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ABSTRACT

Learning world models can teach an agent how the world works in an unsuper-
vised manner. Even though it can be viewed as a special case of sequence model-
ing, progress for scaling world models on robotic applications such as autonomous
driving has been somewhat less rapid than scaling language models with Gener-
ative Pre-trained Transformers (GPT). We identify two reasons as major bottle-
necks: dealing with complex and unstructured observation space, and having a
scalable generative model. Consequently, we propose Copilot4D, a novel world
modeling approach that first tokenizes sensor observations with VQVAE, then
predicts the future via discrete diffusion. To efficiently decode and denoise tokens
in parallel, we recast Masked Generative Image Transformer as discrete diffu-
sion and enhance it with a few simple changes, resulting in notable improvement.
When applied to learning world models on point cloud observations, Copilot4D
reduces prior SOTA Chamfer distance by more than 65% for 1s prediction, and
more than 50% for 3s prediction, across NuScenes, KITTI Odometry, and Argov-
erse2 datasets. Our results demonstrate that discrete diffusion on tokenized agent
experience can unlock the power of GPT-like unsupervised learning for robotics.
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Figure 1: Our unsupervised world model Copilot4D can produce accurate near-term 1s predic-
tions and diverse multi-future 3s predictions directly on the level of point cloud observations.

1 INTRODUCTION

World models explicitly represent the knowledge of an autonomous agent about its environment.
They are defined as a generative model that predicts the next observation in an environment given
past observations and the current action. Such a generative model can learn from any unlabeled
agent experience, and can be used for both learning and planning in the model-based reinforcement
learning framework (Sutton, 1991). This approach has excelled in domains such as Atari (Kaiser
et al., 2019), robotic manipulation (Nagabandi et al., 2020), and Minecraft (Hafner et al., 2023).

Learning world models can be viewed as a special case of sequence modeling on agent experience.
While Generative Pre-trained Transformers (GPT) (Brown et al., 2020) have enabled rapid progress
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in natural language processing (NLP) via sequence modeling of unlabeled text corpus, progress for
scaling world models has been less rapid in robotic applications such as autonomous driving. Predic-
tion systems in autonomous driving still require supervised learning, either on the level of bounding
boxes (Luo et al., 2018), semantic segmentation (Sadat et al., 2020), or instance segmentation (Hu
et al., 2021). However, just as GPT learns to understand language via next token prediction, if a
world model can predict unlabeled future observations really well, it must have developed a general
understanding of the scene including geometry and dynamics. We ask: what makes it difficult to
learn an unsupervised world model that directly predicts future observations?

(i) The observation space can be complex and unstructured. Whether it is autonomous driving or
robotic hands solving Rubik’s cubes (Akkaya et al., 2019), selecting a loss on the observation space
and building a generative model that captures meaningful likelihoods can be highly non-trivial.
By contrast, in natural language processing, language models like GPT (Brown et al., 2020) first
tokenize a text corpus, then predict discrete indices like a classifier, leading to impressive success.
Fortunately, this gap can addressed by training a VQVAE-like (Van Den Oord et al., 2017) model to
tokenize any inputs, from images (Ramesh et al., 2021) to point clouds (Xiong et al., 2023).

(ii) The generative model needs to be scalable. In particular, language models are known to scale
well (Kaplan et al., 2020), but they only decode one token at a time. In domains such as autonomous
driving, a single observation has tens of thousands of tokens, so parallel decoding of tokens becomes
a must. On the other hand, decoding all the tokens of an observation in parallel, which is sufficient
for achieving success in Minecraft (Hafner et al., 2023), would incorrectly assume that all those
tokens are conditionally independent given past observations. Thanks to Masked Generative Image
Transformer (MaskGIT) (Chang et al., 2022), we can train a model to iteratively decode an arbitrary
number of tokens in parallel. In this work, we recast MaskGIT into the discrete diffusion framework
(Austin et al., 2021), resulting in a few simple changes that notably improve upon MaskGIT.

The analysis above sheds light on a scalable approach to building world models: tokenize each
observation frame with VQVAE, apply discrete diffusion on each frame, and autoregressively predict
the future. We apply this approach to the task of point cloud forecasting in autonomous driving
(Weng et al., 2021; Mersch et al., 2022; Khurana et al., 2023), which aims to predict future point
cloud observations given past observations and future ego vehicle poses. This task is essentially
about building an unsupervised world model on Lidar sensor observations. We design our neural
architectures to leverage prior knowledge for this task: our tokenizer uses an implicit representation
for volume rendering (Mildenhall et al., 2021) of ray depth in the VQVAE decoder; the world model
uses a Transformer that interleaves spatial (Liu et al., 2021) and temporal blocks in Bird-Eye View
(BEV). After tokenization, our world model operates entirely on discrete token indices.

Our approach, named Copilot4D, significantly outperforms prior state-of-the-art for point cloud
forecasting in autonomous driving. On NuScenes (Caesar et al., 2020), KITTI Odometry (Geiger
et al., 2012), and Argoverse2 (Wilson et al., 2023) datasets, Copilot4D reduces prior SOTA Cham-
fer distance by 65%−75% for 1s prediction, and more than 50% for 3s prediction. In Figure 1,
we showcase that not only is our world model able to make accurate predictions on a 1s time hori-
zon, it has also managed to learn the multi-modality of future observations on a 3s time horizon. The
results validate our analysis that the combination of tokenization and discrete diffusion can unlock
the possibility of learning world models at scale on real-world data.

2 RELATED WORK

World Models predict the next observation in an environment given the current action and the past
observations. The idea of learning a world model from data dates back to adaptive control (Slotine
et al., 1991), which applies parameter estimation to a fixed structure of the dynamics. Under model-
based reinforcement learning frameworks such as Dyna (Sutton, 1991), many attempts have been
made to use deep generative models as world models. Ha & Schmidhuber (2018) trained a VAE
(Kingma & Welling, 2013) to encode observations, and a recurrent neural net (RNN) on the latent
codes to model the dynamics. Dreamer-v2 (Hafner et al., 2020) finds that replacing Gaussian latents
with discrete latents significantly improves world modeling for Atari. IRIS (Micheli et al., 2022)
shows that using a Transformer (Vaswani et al., 2017) rather than an RNN for dynamics modeling
further improves Atari results. Those prior works provide a valuable guide for building world models
for autonomous driving; we tackle the point-cloud forecasting task (Weng et al., 2021; Mersch et al.,
2022; Weng et al., 2022; Khurana et al., 2023) using lessons learned from those other domains.
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Diffusion Models are a class of generative models that define a forward process from data distribu-
tion to noise distribution in closed-form, and then learn the reverse process from noise distribution
to data distribution (Sohl-Dickstein et al., 2015). Diffusion for continuous random variables typi-
cally uses Gaussian noise, and utilizes properties of Gaussian distributions to simplify the training
objectives (Ho et al., 2020; Kingma et al., 2021) and speed up inference (Song et al., 2020). In com-
parison, diffusion for discrete data (Austin et al., 2021) has received less attention from the commu-
nity. Recently, Masked Generative Image Transformer (MaskGIT) (Chang et al., 2022) shows that
training a BERT (Devlin et al., 2018) on image tokens with an aggressive masking schedule can out-
perform Gaussian diffusion. MaskGIT has been successfully applied to many applications such as
text-to-image generation (Chang et al., 2023), video prediction (Gupta et al., 2022; Yu et al., 2023),
and point cloud generation (Xiong et al., 2023). Our work sheds light on the connection between
MaskGIT and discrete diffusion, and how MaskGIT can be further improved based on diffusion.

3D Representation for Point Clouds has long been studied in both robot perception and 3D scene
generation. For self-driving perception, point cloud data from Lidar sensor typically plays an im-
portant role. Modern approaches such as VoxelNet (Zhou & Tuzel, 2018) and PointPillars (Lang
et al., 2019) first apply a PointNet (Qi et al., 2017) on each voxel or pillar, typically followed by 2D
convolution in Bird-Eye View (BEV) (Yang et al., 2018) for tasks such as 3D object detection. For
3D generation, implicit neural scene representation has been gaining popularity since Neural Radi-
ance Fields (NeRF) (Mildenhall et al., 2021); with an implicit function for occupancy, point clouds
can be obtained through differentaible depth rendering (Rematas et al., 2022; Yang et al., 2023).
This representation is also used in prior work on point cloud forecasting (Khurana et al., 2023). Our
tokenizer draws ideas from 3D detection to design the encoder, and from implicit neural scene rep-
resentation to design the decoder. After tokenization, however, the specific 3D representations are
abstracted away from the world model, which operates on discrete tokens.

