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Abstract

Previous endeavors in self-supervised learning have enlightened the research of
deep clustering from an instance discrimination perspective. Built upon this foun-
dation, recent studies further highlight the importance of grouping semantically
similar instances. One effective method to achieve this is by promoting the se-
mantic structure preserved by neighborhood consistency. However, the samples in
the local neighborhood may be limited due to their close proximity to each other,
which may not provide substantial and diverse supervision signals. Inspired by the
versatile re-ranking methods in the context of image retrieval, we propose to em-
ploy an efficient online re-ranking process to mine more informative neighbors in a
Contextually Affinitive (ConAff) Neighborhood, and then encourage the cross-view
neighborhood consistency. To further mitigate the intrinsic neighborhood noises
near cluster boundaries, we propose a progressively relaxed boundary filtering
strategy to circumvent the issues brought by noisy neighbors. Our method can
be easily integrated into the generic self-supervised frameworks and outperforms
the state-of-the-art methods on several popular benchmarks. Code is available at:
https://github.com/cly234/DeepClustering-ConNR.

1 Introduction

Fueled by the expressive power of neural networks, deep clustering has emerged as a prominent
solution in the low-label regime, where traditional clustering can be significantly enhanced by utilizing
latent data representations. Recent advancements in self-supervised learning have further expanded
the possibilities for deep clustering [38, 17, 41], providing a solid foundation for grouping similar
instances. Among the various self-supervised recipes, contrastive learning methods ensure instance
discrimination backed up with sufficient negative samples, while non-contrastive learning methods
circumvent the class collision issue [37, 17] by simply pulling two augmented views closer. However,
capturing the intrinsic semantic structure with clear decision boundaries remains a challenge in deep
clustering, which has led researchers to focus on more group-aware and discriminative approaches.

Group-aware methods commonly enforce the prediction consistency between samples and their
nearest neighborhoods, measured by cosine similarity or Euclidean distance for deep clustering[42,
21, 55, 56]. Although these methods are simple and effective, a significant portion of the retrieved
neighborhoods may contain semantically redundant information. This is primarily due to the fact that
the local neighboring samples are already close to the anchor sample in the feature space, and as such,
may not provide sufficient supervision signals for deep clustering. To address this limitation, previous
works have added memory banks with historical features to enlarge the search space [21, 49], or
labeled the proximity between samples over the entire dataset [55, 56]. Building on the foundation of
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Figure 1: (a) Comparison between the conventional Euclidean Neighborhood and the ConAff
Neighborhood, both with cross-view consistency. The Euclidean distance retrieves the Euclidean
neighborhood, while the contextual distance is used for the ConAff neighborhood. In reciprocal
relations, "1" means two samples are in each other’s top-k neighbors, and "0" indicates neither is
in the other’s top-k. The goal is to use reciprocal relations as a contextual distance metric for the
ConAff neighborhood. For instance, distant pairs A and B might be contextually similar due to their
similar reciprocal relations. (b) Images in the first column and their 10 nearest neighbors in the other
columns, were retrieved using Euclidean Neighborhood and the proposed ConAff Neighborhood.
Wrong neighbors are marked in red, and hard positives are marked in green. By default, unmarked
neighbors are regarded as true neighbors.

previous group-aware methods, a key research question arises: Can we excavate more informative
and reliable neighbors from intra-batch samples?

Inspired by the versatile re-ranking techniques that have shown remarkable performance in image
retrieval tasks [57, 45, 32, 44, 45], we propose a novel approach to deep clustering that involves
retrieving neighborhoods in a contextually affinitive metric space. Typically, the neighborhood
information is retained in the ranking list of pairwise similarities between a query sample and other
samples. However, such a list may neglect the contextual statistics that exist between the samples.
When two images are contextually affinitive, they may share similar relationships to a set of reference
images. In this study, the reference images are defined as the current batch, and the relationship
between two images is established based on whether they are among each other’s top-k neighbors.
Consequently, distant image pairs in the original feature space may be contextually affinitive, and
therefore considered as more informative positive pairs. Additionally, the contextually affinitive
neighborhood in one view may align with the query sample in the other view, thus enabling cross-view
neighborhood consistency. Figure 1 (a) presents a comparison between the conventional Euclidean
Neighborhood and the proposed ConAff Neighborhood. Additionally, Figure 1 (b) illustrates the
results obtained when retrieving the nearest neighbors using both types of neighborhoods.

