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Abstract001

Conceptual spaces represent entities and con-002
cepts using cognitively meaningful dimensions,003
typically referring to perceptual features. Such004
representations are widely used in cognitive005
science and have the potential to serve as a006
cornerstone for explainable AI. Unfortunately,007
they have proven notoriously difficult to learn,008
although recent LLMs appear to capture the009
required perceptual features to a remarkable ex-010
tent. Nonetheless, practical methods for extract-011
ing the corresponding conceptual spaces are012
currently still lacking. While various methods013
exist for extracting embeddings from LLMs,014
extracting conceptual spaces also requires us015
to encode the underlying features. In this pa-016
per, we propose a strategy in which features017
(e.g. sweetness) are encoded by embedding the018
description of a corresponding prototype (e.g.019
a very sweet food). To improve this strategy,020
we fine-tune the LLM to align the prototype021
embeddings with the corresponding conceptual022
space dimensions. Our empirical analysis finds023
this approach to be highly effective.024

1 Introduction025

Conceptual spaces (Gärdenfors, 2000) are geomet-026

ric representations of meaning, in which concrete027

entities are represented as vectors. Different from028

word embeddings in NLP, the dimensions of a con-029

ceptual space (typically) correspond to perceptual030

features. For instance, in a colour space, entities031

would be represented using three dimensions, cor-032

responding to their hue, saturation and intensity.033

Conceptual spaces are used in cognitive science034

as theoretical models to explain phenomena such035

as analogy (Osta-Vélez and Gärdenfors, 2024),036

non-monotonic reasoning (Osta-Vélez and Gärden-037

fors, 2022) and concept learning (Douven, 2023).038

Within AI, the use of conceptual spaces has been039

advocated as an interface between neural and sym-040

bolic representations (Aisbett and Gibbon, 2001).041

As such, they can play an important role in ex- 042

plainable AI, for instance to enable interpretable 043

classifiers (Derrac and Schockaert, 2015; Banaee 044

et al., 2018; Bidusa and Markovitch, 2025) and 045

computational creativity (McGregor et al., 2015). 046

In practice, however, these applications have been 047

hampered by the difficulty in learning conceptual 048

spaces. Within cognitive science, most work has 049

relied on spaces that are learned from human simi- 050

larity judgments, for instance to study perception 051

of colour (Douven et al., 2017), music (Forth et al., 052

2010), taste (Paradis, 2015) or smell (Jraissati and 053

Deroy, 2021). Clearly, however, such a solution is 054

not scalable enough for explainable AI. 055

A natural alternative is to try to construct con- 056

ceptual spaces using NLP models, such as word 057

embeddings or Large Language Models (LLMs). 058

In fact, even within cognitive science, researchers 059

have looked at NLP models as a promising route to 060

obtain conceptual spaces in a cheaper way (Moul- 061

lec and Douven, 2025). Starting from a pre-trained 062

embedding space, it is often indeed possible to 063

identify directions within that space that capture 064

meaningful ordinal properties (Gupta et al., 2015; 065

Derrac and Schockaert, 2015; Garí Soler and Apid- 066

ianaki, 2020; Grand et al., 2022; Erk and Apidi- 067

anaki, 2024). However, modelling perceptual fea- 068

tures with traditional models has proven more chal- 069

lenging. This is intuitively due to the fact that many 070

perceptual features are only rarely stated in text. 071

For instance, Paik et al. (2021) highlighted how 072

language models struggle with predicting colours, 073

due to a divergence between the typical colour of an 074

object and the distribution of co-occurring colour 075

terms (e.g. the phrase “green banana” being more 076

common than “yellow banana” in text). However, 077

recent LLMs have proven more capable at mod- 078

elling perceptual features, where promising results 079

have been reported for colour (Liu et al., 2022a; 080

Patel and Pavlick, 2022; Marjieh et al., 2024), taste 081

(Kumar et al., 2024; Marjieh et al., 2024), touch 082
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(Zhong et al., 2024a), smell (Zhong et al., 2024b)083

