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ABSTRACT

Understanding cellular responses to external stimuli is critical for parsing biolog-
ical mechanisms and advancing therapeutic development. High-content image-
based assays provide a cost-effective approach to examine cellular phenotypes
induced by diverse interventions, which offers valuable insights into biological
processes and cellular states. We introduce MorphoDiff, a generative pipeline to
predict high-resolution cell morphological responses under different conditions
based on perturbation encoding. To the best of our knowledge, MorphoDiff is the
first framework capable of producing guided, high-resolution predictions of cell
morphology that generalize across both chemical and genetic interventions. The
model integrates perturbation embeddings as guiding signals within a 2D latent
diffusion model. The comprehensive computational, biological, and visual vali-
dations across three open-source Cell Painting datasets show that MorphoDiff can
generate high-fidelity images and produce meaningful biology signals under var-
ious interventions. We envision the model will facilitate efficient in silico explo-
ration of perturbational landscapes towards more effective drug discovery studies.

1 INTRODUCTION

Recent advancements in generative artificial intelligence (AI) have propelled significant progress
across various domains, including computer vision, natural language processing, and healthcare
(Rombach et al., 2022; OpenAI, 2022; Meskó & Topol, 2023). Notable advancements in AI method-
ologies, coupled with the availability of vast datasets, have yielded foundation models with exten-
sive applications and capabilities. Their practical application holds great promise for empowering
practitioners in more effective drug development, thereby streamlining this process at scale while
conserving expert and financial resources (Moor et al., 2023).

Modeling cellular responses to external interventions is a key focus in computational biology; it aims
to uncover biological insights that can inform the design of more effective therapies, which are, in
essence, interventions aiming at a particular cellular response (Celik et al., 2024). While there have
been significant efforts to model cellular dynamics using AI algorithms, much of the prior work has
concentrated on transcriptomic-level changes (Roohani et al., 2023; Lotfollahi et al., 2023; 2019;
Cui et al., 2024; Hetzel et al., 2022). However, advances in high-throughput screening technologies
now enable the exploration of rich phenotypic readouts, such as those generated by high-content
microscopy imaging, which provide critical insights into cellular activity and accelerate drug target
identification and mode-of-action studies under diverse conditions (Seal et al., 2024). Among these
technologies, the Cell Painting assay—a high-content microscopy imaging platform—has emerged

1



Published as a conference paper at ICLR 2025

as a powerful, cost-effective approach for cellular phenotype screening, playing a pivotal role in un-
derstanding the morphological characteristics of cells under various perturbations (Bray et al., 2016).
Image analysis software, such as CellProfiler, has been widely adopted to extract detailed features
from microscopy images (Carpenter et al., 2006; Chow et al., 2022; Moshkov et al., 2024). These
features have provided valuable insights into compound polypharmacology (Chow et al., 2022),
mechanisms of action (Tian et al., 2023; Way et al., 2022; Wong et al., 2023; Dee et al., 2024), and
target genes associated with specific perturbations (Way et al., 2022). Despite these advances, a
significant challenge in virtual screening remains: the size of existing screening libraries represents
only a small fraction of the vast chemical space, which is estimated to contain over 1060 drug-like
molecules (Lu et al., 2024; Lipinski et al., 2012; Reymond, 2015). This limitation is particularly crit-
ical when seeking to identify the most effective treatments for specific cellular conditions. Machine
learning (ML) and generative models might overcome this barrier by enabling response estimation
across a much larger perturbational space, thus improving treatment efficacy while substantially
reducing cost.

There is growing interest in leveraging advanced deep learning methods to directly learn cellular
patterns from high-content images, rather than relying solely on engineered features extracted using
traditional image analysis software. A notable example is a recent study that developed a strategy
for learning representations of treatment effects from high-throughput imaging using a causal frame-
work (Moshkov et al., 2024). By employing weakly supervised learning, the model captured both
confounding factors and phenotypic features in the learned representations, providing a comprehen-
sive view of treatment-induced changes. Another significant contribution is a retrieval system based
on multi-modal contrastive learning, which maps molecular perturbation and their corresponding
Cell Painting image features into a unified embedding space (Sanchez-Fernandez et al., 2023). Al-
though the model lacks generative capabilities, it proves to be a valuable tool for retrieving perturba-
tions with morphological effects most similar to those of the input query. Two relevant studies used
generative models to transfer cell style between conditions in low-resolution, single cell cropped
image patches (Palma et al., 2023; Bourou et al., 2023). Although these methods offer insights
into cellular transitions, their focus on isolated cells overlooks inter-cellular effects in a wide well
area as screened in original microscopy images and limits practical applicability. The most relevant
method is a pipeline that employs conditional flow models for cellular phenotype estimation using
perturbation information that was only tested on molecular interventions (Yang et al., 2021).

To the best of our knowledge, this work represents one of the first efforts for estimating cell re-
sponses at a high-resolution and high-content image scale. By leveraging advanced generative mod-
els in computer vision, as exemplified by Rombach et al. (2022), and incorporating state-of-the-art
(SOTA) perturbation encoding modules, including the single-cell foundational model proposed by
Cui et al. (2024), we introduce MorphoDiff, a novel diffusion-based generative pipeline for high-
resolution cellular morphology prediction, generalizable to both genetic and chemical perturbations.
We benchmarked MorphoDiff on three microscopy imaging datasets, evaluating image fidelity and
biological properties of cells in in-distribution and unseen perturbations, demonstrating promising
performance overall. This work showcases the potential of advanced generative models to predict
high-resolution cellular phenotypic responses across a broad range of perturbations, and we hope it
paves the way for future research in this direction.

2 METHOD

Diffusion models have emerged as a powerful approach for image generation, overcoming chal-
lenges such as training instability and mode collapse common in GAN-based architectures. In this
work, we developed MorphoDiff, a novel pipeline capable of generating perturbed cellular mor-
phology in high-resolution and high-content microscopy images with the integration of perturba-
tion embedding as a guiding signal within the generative model. Our pipeline contains two key
components: an image-based denoising diffusion probabilistic model (DDPM) and a perturbation
projection module. The schematic representation of MorphoDiff is illustrated in Figure 1.

