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ABSTRACT

Charts play an important role in visualization, reasoning, data analysis, and the
exchange of ideas among humans. However, existing vision-language models
(VLMs) still lack accurate perception of details and struggle to extract fine-grained
structures from charts. Such limitations in chart grounding also hinder their ability
to compare multiple charts and reason over them. In this paper, we introduce a
novel “ChartAlign Benchmark (ChartAB)” to provide a comprehensive evaluation
of VLMs in chart grounding tasks, i.e., extracting tabular data, localizing visualiza-
tion elements, and recognizing various attributes from charts of diverse types and
complexities. We design a JSON template to facilitate the calculation of evaluation
metrics specifically tailored for each grounding task. By incorporating a novel
two-stage inference workflow, the benchmark can further evaluate VLMs capability
to align and compare elements/attributes across two charts. Our analysis of eval-
uations on several recent VLMs reveals new insights into their perception biases,
weaknesses, robustness, and hallucinations in chart understanding. These findings
highlight the fine-grained discrepancies among VLMs in chart understanding tasks
and point to specific skills that need to be strengthened in current models.

1 INTRODUCTION

Recent large multimodal models (LMMs), such as vision-language models (VLMs), have achieved
remarkable breakthroughs in aligning the visual modality with language models, enabling challenging
language-level reasoning on visual input signals and opening the door to a wide range of applications
that naturally rely on interactions between the two modalities (Alayrac et al., 2022; Li et al., 2023;
Liu et al., 2023b). One critical class of applications is chart understanding and reasoning, which has
broad use in finance, data science, mass media, biology, and other scientific domains where ideas and
information are communicated through visualizations. In these applications, measuring numerical
values in charts, comparing visual elements (e.g., bars or curves), mapping correspondences between
colors, numbers, names, or markers, and recognizing attributes are essential skills for downstream
tasks. Most of these tasks require accurate grounding of the structured details in charts. Moreover,
dense alignment of elements across multiple charts is also a widely needed skill in practical scenarios.
These challenges present new open problems for VLMs.

Instead of focusing on charts, existing VLMs have primarily been pretrained and finetuned on natural
images and common questions/instructions, which are not fully compatible with chart understanding
tasks (Yao et al., 2024; Laurençon et al., 2024). Unlike perceiving objects shapes, poses, and
semantic meanings in natural images, accurate measurement and comparison of geometric/graphic
components, understanding of their structure and layout, and manipulation of their positions and
rich textual content are more critical for perception and reasoning with chart images. However,
it remains challenging for VLMs to acquire these capabilities, often leading to hallucinations and
misinterpretations in chart-centric tasks (Masry et al., 2022; Xia et al., 2024).

Despite the recent growing interest in chart-related tasks, existing VLMs and benchmarks specifically
designed for charts usually focus on simple QA tasks (Masry et al., 2022; 2025; Wang et al., 2024b;
Li & Tajbakhsh, 2023), which cannot comprehensively assess the capabilities of VLMs in grounding
and understanding chart components for more general-purpose tasks. Moreover, the alignment of
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layouts and components across multiple charts has not been explored in previous work. Hence, there
remains a lack of benchmarks dedicated to evaluating these critical skills.

In this paper, we take the first step toward systematically evaluating and analyzing general-purpose
VLMs on chart grounding and multi-chart dense alignment. We formally categorize the information
to be grounded in a chart into two dimensions: (1) data, and (2) attributes (e.g., colors, styles,
legends, sizes, positions) that define the visualization design, components, and layout. We define the
chart grounding task as extracting both the underlying data table and the associated attributes from a
chart image, and the dense alignment task as identifying correspondences and differences between
two charts. Together, these tasks represent fundamental capabilities and critical subroutines required
for a wide range of chart-centric applications.

To this end, we develop a comprehensive benchmark using pairs of similar charts to evaluate model
performance on the two tasks with respect to each type of information in the two categories. To
create a pair of similar charts, we perturb an existing chart by randomly modifying (1) one or a few
data cells in the data table and/or (2) an attribute in the script used to generate the original chart.
To maximize the potential of VLMs and evaluate their full capabilities, we propose a multi-stage
information extraction and query pipeline. In this pipeline, VLMs are first queried with a grounding
task targeting specified information in each chart, followed by a comparison of the grounding results
between the two charts. The pipeline leverages structured JSON templates to guide the grounding
and alignment of different types of information. In addition, we introduce several novel evaluation
metrics that account for the symmetry and ambiguity inherent in various types of information,
thereby enabling more reliable quantitative comparisons across different VLMs.

Our analysis reveals the weaknesses of existing VLMs in chart perception and understanding for
dense grounding and alignment. The observed errors highlight their biases and hallucinations
regarding certain chart components, offering critical insights for improving VLMs. The evaluation
results further show how differences across models, chart types, and queried data/attributes influence
benchmarking performance. In addition, we assess the robustness of VLMs in data grounding and
alignment under different attribute variations, such as changes in chart type or color schemes.

Our contributions and novelties are summarized as follows:

• We introduce the first comprehensive benchmark, “ChartAB” to systematically evaluate VLMs’
capabilities in dense grounding and multi-chart alignment of data and attributes in chart images.

• We propose a holistic evaluation suite, including a multi-stage pipeline converting charts into
JSON files with specific templates for tasks regarding data/attributes, and a rating scheme of the
grounding/alignment performance based on VLMs’ answers.

• Our evaluation and analysis of existing VLMs reveal weaknesses in fine-grained chart understand-
ing, highlight hallucinations, and expose biases in their vision encoders when perceiving critical
chart features and structures.

• We evaluate the robustness of grounding and alignment in data under perturbations of attributes. It
provides novel insights for the design of high-quality charts.

2 RELATED WORK

VLMs for Charts. Vision-language models have shown significant advancements in chart un-
derstanding tasks. They can be broadly classified into (1) general-purpose multimodal models and
(2) chart-specialized models. General-purpose models include proprietary ones (Hurst et al., 2024)
and open-source ones (Abdin et al., 2024; Chen et al., 2024; Liu et al., 2023a; Bai et al., 2025).
Chart-specialized models (Zhang et al., 2024b; Masry et al., 2024; Xia et al., 2024; Meng et al., 2024)
demonstrate strong performance on chart benchmarks; however, they are limited by instruction tuning
on specific tasks, which restricts dense-level understanding, and are further hindered by incompatible
pipelines that often rely on predefined routines to handle task requirements.

