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Abstract—There is a growing academic interest as well as
commercial exploitation of millimetre-wave scanning radar for
autonomous vehicle localisation and scene understanding. Al-
though several datasets to support this research area have been
released, they are primarily focused on urban or semi-urban
environments. Nevertheless, rugged offroad deployments are
important application areas which also present unique challenges
and opportunities for this sensor technology. Therefore, the Ox-
ford Offroad Radar Dataset (OORD) presents data collected in the
rugged Scottish highlands in extreme weather. The radar data we
offer to the community are accompanied by GPS/INS reference
– to further stimulate research in radar place recognition. In
total we release over 90GiB of radar scans as well as GPS
and IMU readings by driving a diverse set of four routes over
11 forays, totalling approximately 154 km of rugged driving.
This is an area increasingly explored in literature, and we
therefore present and release examples of recent open-sourced
radar place recognition systems and their performance on our
dataset, including a learned neural network.

I. INTRODUCTION

Compared to cameras and LiDARs, radar systems offer dis-
tinct advantages, including extended-range perception and re-
silience to lightning and various weather conditions. Scanning
radar-based motion estimation [1]–[8], pose estimation [9]–
[11], place recognition [9], [12]–[21], and full simultaneous
localisation and mapping (SLAM) [22], [23] are increasingly
popular in the literature. This dataset is designed to support
that work, and to prompt an extension into naturalistic, rugged
environments, which are underexplored. These natural envi-
ronments are important because off-road autonomous vehicles
have many essential applications across industries operating
on rugged terrain. This technology is essential for tasks such
as agricultural operations, search and rescue missions, and
exploration in remote areas, where human intervention may
be impractical or hazardous.

In deploying autonomous machines to these sites, place
recognition is vital for navigation and localisation. For this,
more robust sensors are crucial to enhancing place recognition
accuracy and reliability. Radar in particular can handle chal-
lenging conditions like low-light environments. We therefore
present an offroad radar dataset with a focus on relocalisation,
with Fig. 1 showing an example location from our collection
site. Our contributions are as follows:

1) Offroad scanning radar data We release the first
radar dataset focusing on off-road, difficult terrain and
naturalistic environments,

Fig. 1: Our data collection site is in the Scottish Highlands,
with comprehensive coverage of Ardverikie Estate, close to
the historic boundary between Lochaber and Badenoch. This
image is taken on Lochan na h-Earba from our (Dataset 10)
and (Dataset 11) datasets (Sec. III), showing unpaved terrain
over uneven landscape next to the vehicle and the inclement
weather. Images, GPS traces, and example radar scans for
more specific areas of Ardverikie Estate are provided in Fig. 3.

2) Poor weather and lighthing conditions including col-
lection after thick snowfall and in total darkness (being
in the wilderness),

3) Place recognition ground truth Our raw data is refer-
enced against good GPS as a ground truth for the place
recognition task,

4) Open-sourced radar place recognition implementa-
tions For the first time, we release open-source a set of
trained weights for a deep neural network which solves
the radar place recognition,

5) Software development kit We release software tools
for making the use of this dataset in some pre-existing,
non-learned open-source radar place recognition imple-
mentations easy, as well as pipelines to accelerate new
learning solutions.

II. RELATED WORK

Radar datasets Datasets featuring a similar class of
millimetre-wave scanning radar include Marulan [24] by
Peynot et al, which is furthermore also collected in natural
environments, as is ours. This data, however, only has range
of up to 40m. Several recent radar datasets use the same radar
class – from the same manufacturer1 – as used in our work,
including the Oxford Radar RobotCar Dataset [25] by Barnes
et al, MulRan [12] by Kim et al, RADIATE [26] by Sheeny et

1Navtech Radar: navtechradar.com

http://oxford-robotics-institute.github.io/oord-dataset
http://huggingface.co/mttgdd/oord-models
http://github.com/mttgdd/oord-dataset
http://navtechradar.com


2

al, Boreas [27] by Burnett et al, and OSDaR23 [28] by Tagiew
et al. The Oxford Radar RobotCar Dataset [25] is purely urban
and features many repeat traversals, useful in investigating
place recognition. The ground truth provided in [25], however,
is prepared for radar odometry rather than place recognition.
MulRan [12] presents more diversity in scenery, having been
collected in several distinct parts of Daejeon, South Korea. We
similarly attend to generalisation-sensitive training/testing data
and collect at many sites, albeit offroad and more widespread
across the countryside rather than a city. Our repeat traversals
are also more numerous than for MulRan. RADIATE [26], pre-
senting vehicle detection and tracking ground truth, is similarly
lacking in overlapping traversals and not geared towards place
recognition, although a diversity in weather makes this dataset
interesting for exploring this sensor’s robustness. Closest to
our work is Boreas by Burnett et al [27], who collect multi-
season data including a Navtech CIR304-H scanning radar.
Our work is in part inspired by this, with ours featuring highly
non-planar offroad driving as opposed to purely urban. We
present data over 154 km of driving. For comparison, MulRan
– also focused on global localisation – presents approximately
124 km of driving data (Table III in [12]).

