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Abstract— This work introduces the Multimodal Diffusion
Transformer (MDT), a novel diffusion policy framework, that
excels at learning versatile behavior from multimodal goal
specifications with few language annotations. MDT leverages
a diffusion based multimodal transformer backbone and two
self-supervised auxiliary objectives to master long-horizon ma-
nipulation tasks based on multimodal goals. The vast majority
of imitation learning methods only learn from individual
goal modalities, e.g. either language or goal images. However,
existing large-scale imitation learning datasets are only partially
labeled with language annotations, which prohibits current
methods from learning language conditioned behavior from
these datasets. MDT addresses this challenge by introducing
a latent goal-conditioned state representation, that is simul-
taneously trained on multimodal goal instructions. This state
representation aligns image and language based goal embed-
dings and encodes sufficient information to predict future states.
The representation is trained via two self-supervised auxiliary
objectives that enhance the performance of the presented
transformer backbone. MDT shows exceptional performance on
164 tasks provided by the challenging CALVIN and LIBERO
benchmarks, including a LIBERO version that contains less
than 2% language annotations. Further, MDT establishes a new
record on the CALVIN manipulation challenge, demonstrating
an absolute performance improvement of 15% over prior state-
of-the-art methods, that require large-scale pretraining and
contain 10× more learnable parameters. MDT demonstrated
its ability to solve long-horizon manipulation from sparsely
annotated data in both simulated and real-world environments.

I. INTRODUCTION

Future robot agents need the ability to exhibit desired
behavior according to intuitive instructions, similar to how
humans interpret language or visual cues to understand tasks.
Current methods, however, often limit agents to process
either language instructions [1], [2], [3] or visual goals [4],
[5]. This restriction limits the scope of training to fully-
labeled datasets, which is not scalable for creating versatile
robotic agents.

Natural language commands offer the biggest flexibility to
instruct robots, as it is an intuitive form of communication
for humans and it has become the most popular conditioning
method for robots in recent years [1], [3], [6]. However,
training robots based on language instructions remains a
significant challenge. Multi-Task Imitation Learning (MTIL)
has emerged as a promising approach, teaching robot agents
a wide range of skills via learning from diverse human
demonstrations [7], [8]. Unfortunately, MTIL capitalizes on
large, fully annotated datasets. Collecting real human demon-
strations is notably time-consuming and labor-intensive.
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One way to circumvent these challenges is Learning from
Play (LfP) [9], [10], which capitalizes on large uncurated
datasets. LfP allows for the fast collection of diverse demon-
strations since it does not depend on scene staging, task seg-
mentation, or resetting experiments [9]. Since these datasets
are collected in such an uncurated way, they usually contain
very few language annotations. However, most current MTIL
methods require language annotations for their entire training
set, leaving these methods with too few demonstrations to
train effective policies. In contrast, future MTIL methods
should be able to efficiently utilize the potential of diverse,
cross-embodiment datasets like Open-RT [11], with sparse
language annotations. This work introduces a novel approach
that efficiently learns from multimodal goals, and hence effi-
ciently leverages datasets with sparse language annotations.

Recently, Diffusion Generative Models have emerged as
an effective policy representation for robot learning [12],
[5]. Diffusion Policies can learn expressive, versatile behav-
ior conditioned on language-goals [13], [14]. Yet, none of
the current methods adequately addresses the challenge of
learning from multimodal goal specifications.

This work introduces a novel diffusion-based approach
capable of learning versatile behavior from different goal
modalities, such as language and images, simultaneously.
The approach learns efficiently even if it is trained on
data with few language-annotated demonstrations. The per-
formance is further improved by introducing a simple,
yet highly effective self-supervised loss, Masked Gener-
ative Foresight (MGF). This loss encourages policies to
learn latent features, that encode sufficient information to
reconstruct partially-masked future frames conditioned on
multimodal goals. Hence, MGF leverages the insight that
policies benefit from an informative latent space, which
maps goals to desired future states independent of their
modality. Detailed experiments and ablations show that this
additional loss significantly enhances the performance of
current state-of-the-art transformer and diffusion policies,
with minimal computational overhead. The introduced Multi-
modal Diffusion Transformer (MDT) approach combines the
strengths of multimodal transformers with MGF and latent
token alignment. MDT learns versatile behavior capable of
following instructions provided as language or image goals.
MDT sets new standards on the CALVIN challenge [10], a
popular benchmark for language-guided learning from play
data comprised of human demonstrations with few language
annotations. In addition, MDT performs exceptionally on the
LIBERO benchmark that consists of 5 task suites featuring
130 different tasks in several environments. To show the



efficiency of MDT, the tasks are modified such that only
2% of the demonstrations contain language labels. The
results show that MDT is even competitive to state-of-the-
art methods, that are trained on the fully annotated dataset.
Through a series of experiments and ablations, the efficiency
of the method and the strategic design choices are thoroughly
evaluated.

II. METHOD

MDT is a diffusion-based transformer encoder-decoder ar-
chitecture that simultaneously leverages two self-supervised
auxiliary objectives. Namely Contrastive Latent Alignment
and Masked Generalized Foresight. First, the problem defini-
tion is provided. Next, the continuous-time diffusion formu-
lation, essential for understanding action sequence learning
from play, is discussed. Followed by an overview of the
proposed transformer architecture of MDT. Afterward, the
novel self-supervised Masked Generative Foresight objective
and latent token alignment are introduced.

