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Abstract

A key challenge for LLMs lies in their ability to reason. To evaluate an LLM’s
reasoning capabilities, there is a need for challenging natural language datasets
for reasoning tasks. However, it is hard to manually generate these datasets across
all domains, at the scale required by LLMs, as they require expensive effort from
subject matter experts. As datasets become public, they become part of the training
data of LLMs, leading to the need for newer datasets. In this work, we formalize
the problem of synthetic generation of SAT reasoning-tasks of variable complexity
in natural language that adhere to propositional logic. Then, we present our method,
LTGEN (Logical Text Generator), to generate custom datasets aligned with our
formalism. We test GPT-40 and 03-mini on two auto-generated datasets using
LTGEN and find that LLMs struggle particularly on hard UNSAT problems and
are biased toward predicting that the text is logically consistent.

1 Introduction

Many recent advances on Large Language Models (LLMs) focus on improving their ability to
address reasoning tasks Mondorf and Plank [2024], Liu et al.|[2025]], Ballon et al.| [2025]. However,
complex logical reasoning still remains a challenging task for LLMs and Large Reasoning Models
(LRMs), e.g.,|Wei et al.|[2025]], Hazra et al.|[2025]]. Here, we study their ability to handle a subset
of complex reasoning tasks, specifically boolean satisfiability problems (SAT) when expressed in
natural language with semantics related to a specific domain. Given that SAT formulation represents
a standard framework into which many other complex reasoning tasks can be compiled into, the
ability to reason about SAT would allow LLMs to reason on many other tasks.

A key aspect of evaluating a model’s reasoning capabilities relates to the type of reasoning tasks that
it can handle, and what limitations or biases are present. InHazra et al.| [2025]], an analysis of thinking
traces indicates that powerful reasoning models can internalize SAT-heuristic search procedures.
Their work shows that even reasoning models do not necessarily have remarkable accuracy; the best
model they tested achieves approximately 65% accuracy in generating a satisficing assignment for
hard SAT tasks. Thus, it is key to understand the type of problems they can handle. The intuition is
that a model’s ability to solve these problems is closely tied to the computational complexity of the
tasks themselves. This relationship serves as a central motivation for the investigations presented in
this paper.

In order to train and evaluate models on reasoning tasks, we need datasets with the appropriate level
of complexity and content. There is prior work on generating SAT reasoning tasks Wei et al.[[2025].
However, this work is limited in how the text is generated; only logical-and, and logical-or operations
are supported and the text is filled in with a rigid approach. In|Q1 et al.| [2025], the authors also
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generate reasoning tasks that can be configured by user input in a restricted way (by specifying a
subject name and keyword). The objective in the generated tasks is to determine if a fact is true
or false or uncertain. The SAT tasks are different in that they require reasoning to determine if a
set of logic statements is satisfiable or not. This requires reasoning over the space of truth-value
assignments for all propositions (the same problem as in |Wei et al.|[2025]]); an example problem
of such a task is determining if an HR policy in a company is consistent or not. See Section [5for
detailed related work.

We present a configurable generator of synthetic SAT reasoning tasks in natural language, LTGEN
(Logical Text Generator). LTGEN’s output can be used for evaluating the SAT reasoning capabilities
of LLMs. One of the advantages over previous work relates to the wider variety of text generated
(e.g., LTGEN supports conditional clauses in the text). LTGEN can also be used to generate SAT
tasks for specific domains, and to filter generated samples based on the semantics and coherence
of the text generated. This can be helpful in surfacing reasoning biases as shown in Dasgupta et al.
[2022].

The main contributions of this paper are: (1) formalizing the problem of generating text data that
adheres to propositional logic clauses; (2) defining a novel method, LT GEN, for creating domain-
specific SAT datasets with coherent text using propositional logic, a SAT solver, and an LLM
to systematically generate datasets tailored to specific domains; and, (3) demonstrating how the
evaluation of reasoning performance of state-of-the-art LLMs can surface biases. We evaluate
the performance of GPT-40 [Hurst et al.| [2024] and 03-mini |OpenAl|[2025] on LTGEN generated
datasets, revealing that LLMs encounter difficulties especially with hard UNSAT problems and
have a reasoning bias towards inferring logical consistency. Our findings underscore the need for
improved methodologies in reasoning-task dataset generation and highlight the usefulness of datasets
in evaluating LLM reasoning capabilities through domain-specific logic-based datasets.

2 Problem Description

We consider the problem of generating a custom dataset of textual descriptions of SAT tasks. Each
element of the dataset is of the form (C,text), where C is a set of propositional logic clauses
and fext is a natural language description adhering to C' for a custom domain. The generated

dataset, D = {(C @), text(i))}?;l, provides a logically-aligned collection of clause set and text pairs,
supporting the training and evaluation of language and reasoning models. We formulate the task in
three stages: Abstract Clause Generation, Text Grounding, and Coherence Check.

Abstract Clause Generation: given a number of variables ny,, a number of clauses, n¢, and a set of
logical operators O (e.g., {—, V, A, —}), generate a set of clauses C' = {c1, ¢a, ..., Cpn. } that involve
ny variables, V' = {v1,va,...,v,, }, and ne clauses. Each clause ¢; should belong to L(V, O),
which is the set of well-formed formulae over V' using operators in O.

Text Grounding: given C (generated in the previous stage), generate text = 7 (C,R) € Y, where T
is a stochastic grounding function such that text preserves the logical structure imposed by C. Y is
the set of all possible grammatically correct sentences that can be derived from the reference text R
from a given domain.

Coherence Check: given C and text, generated in the first and second stage, respectively, judge the
logical alignment between C' and fext, and the quality and coherence of zext.