Radar place recognition Owing to its inherent resilience in
sensing capabilities, radar has attracted considerable attention
for its adeptness in the face of adverse weather, demonstrating
a capacity to navigate and operate effectively in inclement
conditions. This is because radar systems typically use elec-
tromagnetic waves in the radio or microwave frequency range.
Unlike visible light, these waves can penetrate through various
weather elements like rain, snow, fog, and clouds without
significant distortion or attenuation. Radar place recognition
has thus been explored in [9], [13], [14], [16], [17], [21],
[29]–[33]. This dataset was designed to support radar place
recognition in off-road environments, where place recognition
with camera and LiDAR in off-road environments has been
investigated in e.g. [34]–[38].

III. OFF-ROAD ROUTES & COLLECTION SITES

Fig. 3 shows detailed examples of one of the four routes
we collected data over, at the Ardverikie Estate. Data has been
gathered in the region encompassing Loch Laggan and Lochan
na h-Earba. The position of these lochs can be particularly
well understood by referring to the caption of Fig. 3.

Loch Laggan, a freshwater loch located about 10 km west
of Dalwhinnie in the Scottish Highlands, extends in a nearly
northeast to southwest direction for approximately 11 km.
The name Lochan na h-Earba actually refers to two lochs
positioned south of Loch Laggan. These lochs are situated in
a slender glen that runs from southwest to northeast, running
roughly parallel to Loch Laggan. The Binnein Shuas range of
hills separates them from Loch Laggan.

Fig. 3 is arranged as follows: Top Left: Photograph of
dataset collection location (handheld camera, not on-board
imagery). Top Middle: GPS trace of route driven. Top Right:
Ground truth match matrix for a pair of trajectories at that
site. Bottom: Example radar scans from various points along
the route (Cartesian).

We release data from four areas of the Ardverikie Estate.
These feature distinct landscape (therefore typical radar re-

(a) (Dataset 4) (b) (Dataset 5) (c) (Dataset 6)

Fig. 2: On-board camera images for each released foray
in Sec. III. These images will be released alongside the radar
scans, and are included here to give a sense of the inclement
collection conditions.

turns) as well as driving conditions. We refer to the sites as
Two Lochs, Bellmouth, Maree, and Hydro. Each of these is
discussed below.

Route 1: Bellmouth This is a 8.98 km route. The route
is completely landlocked, heading away from and then back
towards Loch Laggan. The ascent and descent are reflected by
a somewhat symmetrical elevation change – climbing for the
first half of the route, and descending for the second half. The
vehicle is always on a gravel track. We performed four outings
along this route. The first two these outings are prior to any
snow falling in the Ardverikie Estate area. The next two of
these outings were after significant snow dump (Fig. 2(a)).

Route 2: Hydro This is a 13.65 km route. This route
reaches the highest elevation of all or our collection sites
– ascending a gravel track to maximum elevation and then
descending along the same route. For parts of the route, we
travel along a mountain river. The snow coverage is significant
(Figs. 2(b) and 2(c)), but not as thick as for Maree below.

Route 3: Maree This is a 16.87 km route. The route is
mountainous, in the elevated area to the south of Loch Laggan.
There are two ascents and descents – with a descent halfway
through the journey, and another at the end of the journey. The
vehicle is primarily on a gravel track. Both outings feature
heavy snow, with a completely covered track. In one outing
the vehicle is driving in total darkness (with no artificial
illumination beyond the vehicle’s spotlights as this is a very
remote and isolated natural collection site). The outings are
in the same direction, but within each outing itself we double
back on parts of the route and return to the starting point along
the same route we took to begin the route.