Chart Understanding Benchmarks. Current chart benchmarks evaluate VLMs on specific tasks
including question answering (Methani et al., 2020; Masry et al., 2022), summarization (Kantharaj
et al., 2022b), explanation-generation (Kantharaj et al., 2022a). Multi-task benchmarks including
ChartLlama Han et al. (2023), ChartX Xia et al. (2024) perform agglomeration of various modalities

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(like chart data, description, summary) for the downstream tasks. Recent works specifically focus on
expanding QA scope to overcome increased saturation by VLMs, for example CharXiv Wang et al.
(2024b) focuses on charts in research papers, SciGraphQA Li & Tajbakhsh (2023) evaluates multi-
turn QA, MultiChartQA Zhu et al. (2024) evaluates multi-hop reasoning on multiple related charts,
ChartQAPro Masry et al. (2025) includes diverse visualizations such as dashboards, infographs, and
flexible questions (hypothetical, unanswerable).

Visual Grounding. The dense-level understanding abilities of VLMs have been extensively en-
hanced through visual grounding. DePlot Liu et al. (2022) trained a transformer for image-to-CSV
generation, introducing a novel table comparison method for evaluation. StructChart Xia et al.
(2023) proposed module-based augmentation for efficient grounding of chart data and plot code in
downstream applications. Beyond charts, the Grounded-SAM model (Ren et al., 2024) leverages
Grounding-DINO (Liu et al., 2024) for improved dense-level open-set object tracking. BLIP-2 Li et al.
(2023) has been widely integrated into VLMs for VQA-related tasks. LLaVA-Grounded Zhang et al.
(2024a) enables detailed text descriptions of multi-object natural images by leveraging imagetext
grounding for instruction tuning.

Multi-Image Reasoning. Multiple benchmarks have been developed to evaluate VLMs on multi-
image reasoning. MMMU Yue et al. (2024) includes interleaved examples with multiple images from
medical, cartoon, art, and technical domains. MUIRBench Wang et al. (2024a) focuses on multi-chart
diagram QA but is limited to coarse-level understanding. MMIR Zhao et al. (2024) addresses chart
understanding through cross-modal alignment, i.e., plotting-code correctness relative to the chart
image. MileBench Song et al. (2024) introduces semantic understanding tasks involving text-rich
images, emphasizing text extraction and comprehension in OCR, documents, and slides.

3 ChartAB: CHART GROUNDING AND ALIGNMENT BENCHMARK
Data Grounding & Alignment

Color Text Style Legend

Attribute Grounding & Alignment

Robustness
Variation in Attribute
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Figure 1: Example pairs from ChartAB. ChartAB evaluates dense-level chart understanding in
VLMs through chart grounding and dense alignment across pairs of chart images. Pairs in the Data
Grounding & Alignment task differ in the underlying data values visualized by the charts. Pairs in
the Attribute Grounding & Alignment task differ in attributes, i.e., visual appearance such as color,
legend position, or text style. The Robustness task contains multiple pairs that share identical data
differences while varying in attributes (e.g., color, as illustrated).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We introduce ChartAB, the first benchmark designed to evaluate vision-language models (VLMs)
on dense level chart understanding. The benchmark focuses on two core capabilities essential to
chart reasoning: (1) grounding: extracting structured information from a single chart image, and (2)
alignment: identifying fine-grained differences between a pair of similar charts. These capabilities
serve as critical building blocks for a wide range of downstream applications. We develop a novel
two-stage pipeline for performing an integrated evaluation of a VLM for these capabilities.

We construct the ChartAB dataset for evaluating these capabilities. We include several examples from
our dataset in Figure 1. The dataset encompasses diverse chart types from various topics along with
ground-truth labels with extremely high level of precision. By isolating and rigorously evaluating
grounding and alignment abilities, ChartAB offers a deeper diagnostic understanding of VLMs for
their perceptual accuracy, reasoning limits, and alignment behavior in structured visual domains.

3.1 ChartAB DATASET CONSTRUCTION

1-Cell
21%

2-Cell
11%

3-Cell
8%

Color
11%

Legend
8%

Text Style
5%

DATA
Grounding &
Alignment
40%

ATTRIBUTE
Grounding &

Alignment
24% ROBUSTNESS

36%

Figure 2: Dataset statistics for ChartAB. The
benchmark includes 9k pairs of chart images. Data
Grounding & Alignment pairs differ in one to three
data cells. Attribute Grounding & Alignment pairs
differ in color, legend position, or text style. Ro-
bustness tasks include multiple pairs that share
identical data differences but differ in attributes.

We use the ChartX dataset Xia et al. (2024)
as the source dataset. It encompasses diverse
chart types from various domains, including
commerce, industry, lifestyle, society, and cul-
ture, and provides both csv data and plotting
code for each chart.

To create pairs of similar chart images, we start
with an image from the ChartX dataset and apply
controlled perturbations to the plotting code, fol-
lowed by executing the code to render the chart
images. We leverage each charts source data
and code (i.e., CSV table and plotting script) to
generate precise ground-truth values.

We selected nine diverse chart types to per-
form data and attribute perturbations: (1) simple
charts: bar chart, bar-numbered chart, line chart,
and line-numbered chart; (2) complex charts
3D chart, box chart, radar chart, rose chart, and
multi-axes chart. More details on dataset con-
struction are provided in A.3.

3.2 GROUNDING OF SINGLE CHART

Dense level understanding requires the extraction of precise semantic information from chart images,
including data, and attributes. General-purpose VLMs face challenges in performing it due to their
reliance on global visual embeddings, which fail to represent a chart image’s object-level details Xu
et al. (2023), which are critical in chart reasoning. Prior works primarily use QA on the chart image,
which tends to obscure semantic understanding and exacerbate VLM’s cross-modal inconsistencies
Huang et al. (2024). To enable more interpretable and compositional reasoning, we first analyze the
model’s ability to ground the chart information (i.e. data & attributes) to textual form.

We formalize grounding task: a chart image as input, resulting in a structured textual representation
of its contents. It is performed over two key semantic layers (1) data: underlying data table that the
chart visualizes. We prompt the model to generate a standard csv-style representation of the data
table capturing the headers (i.e. rows and columns) and cell values. (2) visual attributes: visual
attributes encompasses various constituents impacting visual appearance, such as color mappings,
legend positions, and text styles. We define attribute-specific JSON-style templates for each of them,
prompting the model to generate their structured representations. Grounding the chart image into
textual form isolates the model’s perceptual ability from downstream prompt variation or instruction
complexity. This helps in building a foundation for the subsequent dense alignment tasks, while also
enabling failure analysis of VLM in perceiving chart components.
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3.3 DENSE ALIGNMENT BETWEEN TWO CHARTS

While single chart grounding evaluates a models perception in isolation, real-world use cases often
require comparing similar charts to detect subtle differences among the charts. To simulate this, we
define a dense alignment task where the model must identify fine-grained discrepancies across chart
pairs. Crucially, this task builds on grounded representations, allowing us to isolate and evaluate
comparative reasoning for given chart-pairs. As shown in our ablation studies A.7.2, direct alignment
without grounding yields significantly weaker performance, highlighting the necessity of grounding
for subsequent dense-level alignment.

