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Abstract

Language Agent (LA) could be endowed with001
different mechanisms for autonomous task ac-002
complishment. Current LAs typically rely on003
fixed mechanism or a set of mechanisms acti-004
vated in a predefined order, limiting their adapt-005
ability to varied potential task solution struc-006
tures. To this end, this paper introduces Unify007
agent mechanisms by Actions (UniAct), a uni-008
fied agent that integrates different mechanisms.009
Additionally, we propose Automatic Language010
Agent Mechanism Activation Learning with011
Self-Exploration (ALAMA), which focuses on012
optimizing mechanism activation adaptability013
without reliance on expert models. By lever-014
aging self-generated UniAct trajectories with015
different rewards, ALAMA enables the agent016
to adaptively activate mechanisms that may re-017
sult in high downstream task rewards based on018
the potential characteristics of the task. Experi-019
mental results demonstrate significant improve-020
ments in downstream agent tasks, affirming021
the effectiveness of our approach in facilitat-022
ing more dynamic and context-sensitive mech-023
anism activation.024

1 Introduction025

Language Agent (LA) (Sumers et al., 2024; Yao026

et al., 2023; Xi et al., 2023; Gao et al., 2023) has027

garnered considerable attention recently due to028

the rapid progress of the Large Language Model029

(LLM) (OpenAI, 2024; AI@Meta, 2024; Yang030

et al., 2023; Chowdhery et al., 2022; Radford et al.,031

2018). With labor-intensive strategic prompt de-032

sign and in-context demonstration selection (Zhou033

et al., 2024; Dong et al., 2023; Liu et al., 2021),034

LLMs can be endowed with different mechanisms035

to interact with the environment for task solving,036

transforming them into LAs. Moreover, these LAs037

could benefit from distinct mechanism activation038

for various tasks with unique solution structures039

(Zhou et al., 2024). For example, it could acti-040

vate Reason (Wei et al., 2022) to arrive at the fi-041
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Figure 1: Illustration of Language Agent with differ-
ent mechanisms. (a). Endow vanilla agent with fixed
mechanism by In-Context leanring. (b) UniAct could
automatically activate different mechanisms.

nal answer step-by-step, Plan (Zhou et al., 2023; 042

Wang et al., 2023a) to decompose the complex 043

task, Memory (Gao et al., 2024) to avoid common 044

errors, Reflection (Shinn et al., 2023; Madaan 045

et al., 2023) to get insightful refinement sugges- 046

tions, External Augmentation (Yao et al., 2023; 047

Schick et al., 2023) to ground the solution trajec- 048

tory with additional evidence. 049

Despite the success of prompt-based LAs with 050

manual mechanism activation, challenges remain, 051

particularly regarding the inaccessibility of weights 052

for research on agent ability acquisition (Yao et al., 053

2023; Shinn et al., 2023). Consequently developing 054

open-sourced agents has become an urgent prior- 055

ity. However, current fine-tuned LAs typically rely 056

on fixed mechanisms or a set of mechanisms acti- 057

vated in a predefined order (Liu et al., 2023; Chen 058

et al., 2023; Song et al., 2024). This constraint im- 059

pedes their ability to adapt to task-specific solution 060

structures automatically in an open scenario. We 061

posit that activating the appropriate mechanisms 062
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adaptively for each task can resolve different types063