2.1 LATENT DIFFUSION MODEL FOR IMAGE GENERATION

The Stable Diffusion (SD) framework is built upon a latent diffusion model (LDM) pre-trained on a
vast corpus of natural images, enabling the generation of realistic images based on input text prompts
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(Rombach et al., 2022). We adapted SD pipeline for our task, and transformed available Cell Paint-
ing channels (elaborated in the 3.1 section) into three RGB channels for modelling. For our specific
task, we fine-tuned the pre-trained DDPM model in the SD framework on Cell Painting images
projected into latent space. We opted to employ the existing SD VAE trained on natural images
due to its demonstrated efficacy in reconstructing Cell Painting images (sample images provided in
Appendix Figure 5). More specifically, given a high resolution 512× 512 RGB image X , the image
encoder E transforms X into a latent representation z0 = E(X) consisting of four channels of
64× 64 feature maps. Subsequently, the decoder D reconstructs the generated image in latent space
as the final outcome. The DDPM model learns sample distribution in the latent space, and perturbs
the latent image representation z by introducing noise during the forward diffusion process.

Figure 1: MorphoDiff overview: Workflow diagram illustrating the architecture of the MorphoD-
iff pipeline, comprising two primary modules: a DDPM module and a perturbation encoder. The
diffusion algorithm serves as the central component of the workflow, performing conditional image
generation. The perturbation projection module can be adapted depending on perturbation type.

In particular, the LDM training consists of two steps: a forward diffusion process and a generative
(or sampling) process. The forward process is conducted on the latent variable z, generating a noisy
perturbed embedding at various time points t from 0 to T . This process is done by adding Gaussian
noise at each step, which is defined by:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (1)

where β = β1, · · · , βT is the pre-defined variance schedule. It has been shown that the distribution
of noisy samples converges to a standard Gaussian distribution as t approaches T (Ho et al., 2020).
Assuming that the noise values follow a Gaussian distribution, zt can be sampled based on zt−1 at
any desired time step t in a closed form using the reparameterization trick:

zt =
√
αtzt−1 +

√
1− αtϵt−1, (2)

where αt = 1 − βt and ϵ ∼ N (0, I). By using the chain rule and recalling that merging multiple
Gaussian distributions remains Gaussian, we can derive a direct formula for zt from z0 as follows

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (3)

where ᾱt =
∏t

1 αi, and ϵ represents a sample noise drawn from a standard Gaussian distribution.

The forward process generates the noisy perturbed image embedding zt at time step t. A 2D U-Net
is trained to estimate the noise level from the noisy embedding zt (Ronneberger et al., 2015). In
this process, the projected perturbation embedding p is integrated as a condition along with the zt
and time variable t, and are fed into the U-Net to predict the noise. The conditional LDM algo-
rithm in MorphoDiff leverages the information from p to guide the conditional denoising step and
perturbation-specific phenotype estimation.

The MorphoDiff pipeline optimizes the U-Net model prediction by minimizing the Mean Squared
Error (MSE) between the ground truth noise ϵ and the predicted noise. The loss enables the network
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to learn and accurately predict the added noise for each perturbed sample at time point t, facilitating
the denoising process. The objective of the diffusion model can be summarized as:

loss = MSE(fθ(p,
√
ᾱtz0 +

√
1− ᾱtϵ, t), ϵ), (4)

where fθ denotes the U-Net model. During the sampling process, MorphoDiff generates images
based on the input perturbation. To initiate the generation process, a random noise vector is then
sampled from a standard Gaussian distribution, denoted as z′T . The pipeline iteratively calculates z′t
for t ranging from T to 0 by:

z′t−1 =
1

√
αt

(
z′t −

1− αt√
1− ᾱt

fθ(p, z
′
t, t)

)
+
√

βtϵ, (5)

where z′t−1 represents a less noisy embedding of the generated perturbed image at time step t−1. It
is obtained using the current embedding z′t, the prediction fθ(p, z

′
t, t) made by the U-Net model, and

a random noise sample ϵ. The coefficients αt and βt control the contributions of the embedding and
the noise, respectively. Through this iterative process, MorphoDiff generates a contextually relevant
embedding that captures the desired cellular phenotype.

2.2 PERTURBATION PROJECTION MODULE

The original SD pipeline employed the CLIP model as the text encoder (Radford et al., 2021; Rom-
bach et al., 2022). To generate images exhibiting cellular morphological changes under specific
treatments, we replaced CLIP with the perturbation embeddings obtained from projection algo-
rithms depending on the type of perturbations. Our pipeline provides the flexibility of integrating
different projection modules and can handle both genetic and chemical interventions.

For genetic perturbations, we used the SOTA single-cell foundation model scGPT, which has been
trained on 33 million normal human cells and employs stacked transformer layers to generate cell
and gene embedding simultaneously (Cui et al., 2024). scGPT has demonstrated strong ability to
implicitly encode gene relationships in gene embeddings through generative modeling of gene ex-
pression (mRNA profiles). This property is particularly relevant for our task as it facilitates learning
meaningful patterns of cellular morphology linked to the encoded gene representation containing
transcriptomic signals, thereby enhancing generalizability to unseen perturbations.

For chemical compounds, we employed the molecular encoder software RDKit, a well-established
tool that converts standard molecular representations in SMILES format into numerical embedding
(Landrum, 2023). It therefore captures structural similarity of the chemical compounds. The pro-
jected latent variables are then fed into the MorphoDiff pipeline as a guiding signal. Further details
on the perturbation incorporation steps (Appendix Note A.3.1), training protocol (Appendix Note
A.3.2), and experiment information (Appendix Table 4) are provided in the Appendix section.

3 EXPERIMENTS

3.1 DATASET

Three publicly available Cell Painting datasets were used for modelling and validation, representing
a diverse range of perturbations and cell types, described as follows.

RxRx1 dataset contains 1108 perturbations across four cell types (Sypetkowski et al., 2023). Each
sample comprises six-channel fluorescent microscopy images capturing key cellular structures. Our
analysis concentrated on the largest group within the dataset (HUVEC cell line) with samples drawn
from multiple experimental batches. Each small interfering RNA perturbation in the dataset targets
a gene, resulting in significant mRNA knockdown and corresponding changes in protein expression
(Sypetkowski et al., 2023). We conducted two sets of experiments: one using all HUVEC images
(All Batches), and the other constrained to a single batch (Single Batch) to minimize batch effects.
The authors’ provided code was used to convert the six-channel images into RGB format 1.

