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Abstract

Speech-to-Text Translation (S2TT) has typi-001
cally been addressed with cascade systems,002
where speech recognition systems generate a003
transcription that is subsequently passed to a004
translation model. While there has been a grow-005
ing interest in developing direct speech trans-006
lation systems to avoid propagating errors and007
losing non-verbal content, prior work in direct008
S2TT has struggled to conclusively establish009
the advantages of integrating the acoustic signal010
directly into the translation process. This work011
proposes using contrastive evaluation to quanti-012
tatively measure the ability of direct S2TT sys-013
tems to disambiguate utterances where prosody014
plays a crucial role. Specifically, we evaluated015
Korean-English translation systems on a test016
set containing wh-phrases, for which prosodic017
features are necessary to produce translations018
with the correct intent, whether it’s a statement,019
a yes/no question, a wh-question, and more.020
Our results clearly demonstrate the value of021
direct translation systems over cascade trans-022
lation models, with a notable 12.9% improve-023
ment in overall accuracy in ambiguous cases,024
along with up to a 15.6% increase in F1 scores025
for one of the major intent categories. To the026
best of our knowledge, this work stands as the027
first to provide quantitative evidence that direct028
S2TT models can effectively leverage prosody.029

1 Introduction030

Speech-to-Text Translation (S2TT) is the task of au-031

tomatically generating a text translation in a target032

language given an input speech signal. Tradition-033

ally, S2TT has been achieved by concatenating two034

systems: one in charge of generating an interme-035

diate transcription of the source speech signal and036

one of translating the intermediate text into a tar-037

get language. Although such a pipeline, known038

as “cascade” architecture, remains the dominant039

technology in Speech-to-Text Translation, it has040

some shortcomings. Firstly, it is affected by error041

propagation for which errors in the transcription 042

phase are carried over and amplified in the trans- 043

lation phase. Secondly, some information is lost 044

as non-verbal content (e.g. prosody) is discarded 045

from the text. As a potential solution to these is- 046

sues, “direct” systems that can perform translation 047

directly from speech signals without needing inter- 048

mediate transcriptions have emerged in the last few 049

years. Bentivogli et al. (2021) claim direct systems 050

have an advantage over the cascade architecture 051

by modelling prosody during the translation pro- 052

cess. However, there is no conclusive evidence to 053

support this claim as both types of systems have 054

similar overall performances, and current datasets 055

do not regularly include instances where speech 056

signals are necessary to disambiguate the meaning 057

of an utterance, making quantitative analysis on the 058

effect of prosody in S2TT particularly challenging 059

(Sperber and Paulik, 2020; Bentivogli et al., 2021). 060

The aim of this paper is to investigate the po- 061

tential of direct S2TT to effectively leverage non- 062

lexical information, particularly prosody, and quan- 063

tify their impact. Since identifying ambiguous 064

utterances that rely on prosody for disambigua- 065

tion is nontrivial, especially in English where sen- 066

tence structure typically carries more weight than 067

prosodic cues, we focus on Korean wh-phrases 068

where the presence of a prosodic boundary dis- 069

tinguishes wh-interrogatives from wh-indefinites 070

(e.g., 어디갔어요 (eodi gasseoyo) → where did 071

you go?/did you go somewhere?), as well as other 072

interpretations. 073

In this paper, we (i) introduce a new contrastive 074

evaluation framework for Korean-English S2TT 075

systems, designed for ranking translations of am- 076

biguous utterances containing wh-particles; (ii) 077

quantitatively demonstrate the capacity of direct 078

S2TT systems to effectively model prosodic cues 079

from the input, yielding an overall improvement 080

over cascade models of 12.9% in accuracy for am- 081

biguous utterances, and up to a 15.6% increase in 082
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(a) I heard somebody is joining in. (statement)

(b) Has somebody joined in? (yes/no question)

(c) Who joined in? (wh-question)

Figure 1: An example in the ProSem dataset: Based on
the intent, the transcription “누가가입했대요” (nuga
gaiphessdaeyo) can be mapped to a different pair of
recording and translation, see (a), (b), and (c). The
“blue” lines on the spectrogram, i.e., the recording, are
the pitch (F0) contours.