In the context of learning with neighborhoods, intrinsic noises can exist that are less observable
compared to external noises caused by label contamination. These noises originate from the inferiority
of the intrinsic feature space and taking these noisy samples as candidates for clustering can lead to
the accumulation errors and degrade overall performance. To address this challenge, we propose a
progressive boundary filtering strategy based on the ConAff neighborhood that further improves the
robustness of clustering. Our strategy filters out boundary samples in a self-paced learning paradigm
and gradually involves more complex samples for clustering.

Our contributions are summarized as follows:
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• We propose a Contextually affinitive Neighborhood Refinery framework (CoNR) for deep
clustering, which attempts to excavate more semantically relevant neighbors in a contextually
affinitive space, termed as ConAff neighborhood.

• We devise a progressive boundary filtering strategy to combat the intrinsic noises existing in
the ConAff neighborhood, further improving the robustness of clustering.

• Extensive experiments demonstrate that CoNR improves upon the SSL baseline by a signifi-
cant margin, proving to be competitive with state-of-the-art methods on five widely-used
benchmarks. CoNR’s simplicity and effectiveness allow it to be easily integrated into other
SSL frameworks, resulting in consistent performance gains.

2 Methodology

Our goal is to group a dataset containing n unlabeled samples into k semantic clusters, where k refers
to the cardinality of class label sets. Since it is non-trivial to directly obtain clean cluster assignments
from scratch, we adopt an unsupervised pre-text task as the initialization for image clustering, which
provides a decent neighborhood structure. However, directly utilizing the neighboring information
could lead to sub-optimal results as i) the nearest-neighbor searching schema based on cosine
similarity may not favor hard positives that are important for clustering, and ii) the top-ranked
neighbors of samples located at a cluster boundary contain inevitable noise when the learned clusters
have not been not mutually separated. We, therefore, propose our main algorithm for clustering in a
contextually affinitive neighborhood, with progressive relaxation of boundary sample filtering, in an
attempt to alleviate the above issues.

2.1 Preliminary

In general, given a dataset D = {x1,x2, · · · ,xn}, an image xi uniformly sampled from D, and two
augmentations t ∼ T , t′ ∼ T ′, we aim to first encourage the instance-aware concordance based
on BYOL [11] for early pre-training, and then encourage the group-aware concordance for later
finetuning, in which the cornerstone of our method lies. Following [11], the model is equipped with
an online network q(Fo(·)) and a target network Ft(·), where each of Fo(·),Ft(·) consists of an
encoder cascaded by a projector, and q(·) constitutes an additional non-linear predictor.

2.1.1 Instance-aware Concordance

The commonly-used instance discrimination approach for non-contrastive self-supervised learning en-
forces the similarity between a referenced feature and its corresponding feature in another augmented
view, which can be formulated as:

LI
sim = − E

xi∈B
[⟨q(Fo(t(xi)),Ft(t

′(xi))⟩] , (1)

where ⟨·⟩ denotes the cosine similarity. This can be interpreted as the promotion of instance-aware
concordance under different augmentations and hidden transformations, which could help bootstrap
an over-clustered representation via the stop-gradient and momentum-update techniques. Notably, this
instance-aware concordance produces a general-purpose representation that can be well transferred
to various downstream tasks, as well as a solid basis for neighborhood discovery and higher-order
contextual exploration.