We define dense alignment as a comparison between two chart images that diverge in finer-level chart
details. It constitutes 3 tasks: Data Alignment, Attribute Alignment, Robustness. The 3 alignment
tasks consist of ∼ 3,600, ∼ 2,000, ∼ 3,300 instances respectively. For data alignment & attribute
alignment, each instance consists of pair of chart-images differing in underlying data & attribute (
color/legend/text-style) respectively. For Robustness, each instance contains 5 pairs of chart-images,
each pair with identical difference in data but variation in attribute (e.g. color of bars) across the 5
pairs. Each alignment task challenges the model to identify the set of divergent elements, and produce
a structured JSON capturing these differences, enabling evaluation at the element level. The task
details are discussed in A.4.

3.4 A TWO-STAGE EVALUATION PIPELINE

The two-stage approach fundamentally envisions the dense-alignment task as decomposable into
sub-tasks utilizing the visual-to-text grounding to perform finer-level analysis. The task decompo-
sition enables splitting complex finer-level reasoning into smaller steps for efficient element-wise
comparisons and handling model biases.

It is inspired from the multi-step approach used in SOTA reasoning models. Figure 3 shows color-
alignment evaluation for the o4-mini model OpenAI (2025). The model’s reasoning window shows
grounding of box (i.e. visual encoding) colors from each of two box plots (i.e. charts) respectively,
followed by dense-alignment on the grounded color information. This multi-step approach of the
model validates our task decomposition approach and its ability for efficient multi-image dense
alignment.

Input Image 1

Input Prompt

GPT-4o
{
  "Dragon's Cuisine": {
    "initial value": "#BA55D3",
    "modified value": "#A52A2A"
  },
  "Taco Bells": {
    "initial value": "#90EE90",
    "modified value": "#FF69B4"
  },
  "Fine Dine": {
    "initial value": "#FFC0CB",
    "modified value": "#4682B4"
  }
}

output
Thought for 4 seconds.
I will assign colors to each restaurant: 

Dragons Cuisine: 
- Chart 1 is purple/magenta, Chart 2 is red. 
Taco Bells: 
- Chart 1 is light green, Chart 2 is pink/magenta.
Fine Dine: 
- Chart 1 is light pink, Chart 2 is dark green.

I need to present the difference in a structure 
like JSON, with attributes (restaurant names) and 
their color changes between chant and chart2.

reasoning
{
  "Dragon's Cuisine": {
    "initial value": "#DA70D6",
   "modified value": "#A52A2A"
  },
  "Taco Bells": {
    "initial value": "#90EE90",
    "modified value": "#FF69B4"
  },
  "Fine Dine": {
    "initial value": "#FFC0CB",
    "modified value": "#556B2F"
  }
}

output
o4-mini

Given 2 charts: <Image Pair>. The charts differ in design colors. Can you identify attributes with changed color between the
pair? Mention answer of form: <color alignment JSON format>. 

Input Image 2

Figure 3: Multi-step color alignment with o4-mini. The o4-mini
model decomposes the alignment task, using the reasoning window
to first ground the colors of each chart before performing alignment,
yielding a more accurate result than GPT-4o, which performs alignment
directly without intermediate grounding.

We perform zero-shot infer-
ence using natural-language
instructions combined with
JSON template as output
format. This enables easy
instruction following and
flexible output parsing and
evaluation. As shown
in Figure 4 First-stage re-
sults in an intermediate
grounding with semantic
information on underlying
data. The interpretable na-
ture and element wise rep-
resentation enables subse-
quent reasoning for fine-
grained alignment. Second-
stage involves VLM reason-
ing by applying discrimi-
native comparison on the
grounded results from first
stage to perform the specific
dense alignment task result-
ing in final JSON output.

The second stage is critical for evaluating end-to-end alignment by requiring VLMs to perform
semantic comparison over grounded outputs, beyond just surface-level extraction. It also mitigates
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grounding ambiguities and enables additional contextual information thus offering a more human-like
assessment of alignment ability. Pipeline details are discussed in A.5.

VLM
Task: Data Grounding Prompt format: Given <Chart Image>, generate table for chart data. 

Data Alignment JSON

Task: Data Alignment Prompt format: Given <Chart 1 Table> and <Chart 2 Table>, compare the data and answer of form 
<data alignment JSON format>.

VLM

Chart 1 - Data Grounding

Chart 1

Chart 2 - Data Grounding 

Chart 2

Chart 1 Data table
AssetsYear Production A Production B Production C

2011 100 200 150

2012 120 160 170

2013 130 210 150

2014 140 220 190

2015 180 240 210

AssetsYear Production A Production B Production C

2011 100 200 150

2012 65 160 50

2013 130 210 150

2014 140 310 190

2015 180 240 210

"0": {
  "row name": "2012",
  "column name": "Production 
A",  "initial value": 120,
  "modified value": 65
}

"1": {
  "row name": "2014",
  "column name": "Production B",
  "initial value": 220,
  "modified value": 310
}

"2": {
  "row name": "2012",
  "column name": "Production C",
  "initial value": 170,
  "modified value": 50
}

Data Grounding & Alignment: Chart pair differs in the underlying data values being visualized

Figure 4: Two-Stage Evaluation Pipeline of dense level understanding of data in ChartAB. The
first stage focuses on grounding the data in each chart to a table, while the second stage i.e. alignment
requires the VLMs to find the difference between the two charts’ tables and output a JSON file
listing the different cells in the two tables. Evaluation of other categories adopts similar multi-stage
pipelines, with details in the Appendix (Figures 15, 16, 17).

3.5 DOWNSTREAM QA EVALUATION

The practical application of VLM on charts is towards diverse downstream tasks requiring complex
reasoning. The grounding & alignment ability serve as building blocks for the downstream reasoning
hence form cornerstone for VLM’s effectiveness on the subsequent corresponding downstream tasks.
And errors in grounding/alignment tasks are common reasons behind failure on these high-level
reasoning tasks. For analyzing downstream abilities, we evaluate VLM for Question-Answering (QA)
on the chart image. The QA evaluation as most widely applied downstream task (discussed in 2)
along with precise objective scoring motivate its selection. ChartX dataset’s Xia et al. (2024) QA set
is utilized. The QA set’s questions are generated focusing on chart data with 1-word answer format
with binary result which can be answered using knowledge of csv data table.