and sound (Marjieh et al., 2024), among others.084

One problem that is not addressed by these085

works is how to extract conceptual spaces from086

LLMs. For instance, Kumar et al. (2024) prompt087

LLMs to make pairwise judgments (e.g. which is088

sweeter, banana or cucumber?), which only allows089

us to rank the entities along some conceptual space090

dimensions, without capturing how much the en-091

tities differ. Using pairwise comparisons is also092

intractable when dealing with thousands of entities.093

Marjieh et al. (2024) use LLMs to make pairwise094

similarity judgments, which is again too inefficient095

for constructing conceptual spaces at scale.096

In a wider context, the problem of learning097

embeddings of text fragments using LLMs is098

well-studied (Reimers and Gurevych, 2019; Gao099

et al., 2021; Liu et al., 2021a; Wang et al., 2024;100

BehnamGhader et al., 2024; Lee et al., 2024). We101

therefore consider the following research question:102

is it possible to extract conceptual spaces directly103

from LLM-generated embeddings? Entity embed-104

dings can straightforwardly be obtained using stan-105

dard techniques. However, we also need to model106

the perceptual features. For instance, given an em-107

bedding emb(“banana”) of the word banana, how108

do we determine its level of sweetness? As already109

mentioned, previous work has shown that many110

features of interest can be modelled as directions111

in pre-trained embeddings. It is thus natural to112

assume that there exists a vector vsweet such that113

emb(“banana”) ·vsweet reflects the degree of sweet-114

ness of a banana. One possibility is to estimate115

this vector vsweet from labelled examples, but such116

data is not readily available for most domains. An-117

other possibility is to estimate the vector from seed118

words, i.e. examples of entities at both extremes of119

the ranking, but such directions can be unreliable,120

being highly sensitive to choice of seeds (Antoniak121

and Mimno, 2021; Erk and Apidianaki, 2024).122

In this paper, we consider a simple alterna-123

tive, which is to estimate the vector vf encod-124

ing some feature f as the description of a generic125

prototype. For instance, vsweet could be modelled126

as emb(“a very sweet food”). Unfortunately, with127

pre-trained LLM embedding models, the perfor-128

mance of this approach is sub-optimal, as the em-129

bedding of such a generic prototype description lies130

in a different subspace than the entities themselves131

(see Figure 1). We therefore propose a fine-tuning132

strategy, which encourages the embeddings of such133

descriptions to be aligned with the embeddings of134

Figure 1: Embeddings of entities and prototypes in
pre-trained LLM embedding models (top) and after fine-
tuning (bottom), showing the first two principal compo-
nents.

the corresponding entities. We find that a small 135

training set, synthetically generated using GPT-4o, 136

is sufficient to achieve state-of-the-art results. 137

2 Related Work 138

The problem of learning entity embeddings us- 139

ing language models has received considerable 140

attention, especially for bidirectional models of 141

the BERT family (Devlin et al., 2019). For in- 142

stance, a number of authors have proposed to rep- 143

resent entities by averaging the contextualised em- 144

beddings of their mentions in a corpus, using pre- 145

trained (Ethayarajh, 2019; Bommasani et al., 2020; 146

Vulić et al., 2020; Liu et al., 2021b) or fine-tuned 147

(Li et al., 2023b) language models. However, ap- 148

proaches that directly extract embeddings based 149

on the name of an entity have also been studied 150

(Vulić et al., 2021; Liu et al., 2021a; Gajbhiye 151

et al., 2022). Most relevant to our work, several 152

authors have focused on predicting semantic and 153

commonsense properties of concepts from their em- 154

beddings (Gajbhiye et al., 2022; Li et al., 2023b; 155

Rosenfeld and Erk, 2023). For instance, Chatter- 156

jee et al. (2023) evaluated a BERT encoder that 157

was fine-tuned to predict commonsense properties 158
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on the task of predicting taste dimensions such as159