2.1.2 Group-aware Concordance

In order to develop the discrimination framework from instance level to group-aware concordance,
we consider regarding the local neighborhood as a semantic group that involves more diverse positive
samples, sharing the same spirit with previous works [10, 21, 42, 29]. Typically, group-aware
concordance can be formulated as:

LG
sim = − E

xi∈B
[ E
xj∈N (xi)

[⟨q(Fo(t(xi)),Ft(t
′(xj))⟩]], (2)

where N (xi) denotes the set of neighborhood samples of xi preserved in a Euclidean metric space,
and xi ∈ B reveals that all samples in the batch are uniformly considered to encourage the cross-view
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neighborhood consistency. While the de-facto methods [10, 21, 42, 29] exploit neighborhoods to
enrich the latent representation, they somehow ignore the quality of neighborhoods themselves. On
the one hand, good neighbors should be clean, which means that we should select proper candidates
from B to retrieve clean neighbors. On the other hand, good neighbors should be rich, which motivates
us to replace N (xi) with more informative neighborhoods in higher-order space. Therefore, we seek
to further improve the group-aware concordance paradigm from two perspectives, which will be
introduced in Sec. 2.2 and Sec. 2.3.

2.2 Contextually Affinitive Neighborhood Discovery

As discussed in Sec. 2.1, previous works retrieve the nearest neighbors based on pairwise cosine
similarity, where the distance metric depends solely on two involved data points on the hypersphere.
On the contrary, our solution is to redefine how two data points are similar by considering contextual
relations among the whole batch data. Concretely, we first transform the data points into a contextually
affinitive space, where we assume that the more similar two transformed data points are, the more
high-order contextual information they share, and thus we can utilize this information to excavate
more meaningful neighbor pairs, which we term as the contextually affinitive neighborhood discovery.

Formally, given a batch of normalized features Bf = [f0, · · · ,f|Bf |−1]
T , our goal is to first transform

Bf into a contextually refined feature space Hf = [hr
0, · · · ,hr

|Bf |−1]
T , and then retrieve the nearest

neighbors set using the distance metric defined by HfHT
f . Inspired by [53, 57, 34] which build

the contextual relations over the entire dataset, we efficiently retrieve the contextually affinitive
neighborhood via topology graphs in an online manner following [53].

Building Contextual k-NN Graph. The underlying principle of building the contextual k-NN graph
is to inject contextual information into nodes V and edges E so that the message propagation can
move beyond the local region [53]. First, an online reciprocal adjacency matrix A ∈ R|Bf |×|Bf | is
computed as follows:

Aij =

{
1, if fi ∈ N (fj , k1) ∧ fj ∈ N (fi, k1)
0, if fi /∈ N (fj , k1) ∧ fj /∈ N (fi, k1)
0.5, otherwise

, (3)

where fj ∈ N (fi, k1) denotes fj is among the k1 nearest neighbors of fi in Bf , and each row of A
can be interpreted as the k-reciprocal encoding [57]. Then, the graph G = (V, E) can be defined as:

V = {vi|vi = [Ai,0, · · · ,Ai,|Bf |−1], i ∈ {0, · · · , |Bf |−1}}, (4)

E = {eij |eij = ⟨fi,fj⟩,fj ∈ N (fi, k2), i ∈ {0, · · · , |Bf |−1}}, (5)
where fj ∈ N (fi, k2) denotes that fj lies within the k2 nearest neighbors of fi in Bf .

Message Propagation. After building the contextual relational graph, the message propagation
can further obtain high-order relations among k-reciprocal encoding acquired at the previous stage,
similar to the query expansion technique [35].

h
(l+1)
i = h

(l)
i + aggregate({eαij · h

(l)
j |eij ∈ E}), (6)

where α is a fixed value to realize the α-weighted query expansion (α-QE), and eij ∈ E ensures
that the most confident k2 nearest neighbors are selected for aggregation. Normally, k2 should be
far less than k1. For clarity, if we assume the number of layers for message propagation is L, the
initial input for the message propagation stage, h(0)

i , is derived from vi from the previous stage. After
propagation across all L layers, the output h(L)

i becomes our desired contextually refined feature,
represented as hr

i .

