Adapt Language Agent to Different Tasks via Automatic Mechanism
Activation

Anonymous ACL submission

Abstract

Language Agent (LA) could be endowed with
different mechanisms for autonomous task ac-
complishment. Current LAs typically rely on
fixed mechanism or a set of mechanisms acti-
vated in a predefined order, limiting their adapt-
ability to varied potential task solution struc-
tures. To this end, this paper introduces Unify
agent mechanisms by Actions (UniAct), a uni-
fied agent that integrates different mechanisms.
Additionally, we propose Automatic Language
Agent Mechanism Activation Learning with
Self-Exploration (ALAMA), which focuses on
optimizing mechanism activation adaptability
without reliance on expert models. By lever-
aging self-generated UniAct trajectories with
different rewards, ALAMA enables the agent
to adaptively activate mechanisms that may re-
sult in high downstream task rewards based on
the potential characteristics of the task. Experi-
mental results demonstrate significant improve-
ments in downstream agent tasks, affirming
the effectiveness of our approach in facilitat-
ing more dynamic and context-sensitive mech-
anism activation.

1 Introduction

Language Agent (LA) (Sumers et al., 2024; Yao
et al., 2023; Xi et al., 2023; Gao et al., 2023) has
garnered considerable attention recently due to
the rapid progress of the Large Language Model
(LLM) (OpenAl, 2024; Al@Meta, 2024; Yang
et al., 2023; Chowdhery et al., 2022; Radford et al.,
2018). With labor-intensive strategic prompt de-
sign and in-context demonstration selection (Zhou
et al., 2024; Dong et al., 2023; Liu et al., 2021),
LLMs can be endowed with different mechanisms
to interact with the environment for task solving,
transforming them into LAs. Moreover, these LAs
could benefit from distinct mechanism activation
for various tasks with unique solution structures
(Zhou et al., 2024). For example, it could acti-
vate Reason (Wei et al., 2022) to arrive at the fi-

Vo Reason CoT
b . Munual Mechanism Activation
© Reflection = o= IO .
wmj} with In-context Demonstration Reflexion
; External- ReAct

TEY Augmentation
(a). Vanilla agent with fixed mechanism

Reason

;,,"t Plan

Automatic Mechanism Activation

2 Memory UniAct

T2
"Vg Reflection
v

External-
Augmentation
(b). UniAct with dynamic mechanism adaptation

Figure 1: Illustration of Language Agent with differ-
ent mechanisms. (a). Endow vanilla agent with fixed
mechanism by In-Context leanring. (b) UniAct could
automatically activate different mechanisms.

nal answer step-by-step, Plan (Zhou et al., 2023;
Wang et al., 2023a) to decompose the complex
task, Memory (Gao et al., 2024) to avoid common
errors, Reflection (Shinn et al., 2023; Madaan
et al., 2023) to get insightful refinement sugges-
tions, External Augmentation (Yao et al., 2023;
Schick et al., 2023) to ground the solution trajec-
tory with additional evidence.

Despite the success of prompt-based LAs with
manual mechanism activation, challenges remain,
particularly regarding the inaccessibility of weights
for research on agent ability acquisition (Yao et al.,
2023; Shinn et al., 2023). Consequently developing
open-sourced agents has become an urgent prior-
ity. However, current fine-tuned LAs typically rely
on fixed mechanisms or a set of mechanisms acti-
vated in a predefined order (Liu et al., 2023; Chen
et al., 2023; Song et al., 2024). This constraint im-
pedes their ability to adapt to task-specific solution
structures automatically in an open scenario. We
posit that activating the appropriate mechanisms

adaptively for each task can resolve different types
of tasks, and oracle mechanism activation could
lead to an improvement of over 15% compared
to fixed mechanism baselines (as shown in Sec-
tion 4.1). It demonstrates the high potential of
automatic mechanism activation, and we consider
Oracle Language Agent Mechanism Activation
(OLAMA) as the upper limit of the agent perfor-
mance.

Intuitively, when humans encounter new tasks,
they tend to explore by attempting various ap-
proaches. Upon facing similar tasks subsequently,
they select and employ the most effective ones iden-
tified from their previous experiences. Inspired
by this, this paper proposes Unify agent mecha-
nisms by Actions (UniAct), a unified agent that
integrates different mechanisms. Unfortunately,
activating different mechanisms automatically for
open-sourced LAs in a zero-shot setting has not
been thoroughly investigated. To approach the
OLAMA, this paper further proposes Automatic
Language Agent Mechanism Activation Learn-
ing with Self-Exploration (ALAMA), an optimiza-
tion method for mechanism activation adaptability
learning across various tasks.

Despite the extensive efforts devoted to agent
learning, current methodologies still exhibit sig-
nificant shortcomings. First, it requires a sub-
stantial number of high-quality trajectories dis-
tilled from proprietary models for effective imita-
tion, with unsuccessful ones often discarded (Zeng
et al., 2023; Chen et al., 2023), leading to elevated
training costs and a paucity of training signals.
Second, exploration-based methods use success-
failure pair data for behavior contrastive learning
(Song et al., 2024; Yuan et al., 2024a). But it is
training-inefficient to organize self-exploration tra-
jectories with different mechanism activated into
pair-wise format.

To address the aforementioned issues, our
ALAMA does not rely on expert models but utilizes
self-exploration for multiple times to get trajecto-
ries with different mechanism activated for learn-
ing. Under different manual mechanism activation,
the agent will generate different trajectories with
varying reward signals. The differences in rewards
across trajectories can aid the agent in learning to
adapt to different mechanism activation. Initially,
we manually activate various mechanisms to per-
form multiple self-exploration, generating diverse
solution trajectories for the same task. These trajec-
tories are then transformed into the UniAct format.

Next, we sample a small subset of positive trajecto-
ries to fine-tune the LA, imparting the fundamen-
tal interaction and instruction-following capabili-
ties to it. Finally, we employ the diverse positive
and negative trajectories obtained during the self-
exploration phase for behavior contrastive learning
with the KTO loss (Ethayarajh et al., 2024), en-
abling the LA to activate particular mechanism for
different tasks adaptively.

To validate the effectiveness of our proposed
method, we conducted extensive experiments
on mathematical reasoning (Cobbe et al., 2021;
Mishra et al., 2022; Patel et al., 2021) and
knowledge-intensive reasoning (Yang et al., 2018;
Joshi et al., 2017; Press et al., 2023) tasks. The
requirement for models to engage in multi-turn in-
teractions with external environments to receive
feedback makes these tasks suitable benchmarks
for automatic mechanism activation. ALAMA
achieved 6.28% improvement on GSMS8K and an
8.52% improvement on HotpotQA, and it also
demonstrated strong performance gains on held-
out datasets, highlighting the superiority of our
approach.

