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Abstract

Virtual screening (VS) accelerates drug discov-
ery by identifying bioactive molecules from large
libraries. Recent deep learning methods treat
VS as a dense retrieval task, embedding protein
pockets and molecules into a shared space. How-
ever, these models rely on whole-molecule rep-
resentations, limiting their ability to capture fine-
grained, fragment-level interactions—despite the
fragment-centric nature of the growing impor-
tance of fragment-based drug discovery (FBDD).
We introduce FragCLIP, a fragment-centric, two-
stage retrieval framework with multi-granular con-
trastive learning. Stage one learns to jointly
embed protein pockets, molecules, and frag-
ments, guided by non-covalent interaction (NCI)
supervision. Stage two fuses molecule- and
fragment-level embeddings into a unified repre-
sentation. This design enables accurate alignment
of interaction-relevant fragments with compatible
pockets while preserving efficiency. FragCLIP
boosts early enrichment (EF1) on DUD-E from
31.89 to 37.23 and outperforms docking and deep
learning baselines on a new fragment-level bench-
mark FragBench. FragCLIP bridges molecular
and substructure-level reasoning, offering a prac-
tical foundation for structure-based virtual screen-
ing in realistic FBDD workflows.
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1. Introduction
Structure-based virtual screening (SBVS)(Maia et al., 2020;
Lyu et al., 2019) has become a cornerstone of modern drug
discovery, enabling the identification of bioactive molecules
from large chemical libraries by modeling their interactions
with protein targets. Recent progress in deep learning has
reframed this task as a retrieval problem: dual-encoder mod-
els independently embed molecules and protein pockets
into a shared latent space and compute binding relevance
via similarity. This design, exemplified by models such as
DrugCLIP (Gao et al., 2023), supports large-scale screening
with impressive scalability and speed.

Despite their efficiency, current dual-encoder methods use
coarse, whole-molecule representations that overlook fine-
grained binding interactions. This is a critical gap, given the
fragment-centric nature of real-world chemical libraries like
Enamine REAL (Shivanyuk et al., 2007) and the central role
of fragment-based drug discovery (FBDD) in early-stage
medicinal chemistry (Jinsong et al., 2024).

To address this modeling bottleneck, we propose a fragment-
centric and interaction-aware framework, FragCLIP, that
bridges global molecular representation with localized
fragment-level reasoning, as shown in Figure 1. Our ap-
proach introduces a multi-encoder architecture that jointly
embeds protein pockets, full molecules, and chemically
meaningful molecular fragments. Through hierarchical con-
trastive learning, the model captures structural signals across
granularities, aligning both molecules and fragments with
protein pockets in a unified representation space.

We train FragCLIP with interaction-aware fragment super-
vision derived from non-covalent interactions (NCIs) identi-
fied by PLIP (Salentin et al., 2015), enabling the model to
distinguish binding-relevant fragments from non-interacting
decoys. A fusion module then integrates molecule- and
fragment-level embeddings into a unified retrieval represen-
tation. This two-stage setup preserves dual-encoder effi-
ciency while capturing fine-grained structural detail.

FragCLIP is evaluated on standard molecule-level bench-
marks and a new fragment-level virtual screening (F-VS)
benchmark built from DUD-E with NCI-based labels. It
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outperforms both docking and retrieval-based baselines,
and uniquely enables direct retrieval from fragment li-
braries—bridging predictive screening with fragment-based
design and generation.

2. Related Works
Structure-based virtual screening (SBVS) identifies bioac-
tive molecules by modeling interactions between protein
pockets and ligands. While traditional methods rely on
docking (Trott & Olson, 2010), recent deep learning mod-
els (Zhou et al., 2023) improve generalization using graph
and 3D encoders. Retrieval-based methods like Drug-
CLIP (Gao et al., 2023) and UniMol scale well via con-
trastive learning but focus only on whole molecules.

In contrast, fragment-based drug discovery (FBDD) targets
small functional substructures (Bon et al., 2022; Hajduk &
Greer, 2007), yet fragment-level screening remains largely
unexplored. We address this gap by integrating fragment
representations into a contrastive retrieval framework and
introducing new fragment-level screening tasks with both
weak and strong interaction supervision.

3. Method
3.1. Preliminary

In structure-based virtual screening, the goal is to iden-
tify molecules that bind to a target pocket. Let P , M,
and F denote the spaces of protein pockets, molecules,
and fragments, respectively. Traditional deep learning ap-
proaches model this as a binary classification task over pairs
(p,m) ∈ P × M, predicting binding likelihood. Recent
methods reframe this as a dense retrieval problem using a
dual-encoder architecture with embedding functions fp(p)
and fm(m) for protein pockets and molecules, respectively.
These functions map inputs into a shared latent space, where
similarity (e.g., cosine similarity) supports efficient large-
scale screening.

We extend this framework by introducing fragments as a
third modality. Each fragment f ∈ Fm ⊂ F is a substruc-
ture of molecule m, and is encoded by a fragment encoder
ff (f). Our model operates on triplets (p,m,Fm), embed-
ding all three modalities—pockets, molecules, and frag-
ments—into a unified space. This design enables fragment-
level supervision, two-stage retrieval, and supports down-
stream fragment-based drug design workflows.