F1 scores within one of the major intent types; (iii)083

highlight the limitations of punctuations in disam-084

biguating certain intent types despite being strong085

signals in distinguishing questions from statements.086

2 Korean Prosody and Wh-Particles087

Prosody refers to the acoustic features that are ex-088

hibited across multiple phonetic segments, also089

known as suprasegmental features (Lehiste and090

Lass, 1976). These suprasegmental features can091

take shape in a multitude of ways. For example, by092

stressing a single word in a phrase (phrasal stress),093

by adding pauses or modifying the length of sylla-094

bles (boundary cues) or by varying the tonal and095

stress patterns in the utterance (metre) (Gerken and096

McGregor, 1998). In an intonational language like097

Korean, the intended meaning of an utterance is098

often conveyed via intonation and rhythm instead099

of lexical pitch accents or tones (Jun, 2005; Jeon,100

2015). While prosodic structures in Korean utter-101

ances are still debated, there are at least two levels102

of prosody above the word: the Accentual Phrase103

(AP) and the Intonation Phrase (IP). The AP is the104

basic unit for prosodic analysis marked by a tonal105

pattern THLH which consists of variations of the106

pitch between low (L) and high (H), with T being107

either L or H depending on the phrase’s initial seg-108

ment, while the IP consists of one or more APs and109

a boundary tone on the right edge of the phrase.110

Korean wh-particles are an example of a linguis-111

tic phenomenon where the tonal patterns and IP 112

boundary tones are necessary to disambiguate the 113

meaning of the utterance, as otherwise they can 114

be interpreted as both interrogative particles or in- 115

definite pronouns (e.g. 누구” (nugu) → “who” / 116

“somebody”). Figure 1 shows the pitch contours for 117

the recordings of the utterance “누가가입했대요” 118

(nuga gaiphessdaeyo). By varying the boundary 119

tone H+L%, H+LH%, and L+H%, the utterance 120

can be interpreted as a statement, yes/no question 121

or wh-question respectively. 122

3 Contrastive Evaluation 123

Contrastive evaluation is an automatic accuracy- 124

based evaluation technique that measures the ca- 125

pability of a system to distinguish correct from 126

incorrect outputs. This is achieved by asking a gen- 127

erative model θ to score and rank a set of predefined 128

outputs containing each a correct and a contrastive 129

utterance (e.g., “the cat sleeps” vs. “the cat sleep” 130

(Linzen et al., 2016)). Following previous work 131

(Sennrich, 2017; Vamvas and Sennrich, 2021), we 132

define the score of an utterance as the sum of the 133

target token log probabilities normalised by the 134

length of the full target sequence Y : 135

score(Y |X, θ) = 1
|Y |

|Y |∑
i=1

logpθ(yi|X, y<i) 136

where X is the input signal, |Y | the target se- 137

quence length and θ the evaluated model. 138

In this work, we perform contrastive evaluation 139

of cascade and direct S2TT systems on Korean wh- 140

phrases. Since multiple prosodic realisations can 141

occur per utterance (as in Figure 1), in contrast to 142

previous work where only one contrastive utterance 143

per example was available, we consider a model 144

having correctly identified the intended translation 145

only if its score is higher compared to the score of 146

all the possible incorrect translations. In addition to 147

the general accuracy of the model in identifying the 148

correct translation, we report contrastive precision, 149

recall and F1 scores of the systems on the various 150

wh-phrases’ intent types. 151

4 Experimental Setting 152

In our experiment, we adopted the ProSem corpus 153

(Cho et al., 2019) as the contrastive evaluation test 154

set. Originally designed for Spoken Language Un- 155

derstanding, this corpus consists of 3552 utterances 156

recorded by two Korean native speakers of a differ- 157

ent gender. All the utterances make use of one of 158

the six Korean wh-particles and are further classi- 159
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Figure 2: Contrastive evaluation accuracy ↑ scores on
ProSem for direct (blue) and cascade (yellow) S2TT
systems by varying the size of the Whisper model, along
with Random selection (black) and an MT system that
has gold transcriptions as input (red).