To summarize, this paper introduces UniAct to
unify different agent mechanisms, and ALAMA to
contrast different UniAct trajectories with different
mechanisms activated for effective agent mecha-
nism activation adaptability learning.

2 Method

We have selected five essential agent mechanisms
as the focus of our study: Reason, Plan, Memory,
Reflection, and External-Augmentation. The
implementation details for activating each mecha-
nism manually will be elaborated upon in the sec-
tion 3.1.

2.1 UniAct: Unify Agent Mechanisms by
Actions

Currently, React serves as the foundational frame-
work for LLM-based agents, employing the
Thought-Action-Observation format to govern
agent control. This format facilitates reason-
ing, action generation, and the acquisition of
feedback from external environments. Previous
frameworks did not fully integrate various agent
mechanisms within the React structure, or they
only implicitly incorporated individual mecha-
nisms into the reasoning process without an ex-
plicit trigger. To address these limitations, we

UniAct trajectories collection with Self-Exploration

Reason Traj.

Vol Plan Traj.
boe . .
b s Self-Exploration with

Y o — - - - - - —

* ' Manual Mechanism Activation

oY

Reflection Traij.

External-
Augmentation Traj.

[/
Implicit Mechanism /OQQ%)

[

Jj -
Activation Optimization l
Ty

UniAct_Reason Pos
UniAct_Plan Pos
UniAct_Memory Pos
UniAct_Reflection Pos

UniAct_Ext_Aug Pos

Memory Traj. ynify all mechanisms by Actions
= = == == == == == == =p Thought +

2

Finish

Make_plan, Carry_out_plan, Finish
Retrieve_memory, Finish

Reflect, Finish

Call_tool (Calculator, Wiki_search),

Finish
UniAct_Mech1 Pos
UniAct_Mech2 Pos Vi 1/ qt
UniAct Mech3 Neg Mechanism Activation /9% 3

UniAct_Mechd Neg Adaptability Optimization

A
28}
k- 4

UniAct_Mech5 Neg

Figure 2: The illustration of ALAMA process. The UniAct trajectories are collected by Self-Exploration with
manual mechanism activation. For tasks with mechanism sensitity, we use the corresponding positive trajectories for
Implicit Mechanism Activation Optimization, and utilize both positive and negative ones for Mechanism Activation

Adaptability Optimization.

propose UniAct, which explicitly integrates di-
verse agent mechanisms into a unified frame-
work. As depicted in upper right portion Fig-
ure 2, we define Plan, Memory, Reflection,
and External-Augmentation as distinct Actions,
with Reason serving as the Thought—the foun-
dational element that enables the agent to per-
form various tasks, albeit not defined as an action.
The outcomes of these actions are categorized as
Observations. Specifically, when the model acti-
vates a particular mechanism, it explicitly gener-
ates the corresponding actions. Furthermore, we
have adapted the external environment to not only
provide task-related feedback but also generate ap-
propriate prompt information to facilitate the acti-
vation of respective mechanisms. Lastly, a Finish
action is defined, which is initiated when the agent
concludes that the task has been completed. De-
tails regarding the action format and corresponding
grounding prompts are provided in Appendix D.
Though the other four incorporates reasoning pro-
cess, we still take Reason as a single mechanism,
which only has one action Finish.

2.2 ALAMA: Automatic Language Agent
Mechanism Activation with
Self-Exploration

Firstly, we leverage Self-Exploration with manual
mechanisms activation to explore diversity, aim-
ing to obtain different solution trajectories for the

same task. We then convert all trajectories into the
UniAct format. Subsequently, we employ Implicit
Mechanism Activation Optimization (IMAQ) for
training, enabling the model to follow the UniAct
format and automatically activate specific mecha-
nism under zero-shot setting. Finally, we utilize
Mechanism Activation Adaptability Optimization
(MAADO) to allow the agent to adaptively activate
the corresponding mechanism based on task char-
acteristics and its potential solution structures.

Self-Exploration We refer to the base Language
Agent with parameter 6 as LAy and all the mech-
anisms discussed in this paper as M = {m;}?_;.
As shown in the upper portion of Figure 2, for each
mechanism, we manually construct a trajectory d;
where only that specific mechanism m; is activated
to address the task. Given Tasks 7 = {t; }';;'1, we
manually activate different mechanisms by prompt-
ing with the corresponding in-context demonstra-
tion trajectory d; to get the exploration solution
trajectory s; ; and corresponding reward r; ;. And
then we transform all these trajectories into UniAct
format u; ;.

Si,jsTij = LAg(di, ;) ey
u; ; = UniActTransform(s; ;)

= (7'1,&1,01, e 7Om*1’Tm7a’m)i:j (2)

T, a, o represents thought, action, and observation,
respectively. Finally, we get all self-exploration

generated UniAct trajectories /.

U={U T = Huia Yooy, g ey @)

IMAO: Implicit Mechanism Activation Opti-
mization To endow the basic capability of follow-
ing the UniAct format under zero-shot setting and
automatic mechanism activation to perform various
tasks, we sample a portion of positive trajectories
U for supervised fine-tuning, which is shown in
the bottom left of Figure 2. To introduce implicit
preferences towards different mechanisms for dif-
ferent types of tasks , we exclusively select tasks
where 7 = 1 could not be achieved by all solutions
with different mechanisms activated. We then use
all trajectories with » = 1 corresponding to these
tasks as the training set Unvao0.-

The thoughts and actions are generated by LA,
while the observations are collected from the en-
vironments. So we only compute the next token
prediction loss on 7 and a, and mask the loss on o:

Livao(LAg) = Eyerppao — 10g P(ult) “)
= Euctippo — 108 P(am, T, - -+ a1, 71|t) (5)

m
e EUGMIMAO |: - Zlog P(Tk|0k_17 Ap—1,""* 7-[/-)
k=1

m
- Zlogp(ak|7k70k—la et (6)
k=1

MAAO: Mechanism Activation Adaptability
Optimization Across all the tasks, not every task
was solvable by all mechanisms respectively. As
shown in the bottom right of Figure 2, certain
tasks were successfully resolved by activating spe-
cific mechanisms, whereas they remained unsolved
when other mechanisms were activated. This high-
lights the benefit of adaptively activating specific
mechanisms to enhance the performance of the LA.
We categorize trajectories in Upyaao as positive
examples Uniaao-pos When they achieve a reward
of 1, and as negative examples Unvaa0-neg When
the reward is less than 1. In Implicit Mechanism
Activation Optimization, we use only a subset of
positive trajectories for SFT training and do not
consider all negative ones. In contrast, Mechanism
Activation Adaptability Optimization utilizes the
contrastive information between positive and neg-
ative examples to update the LA using KTO loss
(Ethayarajh et al., 2024). This approach enhances
the model’s capability for automatic mechanism
activation adaptively:

20 = Byretpyuno [KL(LAg (u'[t)) [[LArr(u'[t))]

(7
v(t, u) — (_1)1(u€MMAAo-pos))\pos/negX
LAg(ult) > >
o 20 — log ————2
<ﬁ (07 8 LArer(ult)
3
£MAAO (LA07 LAref) = EMGUMAAO [)\pos/neg — ’U(t7 u)]
©)
when u € UnaAO-pos (_1)]1(U€Z/{MAAO-pns) -1,

Apos/neg = Apos» and vice versa.
We summarize the process of ALAMA in Algo-
rithm 1.