3 BACKGROUND: DIFFUSION MODELS

We review diffusion for a single random variable x0 (which can be trivially extended to multi-variate
x0). Given x0 and the forward process q(x1:K |x0), diffusion typically learns a reverse process
pθ(xk−1|xk) by maximizing an evidence-lower bound (ELBO) log pθ(x0) ≥ −Lelbo(x0, θ) =

Eq(x1:K |x0)

[
−

∑
k>1

DKL(q(xk−1|xk, x0) ∥ pθ(xk−1|xk)) + log pθ(x0|x1)−DKL(q(xK |x0) ∥ p(xK))
]

For discrete random variables, since we can easily sum over its probabilities, pθ(xk−1|xk) is often
parameterized to directly infer x0, as done in D3PM (Austin et al., 2021):

pθ(xk−1 | xk) =
∑
x0

q(xk−1 | xk, x0)pθ(x0 | xk) (1)

Calculating the posterior q(xk−1|xk, x0) = q(xk−1|x0)q(xk|xk−1)/q(xk|x0) is necessary in the
original diffusion loss, which means that the cumulative forward transition matrix defined in
q(xk|x0) often requires a closed-form solution. In D3PM, absorbing diffusion recasts BERT (Devlin
et al., 2018) as a one-step diffusion model, where the forward diffusion process gradually masks out
ground-truth tokens. VQ-Diffusion (Gu et al., 2022) points out that, when xk ̸= x0, the posterior in
absorbing diffusion is not well-defined since in that case q(xk|x0) = 0, which motivated adding uni-
form diffusion in their model. By contrast, MaskGIT (Chang et al., 2022) has significantly simpler
training and sampling procedures based on BERT alone: for training, it masks a part of the input
tokens (with an aggressive masking schedule) and then predicts the masked tokens from the rest; for
sampling, it iteratively decodes tokens in parallel based on predicted confidence.

Classifier-free diffusion guidance (Ho & Salimans, 2022) has become a standard tool for diffusion-
based conditional generation. Given context c, it has been shown that sampling from p̃θ(x0|xk, c) ∝
pθ(x0|xk, c)(pθ(x0|xk, c)/pθ(x0|xk))

w rather than directly from pθ(x0|xk, c) performs signifi-
cantly better. Chang et al. (2023) has proposed directly modifying the logits of MaskGIT:

logitscfg(x̃0|xk+1, c) = logits(x̃0|xk+1, c) + w · (logits(x̃0|xk+1, c)− logits(x̃0|xk+1)) (2)
in order to perform classifier-free guidance analogous to its counterpart in diffusion.

4 METHOD: COPILOT4D
Given a sequence of agent experience (o(1),a(1), · · · ,o(T−1),a(T−1),o(T )) where o is an observa-
tion and a is an action, we aim to learn a world model pθ that predicts the next observation given

3



Published as a conference paper at ICLR 2024

V
Q

Codebook Lookup

BEV Tokens

Ray D
ist

anc
e

Render

Time

t-2 t-1 t

… …
Spatio-Temporal 

Transformer

Diffusion steps

… …

t+1

Observation ReconstructionDecoderEncoder

Past observation tokens and actions

Mask Token Autoregressively 
predict future frames

t+2

… …Predict 

frame t+1

Predict 

frame t+2

Action at t+1

Figure 2: An overview of our method for Copilot4D, which first tokenizes sensor observations
with a VQVAE-like tokenizer, then predicts the future via discrete diffusion. The tokenizer encodes
point clouds into discrete latents in Bird-Eye View (BEV), and does reconstruction via differentiable
depth rendering. The world model is a discrete diffusion model that operates on BEV tokens.

the past observations and actions. In the autonomous driving setting that we tackle, the observations
{o(t)}t are point clouds from the Lidar sensor, and the actions {a(t)}t are SE(3) poses of the ego
vehicle. We first tokenize each observation o(t) into x(t) ∈ {0, · · · , |V | − 1}N , where N is the
number of tokens in each observation, and V is the vocabulary defined by the learned codebook in
VQVAE. We denote x(t) as the tokenized observation t. The learning objective is:

argmax
θ

∑
t

log pθ(x
(t) | x(1),a(1), · · · ,x(t−1),a(t−1)) (3)

Our world model is a discrete diffusion model (Austin et al., 2021; Lezama et al., 2023) that is able to
perform conditional generation given past observations and actions. We denote x(t)

k as the tokenized
observation t under forward diffusion step k. k = 0 is the original data distribution, and the total
number of steps K can be arbitrary at inference. We outline the inference process as follows: to
predict an observation at timestep t+1, the world model first tokenizes past observations o(1) · · ·o(t)

into x(1) · · ·x(t), applies discrete diffusion for next frame prediction to decode the initially fully
masked x

(t+1)
K into fully decoded x

(t+1)
0 , and then passes x(t+1)

0 into the decoder of the tokenizer
to render the next observation o(t+1). For a visual overview of our method, see Figure 2.

4.1 TOKENIZE THE 3D WORLD

We propose a novel VQVAE-like (Van Den Oord et al., 2017) model to tokenize the 3D world
represented by point clouds (Xiong et al., 2023). The model learns latent codes in Bird-Eye View
(BEV) and is trained to reconstruct point clouds via differentiable depth rendering.

The encoder uses standard components from point-cloud based object detection literature: first,
aggregate point-wise features of each voxel with a PointNet (Qi et al., 2017); second, aggregate
voxel-wise features into BEV pillars (Lang et al., 2019); finally, apply a Swin Transformer backbone
(Liu et al., 2021) to obtain a feature map that is 8x downsampled from the initial voxel size in BEV.
The output of the encoder, z = E(o), goes through a vector quantization layer to produce ẑ.

The novelty of our tokenizer lies in the decoder, which produce two branches of outputs after a few
Swin Transformer blocks. The first branch uses an implicit representation (Mildenhall et al., 2021)
so that we can query occupancy values at continuous coordinates. To query (x, y, z), we apply
bilinear interpolation on a 3D neural feature grid (NFG) (Yang et al., 2023) outputted by the decoder
to obtain a feature descriptor, which then goes through a multi-layer perceptron (MLP) and sigmoid
to arrive at an occupancy value α in [0, 1]. Given a ray r(h) = p + hd starting at point p and
traveling in direction d, the expected depth D can be calculated via differentiable depth rendering
on Nr sampled points {(xi, yi, zi)}Nr

i=1 along the ray:

αi = σ(MLP(interp(NFG(ẑ), (xi, yi, zi)))) wi = αi

i−1∏
j=1

(1− αj) D(r, ẑ) =

Nr∑
i=1

wihi (4)
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Algorithm 1 Training
1: repeat
2: x0 : {1, · · · , |V |}N ∼ q(x0)
3: u0 ∼ Uniform(0, 1)
4: Randomly mask ⌈γ(u0)N⌉ tokens in x0

5: u1 ∼ Uniform(0, 1)

6: Randomly noise (u1 · η)% of remaining tokens

7: xk ← masked-and-noised x0

8: argmaxθ log pθ(x0 | xk) with cross entropy
9: until converged

Algorithm 2 Sampling
1: xK = all mask tokens
2: for k = K − 1, . . . , 0 do
3: x̃0 ∼ pθ(· | xk+1)

4: lk = log pθ(x̃0 | xk+1)+Gumbel(0, 1)·k/K
5: On non-mask indices of xk+1: lk ← +∞
6: M = ⌈γ(k/K)N⌉
7: xk ← x̃0 on top-M indices of lk
8: end for
9: return x0

Figure 3: Our improved discrete diffusion algorithm. Differences with MaskGIT (Chang et al.,
2022) are highlighted in blue . γ(u) = cos(uπ/2) is the mask schedule. We set η = 20 by default.

The second branch learns a coarse reconstruction of the point clouds by predicting whether a voxel
has points in its inputs. We denote this binary probability as v. During inference, this branch is used
for spatial skipping (Li et al., 2023) to speed up point sampling in rendering.