A. Problem Formulation

The goal-conditioned policy πθ(āi|si, g) predicts a se-
quence of actions āi = (ai, . . . ,ai+k−1) of length k,
conditioned on both the current state embedding si and a
latent goal g. The latent goal g ∈ {o, l} encapsulates either
a goal-image o or an encoded free-form language instruction
l. MDT learns such policies from a set of task-agnostic play
trajectories T . Each individual trajectory τ ∈ T represents
a series of tuples τ = ((s1,a1), . . . , (sTn

,aTn
)), with

observation si, action ai. The final play dataset is defined as
D = {(si, āi)|āi = (ai, . . . ,ai+k−1), (si,ai) ∈ τ, τ ∈ T }.
During training, a set of goals is created for each datapoint
Gsi,āi

= {oi, li}, where li is the language annotation for
the state si if it exists in the dataset. The goal image
oi = si+j is a future state where the offset j is sampled
from the geometric distribution with bounds j ∈ [20, 50] and
probability 0.1. MDT maximizes the log-likelihood across
the play dataset,

Lplay = E

 ∑
(si,āi)∈D

∑
g∈Gsi,āi

log πθ (āi|si, g)

 . (1)

Human behavior is diverse and there commonly exist mul-
tiple trajectories converging towards an identical goal. The
policy must be able to encode such versatile behavior [15]
to learn effectively from play.

B. Score-based Diffusion Policy

In this section, the language-guided Diffusion Policy
for Learning Long-Horizon Manipulation from Play with
limited language annotation is introduced. MDT leverages
a continuous time diffusion model [16], [17]. Diffusion
models are generative models that learn to generate new data
from random Gaussian noise through an iterative denoising
process. The models are trained to subtract artificially added
noise with various noise levels. Both the procedures of
adding and subtracting noise can be described as continuous

time processes stochastic-differential equations (SDEs) [17].
MDT leverages the SDE formulation from [16]

āi =
(
βtσt − σ̇t

)
σt∇a log pt(āi|si, g)dt+

√
2βtσtdωt,

(2)

commonly used in image generation [16], [18]. The score-
function ∇āi

log pt(āi|si, g) is parameterized by the con-
tinuous diffusion variable t ∈ [0, T ], with constant horizon
T > 0. This formulation reduces the stochasticity to the
Wiener process ωt, which can be interpreted as infinitesimal
Gaussian noise that is added to the action sample. The
noise scheduler σt defines the rate of added Gaussian noise
depending on the current time t of the diffusion process.
Following best practices [16], [5], [18], MDT uses σt =
t for the policy. The range of noise perturbations is set
to σt ∈ [0.001, 80] and the action range is rescaled to
[−1, 1]. The function βt describes the replacement of existing
noise through injected new noise [16]. This SDE is notable
for having an associated ordinary differential equation, the
Probability Flow ODE [17]. When action chunks of this ODE
are sampled at time t of the diffusion process, they align with
the distribution pt(āi|si, g),

āi = −t∇āi log pt(āi|si, g)t. (3)

The diffusion model learns to approximate the score
function ∇āi log pt(āi|si, g) via Score matching (SM) [19]

LSM = Eσ,āi,ϵ

[
α(σt)∥Dθ(āi + ϵ, si, g, σt)− āi∥22

]
, (4)

where Dθ(āi + ϵ, si, g, σt) is the trainable neural network.
During training, noise levels from a noise distribution pnoise
are sampled randomly and added to the action sequence
and the model predicts the denoised action sequence. To
generate actions during a rollout, the learned score-model
is inserted into the reverse SDE and the model iteratively
denoises the next sequence of actions. By setting βt = 0,
the model recovers the deterministic inverse process that
allows for fast sampling in a few denoising steps without
injecting additional noise into the inverse process [17]. For
the experiments, MDT uses the DDIM sampler [17] to
diffuse an action sequence in 10 denoising steps.

C. Model Architecture

MDT uses a multimodal transformer encoder-decoder ar-
chitecture to approximate the conditional score function of
the action sequence. The encoder first processes the tokens
from the current image observations and desired multimodal
goals, converting these inputs into a series of latent repre-
sentation tokens. The decoder functions as a diffuser that
denoises a sequence of future actions. An overview of the
architecture is given in Figure 3 of the Appendix.

First, MDT encodes image observations of the current state
from multiple views with image encodings. This work intro-
duces two encoder versions of MDT: MDT-V, a variant with
the frozen Voltron embeddings and MDT, the default model
with ResNets. The MDT-V encoder leverages a Perceiver-
Resampler to improve computational efficiency [20]. Each
image is embedded into 196 latent tokens by Voltron. The
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Fig. 1: The Masked Generative Foresight Auxiliary Task
enhances the MDT model. It starts by encoding the current
observation and goal using the MDT Encoder. The resulting
latent state representations then serve as conditional inputs
for the Future Image-Decoder. This decoder receives encoded
patches of future camera images along with mask tokens. Its
task is to reconstruct the occluded patches in future frames.

Perceiver module uses multiple transformer blocks with cross
attention to compress these Voltron tokens into a total of
3 latent tokens. This procedure results in a highly efficient
feature extractor that capitalizes on pretrained Voltron em-
beddings. The MDT encoder uses a trainable ResNet-18 with
spatial softmax pooling and group norm [12] for each camera
view. Each ResNet returns a single observation token for
every image. Both MDT encoder versions embed goal im-
ages and language annotations via frozen CLIP models [21]
per goal-modality into a single token. After the computation
of the embeddings, both MDT encoders apply the same
architecture comprised of several self-attention transformer
layers, resulting in a set of informative latent representation
tokens.