sweetness, showing that their encoder was able to160

match the performance of GPT-3. Kumar et al.161

(2024) showed that a fine-tuned Llama 3 model162

is able to outperform BERT encoders. In this pa-163

per, we build on these results, aiming to extract164

embeddings from models such as Llama3, rather165

than using them for making pairwise judgments.166

Compared to encoder-only models such as167

BERT, it is somewhat less straightforward to use168

decoder-only LLMs for embedding text. However,169

in recent years, several successful strategies have170

been proposed for fine-tuning LLMs to become171

general-purpose text embedding models (Wang172

et al., 2024; BehnamGhader et al., 2024; Lee et al.,173

2024), with the Massive Text Embedding Bench-174

mark (Muennighoff et al., 2023) serving as a key175

driver. However, the focus of this benchmark is176

on sentence and paragraph level tasks, and little is177

currently known about the quality of LLM embed-178

ding models when it comes to representing entities.179

Our analysis in this paper partially addresses this180

gap, by comparing the quality of the conceptual181

space representations that are obtained by several182

recent models. LLMs can also be used to predict183

embeddings without fine-tuning. Jiang et al. (2024)184

suggested an Explicit One word Limitation (EOL)185

prompt, of the following form, for this purpose:186

“This sentence: [text] means in one word:”. We will187

also rely on prompts with this one-word limitation.188

3 Methodology189

Problem Formulation Let emb be an LLM-190

based embedding model, where we write emb(x) ∈191

Rn for the encoding of a phrase x. Let us further-192

more assume that a set of entities E is given which193

all belong to some natural category. For instance,194

the entities in E could represent different types195

of food (e.g. banana, roast chicken, cake). For196

an entity e, we write γ(e) for the verbalization of197

that entity, i.e. γ(e) is a phrase that describes e.198

The entity e can then be represented by its embed-199

ding emb(γ(e)). We are interested in modelling200

semantic features of the entities based on these201

embeddings, where our focus is on perceptual fea-202

tures such as the sweetness of a food item or the203

intensity of an odour. Let f be some real-valued204

feature, such that every entity e ∈ E has a cor-205

responding feature value f(e) ∈ R. We want to206

find an encoding τf : Rn → R of the feature207

f such that τf (emb(γ(e))) ∈ R corresponds to208

the feature value f(e). We want to find the en- 209

coding τf without any supervision, other than a 210

verbalization of the feature f , hence we cannot ex- 211

pect τf (emb(γ(e))) = f(e), as there is typically 212

no unique way to measure the degree to which a 213

perceptual feature is satisfied. Instead, we want 214

the rankings induced by the functions f(.) and 215

τf (emb(γ(.))) to be as similar as possible. 216

Embedding Entities We experiment with two 217

types of models: standard LLMs such as Llama-3 218

and pre-trained LLM-based embeddings models 219

such as E5. The latter models can directly be used 220

to obtain an embedding of γ(e). To obtain embed- 221

dings with standard LLMs, we use a variant of the 222

EOL trick from Jiang et al. (2024). Specifically, we 223

use the following prompt: 224

The description of the term ‘γ(e)’ in one word is 225

The embedding emb(γ(e)) is then defined as the 226

normalized encoding of the LLM for the last token. 227

To verbalize the entity e, we observed that adding 228

the name of the considered category leads to more 229

informative embeddings for most models. For in- 230

stance, we verbalize the entity banana as “food 231

item banana” rather than “banana”. This intuitively 232

helps with resolving some ambiguities (e.g. orange 233

as a fruit rather than a colour) and with specializ- 234

ing the embeddings to the domain of interest (e.g. 235

strawberry as an odour rather than a food). 236

Modelling Features A common approach for 237

modelling semantic features based on embeddings 238

is to fit a logistic regression model (or a linear 239

SVM) based on some training data. However, for 240

most perceptual features, such training data is not 241

readily available. Another common approach relies 242

on a few examples of seed words h1, ..., hp which 243

are known to have a high value for the considered 244

feature, and examples of seed words l1, ..., lq which 245

are known to have a low value. We can then esti- 246

mate a vector vf that models the considered feature 247

f based on this vectors, e.g.: 248

vf =
1

p

p∑
i=1

emb(γ(hi))−
1

q

q∑
i=1

emb(γ(li)) 249

and τf (e) = e ·vf . In principle, vf can then be es- 250

timated from just two seeds words (i.e. p = q = 1). 251

However, several authors have pointed out that this 252

approach can be unreliable (Antoniak and Mimno, 253

2021; Erk and Apidianaki, 2024). For instance, if 254

we have banana as the only example of a sweet 255
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food, then the resulting vector vsweetness might cap-256

ture the property of being yellow (in addition to, or257

instead of sweetness).258

We pursue a different strategy, estimating the259

vector vf by embedding a description γ(f) of the260

feature f . Gajbhiye et al. (2022) trained a BERT bi-261

encoder based on this idea. Specifically, they fine-262

tuned two different BERT models, one for encod-263

ing entities and one for encoding properties, using264

a large dataset of commonsense properties. With265

LLMs, this bi-encoder strategy is not practical, as it266

doubles the memory requirement compared to fine-267

tuning a single model. We therefore embed entities268

and features using the same model. However, we269

still need to ensure that the embeddings of entities270

and features are aligned, i.e. emb(γ(e))·emb(γ(f))271

should reflect the extent to which e has the feature272

f . To this end, we verbalize f as a generic descrip-273

tion of a prototypical entity with a high value for274

the feature f . For instance, we can choose:275

γ(sweetness) = “a very sweet food”276

However, as illustrated in Figure 1, the embeddings277

of such generic descriptions are not in the same278

subspace as those of the entities. We therefore add279

a fine-tuning step, as we explain next.280

Fine-tuning Strategy We fine-tune the embed-281

ding model emb to encourage the encoding of a282

generic property to be similar to the encoding283

of entities that have that property. For instance284

we want emb(“a tall mountain”) to be similar to285

emb(“Mount Everest”). To this end, we collected286

a small dataset using GPT-4o, consisting of infor-287

mation about 123 target properties. For each target288

property (e.g. long river), the dataset lists 7 exam-289

ples of entities which have this property (e.g. Nile,290

Amazon, Yangtze), as well as 4 negative properties,291

which the entities do not satisfy. Of these nega-292

tive properties, 3 are closely related to the target293

property (e.g. short river) and one is non-sensical294

for the considered entity type (e.g. small city when295

the entities are rivers).1 We encourage the target296

property embedding to be close to the centroid of297

the seven examples and further from the negative298

properties. Specifically, we fine-tune the LLM by299

minimizing the following classification loss:300

− log
exp

(
emb(γ(f0))·c

T

)
∑4

k=0 exp
(

emb(γ(fk))·c
T

)301

1Appendix B provides more details about the dataset.