2.3 Self-Adapt Consistency

We apply self-consistency (Wang et al., 2023b)
technique to UniAct. After IMAO and MAAO, it
is believed that the UniAct already possesses the
ability of automatic mechanism activation. Further-
more we argue that multi-path sampling will get
more trajectories with most suitable mechanisms
activated, and majority voting based on these an-
swers will lead to performance boost. We name
this ad-hoc prompting method as Self-Adapt Con-
sistency. It is worth noting that the difference lies
in that self-adapt consistency will automatically
try different mechanisms, whereas self-consistency
merely attempts various reasoning paths under a
fixed mechanism.

3 Experiment

3.1 Setup

Model We utilize GPT-3.5-turbo-0125 as the
closed-source model baseline, accessed through
the OpenAl API. We employ Meta-Llama3-8B-
Instruct as the backbone for UniAct to conduct
exploration, training, and testing. Self-reflection
(Huang et al., 2024) has been demonstrated to be
ineffective in correcting errors in model responses,
so we use Deepseek-V2 (DeepSeek-Al et al., 2024)
as the Critic Model to generate reflection thoughts
when the Reflection is activated.

Datasets We employ the GSMS8K (Cobbe et al.,
2021) and HotpotQA (Yang et al., 2018) as Held-in
tasks for exploration, training, and testing. Ad-
ditionally, we select NumGLUE (Mishra et al.,
2022), SVAMP (Patel et al., 2021), TriviaQA (Joshi
et al., 2017), and Bamboogle (Press et al., 2023) as

Mathematical Reasoning (Acc)

Knowledge-intensive Reasoning (EM)

Held-in Held-out Held-in Held-out

GSMSK NumGLUE SVAMP HotpotQA TriviaQA Bamboogle
GPT-3.5-turbo (one-shot Activation)
Reason 63.91 60.63 71.20 22.20 28.80 28.80
Plan 77.94 59.84 83.40 22.80 51.20 37.60
Memory 76.42 65.75 81.10 25.80 55.60 44.80
Reflection 79.38 66.14 86.10 30.80 60.80 41.60
External-Augmentation 70.66 70.47 79.00 22.20 44.00 30.40
Average 73.66 64.57 80.16 24.76 52.16 36.64
Majority Voting 82.25 66.54 86.30 28.40 56.00 41.60
Llama-3-8B-Instruct (one-shot Activation)
Reason 73.08 41.73 66.10 17.60 41.40 29.60
Plan 77.56 68.11 82.90 19.80 44.40 31.20
Memory 77.03 70.47 77.80 16.20 41.20 30.40
Reflection 80.06 74.40 85.90 26.00 55.80 37.60
External-Augmentation 71.80 61.02 75.80 15.80 38.60 20.80
Average 75.90 63.15 77.70 19.08 44.28 29.92
Majority Voting 82.71 70.87 85.50 21.60 48.60 37.60
UniAct
IMAO 78.77 72.83 83.30 24.00 40.40 27.20
IMAO + MAAO 82.18 78.35 88.20 27.60 43.60 32.80
Self-Adapt Consistency 85.06 79.13 89.80 31.00 49.40 36.80

Table 1: Performance of different methods. We use Accuracy and EM as metric for Mathematical Reasoning and

Knowledge-intensive Reasoning.

Held-out tasks to evaluate the generalization per-
formance of our method. For datasets with large
test sets, we perform downsampling. Furthermore,
to increase the difficulty of the test sets, we filter
out some relatively simpler data points in some
datasets. The dataset processing details and statis-
tics are described in the appendix A.

Baselines We manually construct one in-context
demonstration example to activate different mech-
anisms as baselines: (1) Reason: Directly obtain-
ing the answer through step-by-step reasoning. (2)
Plan: First understanding the task and develop-
ing a plan to decompose it into smaller, more
easily solvable sub-tasks, and then progressively
solving each sub-task to arrive at the final answer.
(3) Memory: Initially building a database of failed
examples. During each subsequent task execu-
tion, similar cases are retrieved from this database
based on task similarity (cosine of task embed-
ding), and the agent could try to avoid such type
of errors. (4) Reflection: Introducing a Critic
Model into the environment to reflect on the pre-
viously reasoned answers by the agent when nec-
essary. (5) External-Augmentation: Introduc-
ing task-specific toolkits for different tasks, such
as a calculator for mathematical reasoning or a
search engine for knowledge-intensive reasoning.

On top of these, we compute: (6) Average: The
average performance of different mechanism . (7)
Majority Voting: Selecting the most consistent
(Wang et al., 2023b) answer among the solutions
obtained by activating different mechanisms as the
final answer.

Training and Inference For LLMs training, we
employ TRL (von Werra et al., 2020) and Deep-
speed (Rasley et al., 2020) as the frameworks to
conduct full fine-tuning. Due to the limited avail-
ability of our computational resources, we utilize
Zero3+offload (Ren et al., 2021) during the fine-
tuning process. For additional hyperparameters,
please refer to the appendix B. For LLMs inference,
we utilize vllm (Kwon et al., 2023) for acceleration.

3.2 Main Results

Automatic mechanism activation outperforms
Manual Mechanim Activation. As shown in
Table 1, on the Held-in task, UniAct outper-
forms all single mechanism baselines, except for
Reflection, as well as the average performance
of different mechanism. We consider the average
as the bottom performance for introducing multiple
mechanisms. UniAct, surpasses Average by 2.87
on GSMB8K and 4.92 on HotpotQA, indicating that
UniAct has demonstrated the ability to automati-

cally activate different mechanisms based on the
task after IMAO.