The MDT diffusion decoder denoises the action sequence
with causal masking. Cross-attention in every decoder layer
fuses the conditioning information from the encoder into the
denoising process. The current noise level σt is embedded
using a Sinusoidal Embedding with an additional MLP into
a latent noise token. MDT applies AdaLN-conditioning to
the Transformer Decoder blocks to condition the denoising
process to the current noise level [22]. This process is
illustrated in the right part of Figure 3, encapsulating all
internal update steps. The proposed framework separates rep-
resentation learning from denoising, which results in a more
computationally efficient model since the model only needs
to encode the latent representation tokens once. Further,
the experiments demonstrate that the proposed denoising
model achieves higher performance than prior Diffusion-
Transformer architectures [12].

D. Masked Generative Foresight

A key insight of this work is that policies require an
informative latent space to understand how desired goals will
change the robot’s behavior in the near future. Consequently,
policies that are able to follow multimodal goals have to

map different goal modalities to the same desired behaviors.
Whether a goal is defined through language or represented
as an image, the intermediate changes in the environment are
identical across these goal modalities.

The proposed Masked Generative Foresight, an additional
self-supervised auxiliary objective, builds upon this insight.
Given the latent embedding of the MDT(-V) encoder for state
si and goal g, MGF trains a Vision Transformer (ViT) to
reconstruct a sequence of 2D image patches (u1, . . . ,uU ) =
patch(si+v) of the future state si+v , with v = 3 being the
foresight distance used across all experiments in this work. A
random subset of U of these patches is replaced by a mask-
token. Even though the ViT now receives both masked and
non-masked patches only the reconstruction of the masked
patches contributes to the loss

LMGF (si) =
1

U

∑
u∈patch(si+v)

1m(u) (u − û)2 , (5)

where the indicator function 1mk(u) is 1 if u is masked and
0 otherwise.

MGF is conceptually simple and can be universally ap-
plied to all transformer policies. Various experiments in this
work show that this auxiliary loss not only improves the
behavior of MDT but also notably increases the performance
of the Multi-Task Action Chunking Transformer (MT-ACT)
policy [23].

E. Contrastive Alignment of Latent Goal-Conditioned Rep-
resentations

To effectively learn policies from multimodal goal speci-
fications, MDT must align visual goals with their language
counterparts. A common approach to retrieve aligned embed-
dings between image and language inputs is the pre-trained
CLIP model, which has been trained on paired image and text
samples from a substantial internet dataset [21]. However,
CLIP exhibits a tendency towards static images and struggles
to interpret spatial relationships and dynamics as highlighted
in various studies [24], [25], [26]. The limitations, lead to
an insufficient alignment in MTIL since goal specifications
in robotics are inherently linked to the dynamics between
the current state si and the desired goal g. Instead of
naively fine-tuning the 300 million parameter large CLIP
model, MDT introduces an additional auxiliary objective
that aligns the MDT(-V) embeddings across different goal
modalities. These embeddings do not only include the goal
but also the current state information, which allows the
Contrastive Latent Alignment (CLA) objective to consider
the task dynamics.

Since CLA requires a single vector for each goal modality,
the various MDT latent tokens are reduced via Multihead
Attention Pooling [27] and subsequently normalized. Hence,
every training sample (si, āi) that is paired with a multi-
modal goals specification Gsi,āi = {oi, li} is reduced to the
vectors zo

i and zl
i for images and language goals respectively.

CLA computes the InfoNCE loss using the cosine similarity



Train→Test Method No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. Len.

ABCD→D

HULC 88.9% 73.3% 58.7% 47.5% 38.3% 3.06±(0.07)
Distill-D 86.3% 72.7% 60.1% 51.2% 41.7% 3.16±(0.06)
MT-ACT 87.1% 69.8% 53.4% 40.0% 29.3% 2.80±(0.03)
RoboFlamingo 96.4% 89.6% 82.4% 74.0% 66.0% 4.09±(0.00)
MDT (ours) 97.5% 92.4% 87.1% 81.4% 74.8% 4.33±(0.08)
MDT-V (ours) 98.8% 95.9% 91.2% 86.1% 79.4% 4.51±(0.02)

TABLE I: Performance comparison of various policies learned end-to-end on the CALVIN ABCD→D benchmark. We show
the average rollout length to solve 5 instructions in a row (Avg. Len.) of 1000 chains. Our proposed method MDT and
MDT-V significantly outperform all reported baselines averaged over 3 seeds on both datasets and sets a sota performance.

C
(
zo
i , z

l
i

)
between the image and language projection

LCLA =− 1

2B

B∑
i=1

log

 exp

(
C(zo

i,z
l
i)

υ

)
∑B

j=1 exp

(
C(zo

i,z
l
j)

υ

)


+ log

 exp

(
C(zo

i,z
l
i)

υ

)
∑B

j=1 exp

(
C(zo

j ,z
l
i)

υ

)

 , (6)

with temperature parameter υ and batch size B. The full
MDT loss combines the Score Matching loss, from Eq. (4),
the MGF loss from Eq. (5) and the CLA loss from Eq. (6)

LMDT = LSM + αLMGF + βLCLIP, (7)

where α = 0.1 and β = 0.1 in most experiment settings.

III. EVALUATION

This section aims to answer the following questions:
• (I) Is MDT able to learn long-horizon manipulation

from play data with few language annotations?
• (IIa) Do Masked Generative Foresight and Contrastive

Latent Alignment enhance the performance of MDT?
• (IIb) Does MGF improve the performance of other

transformer policies?