where c is the centroid of entity embeddings, i.e., 302

c = 1
7

∑7
i=1 emb(γ(ei)), f0 is the target property, 303

and f1, . . . , f4 are negative properties, with T > 0 304

a temperature parameter. We write L1 for the aver- 305

age classification loss across all target properties. 306

Note that the fine-tuning process explained thus 307

far does not specifically focus on perceptual fea- 308

tures, nor on the fact that we use the embeddings 309

for ranking. Kumar et al. (2024) found that models 310

which were fine-tuned on perceptual features gen- 311

eralized well to other, previously unseen perceptual 312

features. As a secondary fine-tuning objective, we 313

therefore also include the following ranking loss: 314

σ (−α · yi · [(e1 − e2) · emb(γ(f))]) 315

where yi ∈ {−1,+1} indicates whether e1 should 316

rank above e2 with respect to feature f , α is a 317

scaling hyperparameter, e1 = emb(γ(e1)), e2 = 318

emb(γ(e2)), and σ denotes the sigmoid function. 319

We write L2 for the average ranking loss across 320

all entity pairs in our training set. The overall loss 321

is then simply given by L1 + λL2, where λ is a 322

hyperparameter. 323

4 Datasets 324

Following Kumar et al. (2024), we evaluate our 325

approach on the following datasets: 326

Taste: a dataset, originally created by Martin et al. 327

(2014), describing the taste of 590 food items, 328

in terms of the following quality dimensions: 329

sweetness, sourness, saltiness, bitterness, fat- 330

tiness and umaminess. This dataset was first 331

used for evaluating LLMs by Chatterjee et al. 332

(2023), who rephrased some of the properties 333

to make the more suitable for prompting. We 334

use their cleaned version of the dataset. 335

Rocks: a dataset, originally created by Nosofsky 336

et al. (2018), describing the physical appear- 337

ance of 30 types of rocks, in terms of the fol- 338

lowing dimensions: lightness of colour, aver- 339

age grain size, roughness, shininess, organisa- 340

tion, variability of colour and density . 341

Tag genome: a dataset with human ratings of the 342

extent to which a number of tags apply to 343

different movies and books. Kumar et al. 344

(2024) selected 38 tags for movies and 32 345

tags for books which can be viewed as ordi- 346

nal features, all corresponding to adjectives 347

(e.g. scary, quirky, suspenseful). The origi- 348

nal movie ratings were obtained by Vig et al. 349
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(2012), while the book ratings were obtained350

by Kotkov et al. (2022).351

Physical properties: a dataset focused on three352

physical properties: mass, size and height.353

The data was originally created by Standley354

et al. (2017) and Liu et al. (2022b). It was355

used to evaluate LLMs by Li et al. (2023a)356

and subsequently cleaned by Chatterjee et al.357

(2023), who removed 7 items.358

Wikidata: a dataset with 20 numerical features359

obtained from Wikidata, collected by Kumar360

et al. (2024) (e.g. the length of rivers, popula-361

tion of countries, and date of birth of people).362

We will furthermore experiment on the following363

datasets, which have not yet been considered for364

evaluating LLMs, to the best of our knowledge:365

Odour: a dataset of 200 odorants collected by366

Moss et al. (2016). A total of 103 partici-367

pants rated odorants across nine dimensions.368

The authors reported that the following four369

were the most useful as normative data: famil-370

iarity, intensity, pleasantness, and irritability.371

We therefore also focus on these dimensions.372

Music: a dataset of 364 music excerpts from differ-373

ent genres, collected by a panel of nine music374

experts (Strauss et al., 2024). The 517 partici-375

pants rated the excerpts based on the emotions376

they felt, using the following dimensions from377

the Geneva Emotion Music Scale (GEMS)378

(Zentner et al., 2008): wonder, transcendence,379

tenderness, nostalgia, peacefulness, energy,380

joyful activation, sadness and tension.381

5 Experiments382

We refer to our proposed approach as ProtoSim383

(Prototype Similarity).2 ProtoSim is clearly more384

practical than prompting LLMs to provide pairwise385

judgments, especially when large numbers of enti-386

ties need to be ranked. Our main research question387

is whether or not the increased convenience of Pro-388

toSim comes with a trade-off on performance.389

5.1 Experimental Setup390

Models We experiment with LLMs of differ-391

ent sizes and from different families: Llama3-8B392

(Dubey et al., 2024), Qwen3-8B and Qwen3-14B393

2All our code and preprocessed datasets will be shared
upon acceptance.

(Yang et al., 2025), Mistral-Nemo-12B, Mistral- 394

Small-24B, OLMo2-7B, OLMo2-13B (OLMo 395

et al., 2025) and Phi4-14B (Abdin et al., 2024). 396

We furthermore experiment with the follow- 397

ing pre-trained embedding models: E5-Mistral- 398

7B (Wang et al., 2024), LLM2Vec-Llama3- 399

8B, LLM2Vec-Llama3-8B-Sup, and LLM2Vec- 400

Mistral-7B (BehnamGhader et al., 2024). We eval- 401

uate all models in two settings. First, we fine-tune 402

the LLMs and pre-trained embedding models using 403

the strategy from Section 3 (ProtoSim). Second, 404

we fine-tune the LLMs as pairwise rankers, using 405

the methodology from Kumar et al. (2024). 406

Methodology We evaluate the following variants 407

of the fine-tuning strategy from Section 3. Pre- 408

trained: we use the model without any fine-tuning. 409

Classification: we only fine-tune the model with 410

the classification dataset that was collected from 411

GPT-4o (i.e. loss L1). Rank-perc: we only fine- 412

tune on the ranking datasets (i.e. loss L2). As 413

fine-tuning data, we use all perceptual datasets (i.e. 414

Taste, Rocks, Odour, Music), apart from the dataset 415

that is being evaluated. Rank-full: similar as be- 416

fore, but we fine-tune on all datasets (i.e. also on 417

Tag Genome, Physical Properties and Wikidata), 418

again excluding the dataset that is being evaluated. 419

Class + rank-perc: use both the Classification and 420

Rank-perc losses. Class + rank-full: use both the 421

Classification and Rank-full losses. For the pair- 422

wise approach, only the ranking datasets can be 423

used, i.e. Rank-perc and Rank-full. However, we 424

also report results for pre-trained models with pair- 425

wise few-shot prompting. The prompts we used for 426

this purpose are included in Appendix A. 427

Benchmarks The datasets discussed in Section 428

4 are used for both training and testing, using a 429

leave-one-out strategy. In particular, when testing 430

on a given dataset, we train on all the other datasets 431

in the case of rank-full (and all the other perceptual 432

datasets for rank-perc). Our experiments thus focus 433

on the ability of the models to generalize to differ- 434

ent domains than the ones they have seen during 435

training. The classification dataset is open-domain, 436

but this is a small dataset of 123 categories, which 437

is not focused on perceptual properties and does 438

not provide any information about ranking. 439

5.2 Results 440

Comparing Fine-tuning Strategies We first de- 441

termine the best fine-tuning strategy for each ap- 442

proach. For this analysis, we use Llama3-8B 443
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PROTOSIM (Llama3-8B)