Affinitive Neighborhood Retrieval. So far, the intra-batch data points have been mapped to a
contextual metric space via a two-stage transformation. The underlying ranking statistics within these
transformed data points should be more accurate and informative. Therefore, we reveal the hidden
properties by explicitly retrieving the affinitive neighborhood using the refined node features, which
we term as the contextually affinitive neighborhood discovery. Concretely, given the original features
[f0, · · · ,f|Bf |−1]

T and the refined features [hr
0, · · · ,hr

|Bf |−1]
T , we define the affinitive neighborhood

N a(i, k) as:
N a(i, k) = {j|hr

j ∈ N (hr
i , k)}. (7)
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Then the group-aware discrimination can be reformulated as:

LGA
sim = − E

xi∈B
[ E
j∈Na(i,k)

[⟨q(Fo(t(xi)),Ft(t
′(xj))⟩]]. (8)

We remark that the contextually affinitive neighborhood discovery ensures more informative neighbors
are involved for training at every iteration, and the superior contextual neighbor information lying
between the non-differentiable transformed data points is synchronously propagated to the original
features to improve the representation quality.

2.3 Progressive Boundary Filtering with Relaxation

In this section, we are focused on the inevitable noise existing in the neighborhood. Although the
contextually affinitive neighborhood could offer more contextually relevant samples to boost training,
there still exist some unreliable samples among the top-ranked neighbors. Such a phenomenon
becomes more evident when the sampled data points lie on the decision boundary. As a consequence,
the inclusion of contaminated neighbor information will cause noise accumulation, to the detriment of
later training iterations. Therefore, we propose an online boundary sample filtering with progressive
relaxation to alleviate the issue.

2.3.1 Online Boundary Sample Detection

In order to better assess the current clustering quality and detect the samples located at the boundary,
we apply k-means after each training epoch, which is a common practice in former works [17, 38].
Instead of directly utilizing the consistency of pseudo labels among neighbors, we place more
emphasis on the holistic cluster structure, which is to distinguish farther samples located at the cluster
boundary with controlled degrees. Inspired by the silhouette score which measures the ratio between
the mean intra-cluster distance and the mean nearest-cluster distance in an offline manner, we devise
an approximate online version to serve a similar purpose.

Formally, given a sample xi with pseudo label π(xi), and K cluster centroids C = [c1, · · · , cK ]T

obtained from last epoch, we first approximate the mean intra-cluster distance dI and nearest mean
inter-cluster distance dN by:

dIi = ∥fi − cπ(xi)∥2, dNi = ∥fi − cπ′(xi)∥2, (9)
where

π′(xi) = argmin
k∈{1,···,K}\{π(xi)}

∥fi − ck∥2, (10)

And then the boundary ratio can be computed as:

ri = 1− dNi − dIi
max(dIi , d

N
i )

. (11)

Normally, a large boundary ratio indicates the given sample is more likely to be located at the
boundary, while a small ratio implies the sample is close to its cluster center, and it is safer to exploit
non-boundary samples for training since they exhibit cleaner neighborhoods.

2.3.2 Progressive Relaxation

While boundary samples may possess inferior neighborhoods, it is barely true to ignore these samples
during the entire clustering process. To make a balance, we progressively relax the restrictions of
samples to promote neighborhood consistency. The motivations are two folds. First, we set a strict
criteria to select clean samples at the initial stage to avoid the confirmation bias brought by noisy
samples. Second, after the neighborhoods have been consistently refined using cleaner samples, the
boundary samples can further improve the overall clustering quality without affecting the holistic
structure, which can be validated in our ablation experiments.

Formally, given a batch B sampled from the dataset, we adopt a linearly increased fraction ratio fr(t)

to dynamically control a filtering threshold σ(t) which is used to filter out the hard boundary samples
at epoch t.

fr(t) = fr(t0) +
1− fr(t0)

t− t0
∗ (T − t0), (12)
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Algorithm 1 The proposed algorithm CoNR

Require: Dataset D, online network θ, and target network θ̂

1: Pre-train θ, θ̂ on D ▷ Eq. (1)
2: while Clustering do
3: Sample batch B from D
4: Transform batch features Bf to Hf