A. Simulated Benchmark Environments

We conduct multiple simulation experiments on two pop-
ular and challenging robot learning benchmarks:

CALVIN. The CALVIN challenge [10] consists of four
similar but different environments A, B, C, D. The four
setups vary in desk shades and the layout of items as
visualized in Figure 4. The main experiments for this bench-
mark are conducted on the full dataset ABCD→D, where
the policies are trained on ABCD and evaluated on D.
This setting contains 24 hours of uncurated teleoperated
play data with multiple sensor modalities and 34 different
tasks for the model to learn. Further, only 1% of data
is annotated with language descriptions. All methods are
evaluated on the long-horizon benchmark, which consists of
1000 unique sequences of instruction chains, described in

natural language. During the rollouts, the agent gets a reward
of 1 for completing the instruction with a maximum of 5
for every rollout. We compare our proposed policy against
the several state-of-the-art language-conditioned multi-task
policies on CALVIN. For policies, that report results on
CALVIN, we use their reported performance to guarantee a
fair comparison. A detailed list of all baselines is described
in Section D of the Appendix.

B. Evaluation Results

The results of our experiments on CALVIN are summa-
rized in Table I and Table VIII. We assess the performance
of MDT and MDT-V on ABCD→D and on the small subset
D→D. The results are shown in Table I. MDT-V sets a
new record in the CALVIN challenge, extending the average
rollout length to 4.51 which is a 10% absolute improvement
over RoboFlamingo. MDT also surpasses all other tested
methods. Notably, MDT achieves this while having less than
10% of trainable parameters and not requiring pretraining
on large-scale datasets. In the scaled-down CALVIN D→D
benchmark, MDT-V establishes a new standard, outperform-
ing recent methods like LAD [28] and boosting the average
rollout length by 20% over the second best baseline. The
results affirmatively answer Question (I).

Further, we conduct experiments on the LIBERO bench-
mark and a real-world play kitchen to adress the remaining
questions. These experiments are described in detail in
Section B of the Appendix.

IV. CONCLUSION

In this work, we introduce MDT, a novel continuous-time
diffusion policy adept at learning long-horizon manipulation
from play, requiring as little as 2% language labels for effec-
tive training. To further improve effectiveness, we propose
MGF as a simple, yet highly effective auxiliary objective
to learn more expressive behavior from multimodal goal
specifications. We rigorously tested MDT across a diverse set
of 169 tasks in both simulated environments and real-world
settings. These extensive experiments not only validate our
proposed auxiliary loss but also demonstrate the efficiency
of the MDT policy.
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APPENDIX

A. Related Work

a) Language Conditioned Robot Learning: Language
serves as an intuitive and understandable interface for
human-robot interactions, prompting a growing interest in
language-guided learning methods within the robotics com-
munity. A growing body of work uses these models as
feature generators for vision and language abstractions for
downstream policy learning [3], [29], [23], [26], [8], [30],
[13] and improved language expression-grounding [31], [32],
[33], [24], [34]. Notably, methods like CLIPPort [35] employ
frozen CLIP embeddings for language-guided pick and place,
while others, such as PaLM-E [36] and RoboFlamingo [37],
finetune vision-language models for robot control. Other
methods focus on hierarchical skill learning for language-
guided manipulation in LfP [10], [9], [29], [38], [39],
[40]. Further transformer-based methods without hierarchical
structures [6], [4], [5], [2], [41], [42], focus on next-action
prediction based on previous observation tokens. MT-ACT,
for instance, utilizes a Variational Autoencoder (VAE) trans-
former encoder-decoder policy, encoding only the current
state and a language goal to generate future actions [23],
[43], [44].

Furthermore, diffusion-based methods have gained adop-
tion as policy representations that iteratively diffuse actions
from Gaussian Noise [45], [17]. Several diffusion policy
approaches focus on generating plans on different abstraction
levels for behavior generation. LAD [28] trains a diffusion
model to diffuse a latent plan sequence in the pre-trained
latent space of HULC [26] combined with HULC’s low-
level policy. UniPy [46] and AVDC [47] directly plan in
the image space using a video diffusion model and execute
the plan with another model. Frameworks related to our
approach are Distill-Down [14] and Play-Fusion [30], which
also utilize a Diffusion Policy for language-guided policy
learning. Both methods use a variant of the CNN-based
diffusion policy [12]. However, all these methods require
fully annotated datasets to learn language-conditioned poli-
cies. MDT effectively learns from multimodal goals, which
enables it to leverage partially annotated datasets.

b) Self-Supervised Learning in Robotics: An increasing
body of work in robotics studies self-supervised representa-
tions for robot control. A key area is learning universal vision
representations or world-models, typically trained on large,
diverse offline datasets using either masking strategies [27],
[48], [49], [50], [51], [52] or contrastive objectives [53],
[54], [55], [56], [57], [58], [59], [60], [61]. Another body
of work explores robust representations for robot policies
from multiple sensors, using token masking strategies [62]
or generative video generation [2]. However, these methods
require specific transformer models that rely on a long history
of multiple states, which is a limitation for token mask-
ing and video generation techniques. Notably, Crossway-
Diffusion [63] proposes a self-supervised loss specifically de-
signed for CNN-based diffusion policies [12] by redesigning
the latent space of the U-net diffusion model to reconstruct
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Fig. 2: Overview of the two Diffusion Transformer Baseline
Architectures used for the Ablation Study. The first variant
uses a transformer encoder but also processes the noise
as a token. The second one is the Transformer Diffusion
policy [12] without any encoder.

the current image observation and proprioceptive features for
better single task performance.