Pre-trained 55.6 57.6 50.6 47.1 62.1 48.2 53.5
Classification 77.6 78.8 70.3 64.4 70.3 72.6 72.4
Rank-perc 77.9 75.3 56.5 55.9 68.5 63.2 66.2
Rank-full 73.2 70.6 53.2 51.2 63.8 72.1 64.0
Class + rank-perc 78.2 79.1 70.0 60.6 72.9 75.0 72.6
Class + rank-full 77.1 75.6 68.5 58.8 68.5 76.2 70.8

PROTOSIM (LLM2Vec-Llama3-8B-Sup)

Pre-trained 70.0 57.1 62.7 48.5 57.7 60.9 59.5
Classification 76.2 74.1 67.9 62.6 67.1 70.0 69.7
Rank-perc 75.0 76.8 58.2 55.3 64.7 70.9 66.8
Rank-full 72.6 72.9 55.9 51.8 58.2 70.3 63.6
Class + rank-perc 77.6 77.4 66.8 61.2 66.2 70.3 69.9
Class + rank-full 76.2 76.2 65.0 61.2 66.5 69.4 69.1

PAIRWISE APPROACH (Llama3-8B)

Few-shot 52.4 52.6 47.1 51.8 51.2 52.4 51.2
Rank-perc 55.3 62.9 56.8 55.3 52.1 57.4 56.6
Rank-full 79.7 71.5 62.7 62.1 63.5 72.1 68.6

Table 1: Comparison of different fine-tuning strategies
(accuracy % on pairwise comparisons). The best results
within each block are highlighted in bold.

(for the variants based on pre-trained LLMs) and444

LLM2Vec-Llama3-8B-Sup (for the variants based445

on pre-trained embedding models). The results are446

summarized in Table 1 for the Taste dataset. For447

ProtoSim with Llama3-8B, we can clearly see the448

effectiveness of the classification dataset, enabling449

an increase from 53.5% to 72.4%. Despite its small450

size, it successfully allow us to align the embed-451

ding space of the entities with the embedding space452

of the prototypes. Only fine-tuning on the rank-453

ing objective also helps, but it underperforms the454

classification approach. The Class + rank-perc ap-455

proach overall performs best, outperforming Clas-456

sification in four of the six dimensions. For Proto-457

Sim with LLM2Vec-Llama3-8B-Sup, the findings458

are broadly similar, with Class + rank-perc again459

performing best. For the remainder of the experi-460

ments, we will therefore fix Class + rank-perc as461

the fine-tuning strategy for the ProtoSim experi-462

ments. When it comes to the pairwise approach,463

Rank-full outperforms Rank-perc. In the following,464

we will thus fix Rank-full as the fine-tuning strategy465

for the experiments with the pairwise approach.466

Comparing Models Table 2 compares the per-467

formance of a number of different models, for each468

of the considered approaches. For this analysis,469

we still focus on the Taste dataset, and fix the fine-470
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PROTOSIM (LLMS)

Llama3-8B 78.2 79.1 70.0 60.6 72.9 75.0 72.7
Qwen3-8B 75.9 71.5 63.2 62.6 61.5 72.7 67.9
Qwen3-14B 74.7 70.3 66.2 60.6 63.4 72.4 67.9
Mistral-12B 76.8 72.9 70.9 64.1 64.4 75.9 70.8
Mistral-24B 77.9 76.2 70.3 59.1 62.7 74.7 70.2
OLMo2-7B 75.0 68.2 75.6 65.9 67.4 76.5 71.4
OLMo2-13B 76.8 70.0 69.1 63.8 56.5 74.7 68.5
Phi4-14B 75.9 69.4 67.4 61.5 65.0 76.8 69.3

PROTOSIM (FINE-TUNED EMBEDDING MODELS)

E5-Mistral-7B 74.7 77.1 64.4 62.4 62.9 75.6 69.5
LLM2Vec (Llama3) 76.5 76.2 65.3 60.6 66.8 72.4 69.6
LLM2Vec (Mistral) 71.5 74.7 62.4 65.0 70.3 72.4 69.4

PROTOSIM (PRE-TRAINED EMBEDDING MODELS)

E5-Mistral-7B 68.5 63.5 64.4 51.5 61.8 65.0 62.5
LLM2Vec (Llama3) 68.5 45.9 52.4 42.9 55.0 38.5 50.5
LLM2Vec (Mistral) 65.3 54.4 58.8 64.4 51.2 50.6 57.5

PAIRWISE APPROACH

Llama3-8B 79.7 71.5 62.6 62.1 63.5 72.1 68.6
Qwen3-8B 78.5 71.5 63.8 58.5 65.0 72.4 68.3
Qwen3-14B 79.7 73.5 61.5 55.9 64.7 77.6 68.8
Mistral-12B 79.4 73.8 67.6 56.5 63.5 72.4 68.9
Mistral-24B 76.8 77.4 66.2 67.6 67.4 75.9 71.9
OLMo2-7B 74.1 64.1 60.0 57.9 62.4 69.4 64.7
OLMo2-13B 79.4 71.8 62.4 64.4 64.7 70.6 68.9
Phi4-14B 75.6 68.2 60.9 57.1 70.6 69.1 66.9