BBBC021 dataset comprises 13200 images of MCF7 breast cancer cells, stained for DNA, F-actin,
and B-tubulin, and imaged using three-channel fluorescent microscopy, which were directly mapped

1Link to RxRx1 conversion code
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to RGB format for modelling (Caie et al., 2010). The MCF7 cells were treated with 113 small
molecules, each administered at eight different concentrations. We conducted two sets of experi-
ments: one using all compounds for which SMILES-based projections were available and the em-
bedding was generated, and another included 14 compounds obtained from a list of six mechanisms
of actions (MOA) reported having distinct phenotypes (Caie et al., 2010).

Rohban et al. dataset contains U2OS cell images with 323 over-expressed genes (Rohban et al.,
2017). Based on expert consultation, three of the five imaging channels—RNA, Mitochondria,
and DNA— were selected for modeling and validation, prioritizing channels essential for image
segmentation and feature extraction that are also biologically informative and interpretable (Stirling
et al., 2021; Carpenter et al., 2006). Two gene subsets were analyzed, including: (1) five genes from
pathways reported to affect cellular morphology, and (2) a list of 12 genes obtained from clustering
performed in Rohban et al. (2017) based on gene morphological features. Detailed description of
perturbations for each dataset and their download links are provided in Appendix Note A.3.3.

Pre-processing: All images with larger than 512×512 pixels were resized to 512×512 resolutions
to ensure consistent dimensions, with the largest possible area covered in each image. Normal-
ization and scaling followed best practices in image pre-processing (Rombach et al., 2022). More
explanation of pre-processing are provided in Appendix Note A.3.4.

3.2 COMPARISON

For benchmarking, a set of comparative analysis was conducted against the fine-tuned unconditional
SD as the baseline (with fixed prompt encoding), assessing the impact of integrating perturbation
data on guiding the generative process to mimic cellular phenotype consistent with real signals. To
the best of our knowledge, only one existing work offers conditional generative capabilities in a
high-resolution setting comparable to our approach (Yang et al., 2021). However, due to technical
challenges, adapting their model for benchmarking on our datasets was not feasible. To provide
an assessment of MorphoDiff’s performance against the SOTA, we benchmarked against an exiting
method that generates cellular phenotypes in individual cell cropped patches (Palma et al., 2023).

For experimental validation, 500 images were generated per perturbation. Real (ground truth) im-
ages were augmented to match this number where necessary, using random flipping and rotation, to
ensure consistency in evaluation metrics. The two-sample t-test was conducted for statistical anal-
ysis, with a p-value threshold of < 0.05 considered as statistically significant. Further evaluation
details are provided in Appendix Note A.3.5.

3.3 RESULTS AND DISCUSSION

In this section, we present the results of MorphoDiff in predicting perturbation-specific cellular mor-
phology, including image fidelity metrics, visual assessment, and biologically interpretable features.

3.3.1 MORPHODIFF IMPROVES PERTURBATION-SPECIFIC DISTRIBUTIONAL DISTANCE

To assess MorphoDiff’s effectiveness to improve similarity of pixel distributions in generated im-
ages to the associated real images for each perturbation, we employed well-established metrics for
validating the quality of images created by generative models, including Fréchet Inception Distance
(FID) and Kernel Inception Distance (KID) (Heusel et al., 2017; Sutherland et al., 2018). FID sum-
marizes the distance between the Inception feature vectors for real and generated images in the same
domain, while KID measures the dissimilarity between two probability distributions using indepen-
dently drawn samples. We computed these distance metrics between generated images for each
perturbation and their corresponding real image groups.

Table 1 presents the average of calculated FID and KID distances across all perturbations. Lower
FID and KID values indicate better alignment between generated and real distributions, with statisti-
cally significant differences between MorphoDiff and the unconditional Stable Diffusion highlighted
in bold. Our experiments showed that MorphoDiff consistently outperformed the baseline across all
experiments, by effectively embedding perturbation-specific patterns for both genetic and chemical
interventions. In the RxRx1 (All Batches) and BBBC021 (All Compounds) experiments, distance
metrics improved compared to smaller, single-batch experiments, suggesting that larger training
sets enhance model performance. Additionally, we observed that MorphoDiff predictions improved
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the average ranking of images to the matched real perturbed cohort based on the distance metrics.
Further details are provided in Appendix Table 5.

Table 1: Average FID (×10−2) and KID metrics across all perturbations in each experiment, assess-
ing distributional similarity between generated and real images from the corresponding perturbation
conditions (lower is better). Bold values highlight statistically significant differences with p-value
< 0.05, * indicating p-value < 0.01 and ** indicating p-value < 0.001.

Dataset Experiment Method FID↓ KID↓
RxRx1 All Batches MorphoDiff 0.78∗∗ 0.05∗∗

RxRx1 All Batches Stable Diffusion 1.15 0.11
RxRx1 Single Batch MorphoDiff 1.14∗∗ 0.12∗

RxRx1 Single Batch Stable Diffusion 1.45 0.16
BBBC021 All Compounds MorphoDiff 1.99∗∗ 0.21∗∗

BBBC021 All Compounds Stable Diffusion 3.84 0.47
BBBC021 14 Compounds MorphoDiff 2.26∗ 0.30
BBBC021 14 Compounds Stable Diffusion 3.22 0.42

Rohban et al. 5 Genes MorphoDiff 2.51∗ 0.33∗

Rohban et al. 5 Genes Stable Diffusion 3.26 0.45
Rohban et al. 12 Genes MorphoDiff 2.77∗ 0.38∗∗

Rohban et al. 12 Genes Stable Diffusion 3.17 0.45

We further benchmarked MorphoDiff-generated images at the single-cell cropped patch scale against
another existing method by Palma et al. (2023), with results summarized in Table 2 and details of the
analysis provided in Appendix Note A.3.5. Statistical testing demonstrated that MorphoDiff outper-
forms the second-best method across all compounds except Cytochalasin B. For this compound, our
investigation revealed that in larger (broader field of view) images, MorphoDiff achieved superior
FID (1.9 vs. 2.9 (×102)) and KID (0.23 vs. 0.37) metrics compared to Stable Diffusion, aligning
with our qualitative assessment (sample images provided in Appendix Figure 6). We propose that
generating and validating images with larger fields of view facilitates capturing cellular density and
intercellular relationships. This approach has the potential to provide holistic insights into cellular
interactions, phenotypic shifts induced by various perturbations, and cellular diversity within a well.