Recent trends show an increase in transformer-based poli-
cies that encode only the current state information without
any history of prior states [23], [43], [44] to predict a
sequence of future actions in an efficient manner. Traditional
token masking strategies or video generation objectives that
rely on token sequences of multiple states are incompatible
with these models due to their unique operational frame-
works. To bridge this gap, our proposed MGF objective
is tailored to enhance the capabilities of these single-state
observation policies. MGF enables the learning of versatile
behavior from multimodal goals efficiently and without ad-
ditional inference costs.

c) Behavior Generation from Multimodal Goals: While
recent advancements in goal-conditioned robot learning have
predominantly focused on language-guided methods, there
is a growing interest in developing agents capable of in-
terpreting instructions across different modalities, such as
goal images, sketches, and multimodal combinations. Mu-
tex [64] presents an imitation learning policy that under-
stands goals in natural speech, text, videos, and goal images.
Mutex further uses cross-modality pretraining to enhance
the model’s understanding of the different goal modalities.
Steve-1 [65] is a Minecraft agent that uses a VAE encoder to
translate language descriptions into the latent space of video
demonstrations of the task, enabling it to follow instructions
from both videos or text descriptions. Other research efforts
are exploring novel conditioning methods. Examples include
using the cosine distance between the current state and a goal
description from fine-tuned CLIP models [51] or employing
multimodal prompts [66] that combine text with image
descriptions. Rt-Sktech and Rt-Trajectory present two new
conditioning methods leveraging goal sketches of the desired
scene [6] and sketched trajectories of the desired motion [67],
respectively. While our method primarily addresses the two
most prevalent goal modalities, namely text and images, our
framework is in theory versatile enough to incorporate other
modalities like sketches.



Hyperparameter CALVIN LIBERO Real World

Number of Layers 6 2 2
Hidden Dimension 192 192 192
Image resolution 112 112 112
Masking Ratio 0.75 0.75 0.75
MLP Ration 4 4 4
Patch size 16 16 16

Norm Pixel Loss True True True

TABLE II: Overview of the chosen hyperparameters for our
Image Demasking Model used in the Masked-Generative
Foresight loss, that consists of a Vision transformer archi-
tecture.

Hyperparameter Distill-D

Action Chunk Size 8
Timestep-embed Dimensions 256

Image Encoder ResNet18
Channel Dimensions [512, 1024, 2048]

Learning Rate 1e-4
σmax 80
σmin 0.001
σt 0.5

Time steps Exponential
Sampler DDIM

Sampling Steps 10
Trainable Parameters 318 M

Optimizer AdamW
Betas [0.9, 0.9]

Goal Image Encoder CLIP ViT-B/16
Goal Lang Encoder CLIP ViT-B/32

TABLE III: Overview of the hyperparameters for Distill-
D on the CALVIN and LIBERO benchmark. Our code
is based on the Diffusion-policy implementation [12] with
our continuous-time diffusion variant. To guarantee a fair
comparison the hyperparameters for Distill-D and MDT
Diffusion are chosen.

B. Additional Experiments

In the following section, we describe our experiments on
the LIBERO benchmark and a real robot play kitchen in
detail.

C. LIBERO Experiment Details

The LIBERO task suites [68] consists of 5 different
ones in the benchmark with 50 demonstrations per task. To
emulate a scenario with sparse language labels, we divided
the dataset into two segments: one set consists of single
demonstrations accompanied by language annotations, and
the other comprises 49 demonstrations without labels. For
generating goal images, we utilized the final state of each
rollout. We used the default end-effector action space in
all our experiments. Consistent with the CALVIN setup, we
employed identical image augmentation methods to prepare
our data. We trained all models for 50 epochs and then tested
them on 20 rollouts averaged over 3 seeds. The benchmark
is structured into five distinct task suites, each designed to
test different aspects of robotic learning and manipulation:

• Spatial: This suite emphasizes the robot’s ability to
understand and manipulate spatial relationships. Each
task involves placing a bowl, among a constant set of

objects, on a plate. The challenge lies in distinguishing
between two identical bowls that differ only in their
spatial placement relative to other objects.

• Goal: The Goal suite tests the robot’s proficiency in
understanding and executing varied task goals. Despite
using the same set of objects with fixed spatial relation-
ships, each task in this suite differs in the ultimate goal,
demanding that the robot continually adapt its motions
and behaviors to meet these varying objectives.

• Object: Focused on object recognition and manipula-
tion, this suite requires the robot to pick and place a
unique object in each task.

• Long: This suite comprises tasks that necessitate long-
horizon planning and execution. The Long suite is
particularly challenging, as it tests the robot’s ability
to maintain performance and adaptability over extended
task durations.

• 90: Offering a diverse set of 90 short-horizon tasks
across five varied settings.

D. Baselines

We compare MDT against several state-of-the-art policies,
described in detail below:

• HULC: A hierarchical play policy, that uses discrete
VAE skill space with an improved low-level action
policy and a transformer plan encoder to learn latent
skills [26].

• LAD: A hierarchical diffusion policy, that extends the
HULC policy by substituting the high-level planner with
a U-Net Diffusion model [28] to diffuse plans.

• Distill-D: A language-guided Diffusion policy
from [14], that extends the initial U-Net diffusion
policy [12] with additional Clip Encoder for language-
goals. We use our continuous time diffusion variant
instead of the discrete one for direct comparison
and extend it with the same CLIP vision encoder to
guarantee a fair comparison.

• MT-ACT: A multitask transformer policy [23], [44],
that uses a VAE encoder for action sequences and also
predicts action chunks instead of single actions with a
transformer encoder-decoder architecture.

• RoboFlamingo: A finetuned Vision-Language Founda-
tion model [37] containing 3 billion parameters, that has
an additional recurrent policy head for action prediction.
The model was pretrained on a large internet-scale set
of image and text data and then finetuned for CALVIN.