of tasks, and oracle mechanism activation could064

lead to an improvement of over 15% compared065

to fixed mechanism baselines (as shown in Sec-066

tion 4.1). It demonstrates the high potential of067

automatic mechanism activation, and we consider068

Oracle Language Agent Mechanism Activation069

(OLAMA) as the upper limit of the agent perfor-070

mance.071

Intuitively, when humans encounter new tasks,072

they tend to explore by attempting various ap-073

proaches. Upon facing similar tasks subsequently,074

they select and employ the most effective ones iden-075

tified from their previous experiences. Inspired076

by this, this paper proposes Unify agent mecha-077

nisms by Actions (UniAct), a unified agent that078

integrates different mechanisms. Unfortunately,079

activating different mechanisms automatically for080

open-sourced LAs in a zero-shot setting has not081

been thoroughly investigated. To approach the082

OLAMA, this paper further proposes Automatic083

Language Agent Mechanism Activation Learn-084

ing with Self-Exploration (ALAMA), an optimiza-085

tion method for mechanism activation adaptability086

learning across various tasks.087

Despite the extensive efforts devoted to agent088

learning, current methodologies still exhibit sig-089

nificant shortcomings. First, it requires a sub-090

stantial number of high-quality trajectories dis-091

tilled from proprietary models for effective imita-092

tion, with unsuccessful ones often discarded (Zeng093

et al., 2023; Chen et al., 2023), leading to elevated094

training costs and a paucity of training signals.095

Second, exploration-based methods use success-096

failure pair data for behavior contrastive learning097

(Song et al., 2024; Yuan et al., 2024a). But it is098

training-inefficient to organize self-exploration tra-099

jectories with different mechanism activated into100

pair-wise format.101

To address the aforementioned issues, our102

ALAMA does not rely on expert models but utilizes103

self-exploration for multiple times to get trajecto-104

ries with different mechanism activated for learn-105

ing. Under different manual mechanism activation,106

the agent will generate different trajectories with107

varying reward signals. The differences in rewards108

across trajectories can aid the agent in learning to109

adapt to different mechanism activation. Initially,110

we manually activate various mechanisms to per-111

form multiple self-exploration, generating diverse112

solution trajectories for the same task. These trajec-113

tories are then transformed into the UniAct format.114

Next, we sample a small subset of positive trajecto- 115

ries to fine-tune the LA, imparting the fundamen- 116

tal interaction and instruction-following capabili- 117

ties to it. Finally, we employ the diverse positive 118

and negative trajectories obtained during the self- 119

exploration phase for behavior contrastive learning 120

with the KTO loss (Ethayarajh et al., 2024), en- 121

abling the LA to activate particular mechanism for 122

different tasks adaptively. 123

To validate the effectiveness of our proposed 124

method, we conducted extensive experiments 125

on mathematical reasoning (Cobbe et al., 2021; 126

Mishra et al., 2022; Patel et al., 2021) and 127

knowledge-intensive reasoning (Yang et al., 2018; 128

Joshi et al., 2017; Press et al., 2023) tasks. The 129

requirement for models to engage in multi-turn in- 130

teractions with external environments to receive 131

feedback makes these tasks suitable benchmarks 132

for automatic mechanism activation. ALAMA 133

achieved 6.28% improvement on GSM8K and an 134

8.52% improvement on HotpotQA, and it also 135

demonstrated strong performance gains on held- 136

out datasets, highlighting the superiority of our 137

approach. 138

To summarize, this paper introduces UniAct to 139

unify different agent mechanisms, and ALAMA to 140

contrast different UniAct trajectories with different 141

mechanisms activated for effective agent mecha- 142

nism activation adaptability learning. 143

2 Method 144

We have selected five essential agent mechanisms 145

as the focus of our study: Reason, Plan, Memory, 146

Reflection, and External-Augmentation. The 147

implementation details for activating each mecha- 148

nism manually will be elaborated upon in the sec- 149

tion 3.1. 150

2.1 UniAct: Unify Agent Mechanisms by 151

Actions 152

Currently, React serves as the foundational frame- 153

work for LLM-based agents, employing the 154

Thought-Action-Observation format to govern 155

agent control. This format facilitates reason- 156

ing, action generation, and the acquisition of 157

feedback from external environments. Previous 158

frameworks did not fully integrate various agent 159

mechanisms within the React structure, or they 160

only implicitly incorporated individual mecha- 161

nisms into the reasoning process without an ex- 162

plicit trigger. To address these limitations, we 163
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Figure 2: The illustration of ALAMA process. The UniAct trajectories are collected by Self-Exploration with
manual mechanism activation. For tasks with mechanism sensitity, we use the corresponding positive trajectories for
Implicit Mechanism Activation Optimization, and utilize both positive and negative ones for Mechanism Activation
Adaptability Optimization.

propose UniAct, which explicitly integrates di-164

verse agent mechanisms into a unified frame-165

work. As depicted in upper right portion Fig-166

ure 2, we define Plan, Memory, Reflection,167

and External-Augmentation as distinct Actions,168

with Reason serving as the Thought—the foun-169

dational element that enables the agent to per-170

form various tasks, albeit not defined as an action.171

The outcomes of these actions are categorized as172

Observations. Specifically, when the model acti-173

vates a particular mechanism, it explicitly gener-174

ates the corresponding actions. Furthermore, we175

have adapted the external environment to not only176

provide task-related feedback but also generate ap-177

propriate prompt information to facilitate the acti-178

vation of respective mechanisms. Lastly, a Finish179

action is defined, which is initiated when the agent180

concludes that the task has been completed. De-181

tails regarding the action format and corresponding182

grounding prompts are provided in Appendix D.183

Though the other four incorporates reasoning pro-184

cess, we still take Reason as a single mechanism,185

which only has one action Finish.186

2.2 ALAMA: Automatic Language Agent187

Mechanism Activation with188

Self-Exploration189

Firstly, we leverage Self-Exploration with manual190

mechanisms activation to explore diversity, aim-191

ing to obtain different solution trajectories for the192

same task. We then convert all trajectories into the 193

UniAct format. Subsequently, we employ Implicit 194

Mechanism Activation Optimization (IMAO) for 195

training, enabling the model to follow the UniAct 196

format and automatically activate specific mecha- 197

nism under zero-shot setting. Finally, we utilize 198

Mechanism Activation Adaptability Optimization 199

(MAAO) to allow the agent to adaptively activate 200

the corresponding mechanism based on task char- 201

acteristics and its potential solution structures. 202

Self-Exploration We refer to the base Language 203

Agent with parameter θ as LAθ and all the mech- 204

anisms discussed in this paper asM = {mi}5i=1. 205

As shown in the upper portion of Figure 2, for each 206

mechanism, we manually construct a trajectory di 207

where only that specific mechanism mi is activated 208

to address the task. Given Tasks T = {tj}|T |
j=1, we 209

manually activate different mechanisms by prompt- 210

ing with the corresponding in-context demonstra- 211

tion trajectory di to get the exploration solution 212

trajectory si,j and corresponding reward ri,j . And 213

then we transform all these trajectories into UniAct 214

format ui,j . 215

si,j , ri,j = LAθ(di, tj) (1) 216

ui,j = UniActTransform(si,j) 217

= (τ1, a1, o1, · · · , om−1, τm, am)i,j (2) 218

τ, a, o represents thought, action, and observation, 219

respectively. Finally, we get all self-exploration 220
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generated UniAct trajectories U .221

