=0 y

s2acc + ts2dv
2

(8)

where y is the accumulator, v is the drift rate, sacc is the accumulator noise, and sd is the drift noise.

Following [8], from eq. 8, we can get the probability of stimulus A given the current evidence

p(S = A|y0:n) =
1

1 + eLLRt=n
(9)

Next, “confidence” x ∈ [.5, 1) can be computed as the probability of a correct decision assuming a
“greedy” response strategy of always choosing the most probable option.

xn = max
(
p(S = A|y0:n), 1− p(S = A|y0:n)

)
(10)

For every confidence, the outcome k ∈ {0, 1} can be correct (k = 1) or incorrect (k = 0), and at a
given timepoint n, xn parametrizes the probability of each outcome p(k)n according to a Bernoulli
distribution.

p(k)n = xkn(1− xn)
(1−k) (11)

From p(k)n, the agent can compute în and r̂n, following eqs. 1, 2 and 3. These quantities are scaled
from 0 to 1 separately so that they have comparable values. After scaling, they are combined into m̂n

via a weighted sum where w determines the relative weight of information over reward.
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m̂n = wîscaledn + (1− w)r̂scaledn (12)

This mix m̂n is passed through a Kalman filter for smoothing. A decision is triggered when the
smoothed m̂n first reaches a maximum, i.e. when the smoothed derivative of m̂n first equals 0. The
outcome of the decision is determined by the state of the accumulator at this decision time.

A.4 Notes on filtering and scaling

The choices we have made for scaling and filtering în and r̂n remain somewhat arbitrary, and we
are actively exploring other methods to test the robustness of our predictions. Scaling can be done
in several ways (e.g., from 0 to 1, by subtracting the mean and allowing negative values, by having
a burn-in period to learn the standard deviation online, among others). Filtering can also be done
in several ways (e.g., Kalman filtering, as we have done here, where the priors can change results
dramatically, Gaussian processes, among others). In this paper, we would like to highlight the
general decision-making procedure more than the particular implementation used here as it is work
in progress.

A.5 Learning mechanism

We define a simple across-trial learning model where stimulus sensitivity ψ is an increasing function
of cumulative DT.

ψC = ψmax − (ψmax − ψmin) exp(−α
C∑
1

DTc) (13)

where ψC is ψ at trial C, ψmax and ψmin are the maximum asymptotic and starting values of ψ
respectively, and α is the learning rate.

A.6 Model simulations

For results in Figure 1a-h, we simulated a single trial and visualized model quantities for that single
trial.

For results in Figures 1i and 2, we simulated 1000 independent trials with 4000 time steps (nSamples)
for each unique parameter combination from the following. If m̂n was not maximized by the end of
the trial, it was assigned a DT = 4000 and an outcome corresponding to the accumulator state at that
time.

Table 1: Simulation parameters

nSamples 4000 dt 1
sacc [0.7, 1, 1.3, 1.6] df 16
sd .01 w [0, 0.25, 0.5, 0.75, 1]
t0 100 µA − µB 1
RSI [500, 1000, 1500] ψ [0.5, 0.75, 1, 1.25, 1.5]

For the iRR-optimal policy, we used the same 1000 accumulator trials and parameter combinations as
above (except w because it does not apply), but triggered a choice at the optimal DT for the current
SNR and RSI based on the OPC [4, 12]. This produced deterministic DTs but variable ERs, as the
outcome of the decision depended on the accumulator state at the optimal DT.

For results in Figure 3, we simulated 1000 sequential trials, where the stimulus sensitivity ψ–and
thus the drift rate and SNR–were allowed to change as a function of cumulative DT. Parameters were
the same as above, except we fixed sd = 1, RSI = 1500, and started with ψ = 0.1. Additionally,
we set the initial stimulus sensitivity to ψmin = 0.1, the asymptotic ψmax = 2 and the learning rate
α = 0.00001, as per the learning mechanism described above.

6



A.7 DDM fitting

We fit DTs and ERs generated by our model with a standard DDM using the PyDDM Python package
[20]. We fit model data with the same parameters described above, choosing intermediate values for
the variable parameters sd = 1, ψ = 0.5 and RSI = 1500. The predicted DT distributions over the
model data, as well as the predicted DDM drift and threshold parameters are shown in Figure 1i,j.

To gauge fit quality, DDM data was generated with the fitted parameters and re-fit. The model’s
BIC was compared to that of 500 simulated DDM datasets of 1000 trials each (matching our model
simulation). We calculated a p-value indicating the number of simulation BICs larger (worse) than
the model’s BIC and found that the model was fit quite well, suggesting it produces plausible DTs
and ERs (Fig. 1i insets). For w = 1, we found that p < 0.05, indicating a poorer fit. Nonetheless, a
pure information-rate-maximization policy is relatively less plausible given the considerably long
predicted DTs.

We also note that the DDM fits predicted a consistent additional t0 time of about 200 ms over
the DTs. This result is unusual, but we suspect it has to do with the Kalman filter settings which
currently prevent very-fast responses. This prediction can be tested and adjusted in future work.
Nonetheless, because the model is subject to within-trial assessment of reward and information rates,
it will generally predict slower DTs for high noise than a standard DDM where fast decisions can be
triggered because of random hits to the threshold.
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