We adopt the recommended hyperparameters for all baselines
to guarantee a fair comparison. Further, we directly compare
the self-reported results of HULC, LAD, and RoboFlamingo
on CALVIN [28], [26], [37], [28]. All models use the
same language and image goal models to further ensure fair
comparisons. Since RoboFlamingo only published the best
seed of each model, we can not include standard deviations
in their results. For our experiments in LIBERO, we report
the performance of MDT, Distill-D, and the best transformer
baseline policy from the original benchmark, which was
trained with full language annotations [68]. During the



Hyperparameter MT-ACT MDT-V MDT
Number of Encoder Layers 4 4 4
Number of Decoder Layers 6 4 6
Attention Heads 8 8 8
Action Chunk Size 10 10 10
Goal Window Sampling Size 49 49 49
Hidden Dimension 512 384 512
Action Encoder Layers 2 - -
Action Encoder Hidden Dim 192 - -
Latent z dim 32 - -
Image Encoder ResNet18 Voltron V-Cond ResNet18
Attention Dropout 0.1 0.3 0.3
Residual Dropout 0.1 0.1 0.1
MLP Dropout 0.1 0.05 0.05
Input Dropout 0.0 0.0 0.0
Optimizer AdamW AdamW AdamW
Betas [0.9, 0.9] [0.9, 0.9] [0.9, 0.9]
Transformer Weight Decay 0.05 0.05 0.05
Other weight decay 0.05 0.05 0.05
Batch Size 512 512 512
Trainable Parameters 122 M 40.0 M 75.1 M
σmax - 80 80
σmin - 0.001 0.001
σt - 0.5 0.5
Time steps - Exponential Exponential
Sampler - DDIM DDIM
Kl-β 50 - -
Goal Image Encoder CLIP ViT-B/16 CLIP ViT-B/16 CLIP ViT-B/16
Goal Lang Encoder CLIP ViT-B/32 CLIP ViT-B/32 CLIP ViT-B/32

TABLE IV: Summary of all the Hyperparameters for the MDT policy used in the CALVIN experiments and the ones of
MT-ACT.

Masking Rate CALVIN ABCD LIBERO-Spatial

0.5 3.54 ± 0.04 67.8 ± 0.3
0.75 3.60 ± 0.05 67.5 ± 0.2

1 3.50 ± 0.03 63.7 ± 0.3

TABLE V: Ablation on different Masking Rates for Masked
Generative Foresight, tested on CALVIN D→D with MDT-
V and on LIBERO-Spatial.

experiments, we restrict all policies to only use a static
camera and a wrist-mounted one.

LIBERO. We evaluate various models on LIBERO [68],
a robot learning benchmark consisting of over 130 language-
conditioned manipulation tasks divided into 5 different task
suites, with different focus. Details are provided in Section
C of the Appendix. Every task in each suite has 50 demon-
strations, where we only label one demonstration with the
associated task description and all others without. During
evaluation, we test all models on all tasks with 20 rollouts
each and average the results over 3 seeds.

E. Evaluation on LIBERO

In the LIBERO task suites, summarized in Table IX, MDT
proves to be effective with sparsely labeled data, outperform-
ing the Oracle-BC baseline, which relies on fully labeled
demonstrations from LIBERO. MDT not only outperforms
the fully language-labeled Transformer Baseline in three out
of four challenges but also significantly surpasses the U-
Net-based Distill-D policy in all tests, even without auxiliary
objectives.

F. Evaluation of Masked Generative Foresight

We next investigate the significance of our auxiliary self-
supervised loss functions, specifically the CLA and MGF
loss, on MDT’s performance. Figure 5 shows the perfor-
mance metrics of the ablated versions with and without
these losses. The inclusion of MGF notably enhances MDT’s
performance on the CALVIN ABCD→D benchmark, im-
proving average rollout lengths by over 25%. Detailed results
supporting the essential role of these auxiliary tasks in MDT-
V are presented in Table VI within the Appendix, showing
that MDT-V surpasses all baselines with an average rollout
length of 4.12 even in the absence of these two losses.

We further study the impact of MGF and CLA on the
LIBERO benchmark (summarized in Table IX), where the
auxiliary objectives improve MDT’s success rates in 4 out
of 5 test suites, achieving more than a 5.4% increase on
average. The results of these experiments are summarized in
Table IX. Interestingly, we observe a synergistic effect when
both losses are applied together. However, the LIBERO-Long
benchmark does not seem to benefit from either MGF or
CLA. The demonstrations of the LIBERO-Long benchmark
consist of several sub-tasks each with a single high-level
description for the entire task. We hypothesize that this lack
of sub-goals prevents the auxiliary losses from providing
notable benefits.

To investigate if MGF provides a generally beneficial
auxiliary objective we integrate it with MT-ACT and evaluate
the model for the full CALVIN ABCD→D benchmark, as
detailed in Table XI. MGF significantly boosts MT-ACT’s
average CALVIN performance by 44%, without any other
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latent state representation via cross-attention. MDT applies adaLN conditioning [22] to condition the blocks on the current
noise level. In addition, it aligns the latent representation tokens of the same state with different goal specifications using
self-supervised contrastive learning. The latent representation tokens are also used as a context input for the masked Image
Decoder module to reconstruct masked-out patches from future images.