U = {Uj}|T |
j=1 = {{ui,1}

5
i=1, · · · , {ui,|T |}5i=1} (3)

222

IMAO: Implicit Mechanism Activation Opti-223

mization To endow the basic capability of follow-224

ing the UniAct format under zero-shot setting and225

automatic mechanism activation to perform various226

tasks, we sample a portion of positive trajectories227

U for supervised fine-tuning, which is shown in228

the bottom left of Figure 2. To introduce implicit229

preferences towards different mechanisms for dif-230

ferent types of tasks , we exclusively select tasks231

where r = 1 could not be achieved by all solutions232

with different mechanisms activated. We then use233

all trajectories with r = 1 corresponding to these234

tasks as the training set UIMAO.235

The thoughts and actions are generated by LA,236

while the observations are collected from the en-237

vironments. So we only compute the next token238

prediction loss on τ and a, and mask the loss on o:239

LIMAO(LAθ) = Eu∈UIMAO − logP (u|t) (4)240

= Eu∈UIMAO − logP (am, τm, · · · , a1, τ1|t) (5)241

= Eu∈UIMAO

[
−

m∑
k=1

logP (τk|ok−1, ak−1, · · · , t)242

−
m∑
k=1

logP (ak|τk, ok−1, · · · , t)
]

(6)243

MAAO: Mechanism Activation Adaptability244

Optimization Across all the tasks, not every task245

was solvable by all mechanisms respectively. As246

shown in the bottom right of Figure 2, certain247

tasks were successfully resolved by activating spe-248

cific mechanisms, whereas they remained unsolved249

when other mechanisms were activated. This high-250

lights the benefit of adaptively activating specific251

mechanisms to enhance the performance of the LA.252

We categorize trajectories in UMAAO as positive253

examples UMAAO-pos when they achieve a reward254

of 1, and as negative examples UMAAO-neg when255

the reward is less than 1. In Implicit Mechanism256

Activation Optimization, we use only a subset of257

positive trajectories for SFT training and do not258

consider all negative ones. In contrast, Mechanism259

Activation Adaptability Optimization utilizes the260

contrastive information between positive and neg-261

ative examples to update the LA using KTO loss262

(Ethayarajh et al., 2024). This approach enhances263

the model’s capability for automatic mechanism264

activation adaptively:265

z0 = Et′∈UMAAO [KL(LAθ(u
′|t′)||LAref(u

′|t′))]

(7)

266

v(t, u) = (−1)1(u∈UMAAO-pos)λpos/neg× 267

σ

(
β

(
z0 − log

LAθ(u|t)
LAref(u|t)

))
(8)

268

LMAAO(LAθ,LAref) = Eu∈UMAAO [λpos/neg − v(t, u)]
(9)

269

when u ∈ UMAAO-pos, (−1)1(u∈UMAAO-pos) = −1 , 270

λpos/neg = λpos, and vice versa. 271

We summarize the process of ALAMA in Algo- 272

rithm 1. 273

2.3 Self-Adapt Consistency 274

We apply self-consistency (Wang et al., 2023b) 275

technique to UniAct. After IMAO and MAAO, it 276

is believed that the UniAct already possesses the 277

ability of automatic mechanism activation. Further- 278

more we argue that multi-path sampling will get 279

more trajectories with most suitable mechanisms 280

activated, and majority voting based on these an- 281

swers will lead to performance boost. We name 282

this ad-hoc prompting method as Self-Adapt Con- 283

sistency. It is worth noting that the difference lies 284

in that self-adapt consistency will automatically 285

try different mechanisms, whereas self-consistency 286

merely attempts various reasoning paths under a 287

fixed mechanism. 288

3 Experiment 289

3.1 Setup 290

Model We utilize GPT-3.5-turbo-0125 as the 291

closed-source model baseline, accessed through 292

the OpenAI API. We employ Meta-Llama3-8B- 293

Instruct as the backbone for UniAct to conduct 294

exploration, training, and testing. Self-reflection 295

(Huang et al., 2024) has been demonstrated to be 296

ineffective in correcting errors in model responses, 297

so we use Deepseek-V2 (DeepSeek-AI et al., 2024) 298

as the Critic Model to generate reflection thoughts 299

when the Reflection is activated. 300

Datasets We employ the GSM8K (Cobbe et al., 301

2021) and HotpotQA (Yang et al., 2018) as Held-in 302

tasks for exploration, training, and testing. Ad- 303

ditionally, we select NumGLUE (Mishra et al., 304

2022), SVAMP (Patel et al., 2021), TriviaQA (Joshi 305

et al., 2017), and Bamboogle (Press et al., 2023) as 306
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Mathematical Reasoning (Acc) Knowledge-intensive Reasoning (EM)

Held-in Held-out Held-in Held-out

GSM8K NumGLUE SVAMP HotpotQA TriviaQA Bamboogle

GPT-3.5-turbo (one-shot Activation)

Reason 63.91 60.63 71.20 22.20 28.80 28.80
Plan 77.94 59.84 83.40 22.80 51.20 37.60
Memory 76.42 65.75 81.10 25.80 55.60 44.80
Reflection 79.38 66.14 86.10 30.80 60.80 41.60
External-Augmentation 70.66 70.47 79.00 22.20 44.00 30.40
Average 73.66 64.57 80.16 24.76 52.16 36.64
Majority Voting 82.25 66.54 86.30 28.40 56.00 41.60