ZERO-SHOT LLMS

GPT-4o 73.5 73.2 68.5 56.8 65.6 74.4 68.7
GPT-4.1 79.4 76.2 71.2 58.5 70.3 78.2 72.3

Table 2: Comparison of different models (accuracy %
on pairwise comparisons). The best results within each
block are highlighted in bold. ProtoSim results are
obtained with Class + rank-perc, results for the pair-
wise model are for Class + rank-full.

tuning strategies as explained above. For ProtoSim, 471

Llama3-8B achieves the best results for three di- 472

mensions, with OLMo2-7B for two dimensions 473

and Phi4-14B for one dimension. Surprisingly, 474

increasing model size does not seem to improve re- 475

sults. For instance, the performance of Qwen3-8B 476

and Qwen3-14B is almost identical, Mistral-12B 477

outperforms Mistral-24B, and OLMo2-7B outper- 478

forms OLMo2-13B (on average). ProtoSim can 479

be used with LLMs and with pre-trained embed- 480

ding models. We might expect that starting from 481

a model such as LLM2Vec would have some ad- 482

vantages, as the model has already been pre-trained 483

to generate embeddings. However, we found such 484

models to underperform Llama3-8B. When using 485

the pre-trained embedding models without any fine- 486
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PROTOSIM (LLMS)

Llama3-8B 79.7 62.6 60.3 64.7 59.4 68.2 78.8 42.6 62.9 72.6 64.4 53.5 61.2 69.7 60.0 66.5 60.0 63.2 60.0 64.7 63.8
Mistral-24B 79.7 70.6 58.8 64.1 55.9 60.3 77.3 64.7 60.0 74.4 66.2 53.8 62.6 69.1 58.8 65.9 60.3 60.9 65.0 63.2 64.6

PAIRWISE APPROACH

Llama3-8B 79.4 70.9 60.9 60.6 58.2 50.0 69.7 53.8 52.1 58.8 56.8 59.1 57.9 71.5 59.4 62.6 59.7 55.6 64.7 61.8 61.2
Mistral-24B 79.7 80.0 62.6 67.9 50.3 67.9 78.0 57.4 53.8 58.2 59.1 55.6 60.9 68.8 52.1 63.2 58.8 50.9 62.1 56.8 62.2

ZERO-SHOT LLMS

GPT-4o 59.7 75.6 55.9 63.2 65.0 52.4 69.7 58.5 48.5 58.8 51.2 50.6 63.8 66.5 51.8 72.1 59.4 62.9 55.0 60.6 60.1
GPT-4.1 80.6 77.6 68.5 67.1 56.2 61.5 84.8 58.5 53.2 72.1 62.4 54.7 61.8 75.3 62.9 75.0 65.6 63.8 60.6 64.7 66.3

Table 3: Comparison of different models (accuracy % on pairwise comparisons). The best overall results for each
quality dimension are highlighted in bold. ProtoSim results are obtained with Class + rank-perc, results for the
pairwise model are for Class + rank-full.
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PROTOSIM (LLMS)

Llama3-8B 65.6 68.6 71.1 61.6 75.3 58.4 78.3 68.4
Mistral-24B 66.0 71.6 72.5 58.0 66.9 53.6 65.7 64.9

PAIRWISE APPROACH

Llama3-8B 64.8 58.6 64.0 51.6 75.3 59.6 83.7 65.4
Mistral-24B 65.4 64.0 62.6 53.8 88.0 61.4 92.2 69.6

ZERO-SHOT LLMS

GPT-4o 68.0 79.2 67.4 61.1 92.2 50.0 85.5 71.9
GPT-4.1 81.0 89.4 72.1 67.1 98.2 64.5 97.0 81.3

Table 4: Comparison of different models (accuracy % on
pairwise comparisons). The best overall results for each
quality dimension are highlighted in bold. ProtoSim
results are obtained with Class + rank-perc, results
for the pairwise model are for Class + rank-full.

tuning, performance is substantially lower. In that487

case, we also see clear differences between E5 and488

the LLM2Vec models. However, after fine-tuning489

these differences disappear. When comparing Pro-490

toSim and the pairwise approach, their relative per-491

formance depends on the LLM which is used. The492

best results overall are obtained by ProtoSim with493

Llama3-8B. ProtoSim is also better when Mistral-494

12B, OLMo2-7B or Phi4-14B is used. Conversely,495

the pairwise approach is better for the Qwen mod-496

els, Mistral-24B and OLMo2-13B. Finally, we also497

report zero-shot results with GPT-4o and GPT-4.1498

Figure 2: Scatter plot showing the predicted sweetness
of a food item (X-axis) and the ground truth rating (Y-
axis).