3 Dataset Generation Architecture

In this section, we present our architecture, LTGEN, for generating a custom dataset (Figure [I)).
Abstract Clause Generation: LTGEN first generates a large number of unique abstract clauses
by systematically following the rules to construct well-formed formulae, using a set of variables
V' of size ny (also automatically generated), and operators, O. From this pool, LTGEN uniformly
selects a subset of n¢ clauses that are consistent (inconsistent) for SAT (UNSAT) items. For example,
C = {v1 A —w2} belongs to the set of valid SAT formulae when ny = 2 and nc = 1. We use the Z3
solver (|De Moura and Bjgrner| [2008]]) to obtain ground-truth satisfiability labels (consistent vs
inconsistent).
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Figure 1: Overview of LTGEN, our dataset generation architecture.

Text Grounding: We use R, a custom reference text from a given domain provided by the user, to
ground each variable in V' using an LLM. To formalize this stochastic mapping, we define a grounding
function G that maps propositional variables to natural language segments. Given V, a clause set C,
and a reference text R, the grounding of a variable v € V is defined as G(v, C, R) = v, where
v™" denotes a possible natural language realization of v. For v;,v; € V, such that ¢ # j, it must
hold that vj*" # v ensuring unique text grounding of the variables. In this work, the grounding
is done through prompting o3-mini with the arguments in the prompt (see Appendix [A3|for a full
description of the prompts).

For a clause set C, we perform its text grounding, 7 (C, R), iteratively by processing one variable at
a time using the variable grounding function, G(v;, C, R). After grounding a variable, its grounded
text replaces the symbolic variable in the clause set, and the result is included in the prompt for
grounding the next variable. This sequential substitution ensures that the LLM generates assignments
that are not only faithful to the logical structure but are also contextually coherent across variables.
For example, in Figure[T] with,

C = {v1 A —ws}, and R = financial savings,

a valid grounding is,

G(v1,C, R) = spending is easy, and G(ve, C, R) = saving is easy.
If the LLM cannot generate any text related to R for a variable, the corresponding clause set is
discarded from the dataset. Once LTGEN has generated valid text groundings of all the variables in C,
the next step involves stitching the phrases together to form a coherent grounded text corresponding
to C. LTGEN stitches the texts following a set of rules (see Appendix [A.2). If the clause contains a

negation, LTGEN uses an LLM to obtain the resulting text. In our example, the text grounding of
C = {v; A —ws} results in,

T(C,R) = Spending is easy and saving is not easy.
Coherence Check: Finally, we use an LLM as a judge to provide explanations and scores (integer

between 1 and 10) to judge the quality and coherence of the generated text, and use an iterative
refinement loop to improve the variable text grounding.

The dataset generation procedure of LTGEN is detailed in Appendix [A] including the pseudocode for
its submodules.

Next, we present another example, Example|1|of generating a data item, (C, zext) € D.

Example 1. We have the following parameter values:
 number of variables, ny = 4 so that V. = {v1, va,v3,v4},
* number of clauses, nc = 4,
* Propositional Logic Operators, O = {\,V, -, —},

* A relevant domain or application context, R = ‘banking’,



Clause set: A SAT clause set generated automatically using the Abstract Clause Set Generator is,
C ={(v1 = v2), (va = v3), (v3V —va)}.

Variable Text Grounding: LTGEN grounds the variables, one at a time, using the grounding function
G. In this example,

v1, The bank conducts regular compliance audits.

)

The bank maintains an integrated compliance management system.

Vs, The bank has established an internal fraud prevention unit.

)

G(v1,C,R)
* G(vz,C,R)
G(vs,C,R)
g( )

vy, C, R) = The bank’s compliance unit is adequately staffed.

Grounded text for clause set: The grounded text for the clause set, C is T(C,R), generated by
stitching together the individual variable groundings, U?:1 G(vi, C,R). In this example, T(C,R) =
If the bank conducts regular compliance audits, then the bank maintains an integrated compliance
management system. If the bank maintains an integrated compliance management system, then the
bank has established an internal fraud prevention unit. The bank has established an internal fraud
prevention unit or the bank’s compliance unit is not adequately staffed.

4 Experimental Evaluation

In this section, we present a preliminary evaluation of LLM performance on LTGEN generated
datasets. We benchmark GPT-40 and 03-mini across three datasets, hard3sat, uniform, and symbolic,
generated with ny € [3,19]. The reference text, R is banking for hard3sat and banking derived
themes for uniform (see Appendix [B.4). hard3sat is a collection of hard 3-SAT problems with
no =~ 4.26ny, i.e., problems in the phase-transition region of SAT (Mitchell et al.|[1992]). uniform
is a collection of uniformly generated clause sets (Appendix [A.T]). symbolic is a collection of 3-SAT
tasks defined as clauses, not text, equivalent to only using the first phase of LTGEN. n¢ vary from
ny to Sny in uniform and symbolic. In the coherence check module, we set the score threshold to
be greater than or equal to 8 for an item to be included in the dataset. We report standard classification
metrics to assess their ability to reason over logical consistency queries. GPT-40 and 03-mini are run
with a temperature of 0, and max output-tokens as 4096 and 32768 respectively. All experiments
were run on Intel Xeon Gold 6240R CPUs with 8 processors and 64GB RAM.

4.1 Results

Table[T] summarizes the performance of each LLM in determining logical consistency (SAT) when
provided with a textually grounded (in the case of hard3sat and uniform) or symbolic clauses
(symbolic). 03-mini consistently outperforms GPT-4o across all datasets and metrics, with the largest
margin on the uniform dataset, indicating stronger performance in symbolic reasoning tasks. Both
models exhibit higher recall than precision on hard3sat and symbolic datasets, suggesting a tendency
to over-predict the consistent class. This bias is less pronounced on the uniform dataset, where
precision and recall are better balanced. This suggests that the models seem biased toward predicting
satisfiability when tasks are challenging. The number of valid samples (n) remains stable across
runs, with occasional timeouts, especially for o3-mini, resulting in non-zero standard deviation in
some rows. Analysis of 03-mini’s reasoning traces shows a methodical approach, consistent with
prior observations (Ballon et al.|[2025]). Across all datasets, o3-mini achieves near-perfect recall,
indicating it almost never misclassified consistent as inconsistent. However, its lower precision
shows that it often misclassified inconsistent as consistent.

