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ABSTRACT

Generative adversarial training (GAT) is a recently introduced adversarial defense
method. Previous works have focused on empirical evaluations of its application
to training robust predictive models. In this paper we focus on theoretical under-
standing of the GAT method and extending its application to generative modeling
and out-of-distribution detection. We analyze the optimal solutions of the maximin
formulation employed by the GAT objective, and make a comparative analysis of
the minimax formulation employed by GANs. We use theoretical analysis and
2D simulations to understand the convergence property of the training algorithm.
Based on these results, we develop an unconstrained GAT algorithm, and con-
duct comprehensive evaluations of the algorithm’s application to image generation
and adversarial out-of-distribution detection. Our results suggest that generative
adversarial training is a promising new direction for the above applications.

1 INTRODUCTION

Generative adversarial training (GAT) (Yin et al., 2020) is a recently introduced defense mechanism
that could be used for adversarial example detection and robust classification. The defense consists
of a committee of detectors (binary discriminators), with each one trained to discriminate natural
data of a particular class from adversarial examples perturbed from data of other classes. Like most
other work in the area of robust machine learning, the defense is specially designed for defending
against norm-constrained adversaries — adversaries that are constrained to perturb the data up to a
certain amount as measured by some norm. The defense’s robustness is achieved by training each
detector model against adversarial examples produced by the norm-constrained PGD attack (Madry
et al., 2017).

Existing work: training and evaluating robust predictive models A detector trained with GAT
has strong interpretability — an unbounded attack that maximizes the detector’s output results in
images that resemble the target class data — this suggests the detector has learned the target class data
distribution. However, all previous works (Yin et al., 2020; Tramer et al., 2020) focus on the empirical
evaluations of GAT’s application to training robust predictive models; a theoretical understanding of
why this training method causes the detector to learn the data distribution is missing.

This work: theoretical understanding, improved training algorithm, and extended applica-
tions In order to better understand the GAT method, we first analyze the optimal solutions of the
training objective. We start with a maximin formulation (eq. (5)) of the objective, and try to connect
it with the minimax formulation (eq. (1)) that is employed by GANs (Goodfellow et al., 2014). We
find that the differences between solutions of these two formulations become immediately clear
when we take a game-theory perspective. We then use theoretical analysis and 2D simulations to
understand the convergence property of the GAT training algorithm. Building upon these theoretical
and experimental insights, we develop an unconstrained GAT algorithm, and apply it to the tasks of
generative modeling and out-of-distribution detection. We find the maximin-based generative model
to be more stable to train than its minimax counterpart (GANs), and at the same time more flexible as
it does not have a fixed generator and can transform arbitrary inputs to the target distribution data,
which might be particularly useful for certain applications (e.g., face manipulation). The model

1



Under review as a conference paper at ICLR 2021

trained with the unconstrained GAT algorithm also outperforms several state-of-the-art methods on
the task of adversarial out-of-distribution detection. In summary, our key contributions are:

• We analyze the optimal solutions of the GAT objective and convergence property of the
training algorithm. We discuss the implications of these results on improved training of
robust predictive models, generative modeling, and out-of-distribution detection.
• We develop an unconstrained generative adversarial training algorithm. We conduct a

comprehensive evaluation of the algorithm’s application to image generation and adversarial
out-of-distribution detection.
• Our comparative analysis of the maximin and minimax problem clarifies misconceptions

and provides new insights into how they could be utilized to solve different problems.

2 RELATED WORK AND BACKGROUND

Generative adversarial networks (GANs) The GANs framework (Goodfellow et al., 2014) learns
a generator function G and a discriminator function D by solving the following minimax problem

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]. (1)

The generator G implicitly defines a distribution pg by mapping a prior distribution pz from a low-
dimensional latent space Z ⊆ Rz to the high-dimensional data space X ⊆ Rd. D : X → [0, 1] is a
function that discriminates the target data distribution pdata from the generated distribution pg. The
minimax problem is solved by alternating between the optimization of D and optimization of G;
under certain conditions, the alternating training procedure converges to a solution where pg matches
pdata (Jensen-Shannon divergence is zero), and D outputs 1

2 on support of pdata.

Generative adversarial training (GAT) The GAT method (Yin et al., 2020) is designed for
training adversarial examples detection and robust classification models. In a K class classification
problem, the robust detection/classification system consists ofK base detectors, with each one trained
by minimizing the following objective

L(D) = −Ex∼pk [logD(x)]− Ex∼p−k
[log(1− max

x′∈B(x,ε)
D(x′)))]. (2)

In the above objective, pk is k-th class’s data distribution, p−k is the mixture distribution of all other
classes: p−k = 1

K−1

∑
i=1,...,K,i 6=k pi, and B(x, ε) is a neighborhood of x: {x′ ∈ X : ‖x′ − x‖2 ≤

ε}. The objective is characterized by an inner maximization problem and an outer minimization
problem; when the inner maximization is perfectly solved and D achieves a vanishing loss, D
becomes a perfectly robust model capable of separating data pk, from any ε-constrained adversarial
examples perturbed from data of p−k. A committee of K detectors then provides a complete solution
for detecting any adversarial example perturbed from an arbitrary class. Objective 2 is solved using a
alternating gradient method (Algorithm 1), with the first step crafting adversarial examples by solving
the inner maximization, and the second step improving the D model on these adversarial examples.

Clearly, the detector’s robustness depends on how well the inner maximization is solved. Despite the
fact thatD is a highly non-concave function when it’s parameterized by a deep neural network, Madry
et al. (2017) showed that the inner problem could be reasonably solved using projected gradient
descent (PGD attack) — a first-order method that employs the following iterative gradient update
rule (at initialization x0 ← x, we consider L2-based attack)

xi+1 ← Proj(xi + γ
∇ logD(xi)

‖∇ logD(xi)‖2
), (3)

where λ is some step size, and Proj is the operation of projecting onto the feasible set B(x, ε). The
normalized steepest ascent rule inside the Proj function, was introduced for dealing with the issue
of vanishing gradient when optimizing with the cross-entropy loss (Kolter & Madry, 2019). The PGD
attack also employs random restarting to improve its effectiveness. The idea is that for a input x, first
generate a set of randomized inputs by uniformly sampling from B(x, ε), perform PGD attack on
each of them, and use the most effective one as the actual attack.

A review of related work on out-of-distribution detection in provided in Appendix A.

2



Under review as a conference paper at ICLR 2021

Algorithm 1 GAT Detector Training Method (The Maximin Problem Solver)

1: Sample minibatch of m samples {xk1 , . . . , xkm} from pk, and m samples {x−k1 , . . . , x−km } from p−k.
2: Compute adversarial examples {x′1, . . . , x′m} by solving maxx′∈B(x,ε)D(x′) for each x−ki .
3: Train the detector by minimizing 1

m

∑m
i=1

[
− logD(xki )− log(1−D(x′i))

]
(single step).

4: Return to step 1.

3 THEORETICAL RESULTS

In this section we first reformulate objective 2 into a maximin problem, and then analyze the optimal
solutions of the maximin problem and convergence property of Algorithm 1. We then discuss
the optimal solution of the corresponding minimax formulation and the differences between the
solutions of these two formulations. The popular generative modeling approach of GANs learns
a data distribution by solving the minimax problem, but there seems to be a misconception about
the differences between solutions of these two problems, and as a result, a false impression that the
GANs algorithm could solve the maximin problem (Goodfellow (2016), section 5.1.1). Our analysis
of optimal solutions is based on a game-theory interpretation of these problems, and the differences
between these solutions are immediately clear under such an analysis.

3.1 THE MAXIMIN PROBLEM

In this section we provide an analysis of the optimal solutions of objective 2. Maximizing D is
equivalent to minimizing log(1−D), hence eq. (2) is equivalent to

L(D) = −Ex∼pk [logD(x)]− Ex∼p−k
[ min
x′∈B(x,ε)

log(1−D(x′)))]. (4)

For the convenience of analysis, instead of using ε-balls imposed on individual data samples, we use
the notion of a common perturbation space: The perturbation space S is a subspace of the data space
X , and allows mass of p−k to be moved to any location in S . A new distribution pt can be obtained by
transporting the mass of p−k to appropriate locations in S , via a transformation function T : S → S .
Utilizing the technique of random variable transformation, we can write the density function of pt as a
function of p−k: pt(y) =

∫
S p−k(x)δ(y − T (x))dx. Figure 1 left panel is a schematic illustration of

this phenomenon. LetM1
+(S) be the set of distributions attainable by applying such transformations

to the support of p−k. With the notation of perturbation space, the inner problem in eq. (4) could
then be interpreted as determining the distribution inM1

+(S) that causes the highest (expected) loss
of the D function. Assuming B(x, ε) = S, the interplay of the D model and the adversary can be
formulated as a maximin problem:

max
D

min
pt∈M1

+(S)
U(D, pt) = Ex∼pk [logD(x)] + Ex∼pt [log(1−D(x))] . (5)

Figure 1: Left panel: a distribution pt is obtained by applying a transformation T to the support of
p−k. Right panel: three scenarios to consider when analyzing problem 5. Red distribution represents
p−k and blue distribution represents pk. The data space X is represented by the whole space inside
the square, and the perturbation space S is represented by the gray area.

Optimal solutions A convenient way of analyzing the above problem is to consider it as a two-player
game: player 1 first presents different D configurations, then for each D, player 2 determines a
perturbed distribution pDt that minimizes U under the considered D. Then over all combinations of
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Table 1: Optimal solutions for the three scenarios in Figure 1

Scenario Optimal solution (D∗, p∗t )

Supp(pk) ⊂ S D∗ outputs 1
2 for Supp(pk) and ≤ 1

2 for S \ Supp(pk); p∗t has its mass distributed to locations where D∗ outputs 1
2 .