5: Retrieve contextually affinitive neighborhood N a for Bf using Hf ▷ Eq. (7)
6: Progressively filter out boundary samples for clustering ▷ Eq. (13)
7: Update θ with LGAF

sim and SGD optimizer ▷ Eq. (14)
8: Update θ̂ with momentum moving average
9: end while

where t is the current epoch, t0 is the epoch to start clustering, and T is the maximum number of
epochs for group-aware concordance clustering. Then σ(t) can be obtained by retrieving the largest
ratio among the top |B|∗fr(t) smallest boundary ratios in {r0, · · · , r|B|−1}. According to the σ(t),
we filter out these samples whose boundary ratios are too large to be involved in clustering at the
current epoch t:

B(t) = {xi|ri ≤ σ(t), i ∈ {0, · · · , |B|−1}}. (13)
Notably, our progressive boundary filtering strategy is essentially different from the self-labeling step
that selects the most confident samples for fine-tuning in prior work [42, 29]. First, their selection
strategy is completely based on prediction confidence or pseudo-label consistency, neglecting the
intrinsic cluster structure to evaluate the difficulty of samples. Second, their self-labeling step is based
on cross-entropy loss, which heavily relies on stronger augmentations to avoid overfitting. By contrast,
our filtering strategy is proposed to search a robust neighborhood and avoid accumulation errors
during the group-aware concordance, which does not require additional modules or augmentations.

2.4 The Overall Objective and Optimization

Based on Sec. 2.2 and Sec. 2.3, our final objective for group-aware concordance can be further
formulated as:

LGAF
sim = − E

xi∈{B\B(t)}
[ E
j∈Na(i,k)

[⟨q(Fo(t(xi)),Ft(t
′(xj))⟩]], (14)

where xi ∈ {B\B(t)} controls whether the samples should be selected as candidates to retrieve
neighborhood, and j ∈ N (a)(i, k) determines whether the samples are contextually affinitive to the
candidates. We do not exclude B(t) from N (a)(i, k) as our aim is to filter out unreliable candidates
lying around the boundaries, which means that for each selected candidate, we take its ConAff
neighborhood as a whole to preserve its original structure. The overall training pipeline is shown in
Algorithm 1.

As discussed in Sec. 2.1, our framework comprises two training stages: instance-aware concordance
and group-aware concordance, and the final objective for optimization can be expressed as:

Ltotal = I(t < t0)LI
sim + I(t ≥ t0)LGAF

sim (15)

3 Related Work

3.1 Deep Clustering

Deep clustering, an integration of deep learning and traditional clustering, has emerged as a de facto
paradigm to learn feature representations and cluster unlabelled data simultaneously. Originated
from seminal works [48], deep clustering has seen a paradigm shift from traditional methodologies
[6, 36, 28, 43, 52] to more sophisticated models [4, 12, 14, 15, 30, 39]. The advent of contrastive
learning in deep clustering [23, 24, 38] has brought new perspectives but also introduced challenges,
mainly in defining contrastive losses and balancing instance pairs. Concurrently, self-supervised
learning and multi-modal clustering techniques are pushing the boundaries further, with hybrid models
combining generative and discriminative aspects, leading to richer representations and improved
performance in deep clustering.
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3.2 Self-Supervised Learning

Historically, self-supervised learning (SSL) approaches for representation learning have primarily
utilized generative models [9] or relied on uniquely crafted pretext tasks such as solving jigsaw
puzzles [31] and colorization [51] to the general-purpose representations. However, the emergence of
contrastive learning methods [13, 5, 47] has proven highly effective for both representation learning
and succeeding tasks. Despite their effectiveness, these methods necessitate a vast array of negative
examples to ensure instance-aware discrimination in the embedding space. Apart from instance
discrimination, group-aware discrimination focuses more on the semantic structure. While Deep
Clustering [2], ODC [50] and COKE [33] disentangle the clustering stage and the learning stage,
SeLa [1] and SwAV [3] attempt to solve the grouping problem via optimal transport. Another
line of methods [21, 10, 27] focuses on neighborhood consistency, consistently bootstrapping the
representation by discovering abundant semantically similar instances.