fied into seven intent categories: statements, yes/no160

questions, wh-questions, rhetorical questions, com-161

mands, requests, and rhetorical commands, with162

the first three categorised as major intent types. In163

the dataset, there are a total of 1292 distinct tran-164

scriptions, each associated with up to 4 utterances165

of a different intent. Consequently, our test set166

is composed of 3552 contrastive sets per speaker,167

each featuring a correct translation linked to a spe-168

cific recording and at least one incorrect translation.169

Each recorded utterance in the dataset is thus170

paired to a gold translation, as well as a number171

of incorrect ones that are associated with record-172

ings of the same transcription (but with different173

prosody). For example, in the recording in Figure174

1a the correct translation is “I heard somebody is175

joining in.” while the incorrect/contrastive ones are176

“Has somebody joined in?” and “Who joined in?” .177

For our experiments, we utilise state-of-the-art178

pretrained models. Specifically, we use Open AI’s179

Whisper models (Radford et al., 2022) for both180

the S2TT direct systems and the ASR components181

in the cascade systems, reporting results obtained182

from all the provided multilingual models. As for183

the MT component in the cascade systems, we184

make use of the Korean-English baseline model185

provided for the Tatoeba challenge (Tiedemann,186

2020), trained on approximately 34.5M Opus MT187

parallel data (Tiedemann and Thottingal, 2020).188

5 Results189

Contrastive Evaluation Accuracy Figure 2190

shows the results of the contrastive evaluation,191

along with the average accuracy of randomly se-192

lecting one of the 2-4 potential translations. As ex-193
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Figure 3: Contrastive evaluation accuracy ↑ for direct
(blue), cascade (yellow) S2TT systems with different
Whisper model sizes, and MT with gold transcriptions
augmented with question marks (MT-?, red) on ambigu-
ous and unambiguous contrastive sets.

pected, the performance of both cascade and direct 194

systems exhibits an upward trend with increasing 195

model size. Notably, the direct systems outper- 196

formed both the MT and cascade systems, with the 197

“medium” direct system exhibiting an improvement 198

of 6.4% and 4.3% in accuracy respectively. 199

In contrast, the MT model with gold transcrip- 200

tion as input failed to surpass random selection 201

in performance due to its inability to distinguish 202

between different translations effectively when pre- 203

sented with the same transcription. On the other 204

hand, despite relying on the aforementioned MT 205

model, the cascade systems managed to achieve 206

scores surpassing random selection, with an im- 207

provement of up to 2.1% observed in the Whisper 208

“medium” system. This improvement can be at- 209

tributed to the inclusion of punctuation marks in 210

the transcriptions, which are absent in the gold 211

transcriptions, that aid in disambiguating questions 212

from statements. 213

Effect of Punctuation To better understand 214

the disparity in performance between direct and cas- 215

cade systems, we conducted an analysis to assess 216

the role of punctuation within the MT inputs. To do 217

so, we added question marks to the ProSem gold 218

transcriptions based on the intents of the correct 219

translations. Subsequently, we categorised the con- 220

trastive sets into two distinct groups: “Ambiguous” 221

and “Unambiguous”, where the latter are the ones 222

where punctuation alone is sufficient to discern the 223

correct intention among the options considered. In 224

total, we identified 1602 unambiguous and 1950 225

ambiguous sets (more details in Appendix D). 226

Figure 3a shows that, on ambiguous contrastive 227

sets, all direct systems consistently outperform 228

their cascade counterparts and even surpass the MT 229
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Figure 4: Contrastive evaluation recall, precision and
F1 ↑ scores on ambiguous and unambiguous contrastive
pairs for each intent major type: statements (S), yes/no
questions (YN), wh-questions (WH). Direct and cascade
systems based on Whisper “medium”, and MT systems
with and without gold question marks.