Supp(pk) ∩ S = ∅ D∗ outputs 1 for Supp(pk) and 0 for S; p∗t can be an arbitrary distribution inM1
+(S).

Supp(pk) ∩ S 6= ∅,
and Supp(pk) 6⊂ S

For Supp(pk) outside S , D∗ outputs 1, for Supp(pk) inside S, D∗ outputs α =
∫
S pk∫

S p
∗
t +

∫
S pk

(by definition,
∫
S p
∗
t = 1),

and for other places inside S, D∗ outputs ≤ α; p∗t has its mass distributed to locations where D∗ outputs α.

(D, pDt ), player 1 chooses the combination (D, pDt )∗ that gives the highest U value. By analyzing
both players’ best strategies for playing the game, we could derive the optimal solutions (Table 1) for
the three scenarios 1 depicted in Figure 1. From a game-playing perspective, the claims in Table 1 can
be verified by assuming a different D configuration than the claimed one, and show that there always
exists a pt that results in a lower U value than the U value that could be achieved with the claimed D
configuration. Mathematical derivations of these optimal solutions are included in Appendix D.

A discussion about scenario 2 result and its implication for training robust models in provided in
Appendix E.

3.2 THE MAXIMIN PROBLEM SOLVER

The method (Algorithm 1) for training adversarial-robust detector is in fact a solver (assuming
B(x, ε) = S) for the maximin problem 5: maximizingD(x) is equivalent to minimizing log(1−D(x)
(step 2), and minimizing the loss is equivalent to maximizingU (step 3). Algorithm 1 has the following
convergence property:

Proposition 1. If step 2 always perfectly solves the inner problem (i.e., the mass of pt is always
moved to the location(s) where D has the largest output(s)), and step 3’s updates happen in D’s
function space, and each update is sufficiently small, then the algorithm converges to the optimal
solution of D.

Proof. We consider scenario 1 in Figure 1. Let α := maxS\Supp(pk)D, A := {x ∈ S \ Supp(pk) :
D(x) = α}, and β := maxSupp(pk)D, B := {x ∈ Supp(pk) : D(x) = β}. We focus on the case
of 1 > α, β > 1

2 ; other cases can be proved using a similar argument. Recall that in Algorithm 1,
step 2 solves the inner minimization by moving mass of p−k to locations where D has the largest
outputs, and step 3 updates D by decreasing its outputs on pt and increasing its outputs on pk. We
further assume when mass of p−k is moved to multiple locations with equal D outputs, the algorithm
doesn’t have a preference over locations (i.e., mass of p−k will be uniformly distributed to these
locations). Algorithm 1 can be interpreted as a finite state machine that constantly switches between
the following three states:

• State 1: α > β. Step 2 moves the mass of p−k to A, and step 3 decreases α while increases
β; the algorithm switches to state 2 or state 3.

• State 2: α < β. Step 2 moves the mass of p−k to B, and step 3 maintains α while decreases
β (Appendix F.1); the algorithm switches to state 1 or state 3.

• State 3: α = β. Step 2 moves the mass of p−k to A ∪ B, step 3 decreases α. Because of
non-zero densities of B’s points on pk, if β is decreased, the decreased amount is always
lower than that of α — the algorithm switches to state 2.

In particular, step 3 in state 1 and state 2 always results in an decrease of max{α, β} (but β cannot
be decreased to below 1

2 , Appendix D), and step 3 in state 3 always results in an decrease of α. The
algorithm converges to the D solution of α ≤ 1

2 , β = 1
2 .

Practical considerations The above proof relies on the assumption that step 2 always perfectly
solves the inner minimization (i.e., mass of p−k is always moved to the location(s) where D has the

1In scenario 2 and 3, D∗ doesn’t need to be defined on X \ (S ∪ Supp(pk)).
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largest output(s)). In practice, as a gradient-based search procedure (see eq. (3)), step 2 is unlikely
able to reach the global maxima when D is a highly non-concave function.

This issue with gradient-based search is alleviated by the alternating optimization procedure: if at
step 2 samples of p−k are stuck at local maxima, step 3 immediately decreases D outputs on these
samples. In other words, local maxima are constantly being eliminated. We can clearly observe this
pattern in a 2D simulation of the algorithm (Figure 4).

However, it appears local maxima elimination cannot solve all the issues. As illustrated in Figure 2(b),
the maximin solver could converge to a solution where D has > 1

2 outputs on places other than
Supp(pk). Inspecting the gradient vector field in Figure 2(b), we find that by starting from p−k and
following the gradient of D, pt is always “trapped” to Supp(pk). As a result, other local maxima lost
the chance of being visited by pt, and cannot be eliminated.

The above observation points out a straightforward solution: use a p−k that is distributed in the
entire data space, as opposed to one that is concentrated in a subspace. For instance, when we use
a uniform distribution in the data space as p−k, in multiple experiments we consistently obtained
D solutions with no local maxima and global maxima at Supp(pk) (Figure 2(c) and Figure 5). The
mathematical proof that when p−k is a uniform distribution we can always get such a D solution is
provided in Appendix M. (Note however the use of uniform distribution is not a prerequisite here;
any “well distributed” data should work just as well.) The fact that these D solutions don’t have
local maxima also means we can translate an arbitrary data point out of Supp(pk) to Supp(pk) by
performing gradient ascent on D.
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Figure 2: Plots of contours and gradient vector fields of the D functions (gradient vectors are
normalized to have the unit length). (a) The initial positions of p−k and pk. (b) The solution obtained
by the maximin problem solver. (c) The solution obtained by the maximin problem solver when p−k
is a uniform distribution in the data space. (d) The solution obtained by the minimax problem solver.

3.3 THE MINIMAX PROBLEM

Algorithm 2 Minimax Problem Solver

1: Initialize pt ← p−k.
2: repeat
3: Train the detector by maximizing Ex∼pk [logD(x)] + Ex∼pt [log(1−D(x))] (until converge).
4: For each sample x ∈ pt, update its value x← x− λ ∇ log(1−D(x))

‖∇ log(1−D(x̃))‖2
.

5: until pt convergences to pk

The corresponding minimax game minpt maxD U(D, pt) has a reversed rule: player 1 first presents
different pts, then for each pt, player 2 determines a Dpt that maximizes U under the considered pt.
Then over all the combinations of (pt, D

pt), player 1 chooses the combination that gives the least U
value. The solution of the game is analyzed in Goodfellow et al. (2014); Goodfellow (2016): the opti-
mal strategy for player 2 is to choose aD such that U measures the Jensen-Shannon divergence (JSD):
U(D∗, pt) = − log(4) + 2 · JSD(pt ‖ pk) (the actual solution of D is D∗ = pk

pk+pt
), and optimal

strategy for player 1 is to choose a pt that minimizes the JSD: p∗t = arg minpt∈M1
+(S) JSD(pt ‖ pk).

When Supp(pk) ⊂ S (corresponding to scenario 1 in Figure 1), p∗t matches pk (JSD is zero), and
D∗ outputs 1

2 on Supp(pk). A solver (Algorithm 2) for the minimax problem is readily available
by removing the “generator” from GANs’ training algorithm. It is straightforward to apply GANs
algorithm’s convergence property to Algorithm 2: if at each step pt is updated with a sufficiently
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small step of λ, and D is trained to reach its optimum, then pt converges to pk. In Figure 2(d) and
Figure 6 we provide 2D simulation results of this algorithm.

3.4 THE DIFFERENCE

There are a few differences between the solutions of the maximin problem and minimax problem.

First, both D∗s output 1
2 for Supp(pk). But while D∗ in the maximin problem outputs ≤ 1

2 on
S \ Supp(pk), D∗ in the minimax game doesn’t need to be defined on S \ Supp(pk) (Goodfellow
et al., 2014). In other words, D∗ in the minimax problem has unpredictable values between 0 and 1
in most of the data space. We can observe this phenomenon in Figure 6. The intuition here is that in
the maximin game, p∗t is decided in the second move, with the knowledge of the current D value;
to prevent p∗t from taking this advantage, the best strategy for player 1 is to specify D outputs for
the entire perturbation space. In the minimax game, on the contrary, D∗ is decided in the second
move, with the knowledge of pt, hence the player does not need to worry about D∗ outputs outside
the supports of pt and pk.

Another difference, which can also be observed from Figure 2, is that in the minimax game, p∗t
exactly matches pk, while in the maximin game, mass of p∗t can be any place where D∗ outputs 1

2 .

Overall we find these two formulations giving rise to different applications. The minimax formulation,
which is the formulation used by GANs, is perfect for learning a generator that produces a distribution
that exactly matches the target data distribution. The discriminator (the D model), because of its
undefined behavior in most of the data space, may not be very useful. The maximin problem, if well
solved (Figure 2(c)), gives a D function that models a characteristic function of the data distribution,
and could be used to solve problems that require this feature (Section 4).

Algorithm 3 Unconstrained Generative Adversarial Training

1: for K in [0, 1, . . . , N ] do
2: for number of training iterations do
3: Sample minibatch m samples {x1, . . . , xm} from pk, and m samples {x̃1, . . . , x̃m} from p−k.
4: For each sample x̃i in {x̃1, . . . , x̃m}, compute the perturbed sample x̃Ki by performing K steps

normalized steepest descent x̃k+1
i ← x̃ki − γ

∇ log(1−D(x̃ki ))
‖∇ log(1−D(x̃ki ))‖2

(at initialization x̃0i ← x̃i).

5: Update D by maximizing 1
m

∑m
i=1

[
logD(xi) + log

(
1−D(x̃Ki )

)]
(single step).

6: end for
7: end for

4 APPLICATIONS

In Figure 2(c) we show when p−k is uniformly distributed in the data space the maximin problem
solver gives us a D function that has no local maxima and global maxima at the support of pk. This
D function is very useful — we can identify at least two important applications:

• Application 1: out-of-distribution (OOD) detection The global maxima are at Supp(pk)
means any inputs that have lower D outputs can be correctly identified as OOD inputs.