3.2. Fragment Segmentation and Importance Labeling

To support fragment-level learning and retrieval, we decom-
pose molecules into chemically meaningful substructures
using the BRICS algorithm (Degen et al., 2008), gener-
ating synthetically accessible and interpretable fragments.

We exhaustively extract all BRICS-based substructures and
retain those with 8–24 heavy atoms, consistent with typi-
cal fragment library sizes like Enamine REAL. To reduce
redundancy and promote diversity, we cluster fragments
based on fingerprint similarity. This curated fragment set
underpins our multi-resolution alignment of protein pockets,
molecules, and their substructures.

We assign fragment-level binding relevance using
PLIP (Salentin et al., 2015), a rule-based tool that detects
non-covalent interactions (NCIs) in protein–ligand com-
plexes. Applied to all training structures (Wang et al., 2005),
PLIP provides atomic-level interaction annotations. A frag-
ment is labeled as positive if any of its atoms participate
in an interaction; otherwise, it is negative. This supervi-
sion enables the model to distinguish functionally relevant
fragments from inactive ones.

3.3. Multi-Granularity Alignment Learning

We aim to learn a structured embedding space that captures
both global molecular semantics and local fragment-level
binding signals for accurate protein–ligand alignment. To
achieve this, we use a multi-encoder architecture with a
protein encoder fp, a molecule encoder fm, and a fragment
encoder ff , trained jointly via contrastive objectives.

The protein encoder maps 3D pockets into a latent space,
while fm and ff operate on molecular graphs. We decouple
their optimization: fm captures scaffold-level features, and
ff focuses on interaction-relevant substructures.

Training is guided by three contrastive losses:

Lp-m = − 1

N

N∑
i=1

log
exp(sim(fp(pi), fm(mi))/τ)∑N
j=1 exp(sim(fp(pi), fm(mj))/τ)

(1)

Lp-f = − 1

N

N∑
i=1

log
exp(sim(fp(pi), ff (fi))/τ)∑N
j=1 exp(sim(fp(pi), ff (fj))/τ)

(2)

Lm-f = − 1

N

N∑
i=1

log
exp(sim(fm(mi), ff (fi))/τ)∑N
j=1 exp(sim(fm(mi), ff (fj))/τ)

(3)

These losses jointly align full molecules and key fragments
with the same pocket while preserving intra-ligand coher-
ence. The total objective is:

Lalign = Lp-m + λ1Lp-f + λ2Lm-f. (4)

3.4. Multi-Granular Fusion for Fragment-Aware
Retrieval

To unify molecule- and fragment-level signals for retrieval,
we introduce a learnable fusion module ffusion that generates
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Figure 1. The framework of FragCLIP consists of two main stages: Multi-Granularity Alignment Learning and Information Fusion
Learning. During virtual screening, FragCLIP supports both molecule-level and fragment-level screening.

a pocket-aware embedding by aggregating global and local
chemical information. In this second training stage, the
encoders are frozen, and only the fusion module is trained.

Given a full-molecule embedding fm(m) and a set of its as-
sociated fragment embeddings {ff (fi)}ki=1, the fusion mod-
ule performs a cross-attention operation where the molecule
embedding acts as the query and the fragment embeddings
serve as keys and values. The attention output is concate-
nated with the original molecule embedding and passed
through a multilayer perceptron (MLP) to yield the final
fused representation:

zfusion = MLP
(
fm(m) ∥Attn(fm(m), {ff (fi)}ki=1)

)
,
(5)

This design allows the model to adaptively attend to
fragment-level substructures conditioned on the molecule
context, highlighting those most relevant to potential bind-
ing interactions.

The fused representation is trained to align with the corre-
sponding pocket embedding via a contrastive loss:

Lfusion = − 1

N

N∑
i=1

log
exp(sim(fp(pi), zfusion,i)/τ)∑N
j=1 exp(sim(fp(pi), zfusion,j)/τ)

.

(6)

This objective encourages the fused embedding to reflect
both molecule-level semantics and fragment-level interac-
tion cues.

Ensemble for fragment-aware retrieval To integrate in-
formation across molecular granularities, we adopt a score-
level ensemble strategy. The ligand score is computed as the

cosine similarity between molecule and pocket embeddings.
For the fragment score, each molecule is decomposed into
BRICS fragments; we compute pocket similarity for each,
and average the top-3 maxima to emphasize key substruc-
tures.

The fusion score is obtained by passing the molecule and its
fragments through a cross-attention-based fusion module,
producing a fused embedding compared to the pocket via
cosine similarity.

The final retrieval score combines all three:

score = ligand score+α·frag score+β ·fusion score, (7)

with α = β = 0.8 tuned on validation. This ensemble
boosts accuracy by combining scaffold-, fragment-, and
fusion-level signals.