Llama-3-8B-Instruct (one-shot Activation)

Reason 73.08 41.73 66.10 17.60 41.40 29.60
Plan 77.56 68.11 82.90 19.80 44.40 31.20
Memory 77.03 70.47 77.80 16.20 41.20 30.40
Reflection 80.06 74.40 85.90 26.00 55.80 37.60
External-Augmentation 71.80 61.02 75.80 15.80 38.60 20.80
Average 75.90 63.15 77.70 19.08 44.28 29.92
Majority Voting 82.71 70.87 85.50 21.60 48.60 37.60

UniAct

IMAO 78.77 72.83 83.30 24.00 40.40 27.20
IMAO + MAAO 82.18 78.35 88.20 27.60 43.60 32.80
Self-Adapt Consistency 85.06 79.13 89.80 31.00 49.40 36.80

Table 1: Performance of different methods. We use Accuracy and EM as metric for Mathematical Reasoning and
Knowledge-intensive Reasoning.

Held-out tasks to evaluate the generalization per-307

formance of our method. For datasets with large308

test sets, we perform downsampling. Furthermore,309

to increase the difficulty of the test sets, we filter310

out some relatively simpler data points in some311

datasets. The dataset processing details and statis-312

tics are described in the appendix A.313

Baselines We manually construct one in-context314

demonstration example to activate different mech-315

anisms as baselines: (1) Reason: Directly obtain-316

ing the answer through step-by-step reasoning. (2)317

Plan: First understanding the task and develop-318

ing a plan to decompose it into smaller, more319

easily solvable sub-tasks, and then progressively320

solving each sub-task to arrive at the final answer.321

(3) Memory: Initially building a database of failed322

examples. During each subsequent task execu-323

tion, similar cases are retrieved from this database324

based on task similarity (cosine of task embed-325

ding), and the agent could try to avoid such type326

of errors. (4) Reflection: Introducing a Critic327

Model into the environment to reflect on the pre-328

viously reasoned answers by the agent when nec-329

essary. (5) External-Augmentation: Introduc-330

ing task-specific toolkits for different tasks, such331

as a calculator for mathematical reasoning or a332

search engine for knowledge-intensive reasoning.333

On top of these, we compute: (6) Average: The 334

average performance of different mechanism . (7) 335

Majority Voting: Selecting the most consistent 336

(Wang et al., 2023b) answer among the solutions 337

obtained by activating different mechanisms as the 338

final answer. 339

Training and Inference For LLMs training, we 340

employ TRL (von Werra et al., 2020) and Deep- 341

speed (Rasley et al., 2020) as the frameworks to 342

conduct full fine-tuning. Due to the limited avail- 343

ability of our computational resources, we utilize 344

Zero3+offload (Ren et al., 2021) during the fine- 345

tuning process. For additional hyperparameters, 346

please refer to the appendix B. For LLMs inference, 347

we utilize vllm (Kwon et al., 2023) for acceleration. 348

3.2 Main Results 349

Automatic mechanism activation outperforms 350

Manual Mechanim Activation. As shown in 351

Table 1, on the Held-in task, UniAct outper- 352

forms all single mechanism baselines, except for 353

Reflection, as well as the average performance 354

of different mechanism. We consider the average 355

as the bottom performance for introducing multiple 356

mechanisms. UniAct, surpasses Average by 2.87 357

on GSM8K and 4.92 on HotpotQA, indicating that 358

UniAct has demonstrated the ability to automati- 359
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cally activate different mechanisms based on the360

task after IMAO.361

Furthermore, UniAct, after MAAO, continues362

to improve by 3.41 on GSM8K and 3.60 on Hot-363

potQA. This suggests that MAAO can enhance the364

adaptability of the agent to potential solution struc-365

tures of different tasks. Behavior contrastive learn-366

ing during the training phase enables the model367

to preferentially activate certain specific mecha-368

nisms for different tasks while refusing to acti-369

vate the remaining ones. More specifically, the370

model learns about its own limitations through371

this paradigm and learns how to avoid such lim-372

itations when facing specific tasks. For example,373

in manual activation, Plan outperforms Reason374

by 4.48 on GSM8K, and Reflection outperforms375

External-Augmentation by 6.92 on HotpotQA.376

After MAAO, when the agent encounters specific377

complex mathematical reasoning tasks that cannot378

be solved directly through reasoning, it recognizes379

that direct reasoning may lead to incorrect answers380

and thus chooses to analyze the sub-problems in the381

question first, decompose the problem, and solve382

them individually, ultimately summarizing the an-383

swers. When the agent needs to retrieve knowl-384

edge from the external environment to solve certain385

tasks, it recognizes that directly obtaining knowl-386

edge from search engines may contain a lot of387

noise, and querying parametric knowledge (based388

on Critique LLM) may be more effective. Uni-389

Act, based on Llama-3-8B-Instruct, after ALAMA,390

is able to outperform the average performance of391

GPT-3.5-turbo on the Held-in task, fully demon-392

strating the effectiveness of our proposed learning393

method.394

Self-Adapt Consistency outperforms manual395

mechanism activation based Majority Voting.396

On GSM8K, the performance obtained by select-397

ing the majority answer from the different mech-398

anisms significantly surpasses the performance of399

all individual mechanisms as well as the average400

performance. We consider this as a strong base-401

line for the comprehensive utilization of multiple402

mechanisms. For fair comparison, we sample 5403

times for Self-Adapt consistency. It exceeds the404

above strong baseline by 2.35 and 9.4 on GSM8K405

and HotpotQA respectively, indicating that the fine-406

tuned UniAct possesses the ability to automatically407

activate different mechanisms. With the help of ran-408

dom sampling, UniAct activates the most effective409

task-specific mechanisms to generate diverse tra-410

Agent GSM8K (Acc)