The loss function for the tokenizer is a combination of the vector quantization loss Lvq and the
rendering loss Lrender. The vector quantization loss learns the codebook and regularizes the latents:
Lvq = λ1∥sg[E(o)] − ẑ∥22 + λ2∥sg[ẑ] − E(o)∥22. In the rendering loss, supervision is applied on
both branches: the depth rendering branch has an L1 loss on depth with an additional term that
encourages wi to concentrate within ϵ of the surface (Yang et al., 2023); the spatial skipping branch
optimizes binary cross entropy. The tokenizer is trained end-to-end to reconstruct the observation:

Lrender = Er

[
∥D(r, ẑ)−Dgt∥1 +

∑
i

1(|hi −Dgt| > ϵ)∥wi∥2
]
+ BCE(v,vgt) (5)

With a pretrained tokenizer, both the inputs and the outputs of the world model are discrete tokens.

4.2 MASKGIT AS A DISCRETE DIFFUSION MODEL

Masked Generative Image Transformer (MaskGIT) (Chang et al., 2022) has been shown to scale
for a variety of applications. Interestingly, discrete diffusion models such as D3PM (Austin et al.,
2021) have not yet seen similar success, despite having a much more first-principled framework
and toolbox. We observe that the key to recasting MaskGIT as a discrete diffusion model is the
following proposition in Campbell et al. (2022). It turns out that the parameterization introduced in
Equation (1) allows a further lower bound on ELBO under data distribution q(x0) (also see A.4),

Eq(x0)[log pθ(x0)] ≥ Eq(x0)[−Lelbo(x0, θ)] ≥
K∑

k=1

Eq(x0)q(xk|x0)[log pθ(x0 | xk)] + C (6)

Which is almost the same loss as MaskGIT loss, except that: for the diffusion posterior q(xk|x0) to
be well-defined when xk ̸= x0, uniform diffusion in non-masked locations is needed; and the loss is
applied not just to masked locations. This implies that a few simple changes can turn MaskGIT into
an absorbing-uniform discrete diffusion model. During training, after masking a random proportion
of tokens in x0, we inject up to η% of uniform noise into the remaining tokens, and apply a cross
entropy loss to reconstruct x0. η is a fixed hyper-parameter. During sampling, besides parallel
decoding, we allow the model to iteratively denoise earlier sampled tokens. The differences with
MaskGIT are highlighted in Algorithms 1 and 2. For conditional generation, classifier-free diffusion
guidance can be applied by modifying the logits of pθ for sampling x̃0 and calculating lk according
to Equation (2). While resampling tokens has been known to help MaskGIT (Lezama et al., 2022;
2023), our method only requires training a single model rather than two separate ones.

We now use our discrete diffusion algorithm to build a world model on top of observation tokens.

4.3 LEARNING A WORLD MODEL

For an autonomous agent, the environment can be viewed as a black box that receives an ac-
tion and outputs the next observation. A world model is a learned generative model that can be
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Figure 4: The training objectives of our world model in Copilot4D. Other than future prediction,
we also train the model to jointly model the past and the future, and individually model each frame.
Joint modeling ensures that the model can accurately predict the future even with imperfect past
conditioning. Individual frame modeling is necessary for classifier-free diffusion guidance. During
training, which objective to optimize is randomly sampled at each iteration.

used in place of the environment. Let τ = (x(1),a(1), · · · ,x(T )). Given the context c(t−1) =

(x
(1)
0 ,a(1), · · · ,x(t−1)

0 ,a(t−1)) as past agent history, a discrete diffusion world model pθ learns to
predict the next observation x

(t)
0 , starting from fully masked x

(t)
K , going through K intermediate

steps x(t)
K → x

(t)
K−1 · · · → x

(t)
0 during the reverse process of diffusion. Using Equation (6),

Eq(τ )

[∑
t=1

log pθ(x
(t)
0 | c(t−1))︸ ︷︷ ︸

Autoregressive future prediction

]
≥ Eq(τ )

[∑
t=1

∑
k=1

E
q(x

(t)
k |x(t)

0 )
[log pθ(x

(t)
0 | x

(t)
k , c(t−1))]︸ ︷︷ ︸

Discrete diffusion on each observation

+C
]

(7)
However, in the GPT-like formulation of autoregressive modeling, the model is always able to see
all past ground-truth tokens for next frame prediction during training. In robotics, depending on the
discretization of time, the world might only change incrementally within the immediate next frame;
learning to predict only the immediate next observation will not necessarily lead to long-horizon
reasoning abilities even if the loss is optimized well. Therefore, training the world model should
go beyond next observation prediction and instead predict an entire segment of future observations
given the past. Accordingly, we design the world model to be similar to a spatio-temporal version
of BERT, with causal masking in the temporal dimension. Future prediction is done via masking,
infilling, and further denoising. The model is trained with a mixture of objectives (see Figure 4):

1. 50% of the time, condition on the past, denoise the future.
2. 40% of the time, denoise the past and the future jointly.
3. 10% of the time, denoise each frame individually, regardless of past or future.

The first objective is about future prediction. The second objective also has a future prediction
component, but jointly models the future and the past, resulting in a harder pretraining task. The third
objective aims to learn an unconditional generative model, which is necessary for applying classifier-
free diffusion guidance during inference. By the word denoise, we are referring to Algorithm 1,
where parts of the inptus are first masked and noised, and the model learns to reconstruct the original
inputs with a cross-entropy loss. All three objectives can be viewed as maximizing the following:

Eq(τ ),k1,··· ,kT∼SampleObj(·)
q(x

(1)
k1

|x(1)
0 ),···q(x(T )

kT
|x(T )

0 )

[log pθ( x
(1)
0 , · · ·x(t−1)

0 ,︸ ︷︷ ︸
Ignored for Objective type 1

x
(t)
0 , · · ·x(T )

0 | x(1)
k1

, · · ·x(T )
kT

,a(1), · · ·a(T−1))]

During inference, we still autoregressively predict one frame at a time. Each frame is sampled using
Algorithm 2 with classifier-free diffusion guidance (CFG) in Equation (2). At each timestep t, the
context in diffusion guidance is c(t−1), the past observation and action history of the agent. See
Figure 10 in the Appendix for an illustration of how CFG is used in our world model.

Next, we outline how both training (with our mixture of objectives) and inference (with classifier-
free diffusion guidance) can be implemented with a spatio-temporal Transformer.
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Figure 5: Qualitative comparison against prior state-of-the-art method 4D Occupancy (4D-Occ)
on Argoverse2 Lidar dataset. Copilot4D achieves significantly better results, demonstrating greater
capabilities on novel-view synthesis of an environment as the ego vehicle moves, understanding the
motion of other vehicles in the scene, and modeling the Lidar pattern of ground points.

4.4 A SPATIO-TEMPORAL TRANSFORMER FOR WORLD MODELING

The architecture of our world model is a spatio-temporal Transformer that simply interleaves spatial
attention and temporal attention. For spatial attention, we use Swin Transformer (Liu et al., 2021) on
each individual frame. For temporal attention, we use GPT2 blocks (Radford et al., 2019) to attend
over the same feature location across time. We use a U-Net (Ronneberger et al., 2015) structure
that combine three levels of feature with residual connections, and make predictions at the same
resolution as the initial inputs. Actions, which in our case are the poses of the ego vehicle, are added
to the beginning of each feature level corresponding to their observations, after being flattened and
going through two linear layers with LayerNorm (Ba et al., 2016) in between.

Temporal attention mask plays a crucial role in both training and inference. During training, when
optimizing the first two types of objective, causal masking is applied to all temporal Transformer
blocks; when optimizing the third type of objective to learn an unconditional generative model, the
temporal attention mask becomes an identity matrix such that each frame can only attend to itself.
During inference, the model decodes and denoises one frame at a time; classifier-free diffusion
guidance can be efficiently implemented by increasing temporal sequence length by 1, and setting
the attention mask to be a causal mask within the previous sequence length, and an identity mask
for the last frame, so that this added frame becomes unconditional generation (see Figure 10).