Table 2: Average FID (×10−2) and KID metrics assessing distributional similarity between gen-
erated and real images of cell cropped patches (lower is better). Bold values highlight statistically
significant differences of the best model with the second best model with p-value < 0.05, * indicat-
ing p-value < 0.01 and ** indicating p-value < 0.001.

Model AZ138 AZ258 Taxol Cytochalasin B Vincristine
FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

Stable Diffusion 1.40 0.14 0.94 0.08 1.50 0.15 0.83∗∗ 0.07∗∗ 1.83 0.20
IMPA 0.98 0.07 1.18 0.12 1.28 0.11 1.23 0.11 1.05 0.07
MorphoDiff 0.82∗∗ 0.06∗∗ 0.76∗∗ 0.05∗∗ 1.09∗∗ 0.10 1.19 0.11 0.86∗∗ 0.06∗∗

3.3.2 MORPHODIFF CAPTURES PERTURBATION-SPECIFIC CELL MORPHOLOGY SIGNALS

Among the three datasets, BBBC021 stands out due to its strong, visually detectable phenotypic
changes induced by small molecule treatments, as well as for including several compounds with
annotated Mechanisms of Action (MOA) (Caie et al., 2010). This dataset is particularly valuable for
modeling and validating the biological interpretability of generated images, motivating us to exam-
ine MorphoDiff’s ability to capture the biological signals associated with different conditions. Our
visual assessment reveals that MorphoDiff effectively captures perturbation induced cellular pat-
terns for distinct compounds, closely mimicking the morphology of treated cells in real images. In
contrast, the baseline SD model primarily learns general cellular structures. Figure 2 presents sam-
ple images from six sample compounds representing the different MOA groups in the BBBC021
experiment (14 compounds). Our investigation further revealed that MorphoDiff-generated images
successfully captured relatively rare cell cycle events, with sample images provided in Appendix
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Figure 7. Overall, the qualitative comparison between real images and those generated by Mor-
phoDiff highlights MorphoDiff’s promising alignment with real phenotypes.

Additional analysis was performed by training and validating models on images obtained by crop-
ping 512×512 pixel patches from the original BBBC021 images to assess the impact of focusing on
a smaller well area. Further description of pre-processing and sample images for all experiments are
provided in Appendix Note A.3.4, Appendix Figure 8 and 9, with image distance validation results
of the cropped version of experiments provided in Appendix Table 6.

Figure 2: MorphoDiff captures perturbation-specific cell morphology signals: Sample images
from the BBBC021 (14 Compounds) experiment demonstrating perturbation-induced cellular mor-
phology for 6 compounds, each representing one of the annotated Mechanism of Actions (MOA)
present in this experiment. The top row shows real images: the middle row displays MorphoDiff-
generated images: and the bottom row presents images generated by unconditional SD model.

3.3.3 MORPHODIFF LEARNS BIOLOGICALLY INTERPRETABLE FEATURES

To validate the model’s capacity to generate images with biologically meaningful representation,
we expanded our benchmarking efforts using CellProfiler, a widely-used image analysis software
in biomedical research to extract morphological cellular features from images across all conditions
(Carpenter et al., 2006; Stirling et al., 2021). We quantified a comprehensive set of measurements
related to cellular morphology across the different channels for the Cell, Nucleus, and Cytoplasm
compartments. All features were pre-processed and standardized following best practices before
analysis (Serrano et al., 2023). This approach allowed for a systematic comparison of CellProfiler-
extracted features between different cell groups, providing a robust evaluation of the biological
accuracy of generated images. Further description of CellProfiler feature extraction and processing
are provided in the Appendix Note A.3.6.

In our initial validation, we applied Principal Component Analysis (PCA) to the pre-processed Cell-
Profiler features derived from MorphoDiff-generated images, as shown in Figure 3a (3D visualiza-
tions are provided in the supplementary material). Sample distribution in the space indicated that
biological features extracted from MorphoDiff-generated images under different compound treat-
ments clustered cohesively in feature space. Additionally, when annotated by MOA labels visual-
ized in Figure 3b, many compound groups with similar MOAs formed distinct clusters, reflecting
their distinct biological effects. The MOA annotations are provided in Appendix Table 7.

We further applied K-Means clustering to CellProfiler features representing Cell, Nuclei, and Cyto-
plasm characteristics, using five different seeds to ensure robust evaluation. The clustering perfor-
mance based on perturbation (compound) and MOA labels in real samples highlighted the inherent
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Figure 3: Biologically interpretable feature analysis. PCA visualization of CellProfiler fea-
tures extracted from MorphoDiff-generated images, annotated by (a) compound labels and (b)
Mechanism of Action (MOA) labels. (c) Normalized Mutual Information (NMI) metrics obtained
from clustering CellProfiler features of real and MorphoDiff generated images (considering per-
turbation and MOA labels) using the K-Means algorithm with 5 different seeds, comparing their
performance across three feature subsets representing Cell, Nuclei, and Cytoplasm properties.
(d) Perturbation-specific PCA visualization of CellProfiler features comparing DMSO, real, and
MorphoDiff-generated images for four example compounds for different feature subsets.
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complexity of feature space, with overlapping sample distributions making clustering challenging.
However, comparing the K-Means clustering results on the MorphoDiff-generated features sum-
marized in 3c showed that the model maintained this complexity while improving the distinction
between different compounds and MOAs, in most cases, which resulted in enhanced clustering per-
formance. Overall, the visualizations and clustering analysis provide strong evidence that features
extracted from MorphoDiff-generated images capture perturbation-specific and MOA-specific pat-
terns, underscoring the model’s ability to generate biologically differentiated sample groups. PCA
and clustering analysis for the cropped images are provided in Appendix Figure 10.