Train on Distilled Data

FireActLlama-2-7B 56.1
LumosLlama-2-7B 54.9
HuskyLlama-2-8B 77.9
HuskyLlama-2-13B 79.4
HuskyLlama-3-8B 79.9

Train on Self-Exploration Data

UniActLlama-3-8B-SFT 78.77
UniActLlama-3-8B-DPO 80.52
UniActLlama-3-8B-KTO 82.18

Table 2: Fituning-based Language Agent performance.
The results of FireAct, Lumos and Husky are from (Kim
et al., 2024).

jectories, ultimately achieving better performance. 411

Automatic Mechanism Activation demonstrates 412

superior performance on Held-out tasks. Apart 413

from testing on the GSM8K and HotpotQA 414

datasets, we have also selected four held-out 415

datasets for evaluation. It is noteworthy that we 416

test the performance of held-out tasks under zero- 417

shot setting. On NumGLUE and SVAMP, UniAct 418

outperforms the best baselines by 3.95 and 2.3, 419

respectively. With the assistance of Self-Adapt 420

Consistency, UniAct surpasses 4.73 and 3.9, re- 421

spectively. Additionally, UniAct also outperforms 422

most baselines, including Average, on TriviaQA 423

and Bamboogle. This adequately demonstrates the 424

effectiveness and generalization of our proposed 425

method. 426

UniAct outperforms finetuning-based counter- 427

parts. FireAct (Chen et al., 2023), Lumos (Yin 428

et al., 2024b), and Husky (Kim et al., 2024) all 429

require fine-tuning using trajectories generated by 430

expert models. However, our UniAct surpasses 431

these three baselines merely by relying on self- 432

exploration for acquiring diverse trajectories as 433

shown in Table 2. Compared to Lumos and Husky, 434

the introduction of multiple mechanisms demon- 435

strates significant performance gains, which ade- 436

quately exemplifies the superiority of automatic 437

mechanism activation techniques. FireAct, on the 438

other hand, only discusses three mechanisms and 439

does not employ mechanism adaptability optimiza- 440

tion for learning, resulting in insufficient perfor- 441

mance. This indicates that introducing more mech- 442

anisms and explicitly learning mechanism activa- 443
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tion preferences under different tasks is crucial.444

In addition, we introduced a baseline based on445

DPO (Rafailov et al., 2023). For different trajec-446

tories of the same task, it selects those with a re-447

ward of 1 as positive examples and the remaining448

ones with rewards less than 1 as negative examples.449

These are then paired into multiple preference pairs450

for DPO training. This pairing approach leads to451

increased training costs. Implementation results452

demonstrate that fine-tuning using KTO yields bet-453

ter results, further highlighting the efficiency and454

superiority of our method.455

4 Analysis456

4.1 The Specificity of Different Mechanisms457

Reason Plan Memory Reflection External-Aug
0

20

40

60

80

100

30.4776 34.9507 34.4200 37.4526
29.1888

73.0857
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71.7968
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96.8916
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Figure 3: Specificity analysis results on GSM8K.
Reason, Plan, Memory, Reflection, Exter-Aug rep-
resents manual mechanism activation with one demon-
stration example. OLAMA represents oracle mechanism
activation, which means if there exists any mechanism
capable of addressing this task, it is deemed that the task
is solvable. Solved-by-All represents that correspond-
ing tasks could be solved by all mechanisms respectively.
And Residual represents performance gap between dif-
ferent mechanisms and Solved-by-All, which shows
the specificity.

We manually activate different mechanisms458

by constructing one in-context demonstration to459

prompt the LLM. As shown in Figure 3, only460

42.61% tasks could be solved by all mechanisms461

respectively. This result suggests that more than462

50% of tasks are of mechanism sensitivity. For463

instance, certain tasks require external knowledge,464

while others may encounter conflicts upon the in-465

troduction of such knowledge. Consequently, we466

believe that different tasks possess distinct under-467

lying solution structures. Moreover, the results468

from OLAMA demonstrate that the model has the469

capability to solve 96.89% of the tasks with the 470

aid of various mechanisms, highlighting that auto- 471

matic mechanism activation has a very high ceiling 472

performance. This suggests a significant potential 473

for identifying the inherent characteristics of tasks 474

and their solution structures. Our UniAct still falls 475

short of the performance ceiling, which anticipates 476

further optimization of the mechanism activation 477

methods. 478

4.2 The Effects of Mixing Different 479

Mechanism Data 480

Data Number Acc

IMAO

Reason original / aug 251 / 1300 25.47 / 36.01
Plan original / aug 264 / 1300 28.73 / 36.69
Memory original / aug 240 / 1300 37.23 / 43.29
Reflection original / aug 248 / 1300 47.08 / 46.63
External-Aug original / aug 254 / 1300 37.76 / 43.97

Full 1257 78.77

MAAO

Reason original 2403 81.43
Plan original 2396 79.00
Memory original 2390 78.77
Reflection original 2524 80.21
External-Aug original 1618 70.51

Full 7120 82.18

Table 3: The performance of training agent using differ-
ent parts of data. Number means the number of the data
used in training.