4.2 Correlation of false positive rate with inconsistency

Table 2] reports the Pearson correlation coefficient () and p-value between the average LLM false
positive rate (FPR) and the percentage of inconsistent ground truth samples for each dataset and
LLM.

'Time measured on 45 samples



Table 1: Results for three datasets on GPT-40 and o3-mini over 5 runs per item. For each dataset and
LLM we report the mean accuracy, precision, recall and F1 score (std dev in parentheses). ‘time’
column reports average LLM time. Values in bold represent the best performance for each dataset. n
is the number of samples evaluated for each LLM.

Dataset Ilm accuracy precision recall f1 n time (s)

hard3sat GPT-40 0.44(0.02) 0.36(0.02) 0.81(0.05) 0.49(0.02) 128.0(0.0)  5.14(0.09)
hard3sat o3-mini 0.52(0.02) 0.44 (0.02) 1.00 (0.00) 0.61(0.02) 111.8(5.1) 70.18(7.71)
wniform GPT-40 0.62(0.02) 0.65(0.03) 0.44(0.04) 0.52(0.04) 158.0(0.0)  4.79 (0.07)
wniform o3-mini 0.83(0.01) 0.76 (0.01) 0.96 (0.02) 0.85(0.01) 158.0(0.0) 18.78 (0.74)
symbolic GPT-40 0.51(0.04) 0.50(0.03) 0.88(0.05) 0.64(0.03) 168.4(1.5) 6.70(0.42)"
symbolic o3-mini 0.67 (0.01) 0.62 (0.01) 0.99 (0.01) 0.76 (0.01) 157.8 (2.6) 38.03 (5.10)'

Table 2: Correlation between LLM false positive rate (FPR) and the percentage of inconsistent
inputs, grouped by the number of clauses. 14,ups indicates the total number of input groups formed
based on clause count. r represents Pearson correlation, and p-value denotes statistical significance.

Dataset | hard3sat hard3sat symbolic symbolic uniform wuniform
IIm GPT-40 03-mini GPT-40 03-mini GPT-40 03-mini
r 0.94 0.88 0.97 0.91 0.39 0.41
p-value | <0.001 <0.001 <0.001 <0.001 0.003 0.002
Ngroups | 41 41 46 46 56 56

If the classifier is unbiased, i.e., its predictions do not depend on the underlying class proportions,
then the false positive rate (FPR) should remain stable as the proportion of inconsistent problems
changes. However, for the symbolic and hard3sat datasets, both models show strong positive
correlations (r > 0.75) between FPR and the proportion of inconsistent problems. This indicates
that as the inconsistent class becomes more prevalent, the models make more false positive errors,
revealing a systematic bias: LLMs are more likely to incorrectly predict consistent when the
ground truth is inconsistent. On the uniform dataset, these correlations are weaker, suggesting
that the relationship between FPR and ground truth inconsistency is less pronounced. The statistical
significance (p-values) confirms the strength of these correlations. The discussion in Section §.3]
further illustrates this tendency, showing that LLMs systematically overpredict consistent across
the symbolic and hard3sat datasets, regardless of whether the input is textual or symbolic.

4.3 Prediction split by ground truth for each LLM

Figure |2|illustrates the distribution of LLM predictions for each ground truth class, separated by
model. Each subplot corresponds to a different LLM, and the bars show the percentage of outputs
assigned to each prediction category (consistent and inconsistent) for both ground truth labels.
A systematic bias to predict inputs as consistent is observed across the symbolic and hard3sat
datasets. Irrespective of the LLM or dataset, consistent is predicted far more frequently than
inconsistent. This bias, however, is not observed for the uniform dataset.

5 Related Work

Current empirical results in the literature indicate that LLMs and LRMs cannot consistently solve
all problems in the boolean satisfiability setting even for a restricted number of variables and
clauses |Hazra et al.|[2025]. However, by adding additional computation effort through thinking
tokens, reasoning models are able to solve many reasoning problems |Ballon et al.|[2025]. This can
work well in many cases if the task in the prompt is presented in a format that makes it easy to
identify the propositions and the structure of the clauses as seen in the results of existing work [Liu
et al.| [2025]], Ballon et al.| [2025]].

However, if the problem in the prompt is represented as natural language that is not easily translated
to propositions and clauses, then the performance may differ, especially if the vocabulary or structure
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of the language is very domain specific and unseen in a model’s training data. There is existing
work on dataset generation for this problem that can be seen as natural language translation of logic
problems [Wei et al.|[2025]], Morishita et al.| [2024], |Qi et al.| [2025]]. Such works adopt a similar
approach to ours in that the reasoning problems are first generated in a canonical form and then the
propositions or variables are replaced with text. However, the text in the problems generated is often
rigidly generated; inWei et al.|[2025] objects and properties are chosen or generated independently
and replace propositions without considering the entire text semantics, and thus text coherence can be
bad. The rigid structure of the text also makes it easy to translate back to a formal logic representation
to do reasoning or use a tool. This may not be the case in all text, and our work supports a more
general reasoning problem generator where the text is more coherent to a topic or theme and supports
more logical connectives. In|Q1 et al.| [2025] the problems generated only ask if a goal statement
is true, false, or uncertain. This is different from the tasks we generate, which requires a model to
reason if a set of statements is satisfiable or not; i.e., reasoning over the space of all possible truth
assignments. Their text grounding procedure is also more rigid, in that predicate phrases are limited
to a maximum of five words.