Route 4: Two Lochs This is a 20.62 km route across
the entire estate. The route is alongside two lochs (Loch
Laggan and Lochan na h-Earba), see Fig. 3 (Top Middle,
where the lochs are on top of and the bottom of the image,
respectively). Referring to the route in an anti-clockwise sense,
while going alongside Loch Laggan the vehicle is on tarmac
– it is otherwise on unpaved road for the rest of the route. The
two outings on this route are completed after snow has fallen
(in previous days), so melted somewhat, but while it is still
very visible on the ground etc. The outings are in the opposite
direction as shown by the off-diagonal matches in the ground
truth matrix in Fig. 3 (Top Right).

Summary: Datasets provided In summary, the datasets
provided are listed below, including the date-string for the
collection time and the site that they were collected at.

• (Dataset 1): 2021-11-25-12-01-20 (Bellmouth)
• (Dataset 2): 2021-11-25-12-31-19 (Bellmouth)
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• (Dataset 3): 2021-11-26-15-35-34 (Bellmouth)
• (Dataset 4): 2021-11-26-16-12-01 (Bellmouth)
• (Dataset 5): 2021-11-27-14-37-20 (Hydro)
• (Dataset 6): 2021-11-27-15-24-02 (Hydro)
• (Dataset 7): 2021-11-27-16-03-26 (Hydro)
• (Dataset 8): 2021-11-28-15-54-55 (Maree)
• (Dataset 9): 2021-11-28-16-43-37 (Maree)
• (Dataset 10): 2021-11-29-11-40-37 (Two Lochs)
• (Dataset 11): 2021-11-29-12-19-16 (Two Lochs)
Some of these are shown in Fig. 2. We note that, beyond

the weather and illumination effects discussed for each route
above, some forays have lens adherents on the on-board
camera (e.g. Fig. 2(a) in particular), motivating the use of
radar in this sort of domain and for the localisation task.

IV. SENSORS & DATASET FORMAT

Radar This sensor is the same as that used for the Oxford
Radar RobotCar Dataset [25], i.e. a Navtech CTS350-X
Millimetre-Wave frequency-modulated continuous wave radar,
4Hz, 400 measurements per rotation, 163m range, 4.38 cm
range resolution, 1.8◦ beamwidth. These are the same settings
as for the Oxford Radar RobotCar Dataset [25], which should
support future investigations of domain differences comple-
mentary with respect to radar settings. Also, the majority of
driven tracks in our new dataset are in densely forested areas
with many trees within the 163m range. The radar was
mounted at the centre of the vehicle aligned to the vehicle
axes. Radar scans are stored as lossless-compressed PNG files
in polar form with each row representing the sensor reading
at each azimuth and each column representing the raw power
return at a particular range.

GPS/INS We use a Microstrain 3DM-RQ1-45 GPS/INS.
This sensor has direct satellite and inertial measurements,
and computes position, velocity, and attitude. To provide
accurate readings, it uses a triaxial accelerometer, gyroscope,
magnetometer, and temperature sensors, as well as a pressure
altimeter. Furthermore, dual on-board processors run a Ex-
tended Kalman Filter (EKF).

Vehicle setup For evaluating place recognition (Sec. V
below), the relative GPS/INS poses suffice. The radar mounted
is mounted on the roof of the vehicle – but forwards, towards
the front windshield. The GPS/INS is is also mounted on
the roof, but backwards, towards the rear windshield. The
radar and GPS/INS data packets are timestamp-synchronised
as per [39].

V. SOFTWARE & EXPERIMENTAL TOOLS

Downloads & data loaders Similarly to [25], we provide
data loaders to work with the radar data format, which as
per Sec. IV are released in raw polar format, but can be easily
transformed into Cartesian format with our SDK. For working
with driven sequences, we provide a basic iterable Dataset
class which returns each radar scan paired with its closest (in a
timestamp sense) GPS/INS reading (Sec. IV). We also provide
a batch download script to rapidly access the data.

Radar place recognition evaluation We evaluate place
recognition performance by comparing “distance matrices” in
the ground truth space given by GPS, as shown by example

(a) Lochan na h-
Earba isthmus

(b) Loch Laggan and
Lochan na h-Earba

(c) Ground truth ma-
trix

(d) Ex. scan #1 (e) Ex. scan #2 (f) Ex. scan #3 (g) Ex. scan #4

Fig. 3: The twolochs dataset is the most extensive we
provide, and is collected over a journey featuring (1) a tarmac
road under tree cover alongside a Loch Laggan (top), (2) a
gravel track over the shoulder of a mountain, (3) a partially
submerged track fording a loch, (4) a gravel track alongside
Lochan na h-Earba, and (5) a gravel track descending a
mountainside to the start location.

in Fig. 3 (Top Right) to distance matrices composed of e.g.
pairwise distances between vectors representing radar scans
(see Sec. VI) or some other similarity measurement. These
matrices have heights given by the number of radar scans in
a “query” foray and widths similarly for a “reference” foray.
Highlighted regions are such that those radar scan pairs have
locations given by GPS which are within 25m (this threshold
being configurable in our SDK). Off-diagonal revisits (for
e.g. Maree, not shown) represent traversals in the opposite
direction. This is especially important in the radar modality as
the sensor has a 360◦ field-of-view.