3.6 EVALUATION METRIC

For evaluating alignment of chart-pair, the outputs structured as JSON are utilized to capture dif-
ferences across N constituents involved in the task (e.g. colors of bars/lines, altered data points,
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or text regions). Each constituent i is assessed for its alignment accuracy acci, and the combined
accuracy is averaged and normalized to [0 - 10] resulting in alignment score Salign. This en-
ables us to effectively differentiate model performance across tasks, and quantify performance
aspects for visualized data and visual attributes as part of dense alignment.The alignment score
Salign = 10 ·

(
1
N

∑
i = 1Nacci(chart-pair)

)
. Task-wise metrics are discussed in A.6

We also evaluate grounding of chart image by calculating the correctness of semantic elements (e.g.
color of encoding like bar, legend position, size of text) corresponding to a chart image. For (1)
legend grounding (analyzed in Figure 8) & (2) text-style grounding (analyzed in Figure 6) we simply
apply categorical correctness. (3) Color grounding (analyzed in Figure 7) is evaluated using L2
distance in the RGB color space.

4 EXPERIMENTS & ANALYSIS

We evaluate 4 open-source VLM families: Phi-3.5 vision-instruct Abdin et al. (2024), InternVL-2.5
Chen et al. (2024), LLaVA-1.6 Liu et al. (2023a), QWEN-2.5 VL Bai et al. (2025). And GPT-4o Hurst
et al. (2024) as proprietary model. We also evaluate chart-specialized VLMs, including TinyChart
Zhang et al. (2024b) & ChartGemma Masry et al. (2024). However, due to their task-specific training
(discussed in 2), these models show a collapse of instruction following capabilities and fail to output
the required JSON format needed for evaluation. Further discussed in A.7.1. Ablations found in
A.7.2.

Downstream QA Evaluation. The QA evaluation pipeline involves grounding of the chart image
into csv (table) in the first stage followed by answering of question using the grounding table as input.
With an aim to analyze impact of fundamental grounding/alignment on downstream QA task, we
correlate chart-wise QA vs data Alignment performance.

BAR

BAR#

3D BAR
LINE

LINE#

RADAR

ROSE
BOX

MULTI
AXES

max = 9 Phi-3.5-4B
LlaVa-1.6-7B
InternVL-2.5-8B
QWEN-2.5-VL-7B
GPT-4o

BAR

BAR#

3D BAR
LINE

LINE#

RADAR

ROSE
BOX

MULTI
AXES

max = 9 Phi-3.5-4B
LlaVa-1.6-7B
InternVL-2.5-8B
QWEN-2.5-VL-7B
GPT-4o

Figure 5: (a) Comparing VLMs on Data alignment tasks when two charts’ data tables differ in only
one cell. Llava-1.6 is worse than most other VLMs. QWEN-2.5-VL outperforms GPT-4o on most
chart types. Related discussion in Finding 1. (b) Color alignment between two charts on fine-grained
visual elements (e.g., bars, lines, sectors). VLMs perform better on simpler and more common charts.
Related discussion in Finding 1.

Finding 1

VLMs’ dense grounding and alignment of data/color information are not satisfying on complex
charts.

Compared to simpler and more common charts, e.g., bar/line charts and numbered bar/line charts,
dense grounding/alignment on complex charts such as 3D/box/radar/rose/multi-axes charts with more
components and irregular layouts is more challenging to most VLMs. Despite the similar alignment
performance for legend (Figure 12a) and text-style (Figure 12b) between simple vs. complex charts,
the color and data alignment (Figure 5) on complex charts are much poorer than those on simple
charts. The color grounding requires identifying each constituent’s visual encoding and corresponding
color, while the visualized-data grounding needs to find the mapping from visual encoding to numeric
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values. Hence, complex layouts with more components make these tasks more difficult. In contrast,
identifying the position of legends and text styles (which both have limited options) is easier and less
affected by the chart complexity.

Finding 2

VLMs’ text-style grounding and alignment performance is poor in general, and it varies across
text size, weight, and font family.

Size Weight Font Family0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Phi-3.5-4B
LlaVa-1.6-7B

InternVL-2.5-8B
QWEN-2.5-VL-7B

GPT-4o

Figure 6: Text-style grounding on size,
weight, and font family. Accuracy is low
across most VLMs, highlighting lack of
style knowledge (Finding 4).

Figure 6 shows that most VLMs fail to detect the correct
text size and font family, suffering from an accuracy be-
low 20% (except GPT-4o’s performance on font family
grounding). These indicate a lack of knowledge on these
two text attributes. VLMs’ performance on text weight
((light/normal/bold)) is much better (∼60%) and close to
each other, but still not satisfying. Although LLMs can se-
lect reasonable text sizes in code generation for plots, they
tend to rely on the default sizes in their priors or relative
sizes to other chart components. They still lack sufficient
capability to identify text sizes in chart images.

Finding 3

VLMs’ weak color recognition ability.

Phi-3.5-4B
LlaVa-1.6-7B

InternVL-2.5-8B

QWEN-2.5-VL-7B
GPT-4o
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Figure 7: Color recognition mea-
sured by L2 errors in RGB space.
Median errors exceed 50 for all
VLMs, indicating weak color
recognition (Finding 3).

As shown in Figure 7, all models’ color grounding error (L2
distance in RGB space) has a median exceeding 50. This suggests
their inability to understand color shades beyond common ones,
e.g., red, blue, green, etc., which exposes their weaknesses in
color recognition.

The lack of color understanding affects the perception of
detailed differences in charts and leads to mismatches in
color-related/conditioned reasoning tasks. Consequently, the
VLMs’ performance in color alignment tasks (Figure 5) is
consistent with that on color grounding. These results suggest
improving the color understanding capability by adding more
color-sensitive data to VLM training.