To investigate the impact of individual and 481

mixed mechanisms on the performance of the agent, 482

we divided UIMAO and UMAAO based on different 483

mechanisms. For UMAAO, we segmented it accord- 484

ing to the mechanisms activated by the positive 485

examples, and incorporated all negative examples 486

of the corresponding tasks into the training set. For 487

IMAO, we employed Meta-Llama-3-8B-Instruct as 488

the base model, whereas for MAAO, we utilized 489

UniActIMAO as the base model. 490

In IMAO, we observed that fine-tuning the 491

model using trajectories with a single mechanism 492

activated leads to underperformance, as the use 493

of original data does not effectively enhance the 494

agent’s performance under zero-shot setting. We 495

hypothesize that this may be due to insufficient 496

training data resulting from data segmentation. Af- 497

ter sampling more data corresponding to the spe- 498

cific mechanisms for further fine-tuning, it still 499

could not significantly improve the agent’s perfor- 500
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mance. These performances are shown as ’original’501

and ’aug’ in Table 3. This suggests that under502

single-mechanism activation setting, the quality of503

trajectories generated through self-exploration is504

insufficient for the agent to achieve performance505

comparable to In-cotext Learning, and it might506

require using expert-generated models to attain507

higher performance. Furthermore, we found that508

the performance using UIMAO for training far ex-509

ceeds that achieved with single-mechanism data,510

proving the superiority of mixed-mechanism data511

fine-tuning. In MAAO, the performance using mul-512

tiple mechanisms for fine-tuning also surpasses that513

using single-mechanism data. This indicates that514

the agent has mechanism preferences for different515

tasks, which aligns with the Residual performance516

presented in Figure 3. However, the performance517

gap between full data and partial data is not as pro-518

nounced in IMAO as it is in MAAO, suggesting519

that IMAO plays a more crucial role in the agent’s520

capability acquisition.521

5 Related Work522

5.1 Language Agent523

For better autonomous task accomplishment, the524

research community has designed many Language525

Agent Framework leveraging prompt engineering526

(Liu et al., 2021) and In-Context learning (Dong527

et al., 2023) to mimic the behavior of human, such528

as ReAct (Yao et al., 2023), Reflexion (Shinn et al.,529

2023), Multi-Agent Debate (Du et al., 2023; Liang530

et al., 2023), etc. These frameworks can orchestrate531

agent behaviors better but are labor-intensive and532

only work well for big foundation models which533

are usually opaque, proprietary, and API-based534

(OpenAI, 2022; Anthropic, 2023), impeding the535

research of inherent mechanisms.536

Adapting light-weight, open-sourced LLM to537

LA by imitation fine-tuning (IFT) (Ho et al., 2023;538

Zeng et al., 2023; Chen et al., 2023; Xu et al., 2024;539

Yin et al., 2024a; Wang et al., 2024a; Chen et al.,540

2024a; Yin et al., 2024b) is another stream of ef-541

fective technique. Trajectories with higher rewards542

are collected by reformatting the golden rationales543

(Anonymous, 2024) or distilling from the ChatGPT544

(OpenAI, 2022; Chen et al., 2023). These high-545

quality interactive experiences representing the wis-546

dom of humans or powerful LA endow smaller547

models with abilities of planning, reasoning, re-548

flection, etc. Nonetheless, all of these LAs are549

restricted by not exploring the task environments,550

disabling the interactive self-improvement. 551

Exploration fine-tuning (EFT) (Song et al., 2024; 552

Yang et al., 2024; Wang et al., 2024b) has gained 553

sufficient attention for its huge potential in recent 554

time. Basically, LA produces different trajecto- 555

ries (including success and failure) by thoroughly 556

exploring the environments to establish pair-wise 557

contrastive feedback, and then bias the base LA to- 558

wards higher-reward behaviors while distancing it 559

from lower-reward ones. This line of work suggests 560

a promising direction for LA self-improvement. 561

5.2 Self-evolution of Large Language Model 562

Self-evolution is crucial for enhancing Large Lan- 563

guage Models (Huang et al., 2023; Tao et al., 2024; 564

Lu et al., 2024). Techniques such as ReST (Gul- 565

cehre et al., 2023), self-rewarding (Yuan et al., 566

2024b), and self-play (Chen et al., 2024b) achieve 567

self-evolution through the iterative generation and 568

optimization. As LLMs evolve beyond human in- 569

telligence, acquiring more weakly supervised au- 570

tomatic feedback signals becomes necessary to fa- 571

cilitate their self-evolution (Burns et al., 2023; Cao 572

et al., 2024). The approach proposed in this paper 573

can be regarded as a method for the self-evolution 574

of Large Language Models. By endowing the 575

agent with different mechanisms, we expand the 576

model’s self-exploration space, thus obtaining di- 577

verse feedback signals that assist in the agent’s 578

evolution. Additionally, ALAMA can naturally ex- 579

tend to multi-round, transforming into a continual 580

evolution method. 581

6 Conclusion 582

In this paper, we propose Unify Agent Mechanisms 583

by Actions (UniAct), an LA to integrate different 584