3.5. FragBench: Fragment Retrieval Benchmark
Creation

To evaluate fragment-level retrieval under realistic condi-
tions, we build FragBench from the DUD-E (Mysinger
et al., 2012) dataset. Since DUD-E lacks protein–ligand
complex structures, we generate docking poses using
Schrödinger GLIDE. Ligands are fragmented via BRICS,
and non-covalent interactions (NCIs) are extracted to label
fragments. A fragment is labeled as positive if it comes from
an active molecule and includes at least one atom involved
in direct interaction; negatives are sampled from decoys.

To reduce redundancy, we cluster fragments by fingerprint
similarity and keep up to two per cluster. The dataset is
balanced to match the DUD-E active-to-decoy ratio (1:12.7),
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resulting in 19,825 positives and 1,301,610 negatives. This
benchmark offers a diverse, interaction-aware testbed for
fragment-level retrieval evaluation.

4. Experiments
4.1. Experiment Settings

4.1.1. TASKS

We evaluate our method on two tasks: molecule-level vir-
tual screening (M-VS) and fragment-level virtual screen-
ing (F-VS). For M-VS, we follow the standard active/decoy
splits from established benchmarks. For F-VS, we use the
FragBench dataset introduced in Section 3.5.

4.1.2. BASELINE MODELS

We compare FragCLIP with several representative virtual
screening methods. For both molecule-level and fragment-
level virtual screening, we benchmark against classical dock-
ing algorithms such as AutoDock (Trott & Olson, 2010)
Vina and Schrödinger’s Glide (Halgren et al., 2004) , as well
as representative deep learning-based approaches, including
(Durrant & McCammon, 2011; Ballester & Mitchell, 2010;
Stepniewska-Dziubinska et al., 2018; Liangzhen Zheng &
Mu, 2019; Zhang et al., 2023; Gao et al., 2023).

4.1.3. METRICS

We evaluate model performance using standard virtual
screening metrics (Gao et al., 2023): AUC, enrichment
factor (EF), and BEDROC, which emphasizes early recogni-
tion. For F-VS, metrics are computed by ranking fragments;
for M-VS, by ranking full molecules.

4.2. Molecule Level Retrieval

On the molecule-level DUD-E (Mysinger et al., 2012)
benchmark, FragCLIP consistently eclipses both traditional
docking and leading learning-based methods, as shown in
Table 1. Compared with the baseline DrugCLIP, FragCLIP
boosts BEDROC (early recognition) from 50.52 → 59.32,
meaning more true actives are recovered at the top of the
ranked list. Notably, the fragment-only variant (“FragCLIP
w/o fusion”) already outperforms every baseline, and the
multi-granular fusion module contributes an additional 6
BEDROC points. These gains demonstrate that combining
global molecular context with fragment-level cues yields
a markedly richer representation while preserving dual-
encoder efficiency.

4.3. Fragment Level Retrieval

On FragBench, the fragment-level virtual-screening bench-
mark, FragCLIP markedly surpasses both classical docking

Table 1. Molecule-level virtual screening performance on the
DUD-E dataset. Metrics are averaged across targets.

Method AUC ↑ BEDROC ↑ EF ↑

0.5% 1% 5%

Glide-SP 76.70 40.70 19.39 16.18 7.23
Vina 71.60 – 9.13 7.32 4.44

NN-score 68.30 12.20 4.16 4.02 3.12
RFscore 65.21 12.41 4.90 4.52 2.98
Pafnucy 63.11 16.50 4.24 3.86 3.76
OnionNet 59.71 8.62 2.84 2.84 2.20
Planet 71.60 – 10.23 8.83 5.40
DrugCLIP 80.93 50.52 38.07 31.89 10.66

FragCLIP
(w/o Fusion) 84.76 53.61 40.64 33.56 11.39

FragCLIP 85.44 59.32 42.93 37.23 12.45

protocols and DrugCLIP baselines. It yields higher overall
discrimination and substantially stronger early-enrichment.
These improvements empirically validate the benefit of ex-
plicitly encoding fragment-level interaction cues and estab-
lish FragCLIP as a robust screening framework for fragment-
based drug-discovery workflows.

Table 2. Fragment-level virtual screening performance on the Frag-
Bench dataset. Metrics are averaged across targets.

Method AUC ↑ BEDROC ↑ EF ↑

0.5% 1% 5%

Vina 0.54 0.06 4.39 3.55 2.16
Glide 0.59 0.10 10.22 7.16 3.11
DrugCLIP 0.61 0.18 16.50 11.23 4.04
FragCLIP 0.74 0.30 26.36 19.07 7.05

5. Limitations and Future Works
While FragCLIP is evaluated standalone, real-world FBDD
demands integration with fragment growing, generative de-
sign, and iterative feedback—embedding FragCLIP into
such closed-loop pipelines is a key direction ahead.

6. Conclusion
FragCLIP introduces a fragment-centric framework for
structure-based virtual screening, jointly embedding pro-
tein pockets, full molecules, and chemically meaningful
fragments. By incorporating a learnable fusion module, it
achieves strong early-stage enrichment at both molecule
and fragment levels while retaining the efficiency of dual
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encoders. Crucially, FragCLIP enables direct fragment re-
trieval, bridging predictive screening with fragment-based
drug design and paving the way for more integrated, fine-
grained discovery workflows.
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