Up
pe

r L
ef

t
Up

pe
r C

en
te

r
Up

pe
r R

ig
ht

Ce
nt

er
 L

ef
t

Ce
nt

er
Ce

nt
er

 R
ig

ht
Lo

we
r L

ef
t

Lo
we

r C
en

te
r

Lo
we

r R
ig

ht

Upper Left
Upper Center

Upper Right
Center Left

Center
Center Right

Lower Left
Lower Center

Lower Right

Phi-3.5-4B

Up
pe

r L
ef

t
Up

pe
r C

en
te

r
Up

pe
r R

ig
ht

Ce
nt

er
 L

ef
t

Ce
nt

er
Ce

nt
er

 R
ig

ht
Lo

we
r L

ef
t

Lo
we

r C
en

te
r

Lo
we

r R
ig

ht

LlaVa-1.6-7B

Up
pe

r L
ef

t
Up

pe
r C

en
te

r
Up

pe
r R

ig
ht

Ce
nt

er
 L

ef
t

Ce
nt

er
Ce

nt
er

 R
ig

ht
Lo

we
r L

ef
t

Lo
we

r C
en

te
r

Lo
we

r R
ig

ht

InternVL-2.5-8B

Up
pe

r L
ef

t
Up

pe
r C

en
te

r
Up

pe
r R

ig
ht

Ce
nt

er
 L

ef
t

Ce
nt

er
Ce

nt
er

 R
ig

ht
Lo

we
r L

ef
t

Lo
we

r C
en

te
r

Lo
we

r R
ig

ht

QWEN-2.5-VL-7B

Up
pe

r L
ef

t
Up

pe
r C

en
te

r
Up

pe
r R

ig
ht

Ce
nt

er
 L

ef
t

Ce
nt

er
Ce

nt
er

 R
ig

ht
Lo

we
r L

ef
t

Lo
we

r C
en

te
r

Lo
we

r R
ig

ht

GPT-4o

Low

High

In
te

ns
ity

Predicted

Gr
ou

nd
 Tr

ut
h

Figure 8: Confusion matrix of legend position grounding for each VLM. The dark non-diagonal
entries highlight the fail patterns and biases of incorrectly identifying position-i as position-j. Phi-3.5
exhibits a severe bias towards upper-left position while GPT-4o shows the minimal bias. More
discussion is provided below Finding 2.

Finding 4

Most VLMs suffer from biases when allocating the position of legends.
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The grounding of the legend’s position (Figure 8) suffers from a strong bias of pretrained VLMs. The
Phi-3.5 model shows the strongest prior towards the upper-left position. The 7-8B scale VLMs, e.g.,
LlaVa-1.6, Inten-VL-2.5, QWEN-2.5-VL, all show a similar level of bias but towards the upper-right
position instead. The GPT-4o model exhibits the minimal bias among all evaluated VLMs. The
grounding bias strongly affects the legend alignment (Figure 12a) where Phi-3.5 performs the worst,
GPT-4o has the best performance, while the other 3 models’ performance is between them.
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(b) Data Grounding impact on QA

Figure 9: (a) shows predicted QA accuracy rising with alignment score, underscoring the dependence
of downstream reasoning on accurate fine-grained alignment. (b) shows charts with above-median
grounding precision consistently yield a positive weighted ∆QA, demonstrating that stronger ground-
ing directly boosts downstream QA. Discussion for both (a) and (b) in Finding 6.

Finding 5

Poor Grounding and Alignment lead to degradation of Downstream QA performance.

Figure 9b demonstrates that precise grounding of visualized-data boosts QA performance. It validates
grounding as gateway for extracting structured data from chart for reliable downstream reasoning.
Notably, the highest gains occur on simple chart types (bar/line charts and numbered bar/line charts)
due to better numeric understanding from chart visual encodings, as discussed in Finding 1. Figure
9a shows steady rise of QA’s predicted accuracy with visualized-data alignment demonstrating
fine-grained chart understanding’s strong association with QA reasoning. These findings position
grounding and alignment as essential prerequisites for chart reasoning.

Finding 6

VLM’s follow scaling law on alignment tasks.
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Figure 10: InternVL-2.5 task perfor-
mance for different model sizes. Other
VLM results in Appendix 11.

As shown in Figure 10, we observed a clear scaling law
across the various dense alignment subtasks, except for
Text-Style Alignment. The deviation arises from the rel-
atively greater complexity of the JSON template in this
task, which led to a significantly higher number of failures
where InternVL-2.5 produced incorrect JSON formats.

5 CONCLUSION

We introduce ChartAB, the first benchmark for fine-grained chart grounding and multi-chart dense
alignment in visionlanguage models (VLMs). Our evaluations across diverse chart types reveal
persistent challenges, including perceptual bias, weak attribute understanding, and limited spatial
reasoning especially on complex visual representations. Experiments with our novel two-stage
pipeline show effectiveness of intermediate grounding in improving dense alignment, and the impact
of grounding and alignment accuracy for enhance downstream question answering, establishing these
capabilities as essential foundations for robust chart understanding.
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A APPENDIX

A.1 LLM USAGE STATEMENT

LLMs were used in the work as general purpose writing aid (e.g. to polish grammar and phrasing)
and to assist with literature search. All substantive research ideation, experiments and analysis has
been conducted by the authors.

A.2 LIMITATIONS

Our work focuses on VLM evaluations and do not assess model fine-tuning. While such approaches
might yield stronger results, they diverge from our goal of studying general purpose VLMs for
dense level understanding. For dataset construction despite availability of chart datasets with more
sophisticated real-world chart examples, we selected the ChartX Xia et al. (2024) dataset because
it provides precise chart information in form of csv data and plotting code which is essential for
generating precise ground truth values for the evaluation of dense grounding and alignment.

A.3 DATASET CONSTRUCTION

Algorithm 1: ChartAB dataset curation: Data Alignment
Input: ChartX Xia et al. (2024) dataset D with CSV table and Python plotting script;
Number of data points to modify k;
Output: (1) Chart image-pairs, (2) Ground truth - grounding labels: csv-table for each chart,

alignment labels: describe difference between image-pairs on data points.
foreach chart instance: given csv-table and plotting-script do

Parse the (ground truth) csv-table T of x;
Identify candidate cells with unique values;
if fewer than k candidate cells then

continue
Randomly choose k candidate cells and random scaling factors;
foreach chosen cell (ri, ci) do

Compute a modified value by scaling the column mean;
Record original and modified values (for label generation);

Modify the Python plotting script of x by replacing each original value with its modified
value (only if a unique match exists);

Execute the scripts: initial and modified, to generate the image-pair;
if execution succeeds then

Add to ground truth label file: grounding label (csv table) and alignment label (JSON:
cell change, each described by [row name, column name, initial value, modified value]);

We used ChartX dataset Xia et al. (2024) as source dataset for our ChartAlignBench curation.
ChartX contains plotting-code and csv data-table for the chart with extremely high level of precision
thus offering the flexibility for performing finer-level changes along with ground-truth generation
capabilities. It contains diverse chart types of varying complexities, and chart data from multiple
domains. Hence enabling analysis across charts of varying difficulties.

We utilize perturbations for generating fine-grained variations for given chart thus helping build dense-
alignment pairs. Chart’s plotting-code is perturbed for precise data or attribute changes based on
rigorous formatting check using regex-based search and replace, resulting in chart image generation
from code execution.

The csv availability and attribute information enable accurate ground-truth generation. Generated
pairs for data alignment and attribute alignment include randomly assigned changes, and robustness
sets include diverse attribute values for meticulous and unbiased evaluation.