CALVIN Benchmark

Env A Env B Env C Env D

LIBERO Benchmark

Goal Object

90Long

Spatial

“Stack 
Block”

“Close 
Drawer”

“Lift Blue 
Block”

“Place in 
Drawer”

Complete 1000 sets of 5 Text Instructions in a Row 

“Push pink 
block right”

Train on diverse 24 hours of play data from 4 
environments

5 different benchmark suites with 130  
different tasks in 5 different scenes

Real Kitchen Play  
5 tasks at the kitchen involving articulated 
body manipulation and long horizon task 
completion

“Move the Pot to 
the right”

“Open the 
Cooler”

“Pick up the 
banana”

“Open the 
microwave”

Fig. 4: Overview of the different environments used to test MDT: (Left) CALVIN Benchmark consisting of four environments
each with unique positions and textures for slider, drawer, LED, and lightbulb. (Middle) Overview of the different tasks and
scene diversity in the LIBERO benchmark, which is divided into 5 different task suites. (Right) Example tasks from the real
robot experiments at a toy kitchen, where models are tested after training on partially labeled play data.



Method LCLA LMGF
No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. Len.

MDT-V Abl. 1 × × 0.914 0.782 0.675 0.588 0.487 3.58 ± 0.18
MDT-V Abl. 2 × × 0.693 0.405 0.190 0.092 0.031 1.41 ± 0.04

MDT-V × × 0.971 0.907 0.840 0.766 0.698 4.18 ± 0.10
MDT-V ✓ × 0.977 0.927 0.868 0.808 0.786 4.32 ± 0.06
MDT-V × ✓ 0.986 0.946 0.903 0.851 0.794 4.48 ± 0.03
MDT-V ✓ ✓ 0.988 0.959 0.9115 0.861 0.794 4.51 ± 0.03

TABLE VI: Overview of the performance Influence of MGF and Contrastive Alignment on MDT-V on the CALVIN
ABCD→D challenge. In addition, the performance of both transformer ablations are also shown. The results are reported
over 1000 rollouts averaged over 3 seeds.

CALVIN ABCD LIBERO-Spatial

1 4.19 ± 0.03 64.4 ± 0.4
3 4.25 ± 0.04 67.5 ± 0.2
9 4.22 ± 0.06 65.6 ± 0.5

TABLE VII: Ablation on the best prediction horizon for
Masked Generative Foresight, tested on CALVIN ABCD→D
and LIBERO-Spatial.

−LCLA − LMGF −LMGF −LCLA Full Model

Task 1 Task 2 Task 3 Task 4 Task 5 Avg. Len.
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Fig. 5: Study on the performance of our proposed Masked
Generative Foresight Loss and the Contrastive Latent Align-
ment Loss for our proposed MDT policy. We analyse the
impact of both auxiliary tasks on the ABCD CALVIN
challenge. The results show the average rollout length over
1000 instruction chains averaged over 3 seeds.

modifications to the model or its hyperparameters. Similarly
to the MDT results, MGF also enhances the performance of
MT-ACT to learn better from multimodal goals with few
language annotations. These positive outcomes for MDT,
along with its effective application to other transformer-based
policies, positively answer research questions (IIa) and (IIb).

G. Real Robot Experiments

For our real robot experiments, we collect approx. 2.5
hours of play data with 3 different persons, that were
instructed to solve the tasks in a random order. We train
all models with the collected data with a random geometric
sampling of future frames to get goal images. Each policy
was then trained for roughly 24 hours using a 24 hours
on a small cluster with 4 GPUs. For evaluation purposes,

we identified the most effective iteration of each model
based on the lowest validation loss, except for the MT-
ACTs models. For these, we selected the last epoch since
our prior experience with the CALVIN model indicated an
improvement in performance even when the validation loss
began to rise again. To test all policies, we roll out each one
ten times, using the same instruction chain with goal images
or language annotations. Each chain consists of solving five
tasks in either language or image goals. Example rollouts of
these experiments are visualized in Figure 6.

We investigate research question (III), by assessing the
ability of MDT to learn language-guided manipulation from
partially labeled data in a real-world setting. MDT is evalu-
ated on a real-world play kitchen setup with a 7 Degree-of-
Freedom Franka Emika Panda Robot. The setup incorporates
two static RGB cameras: one positioned above the kitchen
for a bird’s-eye view, and another placed on the left side
of the robot. The experiments consist of five distinct tasks
involving pick-and-place actions, door opening, and object
manipulation. We annotate 20 sub-sequences of every task
with several short language descriptions to create a partially
annotated dataset. To enrich training diversity, some of these
descriptions were generated by GPT-4. During training a
single description per labeled sub-sequence is sampled. Our
dataset encompasses around 2.5 hours of interactive play
data. We evaluated both MT-ACT and MDT with an action
sequence length of 20, which was optimal for performance
on the physical robot. The models are tested with long-
horizon rollouts, requiring the completion of five tasks in
sequence. The models were provided 5 subgoals represented
either as images or language descriptions. The experiments
are detailed in Table X. The results highlight MDT’s robust
performance, particularly in learning from sparse labeling.
MDT was successful in completing 4 tasks in sequence
and showed proficiency in understanding goals expressed
through language or images. The results further emphasise
the importance of MGF to learn effectively from partially
labeled datasets, since the MDT variant without this auxiliary
objective showed a reduced performance.



Train→Test Method No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. Len.