A different method described in|[Morishita et al.|[2024] generates a reasoning trace designed explicitly
to train LLMs to do reasoning, and some of the samples have (intentionally) wrong steps. The
procedure used to generate natural language text is syntactically well formed, but it does not include
semantics. In our work, we try to add semantic content from a particular domain. This would also
make the synthetic samples of a domain more realistic for evaluation. It can also help surface any
biases in reasoning on that domain as existing research has shown that LLMs can be biased toward
stating logical consistency for results that agree with their training data even if the argument was
incorrect and vice versa|Dasgupta et al.|[2022].

In our dataset generator, we can vary the number of propositions, number of clauses, and connectives
used in the clauses which are not variable in Morishita et al.|[2024]]. Some of our problem-generation
parameters are found in |[Wei et al.|[2025], albeit they are limited to Conjunctive Normal Form (CNF)
formulae. CNF is very restrictive in terms of the clause complexity and how expressive the natural
language can be. While any satisfiability task can be compiled into CNF, real natural language
problems can include conditional statements (implications) in the text, which are not used in|Wei
et al.| [2025]]. Our approach also enables easy generalization to other domains, and we evaluate the
semantic coherence (i.e. is the text meaningful or not) with LLM-as-a-judge to improve sample
quality.

6 Limitations and Conclusion

We introduced the LTGEN framework to generate custom SAT reasoning datasets by aligning
propositional logic with domain-specific language through a clause generation and text grounding
procedure. Datasets built with LTGEN can help evaluate the limits of various reasoning models
on domain specific content that they would be used for. Our experiments showed that LTGEN can
generate challenging SAT reasoning problems, and can uncover inherent biases; one such bias is a
tendency to favor satisfiability in complex UNSAT cases for models such as GPT-40 and 03-mini. In
future work on LTGEN, we plan to further improve the text generation process, and address dataset
imbalances, especially when the number of variables and clauses are large.

Disclaimer. This paper was prepared for informational purposes by the Artificial Intelligence
Research group of JPMorgan Chase & Co. and its affiliates (“JP Morgan”), and is not a product of the
Research Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.
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A.1 Abstract Clause Generation
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has the following input parameters:

* number of symbolic variables ny (with V' = {v1,va, ..., Uny })s
* the number of clauses per clause set, n¢,

* the desired number of unique clause sets N (the required size of the dataset, D),

* a generation mode (which can be either uniform or 3sat),
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* a maximum depth parameter (max_depth) that controls the complexity of the clause
structures, and,

* a target satisfiability status (target_sat_status) indicating whether the generated clause
sets should be SAT or UNSAT.

In the uniform mode, the algorithm first generates a collection of abstract clause structures by using a
procedure, GenerateClauseStructures. This is to increase the diversity of clause structures in the
datasets. GenerateClauseStructures generates clause structures with a placeholder ‘var’ where
variables can be positioned. These structures act as templates for the clauses. Next, LTGEN substitutes
the placeholder ‘var’s within the clause structures with symbolic variables from V' using the function
SubstituteVariables, thereby creating a unique set of well-formed formulae, clause_candidates.
LTGEN samples subsets of size n¢ from clause_candidates until N valid clause sets are collected to
form the set S. In each iteration, a candidate clause set C’ of size n¢ is selected and checked for
logical consistency. If C’ is consistent (inconsistent), target_sat_status is SAT (UNSAT) and
C" is not already part of the S, C” is added to S.

Alternatively, if the mode is set to 3sat, the algorithm doesn’t preconstruct the clause structures like in
uniformmode, since 3-CNF form has a fixed structure (e.g., (v1 V-2 Vuz)A(—v1 Vue V-ug)A....) It
directly generates clause sets in 3-CNF form using the Generate3SATInstance procedure with the
variable set V' and the number of clauses nc. As with the uniform mode, a candidate C’ undergoes
a consistency check, and if its satisfiability status aligns with the desired target_sat_status, itis
included in the dataset.

Once LTGEN has N valid clause sets, the algorithm outputs the collection & =
{C W, c® .. oW )}. This method offers a flexible and controlled approach for generating abstract
clause sets for our dataset.

Algorithm 1: Abstract Clause Generation

Input: ny, ng, O, N, mode, max_depth, target_sat_status

Output: A set of clause sets S = {CV}N |

V « {v1, 02, ..., Uny, } # a set of symbolic variables

S < () # Set of clause sets to include in the dataset, D

if mode = uniform then

clause_structures < GenerateClauseStructures(‘var’, max_depth, n¢, O)

clause_candidates < SubstituteVariables(V', clause_structures)

while |S| < N do

C’ < Subset of clause_candidates of size nc

if IsConsistent(C’) A (target_sat_status = SAT) A (C' ¢ S) then
S+ Suc’

else if (Not IsConsistent(C')) A (target_sat_status = UNSAT) A (C' ¢ S) then
L S« Suc’

else if mode = 3sat then

while |S| < N do

C" + Generate3SATInstance(V, nc)

if IsConsistent(C’) N (target_sat_status = SAT) A (C' ¢ S) then
S+ SsSuc’

else if (Not IsConsistent(C')) A (target_sat_status = UNSAT) A (C' ¢ S) then
| S«suc

return S

A.2 Text Grounding: Clause Set to Grounded Text

Our text grounding procedure, Algorithm 2] is aimed at converting a set of symbolic clauses into a
coherent natural language representation. LTGEN starts by mapping each symbolic variable v; in the
set V' to a grounded text using an LLM, M. The prompt depends on the reference text provided by
the user (R), and, the chosen grounding technique g, which may be one of ‘broadtopic’, ‘themes’, or
“fulltext’. In ‘broadtopic’, each variable is grounded using only a high level topic (e.g., a domain name
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or subject area), for example, ‘banking’. In ‘themes’, the grounding is based on a set of intermediate
themes or concepts extracted from the domain. Please see Appendix for some examples of
themes. Finally, in the ‘fulltext’ setting, an entire paragraph of reference text can be used directly to
guide the grounding. We used o03-mini as M in our experiments.