• Application 2: generative modeling New samples of pk can be generated by first random
sampling from the data space and then translating them to the support of pk by performing
gradient ascent on D.

For practical applications, we have to deal with spaces of high dimensionality. We first find that
with uniform noise as the p−k dataset, we are unable to obtain a D model that is useful for detecting
real OOD data (Appendix H.1). This leads us to consider using a large, diverse, real image dataset,
specially ImageNet, as the p−k dataset. Our ablation study in Appendix H.1 confirms that larger and
more diverse dataset leads to better OOD detection performances. We further use data augmentation
to increase the dataset’s diversity. Given these strategies, data of p−k could still be very sparse in a
high dimensional space. In order to cover more space, we consider imposing large perturbations on
p−k data.
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Unconstrained training To facilitate the training of a large (potentially unlimited) perturbation,
we propose Algorithm 3, an unconstrained generative adversarial training algorithm. Because of
the steepest descent update rule (Line 4 in Algorithm 3, note there is no Proj operation here), for
a given K, the perturbation imposed on each sample has a size that is always ≤ λK; hence the
algorithm can be thought as gradually increasing the perturbation limit. We found this incremental
training technique necessary for training models in high dimensional space — a phenomenon also
observed by Yin et al. (2020). According to the analysis in Section 3.2, the step size λ should be set
to a sufficiently small value in order for step 4 to coverage to local maxima and step 5 to eliminate
these local maxima. We observed that training is stable as long as λ is bellow a certain threshold, and
this threshold is related to input size and D’s architecture. In the algorithm we start K from 0, which
means that at the first stage D is trained to discriminate between pk and p−k; this is not critical, but
we found this pre-training causes following optimizations to converge faster.

5 EXPERIMENTS

In this section we evaluate our method on the task of generative modeling and out-of-distribution
detection. Following Kurach et al. (2018), we evaluate our method on CIFAR-10 (Krizhevsky et al.,
2009), CelebA-HQ-128 (Karras et al., 2017), and LSUN Bedroom-128 (Yu et al., 2015). Details of
model training, data preprocessing, and dataset statistics are provided in Appendix G.

OOD detection evaluation For each one of the above three datasets, we use multiple OOD datasets
(see Table 6) to test a D model’s OOD detection performances. We further assume OOD inputs
remain OOD under small Lp-norm perturbations. Under this assumption, we consider the problem
of detecting adversarial OOD inputs — OOD inputs that are adversarially perturbed to cause the
detection to fail, and evaluate our method under this challenging scenario. We also observe that
increasing K in Algorithm 3 leads to changes in D performances on OOD and adversarial OOD
detection. To study this phenomenon, we evaluate D models trained with different Ks using OOD
inputs under various levels of perturbations. We use Outlier Exposure (OE, Hendrycks et al. (2018))
as the baseline method. The idea of OE is to use an auxiliary OOD dataset of large amount of diverse
data to train the OOD detector. Because we also use a large-scale, diverse dataset (ImageNet) as the
p−k dataset, the OE approach can be thought of a special case of Algorithm 3 when we fix K to
K = 0. We use area under the receiver operating characteristic curve (AUROC) as the performance
metric (details of how AUROC and adversarial AUROC are computed are in Appendix G).

Generative modeling evaluation We generate new pk samples by starting from some seed images
and performing gradient ascent on D (Appendix G provides more details on generation). Due to the
similarity between the studied approach and GANs (the former solves the maximin problem while
the latter solves the minimax problem), we focus on a comparison with GANs. Kurach et al. (2018)
is a large-scale study on the effects of various regularization and normalization techniques on GANs,
and we compare our results with the best results obtained in their work.

5.1 RESULTS

OOD detection results Table 2 shows the average OOD detection performances of our method (see
Appendix J for the complete results on individual OOD datasets). For each dataset, we train multiple
D models with different Ks, and test models under various levels of perturbations 2 (ε-test, measured
by L2 norm). We can observe a general pattern across all the datasets: training with a larger K causes
model performance on lower ε to decrease, a phenomenon that is also observed in other adversarial
training scenarios (Madry et al., 2017; Tsipras et al., 2018). The baseline method (K = 0 models)
becomes completely ineffective when models are exposed to adversarial OOD inputs.

On CelebA-HQ-128 and Bedroom-128 datasets our method obtains strong performances on detecting
both OOD and adversarial OOD inputs. Performance on CIFAR-10 dataset is relatively low. Con-
sidering the small size (4.6MB disk space) of the default ResNet-CIFAR architecutre, we replaced
it with ResNet18 which is a much larger model in terms of disk space (43MB), but only observed
marginal improvements on OOD and adversarial OOD detection (Appendix H.2).

2ε values are based on https://github.com/MadryLab/robustness.
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Table 2 results are based on perturbations computed using PGD attacks (Madry et al., 2017) of
particular combinations of steps and step size. To verify model robustness, we use a testing strategy
that is widely adopted in the ML security community: use PGD attacks of different combinations of
steps and step size to test model robustness. Appendix J shows that the worst results obtained with
grid search are only marginally lower than reported ones in Table 2.

In Table 3 and Table 4 we report standard and adversarial OOD detection performances of our method
and several state-of-the-art methods. As is discussed earlier, there is a trade-off between standard and
adversarial OOD detection performance as we increase K in Algorithm 3. For this reason, we have
included the performances of our model trained with different Ks (K = 0 and K = 5.) Our method
uses the ResNet18 architecture and 800 Million Tiny Images (Torralba et al., 2008) as the p−k dataset
— this combination gives the best performance; data of other settings are provided in Appendix H.2.
(We note methods in Tabel 4 that rely on axuliary data also use the 800 Million Tiny Images.) It is
observed from Table 3 that state-of-the-art OOD detection methods achieves strong performances
on the standard OOD detection task. However, in the adversarial OOD detection task, even a tiny
perturbation of ε = 0.01 could cause non-robust models (OE and our method with K = 0) to fail.
Meanwhile, our method with K = 5 outperforms several state-of-the-art methods on SVHN and
CIFAR-100 in this task.

Table 2: Out-of-distribution detection performances (see Appendix J for expanded results)

(a) CIFAR-10

D model

ε-test K = 0 K = 15 K = 25

0.0 0.974 0.910 0.860
1.0 0.005 0.784 0.763
2.0 0.000 0.519 0.613

(c) CelebA-HQ-128

D model

ε-test K = 0 K = 20 K = 40

0.0 1.000 1.000 1.000
5.0 0.001 0.998 0.998
10.0 0.000 0.964 0.988

(d) Bedroom-128

D model

ε-test K = 0 K = 20 K = 40

0.0 0.996 0.996 0.970
5.0 0.000 0.976 0.938
10.0 0.000 0.815 0.837

Table 3: Standard OOD detection performances (AUROC scores) when the in-distribution dataset
is CIFAR-10 and OOD samples are not perturbed. Performance data is collected from referenced
papers in the table; when there is a discrepancy we use the best reported result. Details about the
iSUN, LSUN (resize), and TinyImageNet (resize) datasets can be found at Liang et al. (2017).

OOD dataset (no perturbation)

Method Uniform Gaussian SVHN CIFAR-100 iSUN LSUN(resize) TinyImageNet (resize)

Softmax (Hendrycks & Gimpel, 2016) 96.5 97.5 89.9 86.4 91.0 91.0 91.0
ODIN (Liang et al., 2017) 99 100 96.7 87.5 94.0 94.1 94.0
Mahalanobis (Lee et al., 2018) 100 N/A 99.1 88.2 99.5 99.7 99.5
OE (Hendrycks et al., 2018) 98.7 99.3 98.8 95.3 98.5 98.94 N/A
Gram Matrices (Sastry & Oore, 2019) N/A 100 99.5 79.0 99.8 99.9 99.7
Energy-based (Liu et al., 2020) N/A N/A 99.4 N/A 99.33 99.39 N/A
Likelihood ratios (Ren et al., 2019) N/A N/A 88.8 N/A N/A N/A N/A
WAIC (Choi et al., 2018) 100 100 100 N/A N/A N/A 95.6
CCU (Meinke & Hein, 2019) 100 N/A 97.1 93.0 N/A N/A N/A
ACET (Hein et al., 2019) 99.7 N/A 92.4 90.7 N/A N/A N/A
GOOD (Bitterwolf et al., 2020) 99.5 N/A 97.1 92.9 N/A N/A N/A
Ours (K = 0) 99.5 99.8 99.6 94.1 99.5 99.5 98.7
Ours (K = 5) 99.6 99.9 97.4 91.5 98.5 98.9 96.2

Image generation results In Figure 3 shows samples generated by our method. In general we find
our results to be more recognizable than GANs’ results in Figure 10. We observed that the quality of
generated images could be affected by the type of seed images (Appendix K.2), and increasing K in
Algorithm 3 generally leads to better generations (Appendix K.1). In Figure 12 we demonstrate the
method’s application to face retouching. The fact that generated images are not realistic and have
various artifacts suggest that the maximin problem is not well solved. This might be due to the model
not being exposed to enough p−k data (consider increase the number of iterations in the inner loop of
Algorithm 3), or the limitation of model architecture or capacity.

While GANs has various training stability issues, we found Algorithm 3 to be as stable as ordinary
supervised training. The only failure mode (gradient ascent on D results in noisy images) that we
observed is caused by λ being too large (Appendix I).

Limitation As our method uses gradient ascent which is susceptible to local maxima to generate
samples, it tends to produce similar samples if the seed samples are not diverse enough. In practice,
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Table 4: Adversarial OOD detection performances (AUROC scores) when the in-distribution dataset
is CIFAR-10. Performance data of methods other than ours is collected from Bitterwolf et al. (2020).
The results of our method are based on an PGD attack of steps 100 and step size 0.002. We also used
the full datasets to run the test, as opposed to 1000 samples per dataset as used by Bitterwolf et al.
(2020). For results using 1000 samples and under different attack configurations including one with
random restarts see Table 30.