We examined the distributional shift of CellProfiler features in MorphoDiff generated images com-
pared to those extracted from real images from cells treated with the the same compound versus
DMSO (control). Figure 3d illustrates sample distribution across three groups of CellProfiler fea-
tures for four representative compounds. Notably, the generated samples’ distribution consistently
demonstrated a shift towards the feature distribution of real treated samples, diverging from DMSO
controls. This trend provides strong evidence that MorphoDiff successfully learns biologically
meaningful features that closely align with the target phenotypic space. Additional visualizations
for these compounds, encompassing morphological features representing Area Shape, Texture, and
a set of features that describe the shape of cells using a basis of Zernike polynomials (Zernike) are
presented in Appendix Figure 11 (Yang et al., 2021). Furthermore, additional visualizations for all
six feature subsets across a broader range of compounds and cropped version of images are provided
in Appendix Figure 12 and 13, reinforcing the robustness of our findings.

Figure 4: MorphoDiff improves biological feature correlation and generalizes to unseen per-
turbations. (a) Spearman correlation coefficient (+ 1) of CellProfiler features extracted from images
generated by the generative models compared to the same features from real perturbed images across
Cell, Nuclei, and Cytoplasm compartments. Upper bound correlation between random split of real
image features are provided. (b) Sample images of the top 5 unseen compounds, comparing cellular
phenotypes in real vs. MorphoDiff-generated cohorts.

To assess the models’ ability to replicate cellular morphology, we calculated Spearman correlation
coefficients between the averaged CellProfiler features of real and generated images for each com-
pound. Given that feature correlations can vary across compounds due to factors like potency and
morphological divergence from DMSO-treated controls, we focused on the improvement in positive
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correlation achieved by MorphoDiff compared to the SD model. Figure 4a displays the correla-
tion coefficients for Cell, Nuclei, and Cytoplasm features, which align with the range reported in
previous work (Yang et al., 2021). The significant improvement observed in MorphoDiff over the
baseline suggests it can generate biologically relevant, compound-specific cellular morphologies.

In addition to these major results, we noticed MorphoDiff images replicated certain biological
nuances present in real images. We examined Pearson correlation coefficients between averaged
CellProfiler features of images for pairs of 14 compounds in the BBBC021 experiment. Notably,
the extreme cases of compound correlations observed in real images were faithfully reproduced in
MorphoDiff-generated features. Specifically, AZ841 and AZ258 exhibited the highest correlation
(0.96 in real vs 0.95 in MorphoDiff generated images), while AZ841 and Cytochalasin D demon-
strated the lowest correlation (−0.029 in real vs. −0.45 in MorphoDiff generated images). The
distributional similarity of AZ841 and AZ258 can also be observed in Figure 3a. Preservation of
relative phenotypic relationships among compounds underscores MorphoDiff’s capacity to capture
nuanced biological interactions. Moreover, comparing standard-processed and cropped images in
the BBBC021 experiments showed a slight improvement in computational metrics and sample dis-
tributions for cropped images overall (see Appendix Table 6), possibly due to enhanced compound-
specific signals. While cropping may boost model performance, further research is needed to assess
its impact on ML learning and its practicality.

3.3.4 MORPHODIFF GENERALIZABILITY TO UNSEEN DRUGS

We investigated MorphoDiff’s capability to generalize to held-out compounds, an important yet
challenging task in drug response prediction (Saha et al., 2024). Using Pearson correlation of com-
pounds’ structural embeddings generated by RDKit, we evaluated MorphoDiff’s performance on the
top 15 held-out compounds most correlated with in-distribution drugs (see Appendix Table 8), which
allowed us to assess its generalization to unseen perturbations. Computational validation using FID
and KID metrics revealed significant improvements in MorphoDiff-generated vs. SD-generated
treated samples, with performance metrics summarized in Table 3 for both standard and cropped
experiments. These results underscore MorphoDiff’s capability in generalization as a diffusion-
based model, which could be further enhanced with larger, more diverse training sets and advanced
computational resources.

Table 3: FID (×10−2) and KID metrics of real and generated images for unseen compounds. Bold
values indicate p-value < 0.05, * indicates p-value < 0.01, and ** indicates p-value < 0.001

Experiment FID↓ (Standard) FID↓ (Cropped) KID↓ (Standard) KID↓ (Cropped)
MorphoDiff 1.83∗∗ 1.57∗ 0.2∗ 0.17

Stable Diffusion 2.56 2.03 0.30 0.23

Figure 4b shows images for the top five held-out drugs most correlated with in-distribution com-
pounds. While most generated images closely resembled real samples based on molecular structure
embeddings, Forskolin exhibited a distinct phenotype. Our analysis revealed these images were
more similar to Cytochalasin D, Forskolin’s most correlated in-distribution compound, suggesting
that MorphoDiff generalizes to new compounds by leveraging perturbation embedding similarities.
This highlights the impact of perturbation encoding accuracy on performance. While the current
setting of MorphoDiff pipeline offers flexibility to integrate various tools, joint learning of the gen-
erative pipeline and perturbation encoders could enhance the model’s generalizability.

4 CONCLUSION

We have introduced MorphoDiff, a new diffusion model-based generative framework for predicting
cellular morphological responses to genetic and chemical perturbations in high-resolution images.
Our experiments have demonstrated promising performance with respect to fidelity metrics and bi-
ological interpretability of the generated images. We expect that MorphoDiff can serve as a strong
foundation for advancing cellular response prediction tools. Future work could incorporate addi-
tional covariates, such as drug concentration and cell type, by leveraging scaled imaging datasets
and further investment in this area. Additionally, exploring combinatorial therapies and their syner-
gistic effects presents an exciting direction toward advancing precision medicine.
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drew Kiruluta. Deep representation learning determines drug mechanism of action from cell
painting images. Digital Discovery, 2(5):1354–1367, 2023.

Karren Yang, Samuel Goldman, Wengong Jin, Alex X Lu, Regina Barzilay, Tommi Jaakkola, and
Caroline Uhler. Mol2image: improved conditional flow models for molecule to image synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6688–6698, 2021.

13



Published as a conference paper at ICLR 2025

A APPENDIX

A.1 FIGURES

Figure 5: Sample images with their reconstructed version generated by the Stable Diffusion Varia-
tional Autoencoder module used for image encoding and decoding in the MorphoDiff pipeline.