Furthermore, UniAct, after MAAO, continues
to improve by 3.41 on GSMS8K and 3.60 on Hot-
potQA. This suggests that MAAO can enhance the
adaptability of the agent to potential solution struc-
tures of different tasks. Behavior contrastive learn-
ing during the training phase enables the model
to preferentially activate certain specific mecha-
nisms for different tasks while refusing to acti-
vate the remaining ones. More specifically, the
model learns about its own limitations through
this paradigm and learns how to avoid such lim-
itations when facing specific tasks. For example,
in manual activation, Plan outperforms Reason
by 4.48 on GSMS8K, and Reflection outperforms
External-Augmentation by 6.92 on HotpotQA.
After MAAO, when the agent encounters specific
complex mathematical reasoning tasks that cannot
be solved directly through reasoning, it recognizes
that direct reasoning may lead to incorrect answers
and thus chooses to analyze the sub-problems in the
question first, decompose the problem, and solve
them individually, ultimately summarizing the an-
swers. When the agent needs to retrieve knowl-
edge from the external environment to solve certain
tasks, it recognizes that directly obtaining knowl-
edge from search engines may contain a lot of
noise, and querying parametric knowledge (based
on Critique LLM) may be more effective. Uni-
Act, based on Llama-3-8B-Instruct, after ALAMA,
is able to outperform the average performance of
GPT-3.5-turbo on the Held-in task, fully demon-
strating the effectiveness of our proposed learning
method.

Self-Adapt Consistency outperforms manual
mechanism activation based Majority Voting.
On GSMBK, the performance obtained by select-
ing the majority answer from the different mech-
anisms significantly surpasses the performance of
all individual mechanisms as well as the average
performance. We consider this as a strong base-
line for the comprehensive utilization of multiple
mechanisms. For fair comparison, we sample 5
times for Self-Adapt consistency. It exceeds the
above strong baseline by 2.35 and 9.4 on GSM8K
and HotpotQA respectively, indicating that the fine-
tuned UniAct possesses the ability to automatically
activate different mechanisms. With the help of ran-
dom sampling, UniAct activates the most effective
task-specific mechanisms to generate diverse tra-

Agent GSMSK (Acc)
Train on Distilled Data

Fire Act] jama-2-7B 56.1
Lumosuama_z_m 549
HuSkyLlama—Z—SB 71.9
HusKy1 1ama-2-138 79.4
HUSkyLlama—3—8B 79.9
Train on Self-Exploration Data

UniActy ma-3-8B-SFT 78.77
UniActy 1ama-3-8B-DPO 80.52
UniActy jama-3-8B-KTO 82.18

Table 2: Fituning-based Language Agent performance.
The results of FireAct, Lumos and Husky are from (Kim
et al., 2024).

jectories, ultimately achieving better performance.

Automatic Mechanism Activation demonstrates
superior performance on Held-out tasks. Apart
from testing on the GSMS8SK and HotpotQA
datasets, we have also selected four held-out
datasets for evaluation. It is noteworthy that we
test the performance of held-out tasks under zero-
shot setting. On NumGLUE and SVAMP, UniAct
outperforms the best baselines by 3.95 and 2.3,
respectively. With the assistance of Self-Adapt
Consistency, UniAct surpasses 4.73 and 3.9, re-
spectively. Additionally, UniAct also outperforms
most baselines, including Average, on TriviaQA
and Bamboogle. This adequately demonstrates the
effectiveness and generalization of our proposed
method.

UniAct outperforms finetuning-based counter-
parts. FireAct (Chen et al., 2023), Lumos (Yin
et al., 2024b), and Husky (Kim et al., 2024) all
require fine-tuning using trajectories generated by
expert models. However, our UniAct surpasses
these three baselines merely by relying on self-
exploration for acquiring diverse trajectories as
shown in Table 2. Compared to Lumos and Husky,
the introduction of multiple mechanisms demon-
strates significant performance gains, which ade-
quately exemplifies the superiority of automatic
mechanism activation techniques. FireAct, on the
other hand, only discusses three mechanisms and
does not employ mechanism adaptability optimiza-
tion for learning, resulting in insufficient perfor-
mance. This indicates that introducing more mech-
anisms and explicitly learning mechanism activa-

tion preferences under different tasks is crucial.

In addition, we introduced a baseline based on
DPO (Rafailov et al., 2023). For different trajec-
tories of the same task, it selects those with a re-
ward of 1 as positive examples and the remaining
ones with rewards less than 1 as negative examples.
These are then paired into multiple preference pairs
for DPO training. This pairing approach leads to
increased training costs. Implementation results
demonstrate that fine-tuning using KTO yields bet-
ter results, further highlighting the efficiency and
superiority of our method.

4 Analysis

capability to solve 96.89% of the tasks with the
aid of various mechanisms, highlighting that auto-
matic mechanism activation has a very high ceiling
performance. This suggests a significant potential
for identifying the inherent characteristics of tasks
and their solution structures. Our UniAct still falls
short of the performance ceiling, which anticipates
further optimization of the mechanism activation
methods.

4.2 The Effects of Mixing Different
Mechanism Data

4.1 The Specificity of Different Mechanisms

1004
96.8916

80

Residual Solved-by-All OLAMA

80.0607
77.5588 77.0281

73.0857

71.7968

60 34.9507 37.4526

30.4776 34.4200

29.1888

42.6080
40

Reason Plan Memory Reflection External-Aug

Figure 3: Specificity analysis results on GSMS8K.
Reason, Plan, Memory, Reflection, Exter-Aug rep-
resents manual mechanism activation with one demon-
stration example. OLAMA represents oracle mechanism
activation, which means if there exists any mechanism
capable of addressing this task, it is deemed that the task
is solvable. Solved-by-All represents that correspond-
ing tasks could be solved by all mechanisms respectively.
And Residual represents performance gap between dif-
ferent mechanisms and Solved-by-All, which shows
the specificity.

We manually activate different mechanisms
by constructing one in-context demonstration to
prompt the LLM. As shown in Figure 3, only
42.61% tasks could be solved by all mechanisms
respectively. This result suggests that more than
50% of tasks are of mechanism sensitivity. For
instance, certain tasks require external knowledge,
while others may encounter conflicts upon the in-
troduction of such knowledge. Consequently, we
believe that different tasks possess distinct under-
lying solution structures. Moreover, the results
from OLAMA demonstrate that the model has the

Data Number Acc
IMAO

Reason original / aug 251/1300 25.47/36.01
Plan original / aug 264 /1300 28.73/36.69
Memory original / aug 240/1300 37.23/43.29
Reflection original / aug 248 /1300 47.08/46.63
External-Aug original / aug 254 /1300 37.76/43.97
Full 1257 78.77
MAAO

Reason original 2403 81.43
Plan original 2396 79.00
Memory original 2390 78.77
Reflection original 2524 80.21
External-Aug original 1618 70.51
Full 7120 82.18

Table 3: The performance of training agent using differ-
ent parts of data. Number means the number of the data
used in training.