OOD dataset (with an L∞ perturbation of ε = 0.01)

Method Uniform Noise Gaussian Noise SVHN CIFAR-100

OE (Hendrycks et al., 2018) 75.7 N/A 3.7 11.0
CCU (Meinke & Hein, 2019) 100 N/A 14.8 23.3
ACET (Hein et al., 2019) 98.9 N/A 88.0 74.5
GOOD (Bitterwolf et al., 2020) 99.5 N/A 58.9 54.7
Ours (K = 0) 97.8 22 1.0 7.1
Ours (K = 5) 99.0 99.1 91.8 81.8

due to the numerical algorithm or mini-batch training, we are more likely to get a D solution that has
local maxima. In that case, by performing gradient ascent on D seed samples that are not diverse
enough could be trapped in the same local maximum point. This is likey the case in Figure 3 where
we find several face images that are quite similar to each other. On the other hand, in the less likely
situation where the D solution has no local maxima (e.g., Figure 2(b) and Figure 2(c)), all the seed
samples could be concentrated in a few maxima points on support of the pk distribution. While the
problem in the latter case seems more severe, it could be mitigated by properly constraining the
number of steps and step size when performing gradient ascent on D.

Figure 3: Uncurated samples generated by our method; GANs results is in Figure 10. Seed images
used to generated these results are in Figure 11. The training time for models used to produce these
generations are in Table 7.

6 CONCLUSIONS AND FUTURE WORK

In this paper we analyzed the optimal solutions of the GAT training objective and the convergence
property of the training algorithm. The analysis of optimal solutions justifies the application of the
GAT method to training robust predictive models. We made a comparative analysis of the maximin
formulation and minimax formulation that are respectively employed by GAT and GANs. Guided
by these theoretical results, we designed an unconstrained GAT algorithm, and evaluated it on the
task of image generation and adversarial out-of-distribution detection. The competitive performance
and training stability of the algorithm suggest that the studied approach could serve as a new tool
for content creation, although we believe its performance could be further improved by optimizing
hyperparameters and model architectures. Out-of-distribution detection results indicate that an OOD
detection model’s robustness could be improved by training the model against an adversary equipped
with large-scale, diverse OOD data. The future work includes scaling up the training for larger images
and high-capacity models, and extending the method’s application to sequential and tabular data.
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A RELATED WORK ON OUT-OF-DISTRIBUTION DETECTION

Out-of-distribution (OOD) detection, also known as novelty detection, or anomaly detection, deals
with the problem of identifying novel, or unusual, data from within a dataset. OOD detection has
gained much research attention due to its practical importance in safety-critical applications and
changeling nature. A comprehensive review of classical OOD detection methods can be found at
Pimentel et al. (2014).

A recent surge of research interests in this topic is due to the emergence of deep generative models.
Such models (specifically explicit density models (Goodfellow, 2016)) estimate the generative
probability density function of the data, and should serve as an ideal candidate for OOD detection.
However, it was observed (Kirichenko et al., 2020; Nalisnick et al., 2018; Shafaei et al., 2018;
Hendrycks et al., 2018) that several state-of-the-art deep generative models, including Glow (Kingma
& Dhariwal, 2018), PixelCNN (Oord et al., 2016), PixelCNN++ (Salimans et al.), VAEs (Kingma,
2013; Rezende et al., 2014), and RealNVP flow model (Dinh et al., 2016) tend to assign higher
likelihood to OOD inputs than they do to in-distribution inputs. Despite this challenge, several recent
works (Ren et al., 2019; Choi et al., 2018; Nalisnick et al., 2019; Kirichenko et al., 2020; Serrà et al.,
2019; Song et al., 2019; Huang et al., 2019; Daxberger & Hernández-Lobato, 2019) investigated the
issue and successfully applied deep generative models to OOD detection.

There is also a plethora of OOD detection methods (Hendrycks & Gimpel, 2016; Lee et al., 2018;
Liang et al., 2017; Sastry & Oore, 2019; Quintanilha et al., 2018; Abdelzad et al., 2019; Chen
et al., 2018; Malinin & Gales, 2018) that make use of statistics computed from the predictions or
intermediate activations of standard classifiers train on in-distribution data. To name a few, Lee et al.
(2018) fit class conditional Gaussian distributions using multiple levels of activations of the classifier,
and use Mahalanobis distance to compute confidence scores to identify OOD inputs. The ODIN
method (Liang et al., 2017) improves the effectiveness of a softmax score based detection approach
by using temperature scaling and adding small perturbations to the input. Sastry & Oore (2019) make
use of gram matrices computed from the classifier’s intermediate activations to identify OOD inputs.

Another branch of work utilize various alternative training strategies (Liu et al., 2020; Lee et al.,
2017; Hendrycks et al., 2018; 2019; DeVries & Taylor, 2018; Shalev et al., 2018; Vernekar et al.,
2019; Yu & Aizawa, 2019; Golan & El-Yaniv, 2018). A notable example is the Outlier Exposure
(OE) method developed by (Hendrycks et al., 2018). OE works by training the OOD detector against
a large, diverse out-of-distribution dataset, and has been widely adopted as a baseline method.

While methods based on generative models and standard classifiers yield high performances on
naturally-occurring OOD inputs, several such methods have been shown (Meinke & Hein, 2019;
Bitterwolf et al., 2020) to be vulnerable to adversarial manipulation of the OOD inputs. This should
come as no surprise as both generative models and standard classifiers themselves are vulnerable to
adversarial attacks (Kos et al., 2018; Szegedy et al., 2013). Given the above limitation of current
approaches, a recent trend considers the worst-case scenario for OOD detection (Hein et al., 2019;
Sehwag et al., 2019; Meinke & Hein, 2019; Bitterwolf et al., 2020). The Adversarial Confidence
Enhanced Training (ACET) method proposed by Hein et al. (2019) use adversarial training Madry
et al. (2017) on OOD inputs to improve detection robustness. Meinke & Hein (2019) uses a
density estimator to provide guarantees on the maximal confidence around L2 ball for uniform noise.
Bitterwolf et al. (2020) use interval-bound-propagation (IBP) to certificate worst case guarantees for
general OOD inputs under a L∞ threat model. In the same spirit as Hein et al. (2019), our detection
method employs adversarial training on OOD inputs to induce robustness. The difference is that
our method uses the GAT objective with a optimal solution which naturally solves the robust OOD
detection problem, while the optimal solution of the objective used by Hein et al. (2019), which is
essentially a multiple class classification objective with an extra term on OOD inputs, is unclear.

B MAXIMIN AND MINIMAX PROBLEMS IN GAME THEORY

In game theory, two-player zero-sum game is a mathematical representation of a situation in which
one player’s gain is balanced by another player’s loss. Such a game is described by its payoff function
f : Rp+q → R, which represents the amount of payment that one player (player 1) makes to the
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other player (player 2). The goal of player 1 is to choose a strategy u ∈ Rp such that the payoff
is minimized, while the goal of player 2 is to choose a strategy u ∈ Rq such that the payoff is
maximized. The best strategies for both players, and the resulting payoff, depending on the order of
play, could be solved via minu maxv f(u, v) or maxv minu f(u, v).

In the minimax game minu maxv , player 1 makes the first move. Player 2, after learning that player 1
has made the move u, will choose a v to maximize f(u, v), which results in a payoff of maxv f(u, v).
Player 1, who is informed of player 2’s strategy, will choose a u such that the worse case payoff
maxv f(u, v) is minimized, which results in a payoff of minu maxv f(u, v).

In the maximin game maxv minu, the order of play is reversed. Player 2 makes the first move,
and then player 1 minimizes the payoff by choosing u = arg minu f(u, v). Player 2 knows that
player 1 will follow this strategy and will choose a v such that the worse case payoff minu f(u, v) is
maximized, which results in a payoff of maxv minu f(u, v).

The payoff minu maxv f(u, v) is always greater or equal to maxv minu f(u, v). This difference can
be intuitively understood as the result of player 2’s extra knowledge gained by taking the second
move. According to the minimax theorem (Neumann, 1928), when f is a continuous function that
is concave-convex (i.e., for each v, f(u, v) is a convex function of u, and for each u, f(u, v) is a
concave function of v)), these two quantities are equal. We refer the reader to Boyd et al. (2004)
(§5.4.3, §10.3.4) for more details on this topic.

C A DEMONSTRATION ON HOW TO SOLVE A MAXIMIN PROBLEM

Without a game theory interpolation, in Table 5 we present a minimal example demonstrating how
to solve a maximin problem maxv minu f(u, v), with f : Rp+q → R, u ∈ Rp, and v ∈ Rq. In this
example, u has three values u0, u1, u2, and v has two values: v0, v1. To solve the maximin problem
we first solve the inner minimization for each value of v. As an example, when we fix v to v0, we
solve the inner problem by choosing the u that when combined with v0, yields the lowest f value.
We do the same computation for v1 and we have solved the inner problem. We then move forward to
the outer problem by choosing from the above two solutions (red boxes) the one with the highest f
value (the green box).