5 EXPERIMENTS

In this section, we aim to answer the following questions: (1) Can our proposed world modeling
approach outperform previous state-of-the-art point cloud forecasting methods on large-scale self-
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Table 1: Results on NuScenes and KITTI Odometry datasets. Comparison against previous state-
of-the-art methods: SPFNet (Weng et al., 2021), S2Net (Weng et al., 2022), ST3DCNN (Mersch
et al., 2022), and 4D Occupancy (4D-Occ) (Khurana et al., 2023). The color magenta means that a
metric is computed within the Region of Interest defined in Khurana et al. (2023): −70m to +70m
in both x-axis and y-axis, −4.5m to +4.5m in z-axis. L1 Med means median L1 error within ROI;
AbsRel Med means the median absolute relative L1 error percentage within ROI.

NuScenes 1s Chamfer↓ L1 Med↓ AbsRel Med↓ L1 Mean↓ AbsRel↓ Chamfer↓
SPFNet 2.24 - - 4.58 34.87 4.17
S2Net 1.70 - - 3.49 28.38 2.75
4D-Occ 1.41 0.26 4.02 1.40 10.37 2.81
Copilot4D 0.36 0.10 1.30 1.30 8.58 2.01
NuScenes 3s
SPFNet 2.50 - - 5.11 32.74 4.14
S2Net 2.06 - - 4.78 30.15 3.47
4D-Occ 1.40 0.43 6.88 1.71 13.48 4.31
Copilot4D 0.58 0.14 1.86 1.51 10.38 2.47
KITTI 1s
ST3DCNN 4.11 - - 3.13 26.94 4.51
4D-Occ 0.51 0.20 2.52 1.12 9.09 0.61
Copilot4D 0.18 0.11 1.32 0.95 8.59 0.21
KITTI 3s
ST3DCNN 4.19 - - 3.25 28.58 4.83
4D-Occ 0.96 0.32 3.99 1.45 12.23 1.50
Copilot4D 0.45 0.17 2.18 1.27 11.50 0.67

Table 2: Results on Argoverse 2 Lidar Dataset. We evaluate on evenly subsampled 4000 frames
on the Argoverse 2 Lidar validation set. All metrics are computed within the ROI.

1s Prediction Chamfer↓ L1 Med↓ AbsRel Med↓ L1 Mean↓ AbsRel Mean↓
4D-Occ 1.42 0.24 1.67 2.04 11.02
Copilot4D 0.26 0.15 0.94 1.61 8.75
3s Prediction
4D-Occ 1.99 0.42 2.88 2.62 15.66
Copilot4D 0.55 0.19 1.26 1.99 11.86

driving datasets? (2) How important is classifier-free diffusion guidance in a discrete diffusion world
model? (3) Does our improved discrete diffusion algorithm achieve better performance compared to
MaskGIT, in terms of learning a world model?

Datasets and Experiment Setting: We use NuScenes (Caesar et al., 2020), KITTI Odometry
(Geiger et al., 2012), and Argoverse2 Lidar (Wilson et al., 2023), three commonly used large-scale
datasets for autonomous driving. Our evaluation protocol follows Khurana et al. (2023): on each
dataset, we evaluate 1s prediction and 3s prediction by training two models. Each model is given
past point cloud observations and future poses (which are the actions) of the ego vehicle. For KITTI
and Argoverse2, each model receives 5 past frames and outputs 5 future frames (spanning either 1s
or 3s). For NuScenes, the 2Hz dataset is used; as a result, 1s prediction takes in two past frames and
outputs two future frames; 3s prediction takes in 6 past frames and outputs 6 future frames. While
our world modeling approach is not limited to this experimental setting, we follow the same protocol
to be able to directly compare against prior methods.

Metrics: we follow the common metrics for point cloud forecasting (Khurana et al., 2023), which
include Chamfer distance, L1 depth for raycasting (L1 Mean), and relative L1 error ratio (AbsRel).
However, we notice an issue with the previously proposed metrics: while model predictions are
made only within the region of interest (ROI), the ground-truth point clouds are not cropped accord-
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Table 3: Our method for classifier-free diffusion guidance (CFG) significantly improves prediction
results and especially the Chamfer Distance metric.

NuScenes 3s Chamfer↓ L1 Med↓ AbsRel Med↓ L1 Mean↓ AbsRel Mean↓
w = 0.0 (no CFG) 1.40 0.13 1.81 1.23 8.34
w = 1.0 0.56 (60% ↓) 0.13 1.78 1.22 9.32
w = 2.0 0.58 0.14 1.86 1.27 9.90

Table 4: Our proposed discrete diffusion algorithm significantly improves upon previous masked
modeling method MaskGIT (Chang et al., 2022). Both models use only 10 sampling steps per frame
of prediction (128× 128 tokens), applied with classifier-free diffusion guidance w = 2.0.

NuScenes 3s Chamfer↓ L1 Med↓ AbsRel Med↓ L1 Mean↓ AbsRel Mean↓
MaskGIT 0.82 0.16 2.09 1.41 11.66
Ours 0.58 (29% ↓) 0.14 1.86 1.27 9.90

ing to the ROI, resulting in artifically high error metrics simply because the ROI might not cover
the full point cloud range. Consequently, we report metrics computed within the ROI in magenta,
which better reflects the performance of a model. We also report the median of L1 depth error (L1
Med), since the median is more robust to outliers than the mean. Following previous evaluation
protocols, the ROI is defined to be −70m to +70m in both x-axis and y-axis, −4.5m to +4.5m in
z-axis around the ego vehicle.

Benchmark against state-of-the-art: Table 1 and 2 show quantitative comparisons with state-
of-the-art unsupervised point cloud forecasting methods on three datasets. Our baselines include
SPFNet (Weng et al., 2021), S2Net (Weng et al., 2022), ST3DCNN (Mersch et al., 2022), and 4D
Occupancy (Khurana et al., 2023). Our method Copilot4D is able to outperform prior methods by
a significant margin across all three datasets. In particular, for 1s prediction, we are able to see a
65% − 75% reduction in Chamfer Distance compared to prior SOTA across all three datasets; for
3s prediction, we are able to see more than 50% reduction in Chamfer. We also present a qualitative
comparison with previous SOTA (4D Occupancy) in Figure 5. Copilot4D learns qualitatively better
future predictions, demonstrating an impressive ability to synthesize novel views on the background
as the ego vehicle moves and forecast the motion of other vehicles.

Classifier-free diffusion guidance (CFG) is important: in Table 3, we show that CFG reduces
Chamfer by as much as 60% in an ablation on NuScenes 3s prediction. The result is not surprising
considering that CFG has become a standard tool in text-to-image generation; here we show that
using past agent history (c(t−1) in Section 4.3) as CFG conditioning improves world modeling.
Intuitively, CFG amplifies the contribution of the conditioned information in making predictions.

Improvement upon MaskGIT: Our proposed simple changes to MaskGIT train the model to do
a harder denoising task in Algorithm 1 and thus allow the inference procedure in Algorithm 2 to
iteratively revise chosen tokens. Those changes notably improve MaskGIT on an ablation run of
NuScenes 3s prediction task, shown in Table 4. In our case, each frame has 128 × 128 tokens with
10 diffusion steps; on average each diffusion step decodes 1600 new tokens in parallel. Being able
to denoise and resample already decoded tokens reduces Chamfer distance of 3s prediction by 29%.

6 CONCLUSION

Learning unsupervised world models is a promising paradigm where GPT-like pretraining for
robotics can potentially scale. In this work, we first identify two practical bottlenecks of this
paradigm: simplifying the complex observation space, and building a scalable generative model
for spatio-temporal data. We then propose Copilot4D, which combines observation tokenization,
discrete diffusion, and the Transformer architecture as a new approach for building unsupervised
world models, achieving state-of-the-art results for the point cloud forecasting task in autonomous
driving. One particularly exciting aspect of Copilot4D is that it is broadly applicable to many do-
mains. We hope that future work will combine our world modeling approach with model-based
reinforcement learning to improve the decision making capabilities of autonomous agents.

9



Published as a conference paper at ICLR 2024

7 ACKNOWLEDGEMENT

We thank Chris Zhang, Anqi Joyce Yang, Thomas Gilles, and many others on the Waabi team for
helpful discussions and valuable support throughout the project.

REFERENCES

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.
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A APPENDIX

A.1 ADDITIONAL QUANTITATIVE RESULTS

Table 5: Zero-shot transfer performance across datasets: training on Argoverse 2 (AV2) Lidar and
evaluating on KITTI Odometry. Compared to 4d Occupancy (4d-Occ) (Khurana et al., 2023), our
method Copilot4D achieves significantly better dataset transfer results.