agent mechanisms. We observed that numerous 585

tasks exhibit mechanism sensitivity; that is, some 586

mechanisms can effectively address the task, while 587

others cannot. Leveraging this observation as train- 588

ing signals, we propose the Automatic Language 589

Agent Mechanism Activation Learning with Self- 590

Exploration (ALAMA) to help the UniAct agent 591

recognize the potential solution structures of tasks 592

and activate corresponding mechanisms adaptively. 593

Extensive experiments demonstrate the effective- 594

ness and generalization of our proposed method. 595

Further analysis shows that increasing the num- 596

ber of mechanisms and integrating trajectory data 597

from different mechanisms are crucial for enhanc- 598

ing agent performance. 599
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Limitations600

In this paper, the discussion of automatic mech-601

anism activation is limited to the activation of a602

single mechanism and does not address the simulta-603

neous activation of multiple mechanisms. Activat-604

ing various mechanisms concurrently could offer605

additional benefits; however, it also increases the606

complexity of learning adaptive mechanism activa-607

tion. Therefore, we consider this an area for future608

work to be explored subsequently. Moreover, in609

Section 4.2, we discuss only the effects of full data610

and single-mechanism data, omitting the impact of611

mixing data from different mechanisms. The five612

mechanisms discussed in this paper could lead to613

25 possible combinations, and our limited compu-614

tational resources did not allow for the evaluation615

of all possibilities. We plan to incorporate these616

data in a formal version later for further discussion.617
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A Datasets1001

Dataset #Train #Test

GSM8K 7473 1319
NumGLUE 0 254
SVAMP 0 1000
HotpotQA 10000 500
TriviaQA 0 500
Bamboogle 0 125

Table 4: The statistic of data used in our experiments.

We use the train split of GSM8K and HotpotQA1002

for self-exploration and training. For HotpotQA,1003

we have filtered out questions that can be answered1004

with "yes" or "no", and then sample 10000 from1005

the train split. For HotpotQA and TriviaQA, we1006

have sampled 500 questiond from the dev split as a1007

the test set.1008

B Hyperparameters1009

IMAO

Key Value
epoch 4
batch size 8
learning rate 1e-6
learning rate scheduler cosine
warmup ratio 0.1

MAAO

Key Value
epoch 2
batch size 16
learning rate 1e-7
learning rate scheduler cosine
warmup ratio 0.1
λDnD
λUnU

4/3

Table 5: Caption

C Algorithm1010

D Prompt of UniAct1011

Algorithm 1 ALAMA: Adaptive Language Agent
Mechanism Activation with Self-Exploration

Require: M = {mi}5i=1; D = {di}5i=1; T =

{tj}|T |
j=1; LAθ

1: U ,R ← ∅ ▷ Initialize UniAct Trajectory and
Reward set

2: for i← 1 to 5 do ▷ Self-Exploration
3: for j ← 1 to T do
4: si,j , ri,j ← LAθ(di, tj)
5: ui,j ← UniActTrans(si,j)
6: U .append(ui,j),R.append(ri,j)
7: end for
8: end for
9: UIMAO,UMAAO-pos,UMAAO-neg ← ∅

▷ Initialize IMAO set and MAAO set
10: for j ← 1 to T do
11: if ∀i ∈ [1, 5], ri,j = 1 then
12: pass
13: else
14: for i← 1 to 5 do
15: if ri,j == 1 then
16: UMAAO-pos.append(ui,j)
17: else
18: UMAAO-neg.append(ui,j)
19: end if
20: end for
21: end if
22: end for
23: UIMAO ← UMAAO-pos
24: Update LAθ with Implicit Mechanism Activa-

tion Optimization LIMAO on UIMAO
25: Update LAθ with Mechanism Activation

Adaptability Optimization LMAAO on UMAAO
26: return LAfinal

13



system

You are an agent that has five important mechanisms for solving a problem: Reason, Plan, Augmenta-
tion, Reflection, Memory.
Reason: The agent will do reasoning to solve a problem step by step.
Plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the problem
Augmentation: Thea agent will interleave the reasoning and action to solve the problem. The action
will call the Calculator for more precise numerical calculation.
Reflection: After reasoning, the agent will reflect on the previous reasoning and corresponding answer
and get critic reviews. Based on the reviews, the agent will refine its reasoning and answer again.
Memory: The agent has a memory database of failed reasoning trajectories. For each question, the
agent will retrieve failed case from the memory as the reference to avoid such type of errors.
You can use these mechanisms to solve problems.
You have to think and solve the problem step-by-step with interleaving Thought, Action, Observation
steps.
Thought is your reasoning process.
Action could be:
−Make plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the
problem.
− Carry out plan: The agent will carry out the plan step by step to solve the problem.
− Reflect: The agent will reflect on the previous reasoning and corresponding answer and get critic
reviews. Based on the reviews, the agent will refine its reasoning and answer again.
− Retrieve memory: The agent will retrieve failed case from the memory as the reference to avoid such
type of errors.
− Calculate: The agent will call the Calculator for more precise numerical calculation. Using format:
Calculate[the expression]
− Finish: The agent will give the final answer.
Observation is the feedback from the environment.
The answer needs to be a number and cannot contain other characters.
Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

Table 6: System prompt of UniAct for Mathematical Reasoning.