Table 5: A minimal example demonstrating how to solve a maximin problem. The solutions for the
inner problem for each value of v are labeled as red, and the final solution is highlighted as green.

u0 u1 u2

v0 f(u0, v0) f(u0, v1) f(u0, v2)
v1 f(u1, v0) f(u1, v1) f(u1, v2)

u0 u1 u2

v0 f(u0, v0) f(u0, v1) f(u0, v2)
v1 f(u1, v0) f(u1, v1) f(u1, v2)

D MATHEMATICAL ANALYSIS OF OPTIMAL SOLUTIONS OF THE MAXIMIN
PROBLEM

Recall that the support of pt can be any subset of the pertubation space S and that U(D, pt) =∫
pk(x) logD(x))dx+

∫
pt(x) log(1−D(x))dx. For convenience, we define the contour set inside

S of D at α as CDα := {x ∈ S : D(x) = α}, the region of Supp(pk) that is outside of S as
Ωko := Supp(pk) \ S and the region of Supp(pk) that is in S as Ωki := Supp(pk) ∩ S. Note that
Supp(pk) = Ωko ∪ Ωki. For a fixed D and let αo = maxΩko

D and αS = maxS D. It is easy to
check that U is minimized when Supp(pt) lies in the contour set CDαS

. Let p∗t be a distribution such
that Supp(p∗t ) ⊂ CDαS

. By direct computation we have that

U(D, p∗t ) =

∫
Ωko

pk(x) logD(x)dx+

∫
Ωki

pk(x) logD(x)dx+ log(1− αS)

≤ (

∫
Ωko

pk)(logαk) + (

∫
Ωki

pk)(logαS) + log(1− αS)

≤ 0 + βki log
βki

1 + βki
+ log

1

1 + βki
,
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where βε =
∫

Ωki
pk. Note here we have used the fact the the function f(y) = a log y + b log(1− y)

achieves its maximum at y = a
a+b . It is not difficult to see that the above inequality becomes an

equality when

D(x) =


αk x ∈ Ωko
αS x ∈ Ωki
≤ αS x ∈ S \ Supp(pk)

, (6)

where αk = 1 and αS = βki

1+βki
. Note that D does not need to be defined outside S ∪ Supp(pk).

Scenario 1 Here we deal with the case when ε is large enough such that Supp(pk) ⊂ S, in which
case Ωko = ∅, Ωki = Supp(pk) and αS = 1

2 . Hence by the above analysis one can check that U
achieves its optimum when D ≡ αS = 1

2 on Supp(pk) and D ≤ 1
2 on S \ Supp(pk). In summary,

the maximin problem achieves its optimum when D outputs 1
2 on the support of pk and and values

less or equal to 1
2 on samples outside the support of pk but in S.

Scenario 2 Here we deal with the case when ε is small enough such that the S ∩ Supp(pk) = ∅, in
which case Ωko = Supp(pk), Ωki = ∅ and αS = 0. Hence U achieves its optimum when D ≡ 1 on
Supp(pk) and D ≡ 0 on S . In summary, the maximin problem achieves its optimum when D outputs
1 on the support of pk and zero on the the perturbation space S .

Scenario 3 Here we deal with the case when S ∩ Supp(pk) 6= ∅ and Supp(pk) 6⊂ S. In summary,
the maximin problem achieves its optimum when D outputs 1 on the set of samples inside the
support of pk but outside of the perturbation space S and βki

1+βki
on the set of samples that are in the

intersection of the support of pk and S and values less or equal to βki

1+βki
on S.

Remark The first two cases can be seen as the special cases of the third one.

E SCENARIO 2 DISCUSSION

In robust machine learning literature, it’s common to consider a very small value for ε. For instance,
one of the most commonly used limit for training L∞ robust models is ε = 8/255 (L∞ norm). A
perturbation space characterized by a small limit can be thought as a semantic-preserving space:
translating a sample inside the space doesn’t change the sample’s underlying label/class membership.
A small perturbation limit corresponds to scenario 2, which is also the focus of Yin et al. (2020).
We can define robust models as models that output consistent predictions for inputs under semantic-
preserving transformations. In this sense, the optimal D for scenario 2 is a robust detector, as it
always outputs 0 for the perturbation space. However, the limitation of training against a small ε is
obvious: because optimal D’s outputs outside S ∪Supp(pk) are unspecified, any semantic-preserving
operation that has a perturbation that goes beyond S can result in a high D output, thereby fools the
detection. The above analysis suggests that for predictive models based on the generative adversarial
training method, their robustness can be improved by training against a larger perturbation space.

F ALGORITHM 1 CONVERGENCE

F.1 STEP 3 ALWAYS DECREASE β

We assume when α < β, D has a single global maximum point (i.e., |B| = 1).

Lemma 1. If α < β and |B| = 1, Algorithm 1 always decreases β.

Proof. Let β := maxSupp(pk)D, C := {x ∈ Supp(pk) : D(x) < β}, and γ := maxC D. (Same as
the proof for Proposition 2, we consider the case of β, γ > 1

2 .) Going back to Algorithm 1, step 2
moves mass of p−k to B. Since B has only one element, the mass is concentrated on this single point.
Step 3’s optimization causes γ to increase and β to decrease. The intuition here is that if step 3’s
update is small enough, these two values will meet in an intermediate point. Let the resulting values
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be γ1 and β1. If step 3’s update on D is sufficiently small such that γ1 − γ < β − γ, then we have
max{β1, γ1} < β — the maximum value of D on Supp(pk) has decreased.

F.2 THE EFFECTS OF ALTERNATING OPTIMIZATION
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(b) step 2 updates pt
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(c) step 3 updates D
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(d) step 2 updates pt
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(e) step 3 updates D
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(f) step 2 updates pt

Figure 4: The results of pt and D in the first few iterations of a 2D simulation of Algorithm 1. Step 2
solves the inner minimization, causes support of pt (red points) to be concentrated in local maxima
points. Step 3 update D by increasing its outputs on the support of pk and decreasing its outputs on
the support of pt, causes local maxima to be suppressed.
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F.3 MORE 2D SIMULATION RESULTS
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Figure 5: Solutions obtained by the maximin problem solver (Algorithm 1) with different initializa-
tions of D. First row are results when p−k is at bottom left (see Figure 2), and second row are results
when p−k are uniform distributions.
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Figure 6: Solutions obtained by the minimax problem solver (Algorithm 2) with different initial-
izations of D. Note that in all cases pt (red distribution) matches pk (blue distribution), but D has
unpredictable outputs on X \ Supp(pk). The initial position of the red distribution is in bottom left
corner (see Figure 4(a)).
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G EXPERIMENTAL SETUP

Model training We use Algorithm 3 to train D models. Depending on the studied dataset, pk is
set to one of the above three datasets, but we always use ImageNet (with data augmentation) as the
p−k dataset (images are resized to 32× 32× 3 or 128× 128× 3 depending on pk dataset resolution).
We also use the same D architectures and batch size as Kurach et al. (2018) (see Appendix G for
more details of D architectures).

Following Yin et al. (2020), we use a pretrained D model to bootstrap optimization: for CIFAR-10
the D model is pretrained on the CIFAR-10 classification task, and for other datasets it is pretrained
on the ImageNet classification task (Russakovsky et al., 2015). For all the datasets, the D update step
in Algorithm 3 is performed using a SGD optimizer with momentum of 0.9. The learning rate of
the optimizer for CIFAR-10 datast is 0.0005, for CelebA-HQ-128 is 0.001, and for Bedroom-128
is 0.0025. The λ value is set to 0.1 for CIFAR-10, and 0.6 for CelebA-HQ-128 and Bedroom-128.
For all the trainings we use a batch size of 64, same as Kurach et al. (2018). The training follows
standard supervised training, and doesn’t use any regularization or normalization.

Dataset preprocessing and statistics CelebA-HQ-128 dataset is downloaded from Manna (2020).
The Bedroom-128 dataset is created from the corresponding LSUN dataset by center cropping the
images using a square and then resizing to 128× 128. CIFAR-10 has 60K training images and 10K
test images. We manually split CelebA-HQ-128 into a training split of 27K images and a test split of
3K images, and Bedroom-128 into a training split of 300K images and a test split of 3K images.

Detector architecture Following Kurach et al. (2018), we use tow network architecture for the
experiments. For CIFAR-10 task we use the “ResNet-CIFAR” architecture (Kurach et al. (2018)
Table 7a). The architecture has 4 customized ResBlocks and takes 4.6MB disk space. For other
128× 128× 3 datasets, we use the “ResNet19 discriminator” architecture (Kurach et al. (2018) Table
5a). The architecture has 6 customized ResBlocks and takes 60MB disk space

Image generation details We generate a new sample of pk by starting from some seed sample
and performing gradient ascent on D using the update rule in eq. (3). In this case, the seed sample
is supposed to be out of the distribution of pk. When using the update rule in eq. (3), we need to
specify the step size λ, the number of steps, and ε for the Proj operation. We use the following
configurations for generation:

• For CIFAR-10 generation (Figure 3(a), Figure 13, and Figure 16), we use step size 0.1, steps
200, and ε = 15.
• For CelebA-HQ-128 generation (Figure 3(b), Figure 14, and Figure 17, we use step size 1.2,

steps 100, and ε = 40.
• For CelebA-HQ-128 generation (Figure 3(c), Figure 15, and Figure 18, we use step size 0.8,

steps 400, and ε = 70.

We note different configurations could lead to different generation results.

AUROC computation AUROC is a metric that measures a discriminative model’s ability to
separate two sets of data. To compute the AUROC score of a trained D model for a given pk and
pOOD dataset, we first use the D model to get the logit outputs of samples of these two datasets, and
then use scikit-learn (Pedregosa et al., 2011)’s “sklearn.metrics.auc” function to compute the score
(with samples in pk labeled as 1s and samples in pOOD labeled as 0s). We always use the test splits of
the pOOD and pk datasets to do the above calculation.

Adversarial AUROC computation To compute the adversarial AUROC score of a D model for
a given pOOD and pk dataset, we first compute an adversarial OOD dataset p′OOD by taking samples
from pOOD and performing L2-based PDG attack (Madry et al., 2017) against the D model. We then
compute the Adversarial AUROC score by computing the AUROC score on the p′OOD and pk datasets.
Same as the AUROC computation, we always use the test splits of the pOOD and pk to do the above
calculation.
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Table 6: In-distribution dataset and corresponding out-of-distribution datasets (images of OOD
datasets are resized to the image size of the corresponding in-distribution dataset)

In-distribution dataset (pk) Out-of-distribution datasets (pOOD)

CIFAR-10 Gaussian noise, Uniform noise, SVHN (Netzer et al., 2011), CIFAR-100 (Krizhevsky et al., 2009),
ImageNet, CelebA-HQ-128, Bedroom-128

CelebA-HQ-128 Gaussian noise, Uniform noise, SVHN, CIFAR-100,
ImageNet, CIFAR-10, Bedroom-128

Bedroom-128 Gaussian noise, Uniform noise, SVHN, CIFAR-100,
ImageNet, CelebA-HQ-128, CIFAR-10

Table 7: Model training time.