[AV2→ KITTI] 1s Prediction Chamfer↓ L1 Mean↓ AbsRel↓ Chamfer↓
4D-Occ 2.52 1.71 14.85 3.18
Copilot4D 0.36 1.16 11.1 0.44
[AV2→ KITTI] 3s Prediction
4D-Occ 4.83 2.52 23.87 5.79
Copilot4D 1.12 1.91 19.0 1.65

Zero-shot transfer performance across datasets: Table 5 follows prior protocols of training on
Argoverse2 and testing on KITTI Odometry, and shows that: Copilot4D achieves more than 4×
smaller Chamfer distance compared to 4D Occupancy, on both 1s and 3s prediction. Our results
indicate that tokenization, discrete diffusion, and a spatio-temporal Transformer form a powerful
combination that can achieve a greater degree of cross-dataset transfer.

Table 6: Results on the test set of Argoverse 2 Lidar dataset. Besides the results on validation set
presented in the main paper, we also evaluate on evenly subsampled 4000 frames on the Argoverse
2 Lidar test set. The results are very similar; we present the test-set results here for completeness.
All metrics are computed within the ROI.

1s Prediction Chamfer↓ L1 Med↓ AbsRel Med↓ L1 Mean↓ AbsRel Mean↓
4D-Occ 1.51 0.25 1.66 2.07 11.21
Copilot4D 0.25 0.15 0.96 1.64 9.02
3s Prediction
4D-Occ 2.12 0.45 3.05 2.69 16.48
Copilot4D 0.61 0.20 1.29 2.08 12.49

Ablation studies on the tokenizer:

• Table 7 provides an ablation on the effect of spatial skipping (Li et al., 2023), where we
train another tokenizer from scratch without the coarse reconstruction branch or the spatial
skipping process; this tokenizer is only supervised with the depth rendering loss. The table
shows that spatial skipping improves point cloud reconstructions. We illustrate the details
of the spatial skipping process in Figure 8.

• We also show that differentiable depth rendering using implicit representation is crucial. In
Figure 9, we provide a qualitative comparison between the VQVAE in UltraLiDAR (Xiong
et al., 2023) and our proposed tokenizer. The UltraLiDAR model only predicts whether a
voxel has points present, and is similar to our coarse reconstruction branch. The results
show that UltraLiDAR is unable to reconstruct fine-grained geometry due to the limited
resolution of voxel predictions, whereas our tokenizer is able to produce high-fidelity point
clouds that recover the details in the input point clouds.

A.2 MODEL DETAILS

Both the tokenizer and the world model are quite lightweight. The tokenizer is a 13-Million parame-
ter model; the world model is a 39-Million parameter model. To put the parameter counts in context,
the tokenizer has fewer parameters than a ResNet-34 (He et al., 2016) (21.8 M parameters), and the
current world model has fewer parameter count than a ResNet-101 (44.5M parameters). Achieving
our results on such a small model scale is another highlight of our algorithm.
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Figure 6: Detailed architecture of our point cloud tokenizer, which combines PointNet, Bird-
Eye View (BEV) representation, Neural Feature Grid (NFG), and differentiable depth rendering.
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Figure 8: Illustration of the spatial skipping process. We find that spatial skipping (Li et al.,
2023) not only speeds up tokenizer inference but also results in slightly better results. Rather than
uniformly sampling points along the ray for depth rendering, we sample points only within the
estimated non-empty regions along the ray. Specifically, we predict a binary mask indicating which
voxels are non-empty, apply max pooling on this binary mask to increase recall of non-empty voxels,
and sample (ray) points only within the max-pooled non-empty voxels. During training, the ground-
truth binary mask of non-emptiness can be computed from original point clouds; this mask is also
used to supervise the coarse reconstruction branch. During inference, we threshold the prediction
from the coarse reconstruction branch to produce the mask.

NuScenes [Reconstruction] Chamfer (within ROI)↓ L1 Median↓ L1 Mean↓ Chamfer↓
No spatial skipping 0.148 0.044 1.42 1.66
With spatial skipping 0.082 0.044 0.82 1.64

Table 7: Ablation study on spatial skipping in the tokenizer. Here we train another tokenizer
from scratch without the coarse reconstruction branch or the spatial skipping process. Our results
show that spatial skipping leads to improved reconstructions, which is likely due to the fact that it
allows the sampling of points along the rays to focus on the non-empty regions.

A.2.1 TOKENIZER

The tokenizer follows a VQVAE (Van Den Oord et al., 2017) structure to encode point clouds into
Bird-Eye View (BEV) tokens and reconstruct input point clouds via differentiable depth rendering.

Tokenizer encoder The initial layer in the encoder is a voxel-wise PointNet (Qi et al., 2017)
similar to VoxelNet (Zhou & Tuzel, 2018) that encodes the distance of each point to its corre-
sponding voxel center, with one modification to PointNet: while the initial PointNet uses max
pooling as the permutation-invariant aggregation function, we use a sum operation + Layer-
Norm (Ba et al., 2016), which is also a permutation-invariant function. We use a voxel size of
15.625cm× 15.625cm× 14.0625cm in the x, y, z dimensions, following an input voxel size similar
to the one used in Xiong et al. (2023), since it was noted that voxel sizes could matter a lot. We
model the 3D world in the [−80m, 80m] × [−80m, 80m] × [−4.5m, 4.5m] region around the ego
vehicle; after initial PointNet (with feature dimension 64), we obtain a 3D feature volume of tensor
shape 1024× 1024× 64× 64. Following the 3D object detection literature, we pool the 3D feature
volume into a 2D Bird-Eye View (BEV) representation, using our aggregation function (sum oper-
ation + LayerNorm) on the z-axis, after going through another Linear layer and adding a learnable
embedding based on the z-axis of a voxel.

The encoder backbone is a Swin Transformer (Liu et al., 2021). We add ViT-style (Dosovitskiy
et al., 2020) absolute positional encodings of spatial coordinates to the beginning of the backbone.
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Figure 9: Qualitative comparison between Copilot4D tokenizer and UltraLiDAR (Xiong et al.,
2023). The UltraLiDAR model also uses a VQ-VAE for point clouds, but it only predicts whether
a voxel has points present or not, and is unable to reconstruct more fine-grained geometry. Our
tokenizer overcomes this challenge via a combination of implicit representation and differentiable
depth rendering, leading to significantly improved reconstructions and qualitatively different results.

The initial patch size is 4 for the first two Swin layers (with the feature dimension being 128, and
the number of attention heads being 8), leading to a feature map shape of 256 × 256 × 128. We
then downsample the feature map and increase the patch size from 4 to 8 via a Patch Merging layer,
and apply 6 Swin Transformer layers (with the feature dimension being 256, and the number of
attention heads being 16), leading to a feature map shape of 128× 128× 256. The resolution of the
encoder output is 128 × 128, which is 8× downsampled from the initial voxel size, meaning that
each feature map grid is in charge of a 1.25m× 1.25m region in BEV. We find it important to place
a LayerNorm (followed by GELU activation (Hendrycks & Gimpel, 2016) and a Linear layer) on
the encoder output before vector quantization, which has also been observed in Huh et al. (2023).
Following Xiong et al. (2023), we increase the feature dimension to 1024 with a linear layer before
vector quantization; we also find this to be important for good reconstruction.

Vector quantization layer Codebook collapse, meaning that only a few codes are used, is known
to be a common issue in VQVAE training. We empirically find that the random restart strategy
proposed in Dhariwal et al. (2020) is insufficient for avoiding codebook collapse in our case. We
instead resort to the K-Means clustering strategy in Xiong et al. (2023). More specifically, we set up
a memory bank to store the most recent encoder outputs before vector quantization; the size of the
memory bank is 10 times the size of the codebook. We define a code to be a dead code if it has not
been used for 256 iterations. If more than 3% of the entire codebook have become dead codes, then
we run K-Means clustering on the memory bank to re-intialize the entire codebook. However, each
codebook must go through at least 200 iterations before it can be re-initialized.

We use the straight-through gradient estimator (Bengio et al., 2013), as done in the original VQVAE.
In the vector quantization loss Lvq = λ1∥sg[E(o)] − ẑ∥22 + λ2∥sg[ẑ] − E(o)∥22, we set λ1 = 0.25
and λ2 = 1.0; the intuition is that the codebook should change more slowly than the features.