D→D

HULC 82.5% 66.8% 52.0% 39.3% 27.5% 2.68±(0.11)
LAD 88.7% 69.9% 54.5% 42.7% 32.2% 2.88±(0.19)
Distill-D 86.7% 71.5% 57.0% 45.9% 35.6% 2.97±(0.04)
MT-ACT 88.4% 72.2% 57.2% 44.9% 35.3% 2.98±(0.05)
MDT (ours) 93.3% 82.4% 71.5% 60.9% 51.1% 3.59±(0.07)
MDT-V (ours) 93.7% 83.2% 71.7% 60.5% 50.6% 3.60±(0.05)

TABLE VIII: Performance comparison of various policies learned end-to-end on the CALVIN D→D challenge within the
CALVIN benchmark. We show the average rollout length to solve 5 instructions in a row (Avg. Len.) of 1000 chains. Our
proposed method MDT and MDT-V significantly outperform all reported baselines averaged over 3 seeds on both datasets
and sets a sota performance.

Goal image

Goal image

Goal image

Goal image

Goal image

Fig. 6: Real Robot rollouts with goal image conditioning. The first column shows the goal image used for the rollout. 4 out
of 5 tasks are successful. The robot fails to open the freezer door and accidentally closes the oven door.



Method Language Annotation LCLA LMGF Spatial Object Goal Long 90 Average

Transformer-BC [68] 100 % × × 71.83 ± 3.7 71.00 ± 7.9 76.33± 1.3 24.17± 2.6 - -

Distill-D 2% × × 46.8± 2.8 72.0± 6.5 63.8± 2.5 47.3± 4.1 49.9± 1.0 56.0± 3.4

MDT

2% × × 66.0± 1.9 85.2± 2.3 67.8± 4.6 65.0 ± 2.0 58.7± 0.8 68.8± 2.2
2% ✓ × 74.3± 0.8 87.5± 2.7 71.5± 3.5 63.9± 4.5 66.9± 1.7 72.8 ± 2.6
2% × ✓ 67.5± 2.1 87.5± 2.6 69.3± 2.5 61.8± 2.5 62.6± 1.0 69.7± 2.1
2% ✓ ✓ 78.5 ± 1.5 87.5 ± 0.9 73.5 ± 2.0 57.1± 0.8 67.2 ± 1.1 72.5± 1.5

TABLE IX: Overview of the performance of MDT and baselines with and without our proposed Self-Supervised Losses on
several LIBERO Task suites. All results show the average performance of all tasks averaged over 20 rollouts each and with
3 seeds. MDT does outperform the Transformer-BC baseline in several settings with only 2% of language annotations.

Goal Modality Model Task 1 Task 2 Task 3 Task 4 Task 5 Avg. Rollout Length

Language
MT-ACT 50% 50% 0% 0% 0% 1.00 ± (1.00)
MDT 40% 40% 0% 0% 0% 0.80 ± (0.98)
MDT + LMGF 90% 80% 10% 0% 0% 1.80 ± (0.75)

Images
MT-ACT 50% 40% 20% 10% 0% 1.20 ± (1.40)
MDT 60% 30% 30% 10% 0% 1.30 ± (1.42)
MDT + LMGF 100% 90% 90% 0% 0% 2.80 ± (0.60)

TABLE X: Average rollout length of different policies evaluated in our real robot play kitchen. We present the average
performance of various policies tested on 10 long horizon instruction chains.

Policy Avg. Len. CALVIN

MT-ACT 2.80 ± 0.03
MT-ACT + LMGF 4.03 ± 0.08

TABLE XI: Evaluation of the Performance Increase of
the MT-ACT policy with the additional Masked Generative
Foresight Loss on the CALVIN ABCD→D challenge.

H. Additional Ablation Studies

Masked Generative Foresight. Next, we study the dif-
ferent design choices of our MGF loss and compare them
against ablations. Our primary focus is on assessing the
impact of different masking ratios, ranging from 0.5 to 1,
where 1 corresponds to a full reconstruction of the initial
future image. The results indicate that a masking ratio of
0.75 achieves the best average performance, which is a value
commonly used in other masking methods [27]. Thus, we
use it as the default masking rate across all experiments
in the paper. Further details of this analysis are provided
in Table V in the Appendix. Additionally, we investigate
the ideal foresight distance for MGF and evaluate it in two
environments. MDT adopts a foresight distance of v =
3 as this setting consistently delivers strong performance
across various scenarios. While a higher foresight distance
of v = 9 does exhibit the second-best performance, it is also
associated with increased variance in results. Further results
of these investigations are presented in Figure VII in the
Appendix.

Transformer Architecture. MDT is tested against two
Diffusion Transformer architectures previously described
in [12]. The ablations are visualized in Figure 2 of the
Appendix. These comparisons are conducted on the CALVIN
ABCD→D challenge, with detailed results featured in VI in
the Appendix. In the first ablation study, we incorporated

a noise token as an additional input to the transformer
encoder. This was done to assess the effect of excluding
adaLN noise conditioning. The second ablation represents
the diffusion transformer architecture from [12], which does
not use any encoder module. MDT-V, when trained without
any auxiliary objective, achieves an average rollout length of
4.18. The ablation without adaLN conditioning only achieves
an average rollout length of 3.58. Notably, the complete
omission of the transformer encoder led to a significantly
lower average rollout length of 1.41. The experiments show,
that the additional transformer encoder is crucial for diffusion
policies to succeed in learning from different goals. In addi-
tion, separating the denoising process from the encoder and
using adaLN conditioning further helps to boost performance
and efficiency.

I. Limitations

While MDT shows strong performance on learning from
multimodal goals, it still has several limitations: 1) While we
verify the effectiveness of our method in many tasks, MGF
and CLA reduce the performance on LIBERO-Long 2) The
Contrastive Loss requires careful filtering of negative goal
samples to use its full potential 3) Diffusion Policies require
multiple forward passes to generate an action sequence which
results in lower inference speed compared to non-diffusion
approaches.