Figure 6: Random sample images generated by MorphoDiff, Stable Diffusion and from real cohorts
for the Cytochalasin B compound.
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Figure 7: Random sample images generated by MorphoDiff and from real cohorts, demonstrating
the generated images’ capturing infrequent phenotypes associated with cell cycle alterations, such
as bi-nucleated cells (in Cytochalasin B) and cells in metaphase stage (Colchicine, AZ841, and
AZ258).
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Figure 8: Random sample images generated by MorphoDiff and from real cohorts in different
datasets.

16



Published as a conference paper at ICLR 2025

Figure 9: Sample images from the BBBC021 (14 Compounds) experiment with cropped pre-
processing including smaller well area, demonstrating perturbation-induced cellular morphology
for 6 compounds: AZ258, PP 2, Cytochalasin D, Epothilone B, Nocodazole, and AZ138, each rep-
resenting one of the annotated Mechanism of Action (MOA) groups present in this dataset. The top
row shows real (ground truth) images: the middle row displays images generated by the MorphoDiff
pipeline: and the bottom row presents images generated by unconditional Stable Diffusion model.

Figure 10: PCA visualization of CellProfiler features extracted from MorphoDiff-generated images
in cropped image processing experiment of the BBBC021 experiment with 14 compounds, anno-
tated by (a) compound labels and (b) Mechanism of Action (MOA) labels. (c) Normalized Mutual
Information (NMI) metrics obtained from clustering CellProfiler features of real and MorphoDiff
generated images using the K-Means algorithm with 5 different seeds, comparing their performance
across three feature subsets representing Cell, Nuclei, and Cytoplasm properties.
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Figure 11: Perturbation-specific PCA visualization of CellProfiler features of the BBBC021 experi-
ment with 14 compounds comparing DMSO, real perturbed, and MorphoDiff-generated images for
four example compounds: Epothilone B, AZ138, Docetaxel, and Vincristine considering different
subsets of CellProfiler features including Area Shape, Texture, and Zernike relevant properties.
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Figure 12: Perturbation-specific PCA visualization of CellProfiler features of the BBBC021 experi-
ment with 14 compounds comparing DMSO, real perturbed, and MorphoDiff-generated images for
two compounds: AZ258, AZ841, considering different subsets of CellProfiler features including
Cell, Nuclei, Cytoplasm, Area Shape, Texture, and Zernike relevant properties.

19



Published as a conference paper at ICLR 2025

Figure 13: Perturbation-specific PCA visualization of CellProfiler features of cropped processed
images in the BBBC021 experiment with 14 compounds, comparing DMSO, real perturbed, and
MorphoDiff-generated images for four example compounds: Epothilone B, AZ138, Docetaxel, and
Vincristine, considering different subsets of CellProfiler features including Cell, Nuclei, Cytoplasm,
Area Shape, Texture, and Zernike relevant properties.
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A.2 TABLES

Table 4: Table of experiments’ details from different datasets, including dataset name, experiment
information, model type, number of trained steps, number of total training images, number of bal-
anced images per perturbation included in training.

Dataset Experiment Model Trained
steps

Training
images

Per perturbation
balanced images

RxRx1 All Batches MorphoDiff [130K-133K] 59K ∼ 50
RxRx1 All Batches Stable Diffusion [130K-133K] 59K ∼ 50
RxRx1 Single Batch MorphoDiff [113K-118K] 2.46K ∼ 50
RxRx1 Single Batch Stable Diffusion [113K-118K] 2.46K ∼ 50

BBBC021 All Compounds MorphoDiff [140K-142K] 98K 1K
BBBC021 All Compounds Stable Diffusion [140K-142K] 98K 1K
BBBC021 14 Compounds MorphoDiff [116K-120K] 14K 1K
BBBC021 14 Compounds Stable Diffusion [116K-120K] 14K 1K

Rohban et al. 5 Genes MorphoDiff [130K] 1K 200
Rohban et al. 5 Genes Stable Diffusion [130K] 1K 200
Rohban et al. 12 Genes MorphoDiff [61K-63K] 6K 500
Rohban et al. 12 Genes Stable Diffusion [61K-63K] 6K 500

Table 5: Table showing the average rank of matched compounds based on FID and KID metric com-
parisons between generated images and all real perturbed image cohorts. Ranks were normalized by
the total number of compounds in each experiment, with MorphoDiff consistently achieving a lower
average rank compared to the unconditional Stable Diffusion model. A lower rank (highlighted in
bold) indicates better performance, with the ideal case (rank 1st) representing the scenario where the
generated images for a specific perturbation have the smallest distance metric with the matched real
cohort.

Dataset Experiment Method FID↓ KID↓
RxRx1 All Batches MorphoDiff 0.13 0.12
RxRx1 All Batches Stable Diffusion 0.51 0.51
RxRx1 Single Batch MorphoDiff 0.12 0.12
RxRx1 Single Batch Stable Diffusion 0.51 0.51

BBBC021 All Compounds MorphoDiff 0.41 0.42
BBBC021 All Compounds Stable Diffusion 0.50 0.50
BBBC021 14 Compounds MorphoDiff 0.42 0.43
BBBC021 14 Compounds Stable Diffusion 0.53 0.53

Rohban et al. 5 Genes MorphoDiff 0.56 0.56
Rohban et al. 5 Genes Stable Diffusion 0.6 0.6
Rohban et al. 12 Genes MorphoDiff 0.51 0.5
Rohban et al. 12 Genes Stable Diffusion 0.54 0.54
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Table 6: Average of FID (×10−2) and KID metrics across all perturbations in the BBBC021 ex-
periments for two different pre-processing approaches (standard and cropped around smaller well
area), assessing distributional similarity between generated and real images from the corresponding
perturbation conditions (lower is better). Bold values highlight statistically significant differences
with p-value < 0.05, * indicates p-value < 0.01, and ** indicates p-value < 0.001.