Then, Recall@N refers to the percentage of query scans
which result in at least one successful localisation (i.e. result-
ing in a returned location within 25m of the query location)
when accepting as candidates all of the N nearest neighbours
in the embedding space. This is a commonly used metric and
threshold, as in visual place recognition [40], [41]. Note that
in Fig. 3 the true positives are “thickened” for visualisation
purposes, to 100m, but we experiment in Sec. VII with 25m.

Radar place recognition with neural networks As will
be discussed below, we evaluate a family of learned methods
on our dataset. This includes a pretrained and frozen backbone
feature extractor along with a pooling layer which is fine-tuned
on radar data from this dataset, and we release these weights
at huggingface.co/mttgdd/oord-models , with this
being, to our knowledge, the first open-sourced learned radar
place recognition system.

Open-source radar place recognition methods As below
in Sec. VI, our SDK includes either (1) new implementations
of or (2) imports, as submodules, of other open-source radar
place recognition systems [12], [20], [33]. Experiments on
novel systems can be quickly run over all pairs of trajectories
discussed in Sec. III, and prepared in the format of Tab. I, by
a common .yaml configuration format.

http://huggingface.co/mttgdd/oord-models
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(Dataset 2)-vs-(Dataset 1) (Dataset 5)-vs-(Dataset 6) (Dataset 5)-vs-(Dataset 7) (Dataset 8)-vs-(Dataset 9) (Dataset 11)-vs-(Dataset 10)
(Baseline 1) 94.29 / 97.53 / 98.24 91.15 / 93.57 / 93.78 94.06 / 95.80 / 96.00 91.76 / 97.22 / 98.42 72.96 / 82.28 / 84.71
(Baseline 2) 98.45 / 98.73 / 98.94 92.65 / 93.89 / 93.94 95.34 / 95.85 / 95.85 94.28 / 99.15 / 99.40 85.82 / 87.69 / 88.25
(Baseline 3) 98.87 / 99.79 / 99.93 93.51 / 94.10 / 94.16 96.00 / 96.16 / 96.16 96.88 / 99.06 / 99.32 84.27 / 87.36 / 88.25
(Baseline 4) 97.67 / 98.52 / 98.87 93.78 / 94.26 / 94.37 95.70 / 99.59 / 99.95 97.14 / 99.06 / 99.44 5.41 / 10.98 / 16.23
(Baseline 5) 90.49 / 97.25 / 98.10 92.76 / 93.83 / 93.83 94.72 / 95.85 / 95.85 89.11 / 97.91 / 98.72 4.53 / 10.10 / 15.51
(Baseline 6) 90.70 / 97.04 / 98.45 91.96 / 93.62 / 93.83 93.14 / 95.49 / 95.75 87.92 / 96.67 / 98.25 17.55 / 40.07 / 50.44
(Baseline 7) 94.50 / 98.38 / 98.80 92.28 / 93.83 / 93.83 93.70 / 95.54 / 95.80 90.61 / 97.27 / 98.42 23.18 / 47.19 / 58.22
(Baseline 8) 74.91 / 92.39 / 95.28 82.79 / 91.31 / 92.60 83.91 / 92.78 / 94.62 65.16 / 86.93 / 92.10 14.74 / 35.87 / 47.08
(Baseline 9) 72.73 / 90.49 / 94.71 81.29 / 90.40 / 91.96 84.07 / 93.14 / 94.31 69.43 / 87.15 / 91.97 9.71 / 21.80 / 31.29

TABLE I: Recall@1/5/10 localisation success rate (%) for all example methods defined in Sec. VI and discussed in Sec. VII
over 5 pairs of trajectories from our dataset.

VI. EXAMPLES

• (Baseline 1): RingKey as a component of ScanCon-
text [42] averages point cloud contents at a fixed distance
around the vehicle (thus being rotation invariant). Note,
for this we do not use the orientation refinement of
ScanContext, as distances between row-reduced vectors
and orientation scores are separate, i.e. these form a
hierarchy of localisers. To be clear, this is different
to (Baseline 2) below, where the maximum circular cross-
correlation is the score used for similarity between scans
(with no initial score used to reduce the candidate set).