To investigate the impact of individual and
mixed mechanisms on the performance of the agent,
we divided Upvao and Unmaao based on different
mechanisms. For Uyaao, we segmented it accord-
ing to the mechanisms activated by the positive
examples, and incorporated all negative examples
of the corresponding tasks into the training set. For
IMAO, we employed Meta-Llama-3-8B-Instruct as
the base model, whereas for MAAO, we utilized
UniActvao as the base model.

In IMAO, we observed that fine-tuning the
model using trajectories with a single mechanism
activated leads to underperformance, as the use
of original data does not effectively enhance the
agent’s performance under zero-shot setting. We
hypothesize that this may be due to insufficient
training data resulting from data segmentation. Af-
ter sampling more data corresponding to the spe-
cific mechanisms for further fine-tuning, it still
could not significantly improve the agent’s perfor-

mance. These performances are shown as ’original’
and ’aug’ in Table 3. This suggests that under
single-mechanism activation setting, the quality of
trajectories generated through self-exploration is
insufficient for the agent to achieve performance
comparable to In-cotext Learning, and it might
require using expert-generated models to attain
higher performance. Furthermore, we found that
the performance using Unvao for training far ex-
ceeds that achieved with single-mechanism data,
proving the superiority of mixed-mechanism data
fine-tuning. In MAAO, the performance using mul-
tiple mechanisms for fine-tuning also surpasses that
using single-mechanism data. This indicates that
the agent has mechanism preferences for different
tasks, which aligns with the Residual performance
presented in Figure 3. However, the performance
gap between full data and partial data is not as pro-
nounced in IMAO as it is in MAAO, suggesting
that IMAO plays a more crucial role in the agent’s
capability acquisition.

5 Related Work

5.1 Language Agent

For better autonomous task accomplishment, the
research community has designed many Language
Agent Framework leveraging prompt engineering
(Liu et al., 2021) and In-Context learning (Dong
et al., 2023) to mimic the behavior of human, such
as ReAct (Yao et al., 2023), Reflexion (Shinn et al.,
2023), Multi-Agent Debate (Du et al., 2023; Liang
etal., 2023), etc. These frameworks can orchestrate
agent behaviors better but are labor-intensive and
only work well for big foundation models which
are usually opaque, proprietary, and API-based
(OpenAl, 2022; Anthropic, 2023), impeding the
research of inherent mechanisms.

Adapting light-weight, open-sourced LLM to
LA by imitation fine-tuning (IFT) (Ho et al., 2023;
Zeng et al., 2023; Chen et al., 2023; Xu et al., 2024;
Yin et al., 2024a; Wang et al., 2024a; Chen et al.,
2024a; Yin et al., 2024b) is another stream of ef-
fective technique. Trajectories with higher rewards
are collected by reformatting the golden rationales
(Anonymous, 2024) or distilling from the ChatGPT
(OpenAl, 2022; Chen et al., 2023). These high-
quality interactive experiences representing the wis-
dom of humans or powerful LA endow smaller
models with abilities of planning, reasoning, re-
flection, etc. Nonetheless, all of these LAs are
restricted by not exploring the task environments,

disabling the interactive self-improvement.

Exploration fine-tuning (EFT) (Song et al., 2024;
Yang et al., 2024; Wang et al., 2024b) has gained
sufficient attention for its huge potential in recent
time. Basically, LA produces different trajecto-
ries (including success and failure) by thoroughly
exploring the environments to establish pair-wise
contrastive feedback, and then bias the base LA to-
wards higher-reward behaviors while distancing it
from lower-reward ones. This line of work suggests
a promising direction for LA self-improvement.

5.2 Self-evolution of Large Language Model

Self-evolution is crucial for enhancing Large Lan-
guage Models (Huang et al., 2023; Tao et al., 2024;
Lu et al., 2024). Techniques such as ReST (Gul-
cehre et al., 2023), self-rewarding (Yuan et al.,
2024b), and self-play (Chen et al., 2024b) achieve
self-evolution through the iterative generation and
optimization. As LLMs evolve beyond human in-
telligence, acquiring more weakly supervised au-
tomatic feedback signals becomes necessary to fa-
cilitate their self-evolution (Burns et al., 2023; Cao
et al., 2024). The approach proposed in this paper
can be regarded as a method for the self-evolution
of Large Language Models. By endowing the
agent with different mechanisms, we expand the
model’s self-exploration space, thus obtaining di-
verse feedback signals that assist in the agent’s
evolution. Additionally, ALAMA can naturally ex-
tend to multi-round, transforming into a continual
evolution method.

6 Conclusion

In this paper, we propose Unify Agent Mechanisms
by Actions (UniAct), an LA to integrate different
agent mechanisms. We observed that numerous
tasks exhibit mechanism sensitivity; that is, some
mechanisms can effectively address the task, while
others cannot. Leveraging this observation as train-
ing signals, we propose the Automatic Language
Agent Mechanism Activation Learning with Self-
Exploration (ALAMA) to help the UniAct agent
recognize the potential solution structures of tasks
and activate corresponding mechanisms adaptively.
Extensive experiments demonstrate the effective-
ness and generalization of our proposed method.
Further analysis shows that increasing the num-
ber of mechanisms and integrating trajectory data
from different mechanisms are crucial for enhanc-
ing agent performance.

Limitations

In this paper, the discussion of automatic mech-
anism activation is limited to the activation of a
single mechanism and does not address the simulta-
neous activation of multiple mechanisms. Activat-
ing various mechanisms concurrently could offer
additional benefits; however, it also increases the
complexity of learning adaptive mechanism activa-
tion. Therefore, we consider this an area for future
work to be explored subsequently. Moreover, in
Section 4.2, we discuss only the effects of full data
and single-mechanism data, omitting the impact of
mixing data from different mechanisms. The five
mechanisms discussed in this paper could lead to
25 possible combinations, and our limited compu-
tational resources did not allow for the evaluation
of all possibilities. We plan to incorporate these
data in a formal version later for further discussion.

References
Al@Meta. 2024. Llama 3 model card.

Anonymous. 2024. Samoyed: Towards generalized llm
agents via fine-tuning on 50000+ interaction trajecto-
ries.

Anthropic. 2023. Introducing claude.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner,
Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan
Leike, Ilya Sutskever, and Jeff Wu. 2023. Weak-to-
strong generalization: Eliciting strong capabilities
with weak supervision. Preprint, arXiv:2312.09390.