Dataset Experiment Method FID↓ KID↓
BBBC021 All Compounds (Standard) MorphoDiff 1.99∗∗ 0.21∗∗

BBBC021 All Compounds (Standard) Stable Diffusion 3.84 0.47
BBBC021 All Compounds (Cropped) MorphoDiff 1.55∗∗ 0.14∗∗

BBBC021 All Compounds (Cropped) Stable Diffusion 2.80 0.29
BBBC021 14 Compounds (Standard) MorphoDiff 2.26∗ 0.30
BBBC021 14 Compounds (Standard) Stable Diffusion 3.22 0.42
BBBC021 14 Compounds (Cropped) MorphoDiff 1.48∗∗ 0.17∗∗

BBBC021 14 Compounds (Cropped) Stable Diffusion 2.42 0.30

Table 7: List of compounds and their annotated mechanism of actions (MOA) in the BBBC021
experiment (14 compounds)

Compound Mechanism Of Action (MOA)
AZ138 Eg5 inhibitors
AZ841 Aurora kinase inhibitors
AZ258 Aurora kinase inhibitors

Cytochalasin B Actin disruptors
Cytochalasin D Actin disruptors
Latrunculin B Actin disruptors

PP 2 Epithelial
Demecolcine Microtubule destabilizers
Nocodazole Microtubule destabilizers
Colchicine Microtubule destabilizers
Vincristine Microtubule destabilizers

Epothilone B Microtubule stabilizers
Taxol Microtubule stabilizers

Docetaxel Microtubule stabilizers

Table 8: List of top most correlated held-out compounds to the in-distribution compounds (Based on
the molecular encoding obtained from RDKit tool) in the BBBC021 experiment with 14 compounds
included in training.

In-distribution compound Held-out compound Pearson correlation
Vincristine Vinblastine 0.92

PP 2 AG-1478 0.78
Docetaxel Bryostatin 0.70
Colchicine Podophyllotoxin 0.70

Taxol Bryostatin 0.66
Cytochalasin D Forskolin 0.61
Cytochalasin D Rapamycin 0.61
Demecolcine Emetine 0.57

PP 2 AZ701 0.53
Cytochalasin B Simvastatin 0.52
Cytochalasin B Mevinolin-lovastatin 0.50

Docetaxel Nystatin 0.49
Nocodazole Acyclovir 0.48

PP 2 Bohemine 0.47
PP 2 Roscovitine 0.46

Cytochalasin B Taurocholate 0.46
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A.3 NOTES

A.3.1 PERTURBATION ENCODING

MorphoDiff offers the flexibility to incorporate different perturbation encoding modules, tailored to
the type and properties of the perturbation.

For genetic perturbations, gene IDs from the original dataset were mapped to genes available in the
scGPT model, pretrained on 33 million normal human cells2. The 512-dimensional gene embed-
dings generated by this model were incorporated into the MorphoDiff pipeline as model conditions.
For the RxRx1 dataset, siRNA perturbation IDs were mapped to their associated gene IDs using the
Thermo Fisher Scientific website3. In the dataset by Rohban et al., gene IDs were directly provided
as the perturbations associated with each treated image.

For compound perturbations in the BBBC021 dataset, SMILES representations of each compound
were provided as metadata by the Broad Institute website4. RDKit software was applied to the
SMILES representations to generate numerical encodings representing chemical structures, with
each feature normalized by its mean and standard deviation.

The code for generating chemical and genetic perturbation embeddings is available in the project’s
GitHub.

A.3.2 TECHNICAL DETAILS

Publicly released parameters of Stable Diffusion v1.45 along with the accompanying training script
from Huggingface were used as the base model6. Perturbation embeddings generated by the pro-
jection module were padded to match the shape of Stable Diffusion’s prompt embedding. During
training, we applied the Exponential Moving Average (EMA) technique to enhance model learn-
ing and stability (Tarvainen & Valpola, 2017). EMA is employed to reduce noise during training
and improve the model’s generalization performance. For all experiments, we used the most recent
parameters available at the time of evaluation, and training was conducted based on the available
computing and time resources, ensuring that the number of training steps across models for each
experiment was comparable to facilitate a fair evaluation of models. To address class imbalance, we
applied image augmentation techniques such as rotation and flipping on the training samples from
each perturbation cohort, enhancing sample diversity. The code for data pre-processing, model train-
ing, evaluation, and result reproduction, along with the model weights are available on the project’s
GitHub page. All training and evaluation processes were conducted on NVIDIA T4 and NVIDIA
A40 GPUs. Most hyper-parameters remained consistent across all models and were aligned with the
original Stable Diffusion settings, unless stated. A batch size of 32 and a learning rate of 1 × 10−5

were used for all training runs.

A.3.3 DATASETS

RxRx1 dataset developed by Recursion (Sypetkowski et al., 2023), contains 1108 perturbation
classes across four distinct cell types. Each sample comprises six-channel fluorescent microscopy
images capturing key cellular structures, including the nucleus, endoplasmic reticulum, actin cy-
toskeleton, nucleolus, mitochondria, and Golgi apparatus. Our analysis concentrated on the Human
Umbilical Vein Endothelial Cells (HUVEC), the largest group within the dataset, comprising ap-
proximately 59,000 samples drawn from multiple experimental batches. We included only images
with gene annotations available on the Thermo Fisher Scientific website7, corresponding to the
original siRNA perturbations. The RxRx1 authors identified pronounced batch effects across exper-
imental runs, presenting a challenge for ML model training. To investigate this, we conducted two
sets of experiments: one using all HUVEC images (RxRx1 - All Batches), and the other constrained
to a single batch (RxRx1 - Single Batch) to minimize batch effects. Given the large number of

2https://github.com/bowang-lab/scGPT/tree/main
3https://www.thermofisher.com/ca/en/home.html
4Link to BBBC021 metadata
5https://huggingface.co/CompVis/stable-diffusion-v1-4
6Training Script
7https://www.thermofisher.com/ca/en/home.html
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siRNA perturbations in RxRx1, a random subset of 50 siRNAs was selected for validation in each
experiment, balancing the constraints of time and computational resources. The authors’ provided
code was used to convert the six-channel images into RGB format for input into the MorphoDiff and
Stable Diffusion pipelines8. The images were directly downloaded from Recursion’s website9.