3.3 Re-ranking in Image Retrieval

Image Retrieval aims to retrieve the gallery images that are the most similar to the query image from
a large corpus of images. Re-ranking is a training-free technique that is used to reorder and improve
the initial ranking result using higher-order similarity metrics. Generally, k-NN-based re-ranking
represents the fashion in image re-ranking. k-NN-based re-ranking views the k-reciprocal nearest
neighbors of an image as highly relevant candidates [54, 34, 20]. Jegou et al. [18] iteratively correct
distance estimates based on local vector distributions, Liu et al.[25] utilize graph convolutional
networks (GCN) to encode neighbor information directly into image descriptors. Zhong et al. [57]
encodes the reciprocal information of a query image into a vector and computes similarities using
Jaccard distance. Zhang et al. [53] accelerate [57] by using k-reciprocal encodings as the node
features of a GNN and enhancing the features via graph propagation. Specifically, our ConAff
neighborhood is inspired by [53, 57] which considers contextual similarity with query expansion.

4 Experiments

4.1 Datasets and Settings

Following [17, 23], we report the deep clustering results on five widely-wised benchmarks, including
CIFAR-10 [22], CIFAR-20 [22], STL-10 [7], ImageNet-10 [4], ImageNet-Dogs [4]. CIFAR-10
and CIFAR-20 both contain 60,000 images, and CIFAR-20 uses 20 superclasses from CIFAR-100
following prior practice [17, 23]. STL contains 100,000 unlabeled images and 13,000 labeled images.
ImageNet-10 selects 10 classes from ImageNet-1k, containing 13,000 images while ImageNet-Dogs
selects 15 different breeds of dogs from ImageNet-1k, containing 19,500 images. For image size,
we use 32x32 for CIFAR-10 and CIFAR-20, 96x96 for STL-10 and ImageNet-10, 224x224 for
ImageNet-Dogs, following the prior work [17]. For the dataset split, both train and test data are
used for CIFAR-10 and CIFAR-20, both labeled and unlabeled data are used for STL-10, and only
training data of ImageNet-10 and ImageNet-Dogs are used, which is strictly the same setting with
[17, 38, 23, 24]. Also, all the experiments are conducted with a known cluster number.

4.2 Implementations

For data augmentations, we strictly follow [17], which uses ResizedCrop, ColorJitter, Grayscale,
and HorizontalFlip, for a fair comparison with previous works [17, 38, 41]. For loss computation,
we use a symmetric loss by swapping the two augmentations and computing the asymmetric losses
twice. For architecture, we use ResNet-18 for small-scale datasets CIFAR-10 and CIFAR-20 and
ResNet-34 for the other datasets, following [23, 17, 40]. For CIFAR-10 and CIFAR-20, we replace
the first convolution filter of size 7x7 and stride 2 with a filter of size 3x3 and stride 1, and remove
the first max-pooling layer, following [17]. All datasets are trained with 1000 epochs, where the first
800 epochs are trained with standard BYOL loss LI

sim, and the remaining 200 epochs are trained
with our proposed LGAF

sim . We adopt the stochastic gradient descent (SGD) optimizer and the cosine
decay learning rate schedule with 50 epochs of warmup. The base learning rate is 0.05 with a batch
size of 256. For instance-aware concordance, we directly follow [11, 17] to establish a fair baseline.
For group-aware concordance, we set k, k1, k2 to 20,30,10 for ImageNet-Dogs and 10,10,2 for other
datasets, since ImageNet-Dogs is a fine-grained dataset compared with previous ones.
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Table 1: Clustering result comparison (in percentage %) with the state-of-the-art methods on five
benchmarks.

CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs
NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

IIC [19] 51.3 61.7 41.1 - 25.7 - 43.1 49.9 29.5 - - - - - -
DCCM [46] 49.6 62.3 40.8 28.5 32.7 17.3 37.6 48.2 26.2 60.8 71.0 55.5 32.1 38.3 18.2
PICA [16] 56.1 64.5 46.7 29.6 32.2 15.9 - - - 78.2 85.0 73.3 33.6 32.4 17.9
SCAN [42] 79.7 88.3 77.2 48.6 50.7 33.3 69.8 80.9 64.6 - - - - - -
NMM [8] 74.8 84.3 70.9 48.4 47.7 31.6 69.4 80.8 65.0 - - - - - -
CC [23] 70.5 79.0 63.7 43.1 42.9 26.6 76.4 85.0 72.6 85.9 89.3 82.2 44.5 42.9 27.4