Boxi Cao, Keming Lu, Xinyu Lu, Jiawei Chen, Mengjie
Ren, Hao Xiang, Peilin Liu, Yaojie Lu, Ben He, Xian-
pei Han, Le Sun, Hongyu Lin, and Bowen Yu. 2024.
Towards scalable automated alignment of llms: A
survey. Preprint, arXiv:2406.01252.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fire-
act: Toward language agent fine-tuning. Preprint,
arXiv:2310.05915.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024a. Agent-flan: Designing data and
methods of effective agent tuning for large language
models. Preprint, arXiv:2403.12881.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024b. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. Preprint, arXiv:2401.01335.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,

Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. Preprint, arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

DeepSeek-Al, Aixin Liu, Bei Feng, Bin Wang, Bingx-
uan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li,
H. Zhang, Hanwei Xu, Hao Yang, Haowei Zhang,
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li,
Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Ji-
aqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie
Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang
Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia,
Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R.J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin
Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuip-
ing Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian
Pei, Tian Yuan, Tianyu Sun, W. L. Xiao, Wangding
Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xi-
anzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang,
Xiaojin Shen, Xiaokang Chen, Xiaosha Chen, Xiao-
tao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu,
Xin Xie, Xingkai Yu, Xinnan Song, Xinyi Zhou,
Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K.
Li, Y. X. Wei, Y. X. Zhu, Yanhong Xu, Yanping
Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Zheng, Yichao Zhang, Yiliang
Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang,
Yonggiang Guo, Yuchen Zhu, Yuduan Wang, Yuheng
Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.anthropic.com/news/introducing-claude
https://arxiv.org/abs/2312.09390
https://arxiv.org/abs/2312.09390
https://arxiv.org/abs/2312.09390
https://arxiv.org/abs/2312.09390
https://arxiv.org/abs/2312.09390
https://arxiv.org/abs/2406.01252
https://arxiv.org/abs/2406.01252
https://arxiv.org/abs/2406.01252
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2403.12881
https://arxiv.org/abs/2403.12881
https://arxiv.org/abs/2403.12881
https://arxiv.org/abs/2403.12881
https://arxiv.org/abs/2403.12881
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

You, Yuxuan Liu, Z. Z. Ren, Zehui Ren, Zhangli
Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie,
Zhewen Hao, Zhihong Shao, Zhiniu Wen, Zhipeng
Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui
Gu, Zilin Li, and Ziwei Xie. 2024. Deepseek-v2: A
strong, economical, and efficient mixture-of-experts
language model. Preprint, arXiv:2405.04434.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.
Preprint, arXiv:2301.00234.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2023. Improving
factuality and reasoning in language models through
multiagent debate. Preprint, arXiv:2305.14325.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto:
Model alignment as prospect theoretic optimization.
Preprint, arXiv:2402.01306.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao
Ding, Zhilun Zhou, Fengli Xu, and Yong Li. 2023.
Large language models empowered agent-based mod-
eling and simulation: A survey and perspectives.
Preprint, arXiv:2312.11970.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2024. Retrieval-augmented gener-
ation for large language models: A survey. Preprint,
arXiv:2312.10997.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
Preprint, arXiv:2308.08998.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14852—14882, Toronto, Canada.
Association for Computational Linguistics.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2023.
Large language models can self-improve. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

Jie Huang, Xinyun Chen, Swaroop Mishra,

Huaixiu Steven Zheng, Adams Wei Yu, Xiny-

ing Song, and Denny Zhou. 2024. Large language

models cannot self-correct reasoning yet. In The

Twelfth International Conference on Learning

Representations.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly

10

supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

Joongwon Kim, Bhargavi Paranjape, Tushar Khot, and
Hannaneh Hajishirzi. 2024. Husky: A unified,
open-source language agent for multi-step reason-
ing. Preprint, arXiv:2406.06469.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP
’23, page 611-626, New York, NY, USA. Association
for Computing Machinery.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
Preprint, arXiv:2107.13586.

Tengxiao Liu, Qipeng Guo, Yuqing Yang, Xiangkun
Hu, Yue Zhang, Xipeng Qiu, and Zheng Zhang. 2023.
Plan, verify and switch: Integrated reasoning with
diverse X-of-thoughts. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2807-2822, Singapore. As-
sociation for Computational Linguistics.

Jiangiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Qi Zhu, Fei Mi, Baojun Wang, Weichao Wang,
Xingshan Zeng, Lifeng Shang, Xin Jiang, and Qun
Liu. 2024. Self: Self-evolution with language feed-
back. Preprint, arXiv:2310.00533.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Sachdeva, Peter Clark, Chitta Baral, and
Ashwin Kalyan. 2022. Numglue: A suite of funda-
mental yet challenging mathematical reasoning tasks.
ACL.

OpenAl. 2022. Introducing chatgpt.

OpenAl. 2024. Hello gpt-4o.

https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2312.11970
https://arxiv.org/abs/2312.11970
https://arxiv.org/abs/2312.11970
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2308.08998
https://doi.org/10.18653/v1/2023.acl-long.830
https://openreview.net/forum?id=uuUQraD4XX
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://arxiv.org/abs/2406.06469
https://arxiv.org/abs/2406.06469
https://arxiv.org/abs/2406.06469
https://arxiv.org/abs/2406.06469
https://arxiv.org/abs/2406.06469
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://doi.org/10.18653/v1/2023.emnlp-main.169
https://doi.org/10.18653/v1/2023.emnlp-main.169
https://doi.org/10.18653/v1/2023.emnlp-main.169
https://arxiv.org/abs/2310.00533
https://arxiv.org/abs/2310.00533
https://arxiv.org/abs/2310.00533
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openai.com/index/hello-gpt-4o/

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687-5711, Singa-
pore. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your lan-

guage model is secretly a reward model. Preprint,
arXiv:2305.18290.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In Proceedings of the
26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’20,
page 3505-3506, New York, NY, USA. Association
for Computing Machinery.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-
Offload: Democratizing Billion-Scale model train-
ing. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 551-564. USENIX Associ-
ation.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural
Information Processing Systems.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization for 1lm
agents.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas Griffiths. 2024. Cognitive architectures
for language agents. Transactions on Machine Learn-
ing Research. Survey Certification.

11

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. 2024. A survey on
self-evolution of large language models. Preprint,
arXiv:2404.14387.

Leandro von Werra, Younes Belkada, Lewis Tun-
stall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. 2020. Trl: Trans-
former reinforcement learning. https://github.
com/huggingface/trl.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609-2634, Toronto,
Canada. Association for Computational Linguistics.