Tokenizer decoder The decoder backbone is also a Swin Transformer, symmetrical to the en-
coder backbone. The Patch Merging layer for downsampling in the encoder corresponds to a Patch
Upsample layer for upsampling in the decoder: first, we use a linear layer to upsample the feature
map (similar to a deconvolution layer); then, apply LayerNorm on each upsampled feature; finally,
use another Linear layer to reduce the feature dimension accordingly. The output of the decoder
backbone is a 256× 256× 128 tensor in 2D BEV, which is then fed into two separate branches.
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As mentioned in the main paper, the first branch is a 3D neural feature grid (NFG) that supports
bilinear interpolation for querying continuous coordinates. The NFG branch uses a LayerNorm and
a Linear(128, 22×64×16) layer to get a 3D feature volume of tensor shape 512×512×64×16, with
each voxel represented by a 16-dimensional vector. Once this 3D feature volume has been computed,
each query (xi, yi, zi) along different rays only requires bilinear interpolation on this feature volume
to obtain an initial 16-dimensional vector, which can then be passed into a lightweight two-layer
MLP (we set its hidden dimension to be 32, with ReLU activation) to produce an occupancy value
with a sigmoid gate at the end. This occupancy value can then be used for differentiable depth
rendering in Equation (4). An L1 loss is applied to supervise the rendered depth, with an additional
term that encourages the learned sample weight distribution wi to concentrate within ϵ meters of the
surface, as outlined in Equation (5). We set the margin ϵ = 0.4.

The second branch is a coarse reconstruction branch that is used for spatial skipping during infer-
ence. Given the 2D BEV feature map of tensor shape 256× 256× 128 from the decoder backbone,
we apply a LayerNorm on each feature, followed by a Linear(128, 42 × 64) layer, to produce a 3D
volume of binary classification logits 1024× 1024× 64, which is trained to estimate whether each
voxel has points present in the input observation. The bias of the final logit is initialized to be −5.0,
since most voxels are empty in point cloud observations.

At inference, given discrete BEV tokens and query rays, the tokenizer decoder takes in the BEV
tokens to produce the 3D NFG and the coarse binary voxel predictions from the two branches. At
first, the spatial skipping branch can provide a coarse estimate of where to sample the points along
the rays. This is achieved by adding Logistic noise to the binary logits (Maddison et al., 2016) and
then thresholding the binary probabilities. We then apply max pooling on this binary 3D volume
to produce a much coarser estimate of binary voxel predictions and consequently increase recall
(in our case, we chose to use a max pooling factor of 8 in Bird-Eye View). For a query ray, we
search among all intersecting coarse voxels and find all of the coarse voxels estimated to have points
present. Subsequently, following standard spatial skipping (Li et al., 2023), for each ray, we only
sample points within those coarse voxel grids to query the 3D NFG, leading to much more efficient
sampling. The final point clouds are obtained via depth rendering on the NFG branch.

A.2.2 WORLD MODEL

The world model follows a U-Net (Ronneberger et al., 2015) structure with three feature levels
corresponding to 1×, 2×, and 4× downsampled resolutions. The inputs are 128 × 128 tokens; the
outputs are 128× 128× 1024-dimensional logits where 1024 is the vocabulary size of our VQVAE
codebook. Adopting the common practice of language models, we use weight tying (Press & Wolf,
2016) between the embedding layer and the final softmax layer. We use Swin Transformer (Liu
et al., 2021) for all spatial attention layers, and GPT-2 blocks (Radford et al., 2019) for all temporal
attention layers. Spatial attention and temporal attention are interleaved in the following manner:
every 2 spatial blocks are followed by 1 temporal block. The temporal blocks apply attention on
same feature map location across frames. The feature dimensions for the three feature levels are
(256, 384, 512), with the number of attention heads being (8, 12, 16), meaning that we use a fixed
32-dimension per head across all levels.

We design our network to be similar to the GPT-2 Transformer, in the sense that the overall
structure of every feature level should be: sum of all residuals in Transformer blocks → one final
LayerNorm → one final Linear layer. The benefit of such a design is that, since the structure of
our neural net becomes similar to GPT-2, we can directly apply the initialization and optimization
strategies found to work well for language models. To make this design compatible with the U-
Net structure (which first transitions down and then transition up to make dense predictions), how
to merge information when transitioning up across feature levels becomes important. We use the
following architecture:

• The first feature level transitioning down has (2 spatial → 1 temporal → 2 spatial → 1
temporal) blocks, with a window size 8 in spatial blocks. Following Swin Transformer, the
Patch Merging layer is used for downsampling.

• The second feature level transitioning down also has (2 spatial→ 1 temporal→ 2 spatial
→ 1 temporal) blocks, with a window size 8 in spatial blocks.
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• The third feature level transitioning down has (2 spatial → 1 temporal) blocks, with a
window size 16 in spatial blocks.

• The network then transitions up to the second feature level using an upsampling layer
before adding a residual connection. The goal is to upsample the higher-level feature map
and merge it with the lower-level feature map. We name such a layer Level Merging, which
borrows designs from the Patch Merging layer: first we use a linear layer to output the 2×
upsampled feature map (similar to a deconvolution layer), concatenate with the lower-level
feature map, applies LayerNorm on every feature, and uses a linear projection to reduce the
feature dimension. A residual connection is then applied.

• Back to the second feature level transitioning up, the feature map goes through (2 spatial→
1 temporal) blocks, followed by another Level Merging layer to return to the first feature
level. Predictions are made at the first feature level.

• Back to the first feature level, the feature map goes through additional (2 spatial → 1
temporal→ 2 spatial→ 1 temporal) blocks.

• We use a final LayerNorm followed by a weight matrix (under weight tying with the initial
embedding layer) to output the logits.

All our Transformer layers are pre-norm layers, meaning that LayerNorm (Ba et al., 2016) is moved
to the input of each sub-block, as done in both GPT-2 and Swin Transformer. In a pre-norm Trans-
former, the main branch of the network becomes just a sum of the residuals since LayerNorm is only
placed inside each residual. Therefore, any information we want to condition the network on can be
simply added at the very beginning of the network, and will be processed by all following residual
modules. The following inputs are added to the beginning of the Transformer world model:

• The embeddings of given observation tokens (which are discrete indices). The weight of
this embedding layer is also used for the final softmax layer. On the input side, masking
in done via an additional learnable token, as done in BERT. After the embedding layer, we
additonally apply Linear→ LayerNorm→ Linear.

• The ego vehicle poses, which are the actions of the ego vehicle. Those 4 × 4 matrices are
flattened into a 16-dimensional vector, which then goes through Linear→ LayerNorm→
Linear, and added to all feature map locations of corresponding temporal frames;

• ViT-style (Dosovitskiy et al., 2020) absolute positional encodings of spatial coordinates,
which are the same across all temporal frames;

• Learnable temporal positional encodings, broadcast to all feature map locations of corre-
sponding temporal frames;

Other than the spatio-temporal positional encodings, any information we want to condition the neu-
ral net on should first go through Linear → LayerNorm → Linear; we have found that applying
LayerNorm on the inputs before any Transformer layers is important for learning stability.

We remove the bias parameter in all Linear layers (Touvron et al., 2023), except for the Linear layers
outputting query, key, and value during attention in Swin Transformer blocks.

A.3 TRAINING TRANSFORMERS

Initialization Transformer initialization has long been known to be important for successful op-
timization. We adopt the initialization and optimization strategies found to work well for language
models. Following MT-NLG (Smith et al., 2022), all weights are initialized using fan-in initializa-
tion with a normal distribution of 0 mean and a standard deviation of

√
1/(3H), where H is the

input feature dimension of each layer. We note that this initialization strategy is the closest to the
GPT-1 (Radford et al., 2018) initialization scheme. In addition, we use residual scaling at initializa-
tion as done in GPT-2: on each feature level, we count the number of residual connections L (which
is the number of Transformer blocks times 2), and rescale the weight matrix of each linear layer
before the residual connection by

√
1/L.