system, which has access to gold transcriptions.230

The gap between the direct and cascade systems231

is notably wider compared to the overall perfor-232

mance shown in Figure 2, with differences reach-233

ing up to 12.9% for the “large” model, supporting234

the hypothesis that direct models are capable of235

modelling acoustic signals to handle ambiguous236

utterances effectively. On the other hand, Figure 3b237

shows that the augmented gold MT model, which238

serves as an upper bound for the cascade systems,239

outperforms the best-performing direct model by240

6.2% in accuracy, illustrating that punctuation is241

an effective convoy for certain prosodic informa-242

tion. The effectiveness of punctuation is reflected243

in the performance of cascade systems themselves,244

which, except for the “small” model, outperform245

the direct systems. It’s worth noting that all sys-246

tems, despite their strengths, did not achieve the247

anticipated levels of performance on the unambigu-248

ous contrastive sets. This can be attributed to the249

fact that while question marks are commonly used250

in modern Korean, they are not mandatory, which251

leaves ambiguity in utterances lacking them.252

Intent Disambiguation While Figure 2 and253

3a demonstrate the advantages of preserving acous- 254

tic signals during the translation process, it’s im- 255

portant to note that the overall accuracy achieved 256

by all systems remains relatively low. Figure 4 257

reveals a significant challenge common to all sys- 258

tems when it comes to disambiguating statements, 259

as they achieve a recall score of less than 25% in 260

this category. In contrast, the highest recall scores 261

are consistently observed in the wh-questions intent 262

category. The low recall score for yes/no questions 263

and the subpar precision for wh-questions, two in- 264

tent types that are indistinguishable for MT-based 265

systems, indicate a distinct bias towards the wh- 266

question type. This bias can be attributed to the 267

primary use of wh-particles in the Korean language 268

for forming wh-questions. 269

Overall, on ambiguous contrastive sets, the di- 270

rect model outperforms the other two systems in 271

terms of F1 scores across all major intent cate- 272

gories, achieving improvements of up to 15.5% 273

in the case of yes/no questions. However, on un- 274

ambiguous sets, the direct model’s performance 275

is comparable to cascade models in question cate- 276

gories but falls short on statements, where its recall 277

is notably low. This performance gap on statements 278

may be due to the inherent challenge of accurately 279

capturing the nuanced prosody and context asso- 280

ciated with statements, which direct models may 281

struggle to discern effectively. Full results and con- 282

fusion matrices are reported in Appendix C. 283

6 Conclusion 284

The objective of this paper was to test whether 285

direct S2TT systems could take advantage of the 286

prosodic information contained in the speech sig- 287

nal. To achieve this, we conducted quantitative 288

analyses focused on Korean wh-particles which can 289

represent either wh-interrogatives or wh-indefinites 290

encompassing a range of intents in accordance with 291

the input acoustic features. Our contrastive evalu- 292

ation results provide compelling evidence that the 293

direct S2TT systems outperform the cascade sys- 294

tems in overall accuracy and F1 score across all the 295

major intent types on ambiguous utterances. Cas- 296

cade systems perform better than random primarily 297

thanks to the inclusion of punctuation in the tran- 298

scriptions. However, it’s essential to underscore 299

that while punctuation marks play a valuable role 300

in aiding disambiguation, they are not sufficient to 301

resolve all types of intents, emphasizing the impor- 302

tance of considering prosody in S2TT systems. 303
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7 Limitations304

While our study has yielded positive results, it is es-305

sential to acknowledge several limitations. Firstly,306

the contrastive evaluation approach in this study307

diverges from previous work in that it was not con-308

ducted with minimally different utterances. The309

set of possible translations used here differs signifi-310

cantly in structure and, to some extent, vocabulary.311

This variation may potentially influence the result-312

ing scores, despite being normalised. Secondly, the313

findings of this research may not be readily gener-314

alisable beyond the specific context of Korean wh-315

particles. To examine different linguistic phenom-316

ena in various language pairs, specific contrastive317

datasets will need to be meticulously crafted. As318

previously discussed, this process poses a signifi-319

cant challenge. Lastly, despite employing state-of-320

the-art models, the overall accuracy observed in the321

contrastive evaluation remains relatively low. This322

suggests that there is substantial room for improve-323

ment within speech translation systems, reflecting324

the ongoing development needs in this field.325
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Wh-Particle Interrogative Indefinite
뭐 mwo what something
누구 nugu who someone
언제 eonje when some time
어디 eodi where some place
어떻게 eotteohge how somehow
몇 myeot how many some

Table 1: Korean wh-Particles and English wh-
interrogatives/indefinite pronouns in the ProSem
dataset.