We selected 9 diverse chart types with ability to apply to perform chart data and plot attribute
perturbations: (1) simple charts: bar chart, bar-numbered chart, line chart, line-numbered chart, (2)
complex charts: 3D chart, box chart, radar chart, rose chart, multi-axes chart.
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Algorithm 2: Dataset Generation with Attribute Detection and Edits
Input: Annotated chart dataset D with drawing scripts and CSV tables.
Output: Edited chart images and a JSONL file containing grounding labels (detected plot

attributes) and alignment labels (differences between chart pairs).
Initialize output directory and JSONL log file;
foreach chart instance x ∈ D do

Extract Python drawing script S and metadata from x;
// — Attribute Detection —
Detect Color Lists: Use regex to locate a unique list of color values. If multiple conflicting

lists are found, discard this chart instance;
Detect Legend Position: Use regex to find the legend(..., loc=. . . ) command.

Discard if a custom (non-standard) specification causes ambiguity;
Detect Text Style: Identify rcParams assignments controlling font family, size, and style for

titles, legends, axis labels, and tick labels;
Store all detected attributes as the grounding label for chart x;
// — Attribute Modification —
foreach attribute type a ∈ {color, legend position, text style} do

switch a do
case color do

Randomly replace some or all colors in the detected list with new randomly
generated colors;

case legend position do
Replace the detected loc value with a randomly chosen valid location;

case text style do
Randomly vary selected rcParams such as font family or size;

Generate modified script Sa with updated attribute values;
Update figuresave path in Sa and execute it to render the altered chart image;
if rendering succeeds then

Create a JSON record containing:
• Image name and chart type,
• Detected (original) attribute values,
• Modified attribute values.

Store these as the alignment label, describing the attribute difference between the
original and edited chart;

Append the record to the JSONL log file;

Report overall success statistics (processed charts vs. total);

A.4 DENSE ALIGNMENT TASKS

Data Alignment. The task evaluates data alignment in image pairs, i.e., difference in values of cells
in the data table, which is visualized by the charts. The finer-level cell changes involve performing
(1) 1-cell change, (2) 2-cell change, (3) 3-cell change between the chart images. The task aims to
analyze the model’s ability to perceive change in visual encoding property (e.g., position, shape,
size) in the chart image, and ability to map it to the specific cell, i.e., row & column headers in
data-table modality, along with measuring the cell change utilizing the visual components of the
image describing scale and values.

Attribute Alignment. The task evaluates attribute alignment in image pairs, i.e., difference in
values of visual attributes which are part of the chart design. We assess the capability through
three alignment tasks:- (1) color alignment, (2) legend alignment, (3) text-style alignment. The
plot-alignment task aims to analyze model’s ability to perceive finer-level visual design changes.
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1. Color Alignment evaluates alignment of encoding colors, i.e. difference in colors of visual
encodings representing chart data: bars in bar chart, lines in line chart, segments/spokes in
rose chart etc.

2. Legend Alignment evaluates alignment of legend, i.e. difference in position of legend in the
charts.

3. Text-Style Alignment evaluates alignment of text characteristics namely (1) size, (2) weight
i.e. degree of boldness (3) font-family i.e. style of font applied. The text in chart corresponds
to following chart sections: title, legend, axes-labels, axes-ticks.

Overall plot-alignment task aims to analyze model’s ability to perceive change in visual design
characteristics (e.g. visual encodings, axes, labels, legends) in the chart image, and semantic
understanding to map it to specific attribute. And ability to precisely predict the attribute value from
representation and component structure of the chart.

Robustness. The task evaluates the robustness of data alignment against variation of plot attributes,
namely, colors, legend, and text style. To evaluate how the data alignment ability of VLMs varies
when changing each visualization attribute or plot design, we curate a dataset such that each instance
is composed of several pairs of charts, all based on variations of the same source chart. All the pairs
share the same pairwise difference in the data values but differ in certain plot visualization attributes.

Robust models are expected to generate consistent responses despite varying attributes, while variation
in model responses can quantify sensitivity to the changes in plot designs. Hence, the study provides
robustness metrics of data alignment against plot attributes.

A.5 A TWO-STAGE EVALUATION PIPELINE: DETAILS

We utilize natural-language based instructions for zero-shot inference to enable simple execution
with minimal task specific nuances for strong generalization across various models.

VLM outputs follow JSON based formatting due to precise nature of the key-value structure which is
essential for element specific information serialization for finer-analysis, along with flexibility for
variations in completion of grounding and fine grained analysis. The alignment JSON contains finer
level attributes for which the charts differ, and the values for corresponding attribute in the two charts.
E.g. for data alignment (as shown in Fig. 4) the finer level attributes changed between the charts i.e.
cells are identified by their row & column header, along with its values in the chart pairs, i.e. value
in chart 1 & value in chart 2 respectively. Evaluation of attribute alignment tasks follow the same
pipeline, as illustrated in Figure 15 for color alignment, Figure 16 for text-style alignment, Figure
12a for legend alignment.

A.6 EVALUATION METRIC: ALIGNMENT

Alignment evaluation is done by calculating similarity of VLM’s evaluation response JSON vis-a-vis
the ground-truth anchor. The JSON encompasses finer-level constituents (e.g. bars of bar chart
with color-difference in color-alignment task) which differ between the chart-pairs along with their
specific value, and are evaluated for their correctness.

A.6.1 ATTRIBUTE ALIGNMENT

For attribute alignment score, the accuracy for each N constituent is calculated for the chart-pair
(chart-1 & chart-2), and averaged for all constituents to get the score. The Accuracy Ai is calculated
based on the alignment task, contrasting the evaluation response value with the ground-truth value.

Score = 10 ·

(
1

N

N∑
i=1

Ai (chart1) +Ai (chart2)

)
(1)

Legend Accuracy: The legend position accuracy using the manhattan distance, the position associated
with the 3 by 3 grid: Alegend = 1− 1

5
Manhattan(position, ˆposition) (2)

Color Accuracy: The color accuracy is calculated using L1 distance:
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Acolor = 1− 1

3

∑
i∈{R,G,B}

|intensityi − ˆintensityi|
255

(3)

Text Accuracy: The text alignment accuracy is calculated by correctness of size, weight, fontfamily
respectively. Atext style =

1

4

∑
i∈{title,legend,ticks,labels}

(0.4 · 1[sizei = ˆsizei]

+0.3 · 1[weighti =
ˆweighti]

+0.3 · 1[fontfamilyi =
ˆfontfamilyi])

(4)

A.6.2 DATA ALIGNMENT & ROBUSTNESS

Data Alignment score calculation follows the JSON correctness discussed in evaluation metrics
section. However data alignment accuracy is calculated for the combined image-pair, unlike indi-
vidual image in attribute. As for data alignment we also evaluate the correctness of the finer-level
constituent’s key (i.e. identification) which are the cell’s row & column name whereas in attribute
alignment only constituent’s value is evaluated. Data alignment scores are also averaged for all
chart-pairs in a chart-type. For N being the number of cell-change between the image-pairs, data
alignment score is defined as:

Score = 10 ·

(
1

N

N∑
i=1

Acell
i (chart− pair)

)
(5)

The cell accuracy Acell is determined by the cell’ value accuracy (for each chart), and the evaluation
response’s row & column similarity (for chart-pair).