Optimization The learning rate schedule has a linear warmup followed by cosine decay (with
the minimum of the cosine decay set to be 10% of the peak learning rate), and the β2 of AdamW
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Figure 10: Illustration of classifier-free diffusion guidance (CFG) during inference for our world
model. The conditional logits are conditioned upon the past agent history (past observations and
actions). The unconditional logits are not conditioned on the past. Classifier-free diffusion guidance
amplifies the difference between the two to produce the CFG logits used for sampling. Note that
CFG can be efficiently implemented with a single forward pass at each diffusion step by increasing
temporal sequence length by 1, and setting the attention mask to be a causal mask within the previous
sequence length and an identity mask for the last frame. In addition, thanks to causal masking and
our factorized spatio-temporal Transformer, for all past timesteps, we only need cached keys and
values from the temporal blocks.
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Figure 11: Illutration of discrete diffusion sampling at each diffusion step. This procedure
corresponds to Algorithm 2. k is the current diffusion step, K is the total number of diffusion steps,
N is the number of tokens in each observation, γ(u) = cos(uπ/2) is the mask schedule.

(Loshchilov & Hutter, 2017) is lowered to be 0.95. A weight decay of 0.0001 is applied, but any
bias parameters, embedding or un-embedding layers, and LayerNorm parameters are excluded from
weight decay. For training tokenizers, we use a learning rate of 0.001, a linear warmup length of
4000 iterations, a max gradient norm clipping of 0.1, a batch size of 16, and a cosine decay length of
0.4 million iterations. For training the world model, we use a learning rate of 0.001, a linear warmup
length of 2000 iterations, a max gradient norm clipping of 5.0, a batch size of 8, and a cosine decay
length of 0.75 million iterations. The cross entropy loss uses 0.1 label smoothing. The same set of
hyperparameters are used across all datasets.
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A.4 ALTERNATIVE DERIVATION FOR DISCRETE DIFFUSION TRAINING OBJECTIVE

In discrete diffusion, the forward diffusion process is (Austin et al., 2021)

q(xk | xk−1) = Cat(xk; p = xk−1Qk)

where Cat refers to a categorical distribution, and Qk is the forward transition matrix, [Qk]ij =
q(xk = j|xk−1 = i) (meaning that each row of Q sums to 1, but not necessarily the columns).

The cumulative transition matrix is

Qk = Q1Q2 · · ·Qk

And as a result, if Qk can be written in closed-form, then q(xk | x0) can be written in terms of Qk.

q(xk | x0) = Cat(xk; p = x0Qk)

We aim to learn a neural net parameterized by θ to reverse the forward diffusion process:

pθ(xk−1 | xk) =
∑
x̃0

q(xk−1 | xk, x̃0)p̃θ(x̃0 | xk)

We present an alternative derivation for the lower bound that we optimize in this paper:

Eq(x0)[log pθ(x0)]

= Eq(x0)[log

∫
pθ(x0, x1 · · ·xK)dx1 · · ·xK ]

= Eq(x0)

{
logEq(x1:K |x0)

[
pθ(x0:K−1 | xK)

q(x1:K | x0)
p(xK)

]}
≥ Eq(x0)q(x1:K |x0)

[
log

pθ(x0:K−1 | xK)

q(x1:K | x0)
+ log p(xK)

]
= Eq(x0:K)

[ K∑
k≥1

log
pθ(xk−1 | xk)

q(xk | xk−1)
+ log p(xK)

]

= Eq(x0:K)

[ K∑
k≥1

log pθ(xk−1 | xk) + log p(xK)−
K∑

k≥1

log q(xk | xk−1)

]

= Eq(x0:K)

[ K∑
k≥1

log
∑
x̃0

q(xk−1 | xk, x̃0)p̃θ(x̃0 | xk)

]
+ Eq(x0:K)

[
log p(xK)−

K∑
k≥1

log q(xk | xk−1)

]
︸ ︷︷ ︸

C1

= Eq(x0:K)

[ K∑
k≥1

log
∑
x̃0

q(xk−1, x̃0 | xk)

q(x̃0 | xk)
p̃θ(x̃0 | xk)

]
+ C1

= Eq(x0:K)

[ K∑
k≥1

log
∑
x̃0

q(x̃0 | xk−1)

q(x̃0 | xk)

q(xk|xk−1)q(xk−1)/q(xk)︷ ︸︸ ︷
q(xk−1 | xk) p̃θ(x̃0 | xk)

]
+ C1

≥ Eq(x0:K)

[ K∑
k≥1

∑
x̃0

q(x̃0 | xk−1) log

(
q(xk−1 | xk)

q(x̃0 | xk)
p̃θ(x̃0 | xk)

)]
+ C1

= Eq(x0:K)

[ K∑
k≥1

∑
x̃0

q(x̃0 | xk−1) log p̃θ(x̃0 | xk)

]
+ C1 + Eq(x0:K)

[ K∑
k≥1

∑
x̃0

q(x̃0 | xk−1) log
q(xk−1 | xk)

q(x̃0 | xk)

]
︸ ︷︷ ︸

C2
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=

K∑
k≥1

Eq(x0,xk−1,xk)

[∑
x̃0

q(x̃0 | xk−1) log p̃θ(x̃0 | xk)

]
+ C1 + C2

=

K∑
k≥1

Eq(x0,xk−1,xk)q(x̃0|xk−1)[log p̃θ(x̃0 | xk)] + C1 + C2

=

K∑
k≥1

Eq(x0|xk−1)q(xk|xk−1)q(xk−1)q(x̃0|xk−1)[log p̃θ(x̃0 | xk)] + C1 + C2

=

K∑
k≥1

Eq(xk|xk−1)q(xk−1,x̃0)[log p̃θ(x̃0 | xk)] + C1 + C2

=

K∑
k≥1

Eq(xk,x0)[log p̃θ(x0 | xk)] + C1 + C2

Analyzing the constants C1 and C2:

C1 = Eq(x0:K)

[
−

K∑
k=1

log q(xk | xk−1) + log p(xK)︸ ︷︷ ︸
Note that p(xK)=q(xK)

]

= Eq(x0:K)

[
−

K∑
k=1

log q(xk, xk−1) +

K∑
k=0

log q(xk)

]

C2 = Eq(x0:K)

[ K∑
k=1

log q(xk−1|xk)

]
− Eq(x0:K)

[ K∑
k=1

∑
x̃0

q(x̃0 | xk−1) log q(x̃0 | xk)

]

= Eq(x0:K)

[ K∑
k=1

log q(xk, xk−1)−
K∑

k=1

log q(xk)

]
−

K∑
k=1

Eq(x0:K)q(x̃0|xk−1)[log q(x̃0 | xk)]

C1 + C2 = Eq(x0:K)[log q(x0)−
K∑

k=1

log q(x0 | xk)]

Therefore, this inequality eventually becomes:

Eq(x0)[log pθ(x0)] ≥
K∑

k=1

Eq(xk,x0)[log pθ(x0|xk)] + Eq(x0:K)[log q(x0)−
K∑

k=1

log q(x0|xk)]

=

K∑
k=1

Eq(x0)q(xk|x0)[log pθ(x0 | xk)] + C

Which arrives at Equation (6). This loss function avoids the computation of q(xk−1 | xk, x0) as
defined in Equation (8) and pθ(xk−1 | xk) as defined in Equation (1).
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A.5 ABSORBING-UNIFORM DISCRETE DIFFUSION

In this section, we review absorbing-uniform discrete diffusion, and illustrate its connection to our
improved version of MaskGIT in detail. First, we aim to express all transition matrices in terms of
matrix exponential, which provides a convenient expression for the cumulative transtion matrix:

Qk = exp(λkR) =

∞∑
n=0

λn
k

n!
Rn

Qk = exp
((∑

s≤k

λs

)
R
)

In absorbing diffusion, each token has a αk probability of turning into a mask token at step k (using
a slightly overloaded notation, not to be confused with the occupancy values in the depth rendering
equation). Let em be a one-hot vector where the index of the mask token is 1.