Intent # Wh-particle #
Statement 1085 Who 1,895
Yes/no Q 1047 What 877
Wh-Q 849 Where 199
Rhetorical Q 302 When 172
Commands 175 How 163
Requests 56 How many 246
Rhetorical C 38

Table 2: Number of utterances in Prosem per wh-particle
and intent type.
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A Dataset Statistics427

Table 1 shows Korean wh-particles and their En-428

glish translations. The particle 왜 (wae, why) is429

not present in the ProSem dataset as it is rarely430

used as a quantifier. On the other hand,몇 (myeot,431

how many) is used instead despite not being tech-432

nically a wh-particle. Table 2 shows the number433

of utterances per intent type and wh-particle in the434

Prosem dataset, with most of the utterances belong-435

ing to one of the three major intent types (statement,436

yes/no questions, wh-questions).437

Model Size kosp2e ProSem

Direct

T 1.0 5.3
B 4.7 10.2
S 13.0 17.4
M 19.4 21.4
L 21.1 19.6

Cascade

T 10.6 (16.2) 10.9 (27.0)
B 12.3 (12.1) 12.2 (22.3)
S 13.9 (9.1) 13.3 (16.3)
M 14.9 (7.3) 14.1 (13.9)
L 15.2 (6.6) 14.3 (13.9)

MT 14.2 7.2 / 15.0

Table 3: BLEU ↑ scores for Whisper-S2TT (Direct),
Whisper-ASR+MT (Cascade) and MT with gold tran-
scriptions on the kosp2e and ProSem (without and with
additional punctuation) test sets. Model sizes: tiny (T),
base (B), small (S), medium (M) and large (L). CER ↓
for Whisper-ASR in brackets.

B General Performance 438

We present the SacreBLEU1 (Post, 2018) score and 439

the Character Error Rate (Morris et al., 2004, CER) 440

of the systems to assess their general performance 441

in the translation and transcription tasks respec- 442

tively. In addition to the results on the ProSem test- 443

set, we provide general performance on the kosp2e 444

(Cho et al., 2021) test set. As shown in Table 3, the 445

results align with expectations, demonstrating that 446

Whisper’s performance improves with model size 447

for both translation and recognition tasks on both 448

test sets. The direct systems perform well on both 449

test sets with BLEU scores up to 21.1 and 21.4 on 450

the kosp2e and ProSem test sets respectively. As 451

for the cascade systems, it is worth noting that the 452

MT on gold transcription serves as an upper bench- 453

mark for the performance of the cascade systems. 454

However, we can see that all the cascade systems 455

achieve a higher BLEU score on ProSem compared 456

to the base MT model. As discussed in Section 5, 457

this is mainly due to the lack of punctuation in the 458

transcription. By augmenting the model with ques- 459

tion marks, we can see a drastic increase in BLEU 460

score reaching 15.0, outperforming the cascade sys- 461

tems. Moreover, by comparing the CER scores on 462

the two test sets, we observe that they are generally 463

higher on the ProSem test set. This suggests that 464

the utterances in the ProSem test set may be con- 465

sidered out-of-domain compared to more general 466

test sets, contributing to the higher CER scores. 467
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Figure 5: Contrastive evaluation recall, precision and
F1 ↑ scores con ambiguous sets for direct and cascade
Whisper “medium”, and Machine Translation systems,
for each intent type.

C Full Intent Disambiguation Results468

Figure 5, 6 and 7 shows the recall, precision and f1469

scores for the models on all the intent types (state-470

ments (S), yes/no questions (YN), wh-questions471

(WH), rhetorical questions (RQ), commands (C),472

requests (R), and rhetorical commands (RC)). In473

the context of ambiguous contrastive sets (Figure474

5), the direct system consistently outperforms other475

models across all intent types, showcasing superior476

performance across all metrics. On unambiguous477

sets, the direct systems excel primarily in achiev-478

ing high recall scores for questions (yes/no ques-479

tions, wh-questions, rhetorical commands, and re-480

quests). However, for non-question intent types,481

the direct systems exhibit recall scores often be-482

low 12%, plummeting as low as 0% for rhetorical483

commands. This differentiation is reflected in the484

overall results (Figure 7), where the direct system485

surpasses text-based models in terms of F1 scores486

specifically for questions.487

Figure 8 offers a closer look at the confusion ma-488

trices for the systems during the intent disambigua-489

tion task in contrastive evaluation. As detailed in490

1nrefs:var|case:mixed|tok:13a|smooth:exp|version:1.5.1
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Figure 6: Contrastive evaluation recall, precision and F1
↑ scores con unambiguous sets for direct and cascade
Whisper “medium”, and Machine Translation systems,
for each intent type.