Acell = 0.3 · Simrow + 0.3 · Simcol

+0.2 · Achart-1 + 0.2 · Valchart-2
(6)

The row and column name correctness is evaluated using Levenshtein distance based string compari-
son: Simi = Levenshtein(i, i) (7)

The cell-value accuracy (for a chart) is evaluated using the percentage value difference:
Vali = max

(
1−

(
|cell_val − ˆcell_val|

cell_value

)
, 0

)
(8)

Robustness: Robustness of data alignment over variation in attribute aims to evaluate model’s ability
to maintain consistent alignment over changing attributes. The data alignment score is utilized for
developing the robustness evaluation metric. For robustness, each chart has set of 5 data alignment
pairs with identical data alignment but variation in attribute values. We define µ(set) and σ(set) as the
mean and standard-deviation respectively of the 5 image-pairs in the robustness set for a chart.

σ(set): It represents the deviation of 5 chart pairs. A high value indicates of large difference between
the data alignment scores of the chart-pairs hence low robustness.

We define the Robustness metric as reciprocal of mean of σ(set) for all the charts, for particular
configuration: i.e. cell-change c, and the altered attribute p.

R(c, p) =
1

1

Nc,p

∑
cell-change=c

attribute=p

σ(robustness set)
(9)

A.7 ADDITIONAL EXPERIMENTAL DETAILS

A.7.1 VLM SELECTION

We evaluate a diverse suite of open-source VLMs from following families: Phi-3.5 vision-instruct
Abdin et al. (2024), InternVL-2.5 (8B) Chen et al. (2024), LLaVA-1.6 Mistral (7B) Liu et al. (2023a),
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QWEN-2.5 VL (8B) Bai et al. (2025). These models constitute among most widely used VLMs, and
have a long timeline of continuous evolution with each released version. The set encompasses the
top-performed VLMs in various chart benchmarks (CharXiv Wang et al. (2024b), ChartQAPro Masry
et al. (2025), SCI-CQA Li & Tajbakhsh (2023), MultiChartQA Zhu et al. (2024), discussed in 2).

Our choice of proprietary VLM is based on CharXiv Wang et al. (2024b) leaderboard as its tasks/ques-
tions require dense-level grounding. For example, CharXiv tasks need to identify axes ticks by
positions and their value enumerartion, grid-lines count and intersections, integral (area comparison
of regions) and slope (rate of increase/decrease) in line charts. And GPT-4o Hurst et al. (2024) is the
best performing proprietary in the CharXiv paper.

Among chart-specialized VLMs, we evaluate TinyChart Zhang et al. (2024b) & ChartGemma Masry
et al. (2024) models. However, due to their task-specific training (discussed in 2), these models show
collapse of instruction following capabilities and fail to output required JSON format needed for
evaluation. Below are a few examples of the outputs.

JSON output: Data alignment (1 cell) by ChartGemma and TinyChart models using 1-stage stitched-
charts (i.e chart pair stacked as single image) evaluation.

REQUIRED FORMAT (specified in prompt instructions):-
{"row name": <row name of the cell>, "column name": <column name of the cell>,
"value in chart 1": <value in first chart of the pair>, "value in chart 2": <value in second chart of the pair>}

EXAMPLE:-
{"row name": "Production A (million units)", "column name": "2021",
"value in chart 1": 35, "value in chart 2": 30}

CHARTGEMMA OUTPUT (abnormal valued JSON which is inconsistent with required format):-
{"row name": "sample row", "column name": "sample column",
"value in chart 1": Infinity, "value in chart 2": Infinity}

TINYCHART OUTPUT (abnormal list instead of JSON):-
["Production A (million units)", "Production B (million units)",
"Production C (million units)" ..... "Production Z (million units)"]

A.7.2 ABLATIONS

Type Approach Bar Bar # 3D Bar Line Line # Radar Rose Box Multi-Axes

1-stage Multi-chart 4.8 7.4 4.7 3.3 4.7 4.9 3.1 3.2 3.3
Stitched-chart 5.0 4.8 3.0 4.5 3.5 3.0 2.7 2.8 3.2

2-stage Ours 6.5 8.3 4.1 6.1 6.3 3.8 3.4 2.9 3.5

Table 1: Ablation study of 1-stage vs. 2-stage evaluations on data alignment (one cell change)
task. Mean scores across nine chart types show that our 2-stage evaluation reflects VLMs’ greatest
potential on chart alignment.

We performed ablation experiments to vigorously compare differing approaches to our 2-stage
approach.

The ablation experiments aimed to thoroughly compare single-stage based alignment approaches for
performing multi-image reasoning vis-a-vis our two-stage approach. The ablation techniques:-

(1) stitched-charts inference: The chart-pair images are vertically concatenated resulting in a single
image of stitched chart-pairs which undergo single-stage inference.

(2) multi-image inference: The VLM inputs multiple images, and contextualizes output based on
the input images with aim of better understanding across of finer-level alignment in multi-image
reasoning.

The ablation experiments analyzed Phi-3.5 model’s performance on data alignment task. As shown in
table. 1, the single-stage approach fared poorly compared to out two-stage approach reaffirming the
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two-stage approach. Multi-image inference showed the weakest performance. Despite increasing
training efforts towards improved VLM training, the models still face issues in reasoning ability
on fine-grained tasks. Stitched-charts approach showed better results than multi-image, however
they too underperformed vis-a-vis our two-stage approach. The comparatively stronger image self-
attention capabilities seem to augment multi-image by utilzing the stitched connection. However the
better prevailing capabilities of two-stage approach capture the gain of grounding generation. The
VLM’s multi-modal understanding though improving still suffers from finer-level nuances missed by
information loss in image-encoding and cross-attention mechanisms.

A.8 ADDITIONAL FINDING & INSIGHTS
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Figure 11: Task performances for different sizes of Qwen-2.5-VL and LlaVa-Vicuna-1.6.
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(a) Legend Alignment
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(b) Text-Style Alignment

Figure 12: (a) Legend alignment of legend positions. Phi-3.5 performs the worst while GPT-4o
is best. Related discussion in Finding 1&2. (b) Text-style alignment (size, weight, font). Worst:
QWEN-2.5-VL, Best: GPT-4o. Discussion in Finding 1&4.