Upon receiving a valid response from M, the algorithm directly substitutes the symbolic variable
with the grounded text within the clause. This iterative replacement process continues for every
variable in V, and the updated text is provided as a part of the prompt for grounding the next variable.
Should M fail to produce a valid response for any variable, the procedure terminates, indicating
a failure in the grounding process. Once LTGEN has grounded all the variables in V' successfully,
LTGEN procedurally stitches them together, following a set of rules specific to the operators present
in the clause, as outlined in Algorithm@

Algorithm 2: Text Grounding : Clause Set to Grounded Text

Input: V: set of variables, C": set of clauses, R: reference text for grounding
M: language model # we use 03-mini
g: grounding technique # LTGEN supports broadtopic, themes, and, fulltext
Output: rext # text grounding of C'
text < str(C) # initialize with the string representation of the symbolic clauses
var_to_text < {} # dictionary mapping each variable to text
foreach v; € V do
prompt <— VARIABLE_TO_TEXT_GROUNDING_PROMPT + R + text (See section for a

full description of the prompt)

response < M (prompt)
if response # failure then

var_to_text|v;] < response
L text + Replace v; with var_to_text[v;]

else
L return failure

# Text Stitching: Generate coherent text using the individual variable groundings
text < Do_Text_Stitching(C, var_to_text, M)

return fext

One of the challenges we faced was duplicate assignment of text to the variables during the grounding
procedure. Some prompt tuning and grounding the variables one at a time solved the issue. We tried
to do the stitching step using LLMs, however, we faced some hallucination by the LLM. As a result,
we came up with a deterministic procedure to do the stitching, Algorithm [3} which works reasonably
well for clauses with nested depth up to 3.

Finally, Algorithm 4] outlines LTGEN’s pseudocode of dataset generation using Algorithms|[I]and 2]
as submodules.

10



Algorithm 3: Text Stitching: Clause Set to Coherent Grounded Text

Input: C: set of clauses

var_to_text: dictionary mapping variables to grounded text
M: language model # we use 03-mini

Output: rext # coherent text from C

1 # Main Routine: Do_Text_Stitching

2 text <— empty string

3 foreach clause € C do

4 stitched_text < Convert_Single_Clause_To_Text(clause, var_to_text, M)
5 L text < stitched_text + text

6 return fext

7 # Subroutine: Convert_Single_Clause_To_Text
8 Function Convert_Single_Clause_To_Text (clause, var_to_text, M):

9 if clause € var_to_text # clause is a single variable then

10 L return var_to_text|clause]

11 sub_text_list « []

12 foreach sub_clause € clause do

13 sub_text < Convert_Single_ Clause_To_Text(sub_clause, var_to_text, M)
14 sub_text_list.append(sub_text)

15 if is_and(clause) then

16 L return Connect_Sentences(sub_text_list, AND)

17 else if is_or(clause) then

18 L return Connect_Sentences(sub_text_list, OR)

19 else if is_not(clause) then

20 negation_prompt <— NEGATION_PROMPT + sub_text_list[0]
21 llm_response + M(negation_prompt)

22 if llm_response is a valid negation then

23 | return [lm_response

24 else

25 | return “Negation Failure"

26 else if is_implies(clause) then

27 L return Connect_Sentences(sub_text_list, IMPLIES)

28 # Subroutine: Connect_Sentences
29 Function Connect_Sentences (S, connector):

30 n < |S|

31 if n = 2 then

32 81,82%5[0],5[1]

33 if connector = AND then

34 L combined_sentence < "Both, s1, and, s5."
35 else if connector = OR then

36 L combined_sentence < "Either s, or, s5."
37 else if connector = IMPLIES then

38 L combined_sentence < "If sq, then, s5."

39 else if n = 3 then

40 51,52, 53 — 5[0}75[1]75[2]

41 if connector = AND then

42 L combined_sentence < "s1, So, and s3."

43 else if connector = OR then

44 L combined_sentence < "Either sq, or, s, or s3."
45 return combined_sentence

11



Algorithm 4: LTGEN (Generate Dataset D)

Input:

# For Clause Generation:

ny, ng, O, N

mode, mazx_depth, target_sat_status

# For Text Grounding:

‘R: reference text for grounding,

M: language model (e.g., 03-mini),

g: grounding technique (LTGEN supports broadtopic, themes, or fulltext)
Output: Dataset D = {(C), rext))} N |

1V« {v1,v,...,0,, } #a set of symbolic variables
2 S + AbstractClauseGeneration(ny,nc, O, N, mode, mazx_depth, target_sat_status)

3D+
4 foreach C' € S do

5 # Try up to K times to ground and validate, we used K = 5
6 accepted < false
7 for k < 1to K do
8 text + TextGrounding(V, C, R, M, g)
9 if text = failure then
10 | continue
11 # Score the grounded text with the model
12 explanation, s < M (COHERENCE_CHECK_PROMPT + C' + text) # See for the full
prompt
13 if s > threshold then
14 D+ DU{(C,text)}
15 accepted < true
16 break
17 return D

A.3 Prompts to the LLM

In this section, we present the prompts that LTGEN sends to the LLM clients for variable text
grounding, negating text, and evaluating coherence. We also present the prompt used for the
experimental evaluation of our datasets with GPT-40 and 03-mini.

VARIABLE_TO_TEXT_GROUNDING_PROMPT =

"Your task is to provide text assignments for variables following the
instructions below.

I will provide you with a list of variables and clauses, and reference
text.

Please assign simple statements/phrases derived from the text to each
variable such that:

- All the clauses should evaluate to true.
- The clauses conform to the information in the text.

Use the reference text as guidance to fill in the variable <var> with
simple, realistic phrases or sentences.