Renxi Wang, Haonan Li, Xudong Han, Yixuan Zhang,
and Timothy Baldwin. 2024a. Learning from
failure: Integrating negative examples when fine-
tuning large language models as agents. Preprint,
arXiv:2402.11651.

Ruiyi Wang, Haofei Yu, Wenxin Zhang, Zhengyang
Qi, Maarten Sap, Graham Neubig, Yonatan Bisk,
and Hao Zhu. 2024b. Sotopia-7: Interactive learn-
ing of socially intelligent language agents. Preprint,
arXiv:2403.08715.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. Preprint, arXiv:2309.07864.

Yiheng Xu, Hongjin SU, Chen Xing, Boyu Mi, Qian
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu,
Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Ling-
peng Kong, Bailin Wang, Caiming Xiong, and Tao
Yu. 2024. Lemur: Harmonizing natural language and
code for language agents. In The Twelfth Interna-
tional Conference on Learning Representations.

https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=1i6ZCvflQJ
https://arxiv.org/abs/2404.14387
https://arxiv.org/abs/2404.14387
https://arxiv.org/abs/2404.14387
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://arxiv.org/abs/2402.11651
https://arxiv.org/abs/2402.11651
https://arxiv.org/abs/2402.11651
https://arxiv.org/abs/2402.11651
https://arxiv.org/abs/2402.11651
https://arxiv.org/abs/2403.08715
https://arxiv.org/abs/2403.08715
https://arxiv.org/abs/2403.08715
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://openreview.net/forum?id=hNhwSmtXRh
https://openreview.net/forum?id=hNhwSmtXRh
https://openreview.net/forum?id=hNhwSmtXRh

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao,
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Ji-
aming Ji, Jian Xie, JunTao Dai, Kun Fang, Lei Su,
Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang
Wang, Mickel Liu, MingAn Lin, Nuolan Nie, Pei-
dong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li,
Tianyu Li, Wei Cheng, Weipeng Chen, Xiangrong
Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men,
Xin Yu, Xuehai Pan, Yanjun Shen, Yiding Wang,
Yiyu Li, Youxin Jiang, Yuchen Gao, Yupeng Zhang,
Zenan Zhou, and Zhiying Wu. 2023. Baichuan
2: Open large-scale language models. Preprint,
arXiv:2309.10305.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang,
and Yang Liu. 2024. React meets actre: When lan-
guage agents enjoy training data autonomy. Preprint,
arXiv:2403.14589.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024a. Agent lumos: Unified and
modular training for open-source language agents.
Preprint, arXiv:2311.05657.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024b. LUMOS: Towards language
agents that are unified, modular, and open source.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen
Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
2024a. Advancing llm reasoning generalists with
preference trees. Preprint, arXiv:2404.02078.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. 2024b. Self-rewarding language models.
Preprint, arXiv:2401.10020.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttun-
ing: Enabling generalized agent abilities for llms.
Preprint, arXiv:2310.12823.

12

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-
Tze Cheng, Quoc V. Le, Ed H. Chi, Denny Zhou,
Swaroop Mishra, and Huaixiu Steven Zheng. 2024.
Self-discover: Large language models self-compose
reasoning structures. Preprint, arXiv:2402.03620.

https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://arxiv.org/abs/2403.14589
https://arxiv.org/abs/2403.14589
https://arxiv.org/abs/2403.14589
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657
https://openreview.net/forum?id=VmnWoLbzCS
https://openreview.net/forum?id=VmnWoLbzCS
https://openreview.net/forum?id=VmnWoLbzCS
https://arxiv.org/abs/2404.02078
https://arxiv.org/abs/2404.02078
https://arxiv.org/abs/2404.02078
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://arxiv.org/abs/2402.03620
https://arxiv.org/abs/2402.03620
https://arxiv.org/abs/2402.03620

A Datasets

Dataset #Train #Test

GSMBK 7473 1319
NumGLUE 0 254

SVAMP 0 1000
HotpotQA 10000 500
TriviaQA 0 500

Bamboogle 0 125

Table 4: The statistic of data used in our experiments.

We use the train split of GSM8K and HotpotQA
for self-exploration and training. For HotpotQA,
we have filtered out questions that can be answered
with "yes" or "no", and then sample 10000 from
the train split. For HotpotQA and TriviaQA, we
have sampled 500 questiond from the dev split as a
the test set.

B Hyperparameters

IMAO

Key Value
epoch 4
batch size 8
learning rate le-6
learning rate scheduler cosine
warmup ratio 0.1
MAAO

Key Value
epoch 2
batch size 16
learning rate le-7
learning rate scheduler cosine
warmup ratio 0.1
2o0D 4/3
Auny

Table 5: Caption

C Algorithm
D Prompt of UniAct

13

Algorithm 1 ALAMA: Adaptive Language Agent
Mechanism Activation with Self-Exploration

Require: M = {m;}>_;; D = {d;}2_; T =

D A

{t; }L‘le ; LAg
U, R <+ (> Initialize UniAct Trajectory and
Reward set
fori < 1to5do > Self-Exploration
for j + 1to 7 do
SijsTig < LAg(di, tj)
u;j j < UniActTrans(s; ;)
U .append(u;), R.append(r; ;)
end for
end for
UMAO, UMAAO-pos; UMAAO-neg < 0
> Initialize IMAO set and MAAO set
for j « 1to 7 do
if Vi € [1, 5]77“1'7]' = 1 then
pass
else
for i+ 1to5do
if Tij == 1 then
UnaAO-pos-append(u; ;)
else
UMAAO-neg-append(u; ;)
end if
end for
end if

: end for

: Umnvao < UMAAO-pos
: Update LAy with Implicit Mechanism Activa-

tion Optimization Livao on Umnviao

: Update LAy with Mechanism Activation

Adaptability Optimization Lyaao on Uniaao

: return LAgna

system

You are an agent that has five important mechanisms for solving a problem: Reason, Plan, Augmenta-
tion, Reflection, Memory.

Reason: The agent will do reasoning to solve a problem step by step.

Plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the problem
Augmentation: Thea agent will interleave the reasoning and action to solve the problem. The action
will call the Calculator for more precise numerical calculation.

Reflection: After reasoning, the agent will reflect on the previous reasoning and corresponding answer
and get critic reviews. Based on the reviews, the agent will refine its reasoning and answer again.
Memory: The agent has a memory database of failed reasoning trajectories. For each question, the
agent will retrieve failed case from the memory as the reference to avoid such type of errors.

You can use these mechanisms to solve problems.