Section 5, it’s evident that all models display a 491

notable bias toward the wh-question intent type, 492

a tendency that is particularly pronounced in cas- 493

cade and MT systems. Notably, the MT model, 494

when not augmented with additional punctuation, 495

exhibits a stronger inclination toward interpreting 496

utterances as statements, especially evident in re- 497

quests, where the incorrect selection of statements 498

significantly decreases when punctuation is added 499

(from 34% to 16%). Overall, the confusion matri- 500

ces shed light on the challenges faced by text-based 501

systems in effectively disambiguating intent, indi- 502

cating a preference for interpreting utterances as 503

one of the three major intent types. 504

D More on Punctuation 505

In Section 5, we categorised the ProSem test set 506

into two distinct groups: ambiguous and unam- 507

biguous. The ambiguous category consists of con- 508

trastive sets where punctuation alone fails to defini- 509

tively determine the correct intent. Figure 1 illus- 510

trates examples for both ambiguous and unambigu- 511

ous contrastive sets. The contrastive set where the 512

statement (Figure 1a) is the correct translation is 513
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Direct
medium

Cascade medium MT
Random

Wh-Q
RandomW/O W W/O W

Ambiguous 48.9 36.4 39.2 36.5 39.3 32.3 42.8
Unambiguous 33.6 34.7 36.0 34.6 40.8 41.3 28.6

Table 4: Contrastive evaluation accuracy ↑ scores on ambiguous and unambiguous contrastive sets for systems
without (W/O) and with (W) question marks in the input, and pure and wh-question biased random selection.
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Figure 7: Overall contrastive evaluation recall, preci-
sion and F1 ↑ scores on ProSem for direct and cascade
Whisper “medium”, and Machine Translation systems,
for each intent type.