in the table. We found GPT-4.1 to consistently im- 499

prove on GPT-4o, while performing slightly worse 500

than ProtoSim with Llama3-8B on average. 501

Evaluation on Different Domains We now an- 502

alyze the results on the other datasets. First, Ta- 503

ble 3 shows the results for the remaining percep- 504

tual datasets. As before, the ProtoSim models are 505

trained using Class + rank-perc and the pairwise 506

models using Class + rank-full, based on our find- 507

ings from Table 1. Based on the results from Ta- 508

ble 2 we focus this analysis on Llama3-8B (as the 509

7



best-performing model for ProtoSim and a repre-510

sentative smaller model) and Mistral-24B (as the511

best-performing model for the pairwise approach512

and a representative larger model). We find that513

ProtoSim outperforms the pairwise approach on av-514

erage, although there is some variation between the515

three considered domains: the pairwise approach516

with Mistral-24B outperforms ProtoSim on Rocks;517

ProtoSim outperforms the pairwise approach on518

Odour, especially for Mistral-24B; and both ap-519

proaches perform relatively similarly on Music,520

with ProtoSim being slightly better on average. We521

find that Mistral-24B outperforms Llama3-8B even522

for ProtoSim (especially for Odour), in contrast523

to our earlier findings on Taste. GPT-4.1 achieves524

the best results on Rocks and Music, but underper-525

forms ProtoSim with Mistral-24B on Odour.526

Table 4 summarizes the results for the non-527

perceptual datasets. ProtoSim outperforms the pair-528

wise approach on the Tag Genome dataset and,529

to a lesser extent, on Wikidata, but the pairwise530

approach performs better on Physical Properties.531

GPT-4.1 substantially outperforms the other meth-532

ods on Wikidata and Physical properties, which533

are the two datasets that involve factual numerical534

attributes. For Tag Genome, which involves subjec-535

tive labels, the performance of GPT-4.1 is more in536

line with ProtoSim and the pairwise approach.537

5.3 Analysis538

Predicting Degrees of Sweetness For the main539

experiments, we have only focused on ranking.540

However, in contrast to the pairwise approach, Pro-541

toSim associates a numerical score emb(γ(e)) ·542

emb(γ(f)) with every entity e and feature f , which543

we can interpret as the coordinate of a conceptual544

space dimension. As such, we can also use this545

method for predicting the degree to which an entity546

has some feature. We analyze this for the particular547

example of sweetness from the Food dataset. Fig-548

ure 2 compares the predicted sweetness score with549

the ground truth sweetness values (which were ob-550

tained as the average sweetness rating that was as-551

signed by all annotators). For this analysis, we have552

used the ProtoSim model with Llama3-8B (trained553

using class + rank-perc). The figure shows a ran-554

dom sample of 150 food items. The figure shows a555

clear correlation between the predicted and ground556

truth scores (Pearson correlation for the full set of557

590 food items: 0.752). In the bottom-left corner558

of the plot, we can see a large set of items which559

are considered to be clearly non-sweet, both by the560

human annotators and by the model. The items 561

that are rated to be sweetest by the human annota- 562

tors are all predicted to be sweet by the model as 563

well (with chestnut purée as an outlier). However, 564

food items with intermediate levels of sweetness 565

can be more challenging. For instance, coffee with 566

sugar is far less sweet than predicted by the model, 567

while cola soda and whole wheat bread with jam 568

are sweeter than predicted. 569

Qualitative Analysis To better understand which 570

kinds of features can be modelled using Proto- 571

Sim, we carried out a qualitative analysis using 572

a question-answering dataset about recipes (Zhang 573

et al., 2023). Each question specifies a preference 574

for a particular type of food (e.g. a quick breakfast 575

for a rushed school morning), and the task is to 576

select the most appropriate option among 5 listed 577

alternatives. We select the option whose embed- 578

ding is most similar to the stated preference. We 579

found that the model was generally ably to handle a 580

variety of commonsense properties (e.g. a toddler- 581

friendly fried snack for a birthday party). However, 582

we also noticed three key limitations: difficulties 583

with negative preferences, being overly sensitive to 584

lexical overlap, and sometimes focusing too much 585

on one aspect of the query. A detailed analysis can 586

be found in Appendix D. 587

6 Conclusions 588

We have shown that LLM embeddings can serve 589

as conceptual space representations of perceptual 590

features. While previous work had already shown 591

the potential of LLMs for modelling perceptual 592

features, this was based on pairwise comparison 593

prompts, which are not practical when representa- 594

tions for large numbers of entities are needed. To 595

model a given quality dimension (e.g. sweetness) 596

we obtain an LLM embedding of a corresponding 597

prototype description (e.g. “a sweet food”). The 598

main idea is that we can then simply compare this 599

embedding with the embeddings of the entities of 600

interest. However, we found this to perform poorly 601

with pre-trained LLMs (including LLM-based em- 602

bedding models), due to the fact that the embed- 603

dings of the prototype descriptions and the entities 604

are not aligned. To address this, we align the em- 605

beddings by fine-tuning the LLM on a small syn- 606

thetically generated dataset. After this alignment 607

step, we found the proposed strategy to be highly 608

effective, matching and often even surpassing the 609

performance of the pairwise approach. 610
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Limitations611

The problem of aligning vector spaces has been ex-612

tensively studied within the context of cross-lingual613

word embeddings (Mikolov et al., 2013; Xing et al.,614

2015; Artetxe et al., 2020). Such methods essen-615

tially learn a linear transformation to align two616

monolingual vector spaces. It is possible that a617

similar approach might be affective for aligning618

prototype and entity embedding spaces we well,619

which would mean that the fine-tuning step could620

be avoided. Apart from being more efficient (e.g.621

in terms of storing model parameters), this might622

also help to prevent any catastrophic forgetting. In-623

deed, in preliminary experiments, we found that624

increasing the size of the classification fine-tuning625

dataset led to reduced performance, but a further626

investigation of this strategy is left for future work.627

In our experiments, we have focused on ranking,628

rather than measuring the degree to which features629

are satisfied. We illustrated the potential of our630

model to predict degrees of sweetness, but a formal631

evaluation was left for future work. More gen-632

erally, conceptual spaces are commonly used for633

evaluating similarity. For instance, we expect that634

a learned conceptual space of taste, composed of635

the six considered taste dimensions, would allow636

us to estimate human similarity judgments more637

reliably than is possible with the original LLM638

embeddings. Note that the problem of estimating639

similarity judgments can also be related to the prob-640

lem of estimating causal inner products in LLM641

embeddings spaces (Park et al., 2024).642
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A Experimental Details 1015