Reason

Environment: Task: {task}
Agent: Thought: {thought} Action: Finish[{answer}]

Table 7: Reason format of UniAct for Mathematical Reasoning.
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Plan

Environment: Task: {task}
Agent: Thought: Devising a detailed plan before solving this problem may be helpful. Action: Make
plan
Environment: Observation: Let’s first understand the problem, extract relevant variables and their
corresponding numerals, and make a complete plan.
Agent: Thought: My plan: {plan} Action: Carry out plan
Environment: Observation: Let’s carry out the plan, calculate intermediate variables (pay attention to
correct numerical calculation and commonsense), solve the problem step by step.
Agent: Thought: {thought} Action: Finish[{answer}]

Table 8: Plan format of UniAct for Mathmetical Reasoning.

Memory

Environment: Task: {task}
Agent: Thought: Based on the give question, I will retrieve from my memory to get a similar question
and the corresponding wrong solution as the reference to avoid such type of errors and solve the given
problem step by step. Action: Retrieve memory
Environment: Observation: Case: {case}. Try to avoid such types of errors.
Agent: Thought: {thought} Action: Finish[{answer}]

Table 9: Memory format of UniAct for Mathematical Reasoning.

Reflection

Environment: Task: {task}
Agent: Thought: {pre thought} Action: Reflect
Environment: Observation: Reflection: {reflection} Based on the reflection reviews, please refine the
thought and action.
Agent: Thought: {post thought} Action: Finish[{answer}]

Table 10: Reflection format of UniAct for Mathematical Reasoning.

External Augmentation

Environment: Task: {task}
Agent: Thought: {thought} Action: Calculate[{expression}]
Environment: Observation: {result}
...
Agent: Thought: {thought} Action: Finish[{answer}]

Table 11: External Augmentation format of UniAct for Mathematical Reasoning.
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system

You are an agent that has five important mechanisms for solving a problem: Reason, Plan, Augmenta-
tion, Reflection, Memory.
Reason: The agent will do reasoning to solve a problem step by step.
Plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the problem
Augmentation: Thea agent will interleave the reasoning and action to solve the problem. The action
will call the Wikipedia Search for more precise knowledge.
Reflection: After reasoning, the agent will reflect on the previous reasoning and corresponding answer
and get critic reviews. Based on the reviews, the agent will refine its reasoning and answer again.
Memory: The agent has a memory database of failed reasoning trajectories. For each question, the
agent will retrieve failed case from the memory as the reference to avoid such type of errors.
You can use these mechanisms to solve problems.
You have to think and solve the problem step-by-step with interleaving Thought, Action, Observation
steps.
Thought is your reasoning process.
Action could be:
−Make plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the
problem.
− Carry out plan: The agent will carry out the plan step by step to solve the problem.
− Reflect: The agent will reflect on the previous reasoning and corresponding answer and get critic
reviews. Based on the reviews, the agent will refine its reasoning and answer again.
− Retrieve memory: The agent will retrieve failed case from the memory as the reference to avoid such
type of errors.
− Search, which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If
not, it will return some similar entities to search. Using format: Search[entity]
− Lookup, which returns the next sentence containing keyword in the current passage. Using format:
Lookup[keyword]
− Finish: The agent will give the final answer.
Observation is the feedback from the environment.
Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

Table 12: System prompt of UniAct for Knowledge-intensive Reasoning.

Reason

Environment: Task: {task}
Agent: Thought: {thought} Action: Finish[{answer}]

Table 13: Reason format of UniAct for Knowledge-intensive Reasoning.
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Plan

Environment: Task: {task}
Agent: Thought: Devising a detailed plan before solving this problem may be helpful. Action: Make
plan
Environment: Observation: Let’s first understand the problem, decompose the question if necessary,
and make a complete plan.
Agent: Thought: My plan: {plan} Action: Carry out plan
Environment: Observation: Let’s carry out the plan, get the intermediate answers explicitly step-by-
step, and integrate these evidences to get the final anwer.
Agent: Thought: {thought} Action: Finish[{answer}]

Table 14: Plan format of UniAct for Knowledge-intensive Reasoning.

Memory

Environment: Task: {task}
Agent: Thought: Based on the given question, I will retrieve from my memory to get a similar question
and the corresponding wrong solution as the reference to avoid such types of errors and solve the given
problem step by step. Action: Retrieve memory
Environment: Observation: Case: {case}. Try to avoid such types of errors.
Agent: Thought: {thought} Action: Finish[{answer}]

Table 15: Memory format of UniAct for Knowledge-intensive Reasoning.

Reflection

Environment: Task: {task}
Agent: Thought: {pre thought} Action: Reflect
Environment: Observation: Reflection: {reflection} Based on the reflection reviews, please refine the
thought and action.
Agent: Thought: {post thought} Action: Finish[{answer}]

Table 16: Reflection format of UniAct for Knowledge-intensive Reasoning.

External Augmentation

Environment: Task: {task}
Agent: Thought: {thought} Action: Search[{entity}] or Lookup[{keyword}]
Environment: Observation: {result}
...
Agent: Thought: {thought} Action: Finish[{answer}]

Table 17: External Augmentation format of UniAct for Knowledge-intensive Reasoning.
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