Model Training Time

CIFAR-10 K = 40 model 2 days 23 hours (1 2080Ti GPU)
CelebA-HQ-128 K = 80 model 7 days 12 hours (2 2080Ti GPUs)
Bedroom-128 K = 55 model 14 days 15 hours (2 20280Ti GPUs)

Table 8: FID scores

CIFAR-10 CELEBA-HQ-128 LSUN-BEDROOM-128
Our method 60.79 83.01 56.86
GANs (Kurach et al., 2018) 22.7 24.7 40.4
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H ABLATION STUDY

H.1 UNIFORM NOISE AND DATA DIVERSITY

In this ablation study, we use CIFAR-10 class 0 data as the target data distribution dataset pk, and
train models with different p−k datasets.

It is observed in Table 11 and 12 that when p−k is uniform noise, the D models only developed
capability for identifying uniform noise and Gaussian noise as OOD inputs. This result seems to
contradict the mathematical analysis in Appendix M which says that with a uniform distribution
as p−k a D function useful for detecting any kind of OOD inputs could be obtained. According to
the manifold hypothesis, real image data lie on lower-dimensional manifolds embedded within the
high-dimensional space. While in contrast, the uniform noise is highly concentrated on the surface of
the unit d-cube3 in a high dimensional space [0, 1]d. Our conjecture is that due to these geometry
properties, in terms of Euclidean distance, real image data is close to each other while uniform noise
live far away from the real data. As a result, uniform noise is much less data efficient than real data
for training OOD detection models, and a much larger number of inner iterations and K value in
Algorithm 3 may be needed to reach a satisfying detection performance.

For real image data experiments, we respectively use ImageNet and a CIFAR-10 subset consisting of
CIFAR-10 data from class 1 to class 9 as the p−k dataset. ImageNet is a considerably much larger
and more diverse dataset than the CIFAR-10 dataset, and it is seen from Table 9 and Table 10 that the
model training against Imagenet performs much better on OOD and adversarial OOD detection than
the model trained against the CIFAR-10 subset.

Table 9: Average OOD performance (AUROC scores) on CIFAR10 class 0 data. (pk = CIFAR-10
class 0, and p−k = ImageNet).

D model

ε-test K = 0 K = 15 K = 25

0.0 0.9940 0.9872 0.9758
1.0 0.1352 0.9330 0.9325
2.0 0.0084 0.6863 0.8284

Table 10: Average OOD detection performance (AUROC scores) on CIFAR-10 class 0 data. (pk =
CIFAR-10 class 0, and p−k = CIFAR-10 class 1 - class 9).

D model

ε-test K = 0 K = 15 K = 25

0.0 0.9790 0.9699 0.9477
1.0 0.0985 0.8612 0.8732
2.0 0.0004 0.5023 0.6979

Table 11: OOD detection performance (AUROC scores) of K = 0 model on CIFAR-10 class 0 data
(pk = CIFAR-10 class 0, and p−k = uniform noise).

ε-test Gaussian noise Uniform noise ImageNet Bedroom SVHN CelebAHQ CIFAR100 mean

0.0 1.0000 1.0000 0.5859 0.5791 0.5801 0.5235 0.5499 0.6884
1.0 1.0000 1.0000 0.5161 0.5028 0.5141 0.4510 0.4816 0.6379

3The volume of the unit d-cube shrunk by some small epsilon in each dimension is given by V = (1− 2ε)d.
This quantity quickly approaches 0 as d increases.
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Table 12: OOD detection performance (AUROC scores) of K = 15 model on CIFAR-10 class 0 data.
(pk = CIFAR-10 class 0, and p−k = uniform noise).

ε-test Gaussian noise Uniform noise ImageNet Bedroom SVHN CelebAHQ CIFAR100 mean

0.0 1.0000 1.0000 0.5772 0.5760 0.5711 0.5139 0.5435 0.6831
1.0 1.0000 1.0000 0.5063 0.4984 0.5043 0.4406 0.4738 0.6319

H.2 EFFECTS OF MODEL CAPACITY

Table 13: Adversarial OOD detection performances (AUROC scores) of our method trained with
different model architectures and p−k datasets. The in-distribution dataset is CIFAR-10. The
definition of ResNet18 can be found at https://github.com/MadryLab/robustness.

OOD dataset (with an L∞ perturbation of ε = 0.01)

Method Uniform Noise Gaussian Noise SVHN CIFAR-100

ResNet-CIFAR, p−k = Imagenet (K = 5) 100 100 89.2 74.0
ResNet-CIFAR, p−k = 800 Million Tiny Images (K = 5) 99.9 99.9 90.8 78.4
ResNet18, p−k = 800 Million Tiny Images (K = 5) 99.0 99.1 91.8 81.8

Table 14: Standard OOD detection performances (AUROC scores) of our method trained with
different model architectures and p−k datasets. The in-distribution dataset is CIFAR-10.

OOD dataset (no perturbation)

Method Uniform Noise Gaussian Noise SVHN CIFAR-100

ResNet-CIFAR, p−k = Imagenet (K = 5) 100 100 96.1 87.0
ResNet-CIFAR, p−k = 800 Million Tiny Images (K = 5) 100 100 97.0 89.1
ResNet18, p−k = 800 Million Tiny Images (K = 5) 99.6 100 97.4 91.5

I FAILURE MODE DIAGNOSIS

We observe that in Algorithm 3, if λ is set to a too large value, the algorithm fails to learn a D that
is useful for image generation. In this section we discuss the training dynamics of the case of an
appropriate λ value and the case of λ being too large.

λ is small enough In Algorithm 3 as we increase K, pt gradually converges to pk. In this process
it becomes increasingly difficulty for the D model to differentiate these two distributions. This
phenomenon can be observed in Figure 7 : the training loss (binary cross-entropy loss) of the D
model becomes larger and larger (left subfigure), and eventually these two distributions become
indistinguishable (AUROC ≈ 0.5, middle subfigure). From the right subfigure we can see that D’s
performance on p−k vs. pk is also affected by the increase in K value.

λ is too large The failure mode caused by λ being too large is easy to identify (Figure 8): the
training loss quickly decreases to 0 as K increases (left subfigure), pt and pk become perfectly
separable (middle subfigure), and D model becomes unable to separate p−k from pk(right subfigure).

In general, with a small enough λ value, an increase of sample quality could be expected after model
is trained with a larger K. This is the case when λ is 0.1, but not when it is 0.6 (Figure 9).
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Figure 7: CIFAR-10 training curves of λ = 0.1. Left: training loss curves, middle: AUROC curves
(pt vs. pk), and right: AUC curves (p−k vs. pk).
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Figure 8: CIFAR-10 training curves of a failed training instance (λ = 0.6).

(a) λ = 0.1 (b) λ = 0.6

Figure 9: Generated samples after training with an increasing sequence of K values (K = 0, 1, 2).
Sample quality improved when λ = 0.1, but didn’t when λ = 0.6.

23



Under review as a conference paper at ICLR 2021

J EXPANDED OOD RESULTS

J.1 CIFAR-10

Table 15: The performances of CIFAR-10 K = 25 model under PGD attacks of different combina-
tions of steps and step size. The perturbation limit is ε = 2.0 (L2 norm). Each entry is computed
using 500 positive samples and 500 negative samples.

OOD dataset: Gaussian noise

step size

steps 2.0 1.0 0.5 0.1 0.05

200 0.6781 0.6746 0.6818 0.7085 0.7194
500 0.6772 0.6717 0.6771 0.6968 0.7060
1000 0.6764 0.6705 0.6757 0.6923 0.6982

OOD dataset: Uniform noise

step size

steps 2.0 1.0 0.5 0.1 0.05

200 0.9684 0.9674 0.9671 0.9673 0.9678
500 0.9684 0.9673 0.9669 0.9671 0.9672
1000 0.9684 0.9673 0.9669 0.9670 0.9670

OOD dataset: ImageNet

step size

steps 2.0 1.0 0.5 0.1 0.05

200 0.5206 0.5171 0.5192 0.5252 0.5323
500 0.5206 0.5167 0.5182 0.5210 0.5239
1000 0.5199 0.5163 0.5181 0.5203 0.5222

OOD dataset: Bedroom-128

step size

steps 2.0 1.0 0.5 0.1 0.05

200 0.5323 0.5291 0.5305 0.5388 0.5472
500 0.5315 0.5284 0.5295 0.5346 0.5368
1000 0.5312 0.5277 0.5292 0.5333 0.5343

OOD dataset: SVHN

step size

steps 2.0 1.0 0.5 0.1 0.05

200 0.5518 0.5493 0.5517 0.5590 0.5665
500 0.5510 0.5484 0.5499 0.5546 0.5575
1000 0.5507 0.5480 0.5494 0.5531 0.5549

OOD dataset: CelebA-HQ

step size

steps 2.0 1.0 0.5 0.1 0.05

200 0.5661 0.5631 0.5632 0.5673 0.5708
500 0.5657 0.5625 0.5626 0.5648 0.5666
1000 0.5653 0.5623 0.5624 0.5642 0.5653

OOD dataset: CIFAR-100

step size

steps 2.0 1.0 0.5 0.1 0.05

200 0.4312 0.4283 0.4290 0.4340 0.4388
500 0.4310 0.4279 0.4286 0.4308 0.4327
1000 0.4309 0.4274 0.4280 0.4299 0.4309

Table 16: OOD detection performances of the CIFAR-10 K = 0 model on individual datasets. Each
entry in this table and the following two tables is computed using 3000 positive samples and 3000
negative samples. When test ε > 0, perturbations are computed using PGD attacks of steps 200 and
step size 0.5.