Given a set of clauses (connected with propositional logic operators: And,
Or and Not) ensure each clause remains consistent and meaningful when the
variables are replaced with your suggestions.

Variables should have different text assignments without overlap.

12



The text assignments should be atomic. Do not include logical connectors
like and, or, not in the text groundings.

- Clarity: Keep the text grounding as simple as possible, ensuring atomic
sentences or phrases.

- Consistent: Ensure the grounded text aligns with the overall theme and
is related to real-world contexts.

- Theme: The overall theme should be realistic.

Output the variable-to-text mapping as a JSON object with variable names
as key and its corresponding assigned text as value. "

if creating SAT data items: attach CONSISTENT_EXAMPLES to the prompt
else: attach INCONSISTENT_EXAMPLES to the prompt

CONSISTENT_EXAMPLES = (

NOT clause examples:

Suppose a clause is Not(vl) and the topic is driving.

One possible variable text assignment out of many for vl is "Sam can
drive."

The clause text grounding then becomes "Sam cannot drive."
Suppose a clause is Not(v2) and the topic is travelling.

One possible variable text assignment out of many for v2 is "Sam has
travelled the world."

The clause text grounding then becomes "Sam has not travelled the world."
AND clause examples:
Suppose a clause is And(vl, v2) and the topic is travelling.

One possible variable text assignment out of many for vl is "Sam has
visited Europe."

One possible variable text assignment out of many for v2 is "Sam has
visited Australia."

The clause text grounding then becomes: "Sam has visited Europe and Sam
has visited Australia."

Suppose a clause is And(v3, v4) and the topic is weather.

One possible variable text assignment out of many for v3 is "The weather
is sunny."

One possible variable text assignment out of many for v4 is "The beach is
beautiful on sunny days."

The clause text grounding then becomes: "The weather is sunny and the
beach is beautiful on sunny days."

OR clause examples:
Suppose a clause is Or(vl, v2) and the topic is driving.

One possible variable text assignment out of many for vl is "Sam can drive
a car."

One possible variable text assignment out of many for v2 is "Sam can drive
a bike."

The clause text grounding then becomes: "Sam can drive a car or Sam can
drive a bike."

13



Nested formulas:
Nested NOT and AND clause examples:
Suppose a clause is Not(And(vl, v2)) and the topic is driving.

One possible variable text assignment out of many for vl is "Sam
a car."

One possible variable text assignment out of many for v2 is "Sam
a bike."

can drive

can drive

The clause text grounding then becomes "Sam cannot drive a car or Sam

cannot drive a bike."

Nested AND and OR clause examples:

Suppose a clause is And(vl, Or(v2, v3)) and the topic is travelling.

One possible variable text assignment out of many for vl is "Sam
visited Europe."

One possible variable text assignment out of many for v2 is "Sam
visited Australia."

One possible variable text assignment out of many for v3 is "Sam
visited UK."

The clause text grounding then becomes: "Sam has visited Europe.

visited Australia or Sam has visited UK."
Nested OR and NOT clause examples:
Suppose a clause is Or(Not(vl), v2) and the topic is weather.

One possible variable text assignment out of many for vl is "The
is sunny."

One possible variable text assignment out of many for v2 is "The
open."

The clause text grounding then becomes "The weather is not sunny
beach is open."

)

INCONSISTENT_EXAMPLES = (

It is alright if the whole text is logically inconsistent here.
NOT clause examples:

Suppose clauses are vl AND Not(v1).

One possible variable text assignment out of many for vl is "Sam
drive."

has

has

has

Sam has

weather

beach is

or the

can

The clause text grounding then becomes "Sam can drive and Sam cannot

drive."
(But suppose another clause says "Sam cannot drive.")
Suppose a clause is Not(v2) AND And(vl, v2).

One possible variable text assignment out of many for vl is "Sam
drive."

One possible variable text assignment out of many for v2 is "Sam
travelled the world."

can

has

The clause text grounding then becomes "Sam has not travelled the world.

Sam can drive and Sam has travelled the world."

14



(But suppose another clause says "Sam has not travelled the world.")
AND clause examples:
Suppose a clause is And(vl, v2) AND And(Not(v1l), Not(v2)).

One possible variable text assignment out of many for vl is "Sam can
drive."

One possible variable text assignment out of many for v2 is "Sam has
travelled the world."

The clause text grounding then becomes: "Sam can drive and Sam has
travelled the world. Sam cannot drive and Sam has not travelled the
world."

Suppose a clause is And(v3, v4) AND And(Not(v3), v4).

One possible variable text assignment out of many for v3 is "The weather
is sunny."

One possible variable text assignment out of many for v4 is "The park is
open."

The clause text grounding then becomes: "The weather is sunny and The
park is open. The weather is not sunny and The park is open."

OR clause examples:
Suppose a clause is Or(vl, v2) AND And(vi, Not(v2)).

One possible variable text assignment out of many for vl is "Sam can
drive."

One possible variable text assignment out of many for v2 is "Sam has
travelled the world."

The clause text grounding then becomes "Sam can drive or Sam has travelled
the world. Sam cannot drive and Sam has not travelled the world."

(But suppose another clause says "Sam cannot drive and Sam has not
travelled the world.")

)
COHERENCE_CHECK_PROMPT :

"I want you to evaluate the following text in terms of coherence and
consistency. Is the text consistent and factually correct according to
the reference text? Please provide a score between 1 and 10 with your
explanation. Put the score inside <score> and </score>. The clauses
corresponding to the text are: " + str(C) + "The text is text"

NEGATION_PROMPT:

"Only provide the answer in plain English inside <negation> and
</negation>. What is the negation of the following text? The text is "
+ text

EXPERIMENTAL_EVALUATION_PROMPT:
"Is the following set of statements logically consistent or inconsistent?