You have to think and solve the problem step-by-step with interleaving Thought, Action, Observation
steps.

Thought is your reasoning process.

Action could be:

— Make plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the
problem.

— Carry out plan: The agent will carry out the plan step by step to solve the problem.

— Reflect: The agent will reflect on the previous reasoning and corresponding answer and get critic
reviews. Based on the reviews, the agent will refine its reasoning and answer again.

— Retrieve memory: The agent will retrieve failed case from the memory as the reference to avoid such
type of errors.

— Calculate: The agent will call the Calculator for more precise numerical calculation. Using format:
Calculate[the expression]

— Finish: The agent will give the final answer.

Observation is the feedback from the environment.

The answer needs to be a number and cannot contain other characters.

Your response should use the following format:

Thought: <your thoughts>

Action: <your next action>

Table 6: System prompt of UniAct for Mathematical Reasoning.

Reason

Environment: Task: {task}
Agent: Thought: {thought} Action: Finish[{answer}]

Table 7: Reason format of UniAct for Mathematical Reasoning.

14

Plan

Environment: Task: {task}

Agent: Thought: Devising a detailed plan before solving this problem may be helpful. Action: Make
plan

Environment: Observation: Let’s first understand the problem, extract relevant variables and their
corresponding numerals, and make a complete plan.

Agent: Thought: My plan: {plan} Action: Carry out plan

Environment: Observation: Let’s carry out the plan, calculate intermediate variables (pay attention to
correct numerical calculation and commonsense), solve the problem step by step.

Agent: Thought: {thought} Action: Finish[{answer}]

Table 8: Plan format of UniAct for Mathmetical Reasoning.

Memory

Environment: Task: {task}

Agent: Thought: Based on the give question, I will retrieve from my memory to get a similar question
and the corresponding wrong solution as the reference to avoid such type of errors and solve the given
problem step by step. Action: Retrieve memory

Environment: Observation: Case: {case}. Try to avoid such types of errors.

Agent: Thought: {thought} Action: Finish[{answer}]

Table 9: Memory format of UniAct for Mathematical Reasoning.

Reflection

Environment: Task: {task}

Agent: Thought: {pre thought} Action: Reflect

Environment: Observation: Reflection: {reflection} Based on the reflection reviews, please refine the
thought and action.

Agent: Thought: {post thought} Action: Finish[{answer}]

Table 10: Reflection format of UniAct for Mathematical Reasoning.

External Augmentation

Environment: Task: {task}
Agent: Thought: {thought} Action: Calculate[{expression}]
Environment: Observation: {result}

Agent: Thought: {thought} Action: Finish[{answer}]

Table 11: External Augmentation format of UniAct for Mathematical Reasoning.

15

system

You are an agent that has five important mechanisms for solving a problem: Reason, Plan, Augmenta-
tion, Reflection, Memory.

Reason: The agent will do reasoning to solve a problem step by step.

Plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the problem
Augmentation: Thea agent will interleave the reasoning and action to solve the problem. The action
will call the Wikipedia Search for more precise knowledge.

Reflection: After reasoning, the agent will reflect on the previous reasoning and corresponding answer
and get critic reviews. Based on the reviews, the agent will refine its reasoning and answer again.
Memory: The agent has a memory database of failed reasoning trajectories. For each question, the
agent will retrieve failed case from the memory as the reference to avoid such type of errors.

You can use these mechanisms to solve problems.

You have to think and solve the problem step-by-step with interleaving Thought, Action, Observation
steps.

Thought is your reasoning process.

Action could be:

— Make plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the
problem.

— Carry out plan: The agent will carry out the plan step by step to solve the problem.

— Reflect: The agent will reflect on the previous reasoning and corresponding answer and get critic
reviews. Based on the reviews, the agent will refine its reasoning and answer again.

— Retrieve memory: The agent will retrieve failed case from the memory as the reference to avoid such
type of errors.

— Search, which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If
not, it will return some similar entities to search. Using format: Search[entity]

— Lookup, which returns the next sentence containing keyword in the current passage. Using format:
Lookup[keyword]

— Finish: The agent will give the final answer.

Observation is the feedback from the environment.

Your response should use the following format:

Thought: <your thoughts>

Action: <your next action>

Table 12: System prompt of UniAct for Knowledge-intensive Reasoning.

Reason

Environment: Task: {task}
Agent: Thought: {thought} Action: Finish[{answer}]

Table 13: Reason format of UniAct for Knowledge-intensive Reasoning.

16

Plan

Environment: Task: {task}

Agent: Thought: Devising a detailed plan before solving this problem may be helpful. Action: Make
plan

Environment: Observation: Let’s first understand the problem, decompose the question if necessary,
and make a complete plan.

Agent: Thought: My plan: {plan} Action: Carry out plan

Environment: Observation: Let’s carry out the plan, get the intermediate answers explicitly step-by-
step, and integrate these evidences to get the final anwer.

Agent: Thought: {thought} Action: Finish[{answer}]

Table 14: Plan format of UniAct for Knowledge-intensive Reasoning.

Memory

Environment: Task: {task}

Agent: Thought: Based on the given question, I will retrieve from my memory to get a similar question
and the corresponding wrong solution as the reference to avoid such types of errors and solve the given
problem step by step. Action: Retrieve memory

Environment: Observation: Case: {case}. Try to avoid such types of errors.

Agent: Thought: {thought} Action: Finish[{answer}]

Table 15: Memory format of UniAct for Knowledge-intensive Reasoning.

Reflection

Environment: Task: {task}

Agent: Thought: {pre thought} Action: Reflect

Environment: Observation: Reflection: {reflection} Based on the reflection reviews, please refine the
thought and action.

Agent: Thought: {post thought} Action: Finish[{answer}]

Table 16: Reflection format of UniAct for Knowledge-intensive Reasoning.

External Augmentation

Environment: Task: {task}
Agent: Thought: {thought} Action: Search[{entity}] or Lookup[{keyword}]
Environment: Observation: {result}

Agent: Thought: {thought} Action: Finish[{answer}]

Table 17: External Augmentation format of UniAct for Knowledge-intensive Reasoning.

17

	Introduction
	Method
	UniAct: Unify Agent Mechanisms by Actions
	ALAMA: Automatic Language Agent Mechanism Activation with Self-Exploration
	Self-Adapt Consistency

	Experiment
	Setup
	Main Results

	Analysis
	The Specificity of Different Mechanisms
	The Effects of Mixing Different Mechanism Data

	Related Work
	Language Agent
	Self-evolution of Large Language Model

	Conclusion
	Datasets
	Hyperparameters
	Algorithm
	Prompt of UniAct