• (Baseline 2): RaPlace [20] measures the similarity score
between radar scans by using Radon-transformed sino-
gram images and cross-correlation in the frequency do-
main. This gives rigid transform invariance during place
recognition, and supresses the effects of radar multipath
and ring noises.

• (Baseline 3): Open-RadVLAD [33] uses only the polar
representation. Also, for partial translation invariance and
robustness to noise, it uses only a 1D Fourier Transform
along radial returns. It also achieves rotational invariance
and a very discriminative descriptor space by building a
vector of locally aggregated descriptors (VLAD).

• (Baseline 4): Here we train radar-specific neural network
models – using ResNet18 [43] as a backbone feature
extractor and NetVLAD [40] as a pooling layer (with
64 clusters). Inputs are polar radar scans of 128 × 128
resolution and embeddings are 128-dimensional. The
radar returns are replicated 3 times at the input in order
to form a 3-channel image. We start with pretrained
weights learned against ImageNet [44] and then, in
an unsupervised learning step, initialise the NetVLAD
cluster centres by k-means++ [45] over the deep features
extracted from the reference trajectory radar frames.

• (Baseline 5), (Baseline 6), (Baseline 7), (Baseline 8),
(Baseline 9): Here we show that the plug-and-play
ability of our dataset with respect to widely available
pretrained networks, to accelerate research in this area.
We use specifically the pytorch/vision:v0.10.0
models available at pytorch.org/hub as well
as the gmberton/cosplace models available at
github.com/gmberton/CosPlace . This covers
MobileNet [46] (Baseline 6), GoogleNet [47] (Baseline
7), AlexNet [48] (Baseline 8), and VGG19 [49] (Baseline
9), which are all trained for ImageNet classification and
thus not specialised for place recognition but represent
inputs in terms of wide variety of concepts and features.

It also covers CosPlace (ResNet18-512) [41] (Baseline
5) which is specifically trained for place recognition –
but not specifically for radar, in contrast to (Baseline 4).

VII. RESULTS

As can be seen in Tab. I, considering that all of each of
the routes is at minimum 9 km in length, all radar-specific
methods perform very well, with in excess of 90% for even
Recall@1 i.e. when relying on only a single nearest neigh-
bour in embedding space look up. Overall the best performing
methods are (Baseline 3) Open-RadVLAD [33], (Baseline 4)
ResNet18-NetVLAD, and (Baseline 2) RaPlace [20].

There is in fact a precipitous drop in localisation success rate
for all methods in (Dataset 10)-vs-(Dataset 11) in twolochs.
We attribute this to twolochs (Sec. III) being the longest
route (there therefore being more candidate scans to match
to – i.e. the search space being larger). In Fig. 3 this can
be seen in the ground truth matrix (Top Right) by the large
region to the right of the white strip, where the query trajectory
ends at Loch Laggan and therefore only overlaps with the
reference trajectory (Middle Right in Fig. 3) for approximately
40% of the route, with the reference trajectory continuing
north-east all the way along both bodies of water in Loch
Laggan. This may also be due to the long periods driven
along either Loch Laggan or Lochan na h-Earba where there
is a dearth of distinctive scenery in an entire hemisphere of
the radar scan. An example scan from this type of scene
can be seen in the third Cartesian frame in Fig. 3 (Bottom).
Therefore, twolochs is a useful test setting for recogni-
tion with vast maps and with featureless scenery. For this
challenging route, only radar-specific methods perform well
and we have (Baseline 2) RaPlace performing best, with
(Baseline 3) Open-RadVLAD matching it in Recall@10.
(Baseline 4) ResNet18-NetVLAD performs poorly on this
pair of trajectories, likely due to clustering of the reference
trajectory features, many of which are irrelevant to the query
trajectory.

VIII. CONCLUSION

We have presented a novel radar dataset, carefully gathered
under unique and challenging conditions. This dataset has
been crafted to catalyse advancements in the emerging field
of radar place recognition. We explored the use of our dataset
in this task over a series of comprehensive experiments and
evaluations, carried out across various open-source radar place
recognition systems. This was not only to showcase the dataset
but also to establish a robust platform for future research in
this evolving area.

http://pytorch.org/hub
http://github.com/gmberton/CosPlace
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