We further extended our analysis to the BBBC021 dataset comprising 13200 images of MCF7
breast cancer cells, stained for DNA, F-actin, and B-tubulin, and imaged using three-channel flu-
orescent microscopy (Caie et al., 2010). For consistency, these channels were directly mapped to
RGB format for modelling and validation. The dataset profiles MCF7 cells treated with 113 small
molecules, each administered at eight different concentrations over a 24-hour period. We conducted
two sets of experiments: one using all compounds for which SMILES-based projections were avail-
able and the embedding was generated by the projection module (98 in total), and another included
14 compounds with 6 MOAs provided on the dataset website (Caie et al., 2010). These MOAs
included Eg5 inhibitors, Aurora kinase inhibitors, Actin disruptors, Epithelial modulators, and Mi-
crotubule destabilizers, and Microtubule stabilizers (Caie et al., 2010). Images from this dataset
were directly downloaded from Broad Bioimage Benchmark Collection website10.

The Rohban et al. dataset contains Cell Painting images of U2OS cells with 323 over-expressed
genes (Rohban et al., 2017). Based on expert consultation, we selected three of the five imag-
ing channels—RNA, Mitochondria, and DNA—for modeling and validation, prioritizing channels
essential for image segmentation and feature extraction that are also biologically informative and
interpretable (Stirling et al., 2021; Carpenter et al., 2006). The choice of channels can be flexible
depending on dataset properties. Two gene subsets were used from this dataset for modeling. In
the first experiment, we used a set of five genes (gene list: RAC1, KRAS, CDC42, RHOA, PAK1)
reported in the original study as being involved in pathways known to affect cellular morphology
(Rohban et al., 2017). For the second experiment, we focused on gene clusters identified in (Rohban
et al., 2017) based on morphological profiling. We selected genes from clusters with at least three
genes, having a Gene Ontology (GO) term with a p-value below 0.01, and where at least half of
the genes in the cluster were associated with the GO terms (gene list: XBP1, MAPK14, RAC1,
AKT1, AKT3, RHOA, PRKACA, SMAD4, RPS6KB1, KRAS, BRAF, RAF1). These genes were
sourced from Supplementary File 1F in (Rohban et al., 2017). Images for this dataset were directly
downloaded form the Cell Painting Gallery GitHub page11.

A.3.4 PRE-PROCESSING

Standard Pre-processing: For all experiments, images larger than 512×512 pixels were resized to
this dimension, preserving as much of the original image area as possible. Pre-processing followed
Stable Diffusion best practices, scaling pixel values to the (0, 1) range and normalizing with a mean
and standard deviation of 0.5 (Rombach et al., 2022).

Cropped Pre-processing: To evaluate the impact of focusing on smaller well areas with enhanced
cellular texture, five 512 × 512 pixel patches were cropped from the four corners and center of the
BBBC021 images. This approach augmented the data, and the processed images were different
from the standard processing by magnifying cellular details. Cropped images were used for mod-
eling and validation, with comparisons made against the standard pre-processing results. The same
normalization process as in standard pre-processing was applied prior to further analysis.

Cell Painting Specific Pre-processing: For the RxRx1 and BBBC021 datasets, self-standardization
was applied as recommended by (Sypetkowski et al., 2023), where each image channel was stan-
dardized separately. In the experiments from Rohban et al., illumination correction arrays provided
by the authors were used to adjust for brightness differences as part of the pre-processing pipeline
(Rohban et al., 2017).

8Conversion Code
9https://www.rxrx.ai/rxrx1

10https://bbbc.broadinstitute.org/BBBC021
11https://github.com/broadinstitute/cellpainting-gallery
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A.3.5 VALIDATION

MorphoDiff’s performance was validated with respect to computational distance metrics, visual
assessment, and CellProfiler feature analysis to interpret the biological relevance of the generated
images. We also benchmarked its performance against the unconditional Stable Diffusion frame-
work as the baseline by fixing the input prompt condition, and fine-tuning the SD framework on
Cell Painting images, similar to what was used to train MorphoDiff.

For benchamrking on cell cropped patches, we used the IMPA checkpoint trained on the BBBC021
dataset (six conditions: DMSO and five compounds)12. Our models, trained on 14 compounds, were
adapted for image quality evaluation. Using a pre-trained generalist cell segmentation model13, we
segmented generated and real images to obtain cell masks. Consistent 96×96 pixel patches centered
around single cells were cropped for fair evaluation against IMPA images, and compound-specific
FID and KID scores were calculated. Following the Comparison section in the main manuscript and
to provide a robust evaluation, 500 cell patches were randomly selected for ground truth and the
same amount were generated for each model (Stable Diffusion, IMPA, and MorphoDiff) across ten
random seeds, with image quality metrics and significance tests reported for each compound.

In the CellProfiler analysis, image-level features extracted from real images were compared to those
extracted from the generated images. Notably, the number of real images per condition was often
smaller than the number of generated images. The two-sample t-test was used for statistical analysis,
with p-values of less than 0.05 were considered statistically significant unless otherwise stated.

A.3.6 CELLPROFILER ANALYSIS

We used the CellProfiler tool for quantitative phenotype measurement across thousands of images, as
it is widely regarded as the state-of-the-art image analysis software in the literature. Due to the large
volume of images, we employed Distributed CellProfiler (McQuin et al., 2018), which facilitates
running a Dockerized version of CellProfiler on Amazon Web Services (AWS) by leveraging AWS’s
storage and computing infrastructure. All CellProfiler pipelines used for analysis were implemented
and customized by experts for each experiment.

A comprehensive set of cellular morphology measurements was extracted across different channels
for the Cell, Nucleus, and Cytoplasm compartments. The mean, median, and standard deviation
of extracted features were summarized for each image. Image features were pre-processed follow-
ing best practices, including the removal of features containing NaNs, elimination of outliers, and
removal of highly correlated features. All features were normalized prior to analysis using the ”stan-
dardized” method from pycytominer Python package14 (Serrano et al., 2023). We analyzed different
subsets of CellProfiler features (1088 in total) by focusing on those included ”Cell” (300 features),
”Nuclei” (394 features), ”Cytoplasm” (318 features), ”AreaShape” (267 features), ”Texture” (346
feature) and ”Zernike” (225 features) in their feature names, each correspond to aspects of cell mor-
phological properties. The CellProfiler pipeline, feature processing and analysis scripts are provided
on the project’s GitHub page.

12https://github.com/theislab/IMPA
13https://github.com/Lee-Gihun/MEDIAR
14https://github.com/cytomining/pycytominer
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