Explain briefly and answer yes/no. Put your final
answer (consistent/inconsistent) inside <result> and </result>. Statements:
text

15



B Additional Experimental Results

Subsections and [B.3]study the change in accuracy by using different proxies for input complexity
such as number of variables, and length of input. Subsection [B.2]studies the stability of outputs
across several runs against an increase in number of variables, and 4.3 studies the performance of the
LLMs across the ground truth classes for both datasets.

B.1 Accuracy as a function of number of variables

Figure [3 shows the accuracy of each LLM as a function of the number of variables in the logical
consistency queries. Each line represents a different LLLM, and the x-axis indicates the number of
variables present in the problem instance. The plot reveals how model performance varies with
increasing problem complexity — where the number of variables can be used a proxy to represent
problem complexity. Higher accuracy at larger variable counts suggests better generalization to more
complex symbolic reasoning tasks.

We notice that across all the three datasets, there is a reduction in accuracy with an increase in the
number of variables. As a general trend, we notice that o3-mini performs better than GPT-4o0. This
can be attributed to 03-mini’s superior performance in reasoning tasks.

B.2 Homogeneity of LLM outputs vs num variables

Figure 4| presents the homogeneity of LLM outputs as a function of the number of variables in the
logical consistency queries. We define Homogeneity as follows:

Let S be the set of outputs produced by an LLM for a given query across multiple runs, and let v;
denote the i-th unique output value in S. The homogeneity H for a query is defined as the percentage
of outputs that correspond to the most frequently occurring value:

max,, (count(v;))

H =
|51

x 100

where count(v;) is the number of times value v; appears in S, and | S| is the total number of outputs
for the query. Higher values of H indicate greater consistency in the LLM’s responses across repeated
runs for the same query.

To analyze how output consistency varies with problem size, we compute the average homogeneity

H,, for each value of the number of variables n:

o= Y H(g)

|@nl 4€Qn

where (), is the set of queries with n variables, and H (¢) is the homogeneity for query ¢ as defined
above. This metric summarizes the typical output stability of an LLM for all queries of a given
number of variables, enabling direct comparison of models as logical complexity increases. Higher
H,, values indicate that the LLM produces more repeatable outputs for larger or more complex
queries.

We notice that for the symbolic dataset, the LLMs tend to produce homogenous outputs by and
large for most queries of a given number of variables. o3-mini in particular is more stable in its
homogeneity, and achieves mostly values between 90% to 100%. In the case of the hard3sat dataset,
we notice a difference in performance as o3-mini tends to maintain its average homogeneity, whereas
there is a clear degradation for GPT-4o. In the case of uniform however, there is a general reduction
in homogeneity for both models.

B.3 Input vs Output Length Analysis

Figure 5] visualizes the relationship between the length of the input (grounded text) and the output
(LLM response) for each experiment, with points colored by LLM. The horizontal axis represents
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Figure 4: Homogeneity as a function of number of variables

the number of characters in the input, while the vertical axis shows the number of characters in the
output. Each point corresponds to a single query-response pair.
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A linear trend in the scatterplot would indicate that the LLM output length scales proportionally with
input length, while a dispersed pattern suggests variable verbosity or reasoning style. This plot helps
to understand whether LLMs tend to over-generate or under-generate text as input size increases, and
whether their output style is consistent across experiments.
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We notice that in the case of the symbolic dataset, the output of both LLMs tend to fairly be within
5000 characters. This could be attributed to the queries being of non verbal nature. In the case of
hard3sat however, there is a steady linear increase in the outputs of GPT-40 until input length of
roughly 5000 characters, after which outputs are at most 4000 characters. o3-mini for this dataset
tends to produce outputs that are mostly under 5000 characters in length. In the uniform dataset
however, there is interesting behavior demonstrated by both models. There is a sharp increase in
output legnth for GPT-40, reaching lengths of up to 5000 for inputs up to 4000 characters in length,
after which output length falls off and remains contained between 1000 characters and 3000 characters.
In the case of 03-mini, this trend is even more pronounced, withh output lengths reaching up to 7000
characters for inputs up to 3000 characters, after which there is a dramatic reduction in output length,
being confined to within 3000 characters. These plots show the interesting behaviors exhibited by
both LLMs for different datasets.

B.4 Dataset Distribution

Tables 3] and [ shows the number of SAT and UNSAT problems in the hard3sat, uniform and
symbolic datasets. hard3sat and symbolic are generated with O = {A,V,—}, and uniform is
generated with O = {A, V, -, —}. Tables [3|shows the problem counts grouped by the number of
variables. Tables [4] shows the problem counts grouped by various clause intervals. As shown in
Table [5] both the grounded text length and the number of sentences generally increase with the
number of variables. Similarly, Table [6]demonstrates a consistent growth in text length and sentence
count as the number of clauses increase.

Table 3: SAT and UNSAT problem counts for different datasets over numbers of variables.

Number of Variables hard3sat uniform symbolic
SAT UNSAT | SAT TUNSAT | SAT UNSAT

3 5 5 5 5 5 5

4 4 5 5 5 5 5

5 5 5 5 5 5 5

6 3 5 5 5 5 5

7 3 5 5 5 5 5

8 4 5 5 5 5 5

9 3 5 5 4 5 5
10 0 5 5 5 5 5
11 2 5 4 5 5 5
12 1 5 5 5 5 5
13 2 5 3 4 5 5
14 2 5 4 5 5 5
15 3 5 5 5 5 5
16 3 5 4 5 5 5
17 1 5 4 5 5 5
18 2 5 3 4 5 5
19 0 5 4 5 5 5
Total 43 85 76 82 85 85

Table 4: SAT and UNSAT problem counts for different datasets over various clause intervals.