Qa
k = exp(γkRa) = exp(γk(1e

⊤
m − I))

= exp(−γk)I + (1− exp(−γk))1e⊤m
= (1− αk)I + αk1e

⊤
m

Which utilizes the fact that (1e⊤m − I)(1e⊤m − I) = (−1)(1e⊤m − I) and therefore (1e⊤m − I)n =

(−1)n+1(1e⊤m − I). Breaking down cumulative absorbing transition matrix Q
a

k:

Q
a

k = exp
((∑

s≤k

γs

)
(1e⊤m − I)

)
= exp

(
−
∑
s≤k

γs

)
I +

(
1− exp

(
−

∑
s≤k

γs

))
1e⊤m

=
∏
s≤k

(1− αs)I +
(
1−

∏
s≤k

(1− αs)
)
1e⊤m

In uniform diffusion, each token has a βk probability of turning into a random non-mask token at
step k. With M non-mask categories (M = |V |), the transition matrix can be expressed as:

Qu
k = I − βk(I − eme⊤m) +

βk

M
(1− em)(1− em)⊤

= (1− βk)I + βk

(
eme⊤m +

1

M
(1− em)(1− em)⊤

)
= exp

(
ηkRu

)
= exp

(
ηk

[ 1

M
(1− em)(1− em)⊤ − (I − eme⊤m)

])
= exp(−ηk)I + (1− exp(−ηk))

(
eme⊤m +

1

M
(1− em)(1− em)⊤

)
Breaking down cumulative uniform transition matrix Q

u

k :

Q
u

k = exp
((∑

s≤k

ηs

)[ 1

M
(1− em)(1− em)⊤ − (I − eme⊤m)

])
= exp

(
−
∑
s≤k

ηs

)
I +

(
1− exp

(
−

∑
s≤k

ηs

))(
eme⊤m +

1

M
(1− em)(1− em)⊤

)
=

∏
s≤k

(1− βs)I +
(
1−

∏
s≤k

(1− βs)
)(

eme⊤m +
1

M
(1− em)(1− em)⊤

)
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In absorbing-uniform diffusion, with e⊤m being the (M + 1)-th row, the transition matrix is:

Qk = Qa
kQ

u
k

=



ωk + νk νk νk · · · νk αk

νk ωk + νk νk · · · νk αk

νk νk ωk + νk · · · νk αk

...
...

...
. . .

...
...

νk νk νk · · · ωk + νk αk

0 0 0 · · · 0 1


νk =

βk

M
ωk = 1− βk − αk

Note that Qa
k and Qu

k are commuting matrices; Ra and Ru inside matrix exponentials also commute
(so that exp(ηkRu) exp(γkRa) = exp(ηkRu + γkRa)). This property allows us to write the
cumulative transition matrix as:

Qk = Q
a

kQ
u

k

=



ωk + νk νk νk · · · νk χk
νk ωk + νk νk · · · νk χk
νk νk ωk + νk · · · νk χk
...

...
...

. . .
...

...
νk νk νk · · · ωk + νk χk
0 0 0 · · · 0 1


ωk =

∏
s≤k

(1− βs − αs) χk = 1−
∏
s≤k

(1− αs) νk =
1

M
(1− ωk − χk)

Intuitively, ωk is the probability that a ground-truth token neither flips into a random token nor gets
absorbed into the mask token after k forward diffusion steps. χk is the probability of having a mask
token after k forward diffusion steps.

Given that the posterior can be expressed as

q(xk−1 | xk, x0) =
q(xk | xk−1, x0)q(xk−1 | x0)

q(xk | x0)
=

q(xk−1 | x0)

q(xk | x0)
q(xk | xk−1) (8)

We can express it in matrix form for discrete diffusion:

q(xk−1 = i | xk = j, x0 = l) =
[Qk−1]li · [Qk]ij

[Qk]lj
q(xk−1 | xk, x0) =

x0Qk−1 ⊙ xkQ
⊤
k

x0Qkx
⊤
k

Allowing us to efficiently compute the closed-form posterior from Qk−1, Qk, and Qk defined earlier.

A.6 TRAINING AND INFERENCE OF ABSORBING-UNIFORM DISCRETE DIFFUSION

During training, we first apply masking, which corresponds to absorbing diffusion with Q
a

k, and
then add uniform noise, which corresponds to uniform diffusion with Q

u

k . We add at a maximum η%
of uniform noise under a linear schedule, where we set η = 20 by default. η controls the minimum
signal-to-noise ratio among the non-mask tokens.

• Despite its simplicity, Algorithm 1 is training an absorbing-uniform discrete diffusion
model. To see this, we simply need to define the corresponding noise schedules for uni-
form diffusion and absorbing diffusion. The uniform discrete diffusion noise schedule is
set to be βk = 1/(K/η − k + 1) and consequently (1−

∏
s≤k(1− βs)) = η · k/K. Since

(1 −
∏

s≤k(1 − βs)) has now become a linear function with respect to k, we can simply
uniformly sample a noise ratio without computing any transition matrix, as done in Algo-
rithm 1. As for the absorbing diffusion noise schedule, we define αk =

∏
s≤k(1 − αs) as

a cosine schedule, and αk can be solved accordingly with αk = 1− αk/αk−1.
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During inference, we find that when decoding xk, marginalizing over x0 as done in pθ(xk|xk+1) =∑
x0

q(xk | xk+1, x0)pθ(x0 | xk+1) is not necessary; instead, we directly decode the predicted x0

from pθ(x0|xk+1), as done in MaskGIT. During sampling, once a token has transitioned from a
mask token to a non-mask token, even though it can be further revised and resampled, it cannot go
back to become masked again, as one would expect from the reverse process of absorbing-uniform
diffusion. This is achieved by setting lk ← +∞ on non-mask indices of xk+1 in Algorithm 2.

We find that, during the sampling process x̃0 ∼ pθ(· | xk+1), the sampling quality can be improved
by using top-K sampling rather than vanilla categorical sampling (similar to what we would expect
from a language model). In our experiments, we sample from the top 3 logits per feature location.

A.7 ADDITIONAL QUALITATIVE RESULTS

We present additional qualitative results: Figure 13 and Figure 14 outline our results on NuScenes;
Figure 15 shows our results on KITTI, and Figure 16 and Figure 17 adds to the results on Argoverse
2 Lidar. Overall, our models achieve considerably better qualitative results on all three datasets.

Predictions under counterfactual actions We visualize how well the world model can predict
the future under counterfactual actions in Figure 12. Here we modify the future trajectories of the
ego vehicle (which are action inputs to the world model), and we demonstrate that the world model
is able to imagine alternative futures given different actions. The imagined futures are consistent
with the counterfactual action inputs. Moreover, the world model has learned that other vehicles in
the scene are reactive agents.

Failure cases of our current models We present some failure modes of our current models us-
ing red arrows in Figure 14, Figure 16, and Figure 17. Modeling vehicle behaviours on a 3s time
horizon needs further improvement, as the accuracy for 3s prediction seems lower than 1s predic-
tion; however, we note that this inaccuracy could be partly due to the multi-modality of 3s future
prediction (multiple futures could be equally valid). Additionally, on a 3s time horizon, sometimes
new vehicles (not present in the past or present frames) enter the scene. Currently, the world model
does not seem to have learned how to hallucinate new vehicles coming into the region of interest.
Nevertheless, those failure cases do not necessarily reflect fundamental limitations of our proposed
algorithm; we believe that the issues listed above can be addressed to a large extent by increasing
data, compute, and model size under our framework.
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Figure 12: Visualization of predicted future under counterfactual actions. Here we modify the
future trajectories of the ego vehicle (which are action inputs to the world model), and demonstrate
that the world model is able to imagine alternative futures given different actions. The orange
trajectory represents the actions taken by the ego vehicle regarding where to drive. The imagined
futures are consistent with the counterfactual action inputs. In addition, our world model is able to
learn that other vehicles in the scene are reactive agents. Notably, in Scene 1, the counterfactual
action is for the ego vehicle to brake, and our world model has learned that the vehicle behind will
also react by braking to avoid a collision with the ego vehicle.
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Figure 13: Qualitative comparison on NuScenes 1s prediction. The last column overlaps the
point clouds from 0.5s prediction and 1s prediction to make clear how vehicles are moving.
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Figure 14: Qualitative comparison on NuScenes 3s prediction. The orange circles highlight
where our model does well; the red arrows point out some failure cases of our model.
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Figure 15: Qualitative comparison on KITTI Odometry. Note that the color of a point is merely
dependent on its height (z-axis value); therefore, if the colors of the predicted points are different
from the colors of the ground-truth points, it means that the predicted point heights are off. Our
method clearly achieves significantly better qualitative results compared to prior SOTA.
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Figure 16: Additional qualitative comparison on Argoverse2 Lidar dataset. The orange circles
highlight where our model does well; the red arrows point out some failure cases of our model.
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Figure 17: Additional qualitative comparison on Argoverse2 Lidar dataset. The orange circles
highlight where our model does well; the red arrows point out some failure cases of our model.
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