an example of an unambiguous set because the ab-514

sence of a question mark in the transcription “누515

가가입했대요” is sufficient to identify the cor-516

rect intent as a “statement” as both yes/no and wh-517

questions contain question marks. On the other518

hand, in the scenario where the correct translation519

corresponds to the utterance with wh-question in-520

tent type (Figure 1c), the set becomes ambiguous,521

as ambiguity arises because both yes/no and wh-522

questions share the same transcription “누가가입523

했대요?”.524

Table 4 shows results for systems with and with-525

out question marks in the input. This was achieved526

either by removing question marks from the ASR527

transcription or by augmenting the gold transcrip-528

tion. Besides the accuracy for pure random se-529

lection (“Random”), we introduced an additional530

random baseline which is biased towards select- 531

ing the wh-question intent type (i.e., choosing a 532

wh-question if it’s an option, and selecting ran- 533

domly otherwise) to simulate better the behaviour 534

of the systems (“Wh-Q Bias”). We can observe 535

that, as anticipated, none of the MT-based systems 536

outperform Wh-Q Bias for ambiguous sets. This 537

is expected since the input transcription does not 538

provide sufficient information to disambiguate the 539

correct intent. In contrast, the direct S2TT model 540

significantly outperforms random in these cases, 541

showcasing its effectiveness in handling ambigu- 542

ity. On the other hand, for unambiguous examples, 543

scores show a significant improvement when ques- 544

tion marks are introduced or used in the MT input. 545

Notably, the MT system with gold transcription 546

outperforms the direct S2TT model in handling 547

these examples. Overall, these results consistently 548

align with our prior findings. Direct S2TT mod- 549

els hold an advantage over text-based systems be- 550

cause they can leverage prosodic information from 551

the input signal to disambiguate ambiguous sen- 552

tences. While punctuation aids in disambiguating 553

questions from statements, it remains insufficient 554

to resolve all instances of ambiguity. 555

E Vanilla Models 556

In this section, we report the results for smaller 557

direct and cascade S2TT systems trained from 558

scratch. To train our models, we used three dis- 559

tinct datasets: kosp2e (Cho et al., 2021), Korean 560

Parallel corpora (Park et al., 2016) and ClovaCall 561

(Ha et al., 2020). The kosp2e dataset was used to 562

train all the systems as it contains speech signals, 563

transcriptions and translation required to train di- 564

rect S2TT, ASR and MT models. ClovaCall was 565

used with kosp2e to train ASR systems, while the 566

Korean Parallel corpora were used for MT systems 567

as described in Section 4. Table 5 shows the statis- 568

tics of the datasets used for training the systems. 569

We used fairseq S2T (Wang et al., 2020) imple- 570

mentations for the S2TT and ASR models, with 571

“s2t transformer” architectures and default training 572
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Figure 8: Normalised confusion matrices for Whisper “medium” direct and cascade, and Machine Translation (MT)
systems with and without additional punctuation. Classes: statements (S), yes/no questions (YN), wh-questions
(WH), rhetorical questions (RQ), commands (C), requests (R), and rhetorical commands (RC).
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Dataset Split # hs
ProSem test 7104 7

kosp2e
train 106653 257
dev 1266 2
test 2320 4

ClovaCall train 59662 50
Korean train 125226
Parallel Corpora dev 1720

S2TT
train 106652 257
dev 1266 2

ASR
train 166315 307
dev 1266 2

MT
train 231879
dev 2986

Table 5: Datasets sizes in number of utterances/parallel
sentences and recordings time in hours. Bottom half
shows the data sizes used for training the direct S2TT,
ASR and MT systems.

Model Size kosp2e ProSem

Direct
S 2.0 0.7
M 2.1 0.5

Direct+ASR init
S 9.1 1.6
M 8.8 1.6

Cascade
S 0.2 (88.9) 0.1 (125.6)
M 0.2 (88.6) 0.1 (127.4)

MT 19.7 9.5 / 11.4

Table 6: BLEU ↑ scores and CER ↓ (in brackets) for
direct and cascade Speech-to-Text Translation systems
trained from scratch with architecture small (S) and
medium (M), and MT models (without/with gold punc-
tuation on the ProSem test set).

settings. In addition, we report results for a direct573

S2TT model with an ASR-initialised encoder. All574

results are the average of four different seeds.575

E.1 Results576

Results in Table 6 show the general performance of577

the direct and cascade systems trained from scratch.578

Compared to the results for whisper-based models579

in Section 5, the base direct and cascade systems580

could not provide satisfactory outputs on either test581

sets. However, despite the poor performance of the582

ASR models (CER > 88%), when used to initialise583

the direct S2TT models, they improved drastically584

the latter’s performance, with an increase of 7.1585

and 6.7 points in BLEU for the small and medium586

models respectively on the kosp2e test set. It’s587

worth noting that the MT system, despite being588

trained on a notably smaller dataset compared to589

Model Accuracy
Random 36.3
MT 35.4
MT-? 39.4
Cascade 36.4
Direct 36.1
Direct+ASR init 39.8

Table 7: Contrastive evaluation accuracy ↑ scores on
ProSem for Machine Translation (MT), cascade and
direct Speech-to-Text Translation systems trained from
scratch, as well random selection accuracy.

the OpusMT model, managed to achieve a high 590

BLEU score on the kosp2e test set. This can be 591

attributed to its training on in-domain data, under- 592

lining the impact of domain-specific training in 593

enhancing performance. 594

Table 7 shows the contrastive evaluation overall 595

accuracies for non-Whisper translation systems on 596

the ProSem test set. The cascade model was not 597

able to perform better than random, achieving a 598

similar score but a higher score to the base gold MT. 599

The base direct S2TT system could not outperform 600

the cascade model, as its performance was weak 601

overall as previously shown. In contrast, the ASR- 602

initialised direct S2TT system outperformed the 603

other systems, achieving an accuracy increase of 604

3.4% over the cascade system. Although the overall 605

accuracy remains modest, this observation lends 606

credence to the hypothesis that direct S2TT systems 607

effectively capture prosodic cues to disambiguate 608

syntactically complex utterances. 609
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