Number of Clauses hard3sat uniform symbolic
SAT UNSAT | SAT UNSAT | SAT UNSAT

1-10 13 0 63 5 13 0
11-20 14 10 13 10 25 10
21-30 7 15 0 14 22 15
31-40 8 10 0 12 17 10
41-50 1 10 0 7 7 10
51-60 0 15 0 20 1 15
61-70 0 10 0 7 0 10
71-92 0 15 0 7 0 15
Total 43 85 76 82 85 85
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Table 5: Mean (std dev) of grounded text lengths (in characters) and number of sentences for hard3sat

and uniform datasets over different numbers of variables.

Number of Variables hard3sat uniform

#Characters #Sentences #Characters #Sentences
3 1304.5 (466.5) 9.1 3.11) 268.2 (35.7) 3.0 (0.0)
4 1834.3 (641.2) 12.89 (4.91) 1488.9 (967.3) 9.9 (6.64)
5 2294.7 (805.4) 15.5(5.87) 1801.3 (1356.7) 11.0 (8.07)
6 2865.8 (1002.7) 19.88 (7.12) 2342.7 (1724.9) 13.6 (9.67)
7 3409.6 (1214.1)  23.62(7.46) 2810.3 (2184.3) 16.0 (12.1)
8 3843.1(1336.7)  25.89(9.83) 2912.4 (2193.0) 17.0 (12.54)
9 4314.1 (1137.4)  31.12 (9.49) 3456.1 (2904.4) 18.67 (14.87)
10 6198.0 (306.9) 42.0 (0.0) 5462.1 (3882.0) 23.8 (16.68)
11 5959.4 (1559.8) 40.14 (10.01) 5986.4 (4676.2) 26.78 (20.1)
12 6661.3 (1473.9) 47.0 (9.8) 7020.9 (5572.6) 29.1 (23.07)
13 6802.6 (1913.8) 46.71 (14.2) 7050.4 (4745.3)  31.14 (21.75)
14 7399.1 (1900.8)  51.57 (12.7) 8676.7 (6560.6)  36.56 (27.51)
15 7630.4 (2397.2)  51.5(1591) 7867.7 (5724.2) 32.3(23.44)
16 8281.9 (2652.6)  55.25 (18.09) | 10058.0 (7357.4) 40.33 (28.27)
17 9896.7 (2319.7)  66.17 (14.29) 9184.4 (6702.8)  38.11(26.97)
18 9885.4 (2886.4) 65.43 (18.14) | 11502.4 (8580.7) 45.71 (34.67)
19 11750.2 (831.2) 80.0 (0.0) 12344.6 (9099.6) 51.11 (36.87)

Table 6: Mean (std dev) of grounded text lengths (in characters) and number of sentences for the
hard3sat and uniform datasets over various clause intervals.

Number of Clauses hard3sat uniform

#Characters #Sentences #Characters #Sentences
1-10 1141.0 (237.9) 7.62 (1.5) 1203.0 (729.2) 5.96 (2.36)
11-20 2179.0 (512.0)  14.92 (3.06) 2678.9 (472.8) 14.04 (2.87)
21-30 3721.4 (496.8) 25.45(3.05) 4383.9 (668.5) 25.21 (2.81)
31-40 5113.5(373.9) 3572 (2.24) | 7474.1 (1360.7) 36.5 (3.15)
41-50 6479.6 (465.5)  43.82(2.09) 10764.4 (758.7) 44.0 (2.38)
51-60 7878.7 (650.3) 55.0 (3.38) 13627.3 (1420.0)  56.3 (3.11)
61-70 9738.5 (587.5) 65.5 (2.64) 16016.9 (1938.3) 65.71 (3.25)
71-92 11375.7(729.1)  76.0 (3.38) | 20353.4 (1778.9) 83.71 (6.85)

B.4.1 Themes Used for Text Grounding

We did the text grounding of the hard3sat dataset using the broad topic, “banking". We did the text
grounding of the uniform dataset using themes (LLM generated) related to banking, such as Banking
Technology, Customer Experience in Banking, Customer Services in Banking, Customer Support in
Banking, Digital and Mobile Banking, Financial Literacy, Financial Planning, Financial Planning
and Advisory, Financial Services, Investment Banking and Services, Investment Strategies, Loan and
Credit, Mobile Banking, Online Banking, Personal Finance, Savings and Investments, Savings and
Loans, etc.
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B.5 Correlation of accuracy with consistency

Table /| reports the Pearson correlation coefficient () and p-value between average LLM accuracy
and the percentage of consistent ground truth samples for each experiment and LLM, across input
groups defined by the number of clauses. n indicates how many such input groups were included in
each calculation, when grouped by the number of clauses.

Table 7: Correlation between LLM accuracy and the percentage of consistent inputs, grouped by
the number of clauses. n indicate the total number of input groups formed based on clause count. r
represents Pearson correlation, and p-value denotes statistical significance.

experiment | hard3sat hard3sat symbolic symbolic uniform wuniform

Ilm GPT-40 03-mini GPT-4o0 03-mini GPT-4o0 03-mini
r 0.76 0.88 0.93 0.89 -0.50 0.35
p-value <0.001 <0.001 <0.001 <0.001 <0.001 0.0086
n 41 41 46 46 56 56

For the symbolic and hard3sat datasets, both models exhibit strong positive correlations (r >
0.75), indicating that their accuracy increases when the ground truth contains more logically consistent
problems. This suggests a systematic bias: LLMs are more likely to correctly classify queries when the
majority class is consistent. On the uniform dataset, GPT-40 shows a moderate negative correlation,
while 03-mini shows a weak positive correlation, implying that the relationship between accuracy
and ground truth consistency is less straightforward for this dataset. The statistical significance
(p-values) confirms that these correlations are strong. Overall, these findings suggest that LLMs may
be less accurate when faced with inconsistent inputs. The plots in Section [f.3|further confirm this
bias, demonstrating the systematic tendency of LLMs to predict consistent across the symbolic
and hard3sat datasets. Given that symbolic is not textually grounded unlike hard3sat, this bias
is present irrespective of the input being textual or symbolic.
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