Finding 7

VLMs’ data grounding and alignment are more robust to color variations than changes in legend
positions and text styles.

Fig. 13 shows that robustness is the worst under text-style variations and the best under color
variations. In the visualizations of data, colors are used to discretize, categorize, and measure chart
constituents. As long as their colors are distinguishable, color variations will not affect the data
grounding. In contrast, the text styles and legends provide critical information about the data via
ticks, labels, and legend items. Moreover, changing legend position may lead to position changes
and occlusion of other chart elements. Hence, their variations have a greater impact on the data
grounding/alignment performance.

Finding 8

VLMs’ spatial understanding capability affects several important chart understanding skills.
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Figure 13: VLMs’ Robustness of data alignment (3-cell change) to variations in color, legend,
and text-style. VLMs show better robustness to color changes than text-style changes. QWEN-2.5-
VL outperforms the other four VLMs on robustness. More discussion can be found below Finding 6.

Chart understanding usually requires an accurate mapping between spatial relationships and the
corresponding numerical values to be visualized.

• Depth understanding: Despite the high-level similarity between 3D bar charts and (2D) bar
charts, as shown in Fig 5, the data alignment performance is much poorer on 3D bar charts
due to the lack of depth understanding, which affects the measurement of scales and values
along axes in the 3D space.

• Text vs non-text cues: Rose charts are extended from bar charts by allowing more polar
coordinates with scale differences in radial forms. However, Fig. 14b reveals a great
difference between the two on data alignment performance. This is due to fewer text cues
(e.g., axes ticks) in rose charts, where non-text cues such as grid lines cannot be fully
leveraged.

• Better performance on numbered charts: numbered bar and line charts explicitly place the
data values in the charts, hence facilitating VLMs to extract the data easily without precise
measurements of the visual elements. Hence, as shown in Fig. 5, numbered bar/line charts
usually enjoy better performance.
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3.0

2.5

(a) Depth estimation in 3D bar charts
(b) Text vs. non-text cues for value scaling
in rose charts.

Figure 14: VLMs’ spatial understanding is poor on complex charts. More discussion is provided
below Finding 7.

VLM
Task: Color Grounding Prompt format: Given <Chart Image>, list attributes and corresponding colors

of form <color grounding JSON format>.

Task: Color Alignment Prompt format: Given <Chart 1 color JSON> and <Chart 2 color JSON>,
compare chart colors and answer of form <color alignment JSON format>.

VLM

Chart 1 Chart 2

Chart 1 - Color Grounding Chart 2 - Color Grounding

{
  "The Red Lobster": "#ADD8E6",
  "Fine Dine": "#FFC0CB",
  "Taco Bells": "#90EE90",
  "Mediterraneana": "#FFFF00",
  "Dragon's Cuisine": "#DA70D6" 
}

{
  "The Red Lobster": "#ADD8E6",
  "Fine Dine": "#6E9F94",
  "Taco Bells": "#FC4C8C",
  "Mediterraneana": "#FFFF00",
  "Dragon's Cuisine": "#CE3408" 
}

Color Alignment JSON

"Dragon's Cuisine": {
  "initial value": "#DA70D6",
  "modified value": "#CE3408"
}

"Taco Bells": {
  "initial value": "90EE90",
  "modified value": "FC4C8C"
}

"Fine Dine": {
  "initial value": "#FFC0CB",
  "modified value": "#6E9F94"
}

Color Grounding & Alignment: Chart pair differs in color of encoding (e.g. bar, line, box)

Figure 15: COLOR ALIGNMENT task ChartAB.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Task: Text Style
Grounding

Prompt format: Given <Chart Image>, list text style of form 
<text grounding JSON format>.

VLM

Chart 1 - Text Style Grounding

{
  "chart title": {
    "size": 20,
    "weight": "normal",
    "fontfamily": "sans-serif"
  },
  "chart legend": {
    "size": 12,
    "weight": "normal",
    "fontfamily": "sans-serif"
  },
  "chart axes labels": {
    "size": 12,
    "weight": "normal",
    "fontfamily": "sans-serif"
  },
  "chart axes ticks": {
    "size": 12,
    "weight": "normal",
    "fontfamily": "sans-serif"
  }
}

Task: Text Style
Alignment

Prompt format: Given <CHART 1 text style JSON> and <CHART 2 text style
JSON> compare them and answer of form <JSON format>.

VLM

Chart 1 Chart 1

Chart 2 - Text Style Grounding

{
  "chart title": {
    "size": 20,
    "weight": "bold",
    "fontfamily": "monospace"
  },
  "chart legend": {
    "size": 12,
    "weight": "normal",
    "fontfamily": "monospace"
  },
  "chart axes labels": {
    "size": 20,
    "weight": "normal",
    "fontfamily": "monospace"
  },
  "chart axes ticks": {
    "size": 20,
    "weight": "normal",
    "fontfamily": "monospace"
  }
}

Text Style Alignment JSON

"chart axes labels": {
  "size": {
    "initial value": 12,
    "modified value": 20
  },
  "fontfamily": {
    "initial value": "sans-serif",
    "modified value": "monospace"
  }
}

"chart axes ticks": {
  "size": {
    "initial value": 12,
    "modified value": 20
  },
  "fontfamily": {
    "initial value": "sans-serif",
    "modified value": "monospace"
  }
}

"chart title": {
  "weight": {
    "initial value": "normal",
    "modified value": "bold"
  },
  "fontfamily": {
    "initial value": "sans-serif",
    "modified value": "monospace"
  }
}

"chart legend": {
  "fontfamily": {
    "initial value": "sans-serif",
    "modified value": "monospace"
  }
}

Text-style Grounding & Alignment: Chart pair differs in text characteristics (size, width, font)

Figure 16: TEXT STYLE ALIGNMENT task ChartAB.
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Task: Legend
Grounding

Prompt format: Given <Chart Image>, list legend position of form 
<legend grounding JSON format>.

VLM

Chart 1 - Legend Grounding Chart 2 - Legend Grounding

{
  "position": "upper right"
}

{
  "position": "center left"
}

Task: Legend
Alignment

Prompt format: Given <Chart 1 legend JSON> and <Chart 2 legend JSON> compare the
positions and answer of form <legend alignment JSON format>.

VLM

Chart 1 Chart 2

"position": {
  "initial value": "upper right",
  "modified value": "center left"
}

Legend Alignment JSON

Legend Grounding & Alignment: Chart pair differs in position of legend

Figure 17: LEGEND ALIGNMENT task ChartAB.
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