MiCE [41] 73.7 83.5 69.8 43.6 44.0 28.0 63.5 75.2 57.5 - - - 42.3 43.9 28.6
GCC [56] 76.4 85.6 72.8 47.2 47.2 30.5 68.4 78.8 63.1 84.2 90.1 82.2 49.0 52.6 36.2
TCL [24] 81.9 88.7 78.0 52.9 53.1 35.7 79.9 86.8 75.7 87.5 89.5 83.7 62.3 64.4 51.6
IDFD [40] 71.1 81.5 66.3 42.6 42.5 26.4 64.3 75.6 57.5 89.8 95.4 90.1 54.6 59.1 41.3
TCC [38] 79.0 90.6 73.3 47.9 49.1 31.2 73.2 81.4 68.9 84.8 89.7 82.5 55.4 59.5 41.7

ProPos [17] 85.1 91.6 83.5 58.2 57.8 42.3 75.8 86.7 73.7 89.6 95.6 90.6 73.7 77.5 67.5
DivClust [26] 72.4 81.9 68.1 44.0 43.7 28.3 - - - 89.1 93.6 87.8 51.6 52.9 37.6

BYOL [11] 79.4 87.8 76.6 55.5 53.9 37.6 71.3 82.5 65.7 86.6 93.9 87.2 63.5 69.4 54.8
CoNR (Ours) 86.7 93.2 86.1 60.4 60.4 44.3 85.2 92.6 84.6 91.1 96.4 92.2 74.4 79.4 66.7

4.3 Comparison with the State-of-the-Art

Comparison Settings. In this section, we compare our methods ConNR with the current state-of-
the-art methods, as shown in Table 1. Specifically, IIC, DCCM, and PICA are clustering methods
without contrastive learning. SCAN and NMM are multi-stage methods that require pre-training and
fine-tuning. DivClust is a recently proposed method based on concensus clustering by controlling the
degree of diversity, and we report their best performance among different diversity levels in Table 1
for comparison. The other methods mostly learn representations based on contrastive learning or non-
contrastive learning in an end-to-end fashion. For these methods that learn a generic representation
rather than directly output cluster assignments, we use k-means for evaluation. In particular, for
ProPos, BYOL, and ConNR (ours), the produced features output by the target encoder are used for
k-means for a fair comparison.

Comparison Results. Regarding the quantitative results, we achieve consistent performance gains
across the board. Specifically, for relatively small datasets such as ImageNet-10 and STL-10 with
13K images, our method reaches satisfying results, which not only surpass our baseline BYOL by
at least +10.1% ACC on STL-10 in only 200 epochs, but also further achieve a new state-of-the-art
performance with 96.4% ACC on ImgeNet-10. For moderate-scale datasets such as CIFAR-10 and
CIFAR-20 with 60K images, our method yields stable performance improvement with an average
gain of +1.6% and +2.6% ACC compared with ProPos [17] on CIFAR-10 and CIFAR-20, respectively.
More importantly, for the challenging fine-grained dataset ImageNet-Dogs, we achieve +6.2% and
+1.9% performance boosts in terms of ACC on our baseline and the most advanced competitors. We
ascribe this significant improvement to the superiority of our ConAff neighborhood, especially on the
fine-grained task. Additionally, we provide results on Tiny ImageNet and performance comparisons
in Appendix A.3.

4.4 Ablation Study

In this section, we perform a comprehensive ablation experiment in Table 2 to validate the effec-
tiveness of our proposed method. Specifically, InC represents the baseline, CnAffN, OBD, PR are
techniques proposed by our method, and LN is a standard choice used for performance comparison.