ε-test Gaussian noise Uniform noise ImageNet Bedroom SVHN CelebA-HQ CIFAR-100 mean

0.0 1.0000 0.9992 0.9905 0.9908 0.9956 0.9953 0.8475 0.9741
1.0 0.0000 0.0372 0.0001 0.0000 0.0000 0.0000 0.0001 0.0053
2.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 17: OOD detection performances of the CIFAR-10 K = 15 model on individual datasets

ε-test Gaussian noise Uniform noise ImageNet Bedroom SVHN CelebA-HQ CIFAR-100 mean

0.0 0.9911 1.0000 0.8593 0.9247 0.9182 0.8731 0.8036 0.9100
1.0 0.9218 1.0000 0.6918 0.7712 0.7590 0.7264 0.6156 0.7837
2.0 0.4709 0.9988 0.4065 0.4485 0.4451 0.5098 0.3503 0.5185

Table 18: OOD detection performances of the CIFAR-10 K = 25 model on individual datasets

ε-test Gaussian noise Uniform noise ImageNet Bedroom SVHN CelebA-HQ CIFAR-100 mean

0.0 0.8993 0.9998 0.8138 0.8725 0.8721 0.8248 0.7411 0.8605
1.0 0.8310 0.9943 0.6943 0.7470 0.7510 0.7171 0.6075 0.7632
2.0 0.6845 0.9712 0.5178 0.5414 0.5660 0.5723 0.4381 0.6131
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J.2 CIFAR-10 CLASS 0

Table 19: OOD detection performances of the CIFAR-10 K = 0 model on individual datasets. Each
entry in this table and the following two tables is computed using 1000 positive samples (the test
set only has 1000 samples) and 1000 negative samples. PGD attack setting follows the CIFAR-10
experiment.

ε-test Gaussian noise Uniform noise ImageNet Bedroom SVHN CelebA-HQ CIFAR-100 mean

0.0 1.0000 1.0000 0.9917 0.9888 0.9903 0.9996 0.9880 0.9940
1.0 0.0046 0.9100 0.0034 0.0007 0.0006 0.0167 0.0107 0.1352
2.0 0.0000 0.0588 0.0000 0.0000 0.0000 0.0000 0.0000 0.0084

Table 20: OOD detection performances of the CIFAR-10 K = 15 model on individual datasets

ε-test Gaussian noise Uniform noise ImageNet Bedroom SVHN CelebA-HQ CIFAR-100 mean

0.0 0.9983 1.0000 0.9779 0.9819 0.9833 0.9999 0.9687 0.9872
1.0 0.9537 0.9999 0.9054 0.9055 0.8920 0.9974 0.8769 0.9330
2.0 0.6470 0.9913 0.6183 0.5727 0.4486 0.9495 0.5763 0.6863

Table 21: OOD detection performances of the CIFAR-10 K = 25 model on individual datasets

ε-test Gaussian noise Uniform noise ImageNet Bedroom SVHN CelebA-HQ CIFAR-100 mean

0.0 0.9761 1.0000 0.9644 0.9680 0.9698 0.9998 0.9527 0.9758
1.0 0.9071 0.9963 0.9150 0.9146 0.9073 0.9979 0.8894 0.9325
2.0 0.7770 0.9787 0.7990 0.7802 0.7275 0.9841 0.7526 0.8284
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J.3 CELEBA-HQ-128

Table 22: The performances of CelebA-HQ-128 K = 40 model under PGD attacks of different
combinations of steps and step size. The perturbation limit is ε = 10 (L2 norm). Each entry is
computed using 500 positive samples and 500 negative samples.

OOD dataset: Gaussian noise

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.9980 0.9980 0.9980 0.9980 0.9980
200 0.9980 0.9980 0.9980 0.9980 0.9980
500 0.9980 0.9980 0.9980 0.9980 0.9980

OOD dataset: Uniform noise

step size

steps 8.0 4.0 2.0 1.0 0.5

100 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000

OOD dataset: ImageNet

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.9933 0.9922 0.9920 0.9923 0.9929
200 0.9931 0.9920 0.9918 0.9920 0.9923
500 0.9932 0.9917 0.9916 0.9917 0.9920

OOD dataset: Bedroom-128

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.9953 0.9939 0.9939 0.9943 0.9951
200 0.9952 0.9938 0.9935 0.9938 0.9943
500 0.9950 0.9937 0.9933 0.9935 0.9938

OOD dataset: SVHN

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.9815 0.9777 0.9774 0.9793 0.9824
200 0.9808 0.9769 0.9760 0.9772 0.9793
500 0.9805 0.9764 0.9750 0.9755 0.9767

OOD dataset: CIFAR-10

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.9855 0.9827 0.9822 0.9831 0.9851
200 0.9851 0.9823 0.9816 0.9820 0.9833
500 0.9848 0.9820 0.9811 0.9813 0.9820

OOD dataset: CIFAR-100

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.9799 0.9758 0.9754 0.9765 0.9788
200 0.9794 0.9753 0.9745 0.9750 0.9764
500 0.9793 0.9749 0.9738 0.9739 0.9749

Table 23: OOD detection performances of the CelebA-HQ-128 K = 0 model on individual datasets.
Each entry in this table and the following two tables is computed using 3000 positive samples and
3000 negative samples. When test ε > 0, perturbations are computed using PGD attacks of steps 200
and step size 2.0.

ε-test CIFAR-10 Gaussian noise Uniform noise ImageNet Bedroom SVHN CIFAR-100 mean

0.0 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000
5.0 0.0000 0.0000 0.0048 0.0004 0.0000 0.0000 0.0000 0.0008
10.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 24: OOD detection performances of the CelebA-HQ-128 K = 20 model on individual datasets

CIFAR-10 Gaussian noise Uniform noise ImageNet Bedroom SVHN CIFAR-100 mean

0.0 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000
5.0 0.9974 1.0000 1.0000 0.9988 0.9993 0.9965 0.9959 0.9983
10.0 0.9459 0.9903 0.9996 0.9805 0.9809 0.9190 0.9291 0.9636

Table 25: OOD detection performances of the CelebA-HQ-128 K = 40 model on individual datasets

CIFAR-10 Gaussian noise Uniform noise ImageNet Bedroom SVHN CIFAR-100 mean

0.0 0.9999 1.0000 1.0000 0.9999 1.0000 0.9999 0.9998 0.9999
5.0 0.9978 0.9997 1.0000 0.9990 0.9992 0.9968 0.9961 0.9984
10.0 0.9829 0.9958 0.9999 0.9925 0.9927 0.9744 0.9744 0.9875
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J.4 BEDROOM-128

Table 26: The performances of Bedroom K = 40 model under PGD attacks of different combinations
of steps and step size. The perturbation limit is ε = 10 (L2 norm). Each entry is computed using 500
positive samples and 500 negative samples.

OOD dataset: Gaussian noise

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.8659 0.8626 0.8899 0.9099 0.9189
200 0.8592 0.8490 0.8599 0.8871 0.9091
500 0.8552 0.8437 0.8467 0.8549 0.8762

OOD dataset: Uniform noise

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.9791 0.9782 0.9783 0.9789 0.9798
200 0.9790 0.9779 0.9777 0.9781 0.9789
500 0.9789 0.9778 0.9774 0.9775 0.9779

OOD dataset: ImageNet

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.8342 0.8297 0.8333 0.8388 0.8464
200 0.8326 0.8269 0.8285 0.8330 0.8382
500 0.8318 0.8250 0.8257 0.8280 0.8315

OOD dataset: CIFAR-10

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.7413 0.7284 0.7358 0.7480 0.7656
200 0.7367 0.7222 0.7267 0.7356 0.7470
500 0.7338 0.7176 0.7205 0.7250 0.7315

OOD dataset: SVHN

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.7856 0.7798 0.7889 0.8002 0.8162
200 0.7800 0.7719 0.7786 0.7864 0.7997
500 0.7756 0.7651 0.7700 0.7759 0.7836

OOD dataset: CelebA-HQ

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.9033 0.9019 0.9042 0.9081 0.9134
200 0.9020 0.8996 0.9015 0.9042 0.9078
500 0.9013 0.8984 0.8993 0.9011 0.9033

OOD dataset: CIFAR-100

step size

steps 8.0 4.0 2.0 1.0 0.5

100 0.7999 0.7899 0.7950 0.8062 0.8216
200 0.7954 0.7830 0.7869 0.7946 0.8050
500 0.7918 0.7778 0.7804 0.7855 0.7915

Table 27: OOD detection performances of the Bedroom-128 K = 0 model on individual datasets.
Each entry in this table and the following two tables is computed using 3000 positive samples and
3000 negative samples. When test ε > 0, perturbations are computed using PGD attacks of steps 200
and step size 2.0.