Validation of Contextually Affinitive Neighborhood. We make the following observations: First,
our proposed contextually-affinitive neighborhood (ConAffN) consistently outperforms the local
neighborhood approach, irrespective of whether a progressive boundary filtering strategy is utilized
or not. However, ConAffN achieves its peak performance when both online boundary filtering and
progressive relaxation are utilized. Instead, the local neighborhood meets with performance saturation
when combined with progressively relaxed boundary filtering. Also, as illustrated by the purity curve
in Figure 2, ConAffN identifies more reliable neighbors, particularly when the value of K is larger.

Validation of Progressive Boundary Filtering with Relaxation. As previously discussed, both LN
and ConAffN combined with OBD experience consistent performance gains, with +1.9% and +1.4%,
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Table 2: Ablation Results (in percentage %) on
CIFAR-10. (InC: Instance-aware Concordance,
LN: Local Neighborhood, CnAffN: Contextually
Affinitive Neighborhood, OBD: Online Boundary
Detection, PR: Progressive Relaxation)

InC LN CnAffN OBD PR CIFAR-10
NMI ACC ARI

✓ 79.4 87.8 76.6
✓ ✓ 81.9 89.6 78.7
✓ ✓ 84.6 91.1 82.4
✓ ✓ ✓ 83.9 91.1 82.3
✓ ✓ ✓ ✓ 84.8 91.6 84.2
✓ ✓ ✓ 85.7 92.5 85.1
✓ ✓ ✓ ✓ 86.7 93.2 86.1

Figure 2: The curve of the purity (in percentage
%) with the changes of K.

respectively. We speculate that the boundary filtering strategy uniformly improves the robustness
of neighborhood clustering. Moreover, the online boundary detection exhibits a much cleaner
neighborhood (Figure 2), which supports our motivation. Despite the efficacy of OBD, we find
progressive relaxation (PR) drives the model towards less biased clustering as it gradually involves
the difficult samples for clustering, which further improves the ACC by +0.7%.
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Figure 3: (a) Performance comparison with different initial fraction ratios on CIFAR-10. (b) Perfor-
mance with a different selection of k1, k2 on ImageNet-Dogs. (c) Clustering performance comparison
with ConNR and BYOL on ImageNet-Dogs.

More Discussions.We conducted an analysis of three parameters: k1 and k2, which represent the
number of neighbors used to construct the graph, and fr, the fraction ratio set at the initial training
stage. Figure 3(a) presents the results with varying fr values. The outcomes exhibit relative stability
within the range of [0.70, 0.80, 0.90] for fr, however, a noticeable performance decline is observed
when fr = 1. This indicates a lack of boundary filtering applications. We provide the results with
different choices of k1 and k2 in Figure 3(b). For non-aggressive strategy where k1 and k2 are
smaller than 10, there are consistent gains compared with the baseline, while for more aggressive
choices where k1, k2 are larger, the performance can be improved even further, validating the design
of contextually affinitive neighborhood. In Figure 3(c), we present the ACC curves generated during
the clustering process. Here, we can see that ConNR not only converges considerably faster than
BYOL, but also provides notable improvements when implemented as an add-on module. A detailed
exploration of how ConNR benefits other self-supervised benchmarks is provided in Appendix A.2.

5 Conclusion and Limitations

In this paper, we proposed a novel method to improve deep clustering in self-supervised learning
by promoting the semantic structure preserved by neighborhood consistency. Our approach, the
Contextually Affinitive (ConAff) Neighborhood, employs an efficient online re-ranking process to
mine more informative neighbors and encourages cross-view neighborhood consistency. We also
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introduced a progressively relaxed boundary filtering strategy to mitigate the intrinsic neighborhood
noises near cluster boundaries. Our method outperformed state-of-the-art methods on several popular
benchmarks and could be easily integrated into generic self-supervised frameworks. One potential
limitation of our approach is that ConNR generally assumes the labels induce an equipartition of the
whole data and thus does not contain specific mechanisms for handling unbalanced or long-tailed
datasets. We believe that our approach can be further extended for this purpose. While our major
goal in this paper is dedicated to learning a clustered and well-separated representation for deep
clustering, the proposed ConAff neighborhood s a generic design choice that could be viewed from a
broader perspective, hopefully benefiting the task of self-supervised learning that focuses more on
downstream applications.
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