ε-test CIFAR-10 Gaussian noise Uniform noise ImageNet SVHN CelebA-HQ CIFAR-100 mean

0.0 1.0000 1.0000 1.0000 0.9713 1.0000 0.9999 1.0000 0.9959
5.0 0.0000 0.0000 0.0010 0.0002 0.0000 0.0000 0.0000 0.0002
10.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 28: OOD detection performances of the Bedroom-128 K = 20 model on individual datasets

CIFAR-10 Gaussian noise Uniform noise ImageNet SVHN CelebA-HQ CIFAR-100 mean

0.0 0.9959 1.0000 1.0000 0.9892 0.9955 0.9990 0.9946 0.9963
5.0 0.9604 0.9991 1.0000 0.9569 0.9634 0.9900 0.9623 0.9760
10.0 0.6834 0.9085 0.9984 0.7888 0.7061 0.8937 0.7251 0.8148

Table 29: OOD detection performances of the Bedroom-128 K = 40 model on individual datasets

CIFAR-10 Gaussian noise Uniform noise ImageNet SVHN CelebA-HQ CIFAR-100 mean

0.0 0.9525 0.9932 0.9993 0.9593 0.9474 0.9824 0.9578 0.9703
5.0 0.8986 0.9649 0.9967 0.9267 0.8995 0.9650 0.9114 0.9376
10.0 0.7274 0.8642 0.9749 0.8417 0.7740 0.9112 0.7651 0.8369
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K EXPANDED GENERATION RESULTS

Figure 10: Samples generated by GANs (Kurach et al., 2018); results of our method are in Figure 3.

(a) CIFAR-10 seed images (b) CelebA-HQ-128 seed images (c) LSUN-BEDROOM seed images

Figure 11: Seed images used to generated samples in Figure 3. Seed images for CIFAR-10 and
Bedroom-128 are generated by applying Gaussian blur to random images from ImageNet test set.
Seed images for CelebA-HQ-128 are generated by a VAE model (Kingma, 2013; Rezende et al.,
2014) trained on the CelebA-HQ-128 dataset.

Figure 12: Face retouching results. Top row are original images from the CelebA-HQ-128 test set,
and bottom row are enhanced images. The strength of retouching could be increased by performing
more steps of gradient ascent on D.
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K.1 IMAGE GENERATION ABLATION STUDY: EFFECT OF K

(a) Generated by K = 15 model (b) Generated by K = 25 model (c) Generated by K = 40 model

Figure 13: Samples generated by CIFAR-10 models trained with different Ks. These generations all
use the seed images in Figure 11(a).

(a) Generated by K = 20 model (b) Generated by K = 40 model (c) Generated by K = 80 model

Figure 14: Samples generated by CelebA-HQ-128 models trained with different Ks. These genera-
tions all use the seed images in Figure 11(b).

(a) Generated by K = 20 model (b) Generated by K = 40 model (c) Generated by K = 55 model

Figure 15: Samples generated by Bedroom-128 models trained with different Ks. These generations
all use the seed images in Figure 11(c).
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K.2 IMAGE GENERATION ABLATION STUDY: EFFECT OF DIFFERENT TYPES OF SEED IMAGES

(a) Seed images (b) Generated by K = 40 model

Figure 16: Samples generated by the CIFAR-10 K = 40 model using seed images on the left. Seed
images are from OOD datasets (Table 6.

(a) Seed images (b) Generated by K = 55 model

Figure 17: Samples generated by the CelebA-HQ-128 K = 80 model using seed images on the left.
Seed images are random samples of OOD datasets (Table 6.
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(a) Seed images (b) Generated by K = 55 model

Figure 18: Samples generated by the Bedroom-128 K = 55 model using seed images on the left.
Seed images are random samples of OOD datasets (Table 6).
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L 256× 256 RESOLUTION GENERATION

Figure 19: Uncurated 256× 256 generation results in the CelebA-HQ-256 dataset.
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Figure 20: Uncurated 256× 256 generation results in the Bedroom256 dataset. The state-of-the-art
results on this dataset can be found in Figure 10 of Karras et al. (2019).
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Figure 21: Uncurated 256 × 256 generation results in the ImageNet Dog 256 dataset. The state-
of-the-art results on this dataset can be found at Brock et al. (2018), although their results are of
resolution 128× 128 and at the same time class-conditional. Unconditional generation results on this
dataset can be found at Zhang et al. (2018).
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M PROOF OF ALGORITHM 1’S CONVERGENCE PROPERTY

In this section we provide a proof that when p−k is a uniform distribution over the spaceX \Supp(pk),
Algorithm 1 converges to a D solution with no local maxima and global maxima at support of pk.

To recap Algorithm 1, in each iteration step 1 samples points from pk and p−k, step 2 solves the inner
maximization by moving samples of p−k to locations where D has the maximum outputs, and step 3
solves the outer minimization by increasing D outputs on pk samples (maximizing Ex∼pk [logD(x)])
and decreasing outputs on p−k samples (maximizing Ex∼pt [log(1−D(x))]). Step 2 is implemented
by performing gradient ascent on D, using initial samples of p−k as starting points. Given that D
could be a non-concave function during the course of Algorithm 1 execution, samples of p−k could
be stuck in local maxima points in X \Supp(pk). We now show that due to this gradient-based search
method used by step 2, Algorithm 1 has the following convergence property:
Proposition 2. When p−k is a uniform distribution over the space X \ Supp(pk), Algorithm 1
converges to a D solution with no local maxima and global maxima at support of pk.

Proof. We assume that D has enough capacity such that step 3’s update of D in Supp(pk) does
not affect D’s outputs in X \ Supp(pk). We assume that the environment in which Algorithm 1 is
simulated has a numeric limit of ε (e.g., ε = 10−12) such that X \ Supp(pk) is a finite set. (This
assumption is valid when the algorithm runs on a computer.) Since X \ Supp(pk) is a finite set,
we consider the case where p−k is a discrete uniform distribution. This distribution has non-zero
probability at any point in X \ Supp(pk).

We first prove that any local maximum point inX\Supp(pk) can be eliminated by running Algorithm 1
for a sufficient and finite number of iterations. To proceed, we first state the condition under which a
local maximum point will be eliminated: a local maximum point q in X \Supp(pk) will be eliminated
if via one or more iterations of the algorithm a sufficient number of p−k samples reach q. When
this condition is satisfied, the cumulative effects of step 3 cause the local maximum to disappear by
decreasing D(q) to a sufficiently small value.

We next show that the above condition is always satisfied when Algorithm 1 runs for a finite number
of iterations. Let U be the set of points in X \Supp(pk) that reach q when performing gradient ascent
on D in step 2. U is non-empty when a sufficiently small step size is used for performing the gradient
ascent, as it at least contains the point q itself when a step size of 0 is used. For U is non-empty, a
sufficient number of p−k samples could fall on U and subsequently reach q if enough samplings of
p−k are done via step 1.

For a given D, the set of local maxima points in X \ Supp(pk) is a finite set. However, as new local
maxima are constantly being created due to D’s update in each iteration, it is possible that this set
will never be empty. We now prove that in a finite iterations of the algorithm this set actually goes to
empty. Let Qt be the set of local maxima points of D in X \ Supp(pk) in iteration t. We have shown
in the first proof that all the elements ofQt are going to be reached by p−k samples in a finite number
of iterations, hence if Qt is non-empty as t→∞, D values in X \ Supp(pk) will be decreased by
an ≥ ε amount for an infinite number of times, which contradicts our assumption that D is a finite
function in the finite set of X \ Supp(pk).

We note that the above convergence property holds for any random initialization of D. However,
uniform distribution is not a necessary condition here; any p−k distribution that has non-zero density
everywhere in the data space will suffice. For a particular or particular type of initialization of D, its
local maxima points could follow some pattern, and hence the assumption on p−k could be relaxed.
However, in practice whether or not a p−k distribution is sufficient for a given D can be difficult to
measure.
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N EXTENDED ADVERSARIAL OOD DETECTION RESULTS

Table 30: The performance (AUROC scores) of CIFAR-10 K = 5 model (the in-distribution dataset
is CIFAR-10) under attacks of different configurations. Following Bitterwolf et al. (2020) we used
1000 samples for both in-distribution data and OOD data. Similarly, we used 5 random restarts to
enhance the default attack, but the performance decrease is negligible.

OOD dataset (with an L∞ perturbation of ε = 0.01)

PGD attack steps, step size Uniform Noise Gaussian Noise SVHN CIFAR-100

100, 0.002 (default for Table 4) 98.69 99.32 91.48 82.41
100, 0.002 (5 random restarts) 98.69 99.31 91.45 82.39
500, 0.002 98.69 99.31 91.47 82.40
500, 0.005 98.70 99.32 91.48 82.43
500, 0.01 98.71 99.39 91.57 82.61
1000, 0.001 98.69 99.31 91.47 82.40

Table 31: Adversarial OOD detection performances (AUROC scores) when in-distribution dataset
is SVHN. Performance data of methods other than ours is collected from Bitterwolf et al. (2020).
The results of our method are based on an PGD attack of steps 100 and step size 0.005. For results
under different attack configurations including one with random restarts see Table 32. Our SVHN
model was trained with 800 Million Tiny Images dataset as the p−k dataset and used the ResNet18
architecture.

OOD dataset (with an L∞ perturbation of ε = 0.03)

Method Uniform Noise Gaussian Noise CIFAR-10 CIFAR-100

OE (Hendrycks et al., 2018) 98.2 N/A 62.5 60.2
CCU (Meinke & Hein, 2019) 100 N/A 56.8 52.5
ACET (Hein et al., 2019) 96.3 N/A 99.5 99.4
GOOD (Bitterwolf et al., 2020) 99.9 N/A 98.4 97.7
Ours (K = 45) 100 99.7 99.7 99.4

Table 32: The performance (AUROC scores) of SVHN K = 45 model (the in-distribution dataset is
SVHN) under attacks of different configurations. Following Bitterwolf et al. (2020) we used 1000
samples for both in-distribution data and OOD data. Similarly, we used 5 random restarts to enhance
the default attack, but the performance decrease is negligible.

OOD dataset (with an L∞ perturbation of ε = 0.03)

PGD attack steps, step size Uniform Noise Gaussian Noise CIFAR-10 CIFAR-100

500, 0.002 100 99.84 99.78 99.53
100, 0.005 100 99.85 99.78 99.54
100, 0.005 (5 random restarts) 100 99.85 99.78 99.54
500, 0.005 100 99.85 99.78 99.54
500, 0.01 100 99.86 99.79 99.55
1000, 0.001 100 99.84 99.78 99.53
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