Models Table 5 provides the details of the mod- 1016

els that were used in our experiments. Exper- 1017

iments with GPT-4o and GPT-4.1 were carried 1018

out using the OpenAI API3. We used versions 1019

gpt-4o-2024-11-20 and gpt-4.1-2025-04-14 1020

respectively. 1021

Fine-tuning Methodology To fine-tune the base 1022

models, we used the QLoRa method, which allows 1023

converting the floating-point 32 format to smaller 1024

data types. In particular, for all the models, we 1025

used 4-bit quantization for efficient training. In the 1026

QLoRa configuration, r (the rank of the low-rank 1027

matrix used in the adapters) was set to 32, α (the 1028

scaling factor for the learned weights) was set to 64, 1029

and dropout was set to 0.05. We applied QLoRa 1030

to all the linear layers of the models, including 1031

q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, 1032

down_proj, and lm_head. In all our experiments, 1033

the temperature parameter T was set to 0.25 for the 1034

classification loss, the scaling factor α was set to 1035

10, and λ was set to 0.25. 1036

Computing Infrastructure The fine-tuning ex- 1037

periments were conducted on a workstation 1038

equipped with an NVIDIA GeForce RTX 4090 1039

GPU with 24GB of VRAM. 1040

Prompts For the few-shot configuration in Ta- 1041

ble 1, we used the following prompt with three 1042

in-context demonstrations: 1043

The task is to answer questions that involve 1044
comparing perceptual features of two 1045
entities. Please answer with Yes or No only. 1046
In the worst case, if you do not know the 1047
answer then choose randomly between Yes and 1048
No. 1049

1050

3https://platform.openai.com
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Model Name Hugging Face URL License

Llama3-8B meta-llama/Meta-Llama-3-8B Llama 3
Qwen3-8B Qwen/Qwen3-8B Apache 2.0
Qwen3-14B Qwen/Qwen3-14B Apache 2.0
Mistral-Nemo-12B mistralai/Mistral-Nemo-Base-2407 Apache 2.0
Mistral-Small-24B mistralai/Mistral-Small-24B-Base-2501 Apache 2.0
OLMo2-7B allenai/OLMo-2-1124-7B Apache 2.0
OLMo2-13B allenai/OLMo-2-1124-13B Apache 2.0
Phi4-14B microsoft/phi-4 MIT

E5-Mistral-7B intfloat/e5-mistral-7b-instruct MIT
LLM2Vec-Llama3-8B McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp MIT
LLM2Vec-Llama3-8B-Sup McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised MIT
LLM2Vec-Mistral-7B McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp MIT

Table 5: Details of the models used in the experiments.

This question is about two surfaces: Is mirror1051
more reflective than still water surface?1052

Yes1053
This question is about two materials: Is silk1054

fabric more lustrous than polished metal?1055
No1056
This question is about two sounds: Is operatic1057

aria more melodious than car alarm?1058
Yes1059

We used the following prompt for the experiments1060

with GPT-4o and GPT-4.1:1061

Answer the following with Yes or No only. In the1062
worst case, if you don't know the answer1063

then choose randomly between Yes and No.1064

B Fine-tuning Dataset1065

The fine-tuning dataset for classification was syn-1066

thetically generated using GPT-4o. We provided a1067

few manually created examples and asked GPT-4o1068

to generate additional similar datapoints. Each dat-1069

apoint was manually checked, and GPT-4o was also1070

prompted to re-examine the datapoints it generated1071

as part of the quality assurance process. Multiple1072

prompts were used interactively to guide the model1073

in generating datapoints that cover diverse domains.1074

In total, 517 datapoints were generated; however,1075

we randomly selected 123 datapoints to be used1076

for fine-tuning, as the model was overfitting to this1077

dataset when the full set of 517 data points were1078

used. Table 6 shows some examples of data points1079

from the dataset.1080

C Evaluation Datasets1081

For Taste, Rocks, Tag Genome, Physical Properties1082

and Wikidata, we use the preprocessed datasets1083

from Kumar et al. (2024), which are available1084

from https://github.com/niteshroyal/1085

RankingUsingLLMs. For the Odour and Music1086

datasets, we obtained the datasets from the1087

Query: a quick breakfast for a rushed school morning.
Options:

1. Any cereal with milk
2. Eggs benedict - poached eggs, prosciutto on top of

English muffins topped with a creamy Hollandaise
sauce

3. Instant ramen with eggs, spinach and pickled cabbage
4. Breakfast pizza with sausage, cheddar, sour cream

and jalapenos
5. Classic salted french fries made of only potatoes

Figure 3: Example question from the recipe dataset.

original publications. In particular, the Odour 1088

dataset is available as supplemental data at 1089

https://www.frontiersin.org/journals/ 1090

psychology/articles/10.3389/fpsyg.2016. 1091

01267/full. The Music dataset is available from 1092

https://osf.io/7ptmd/. 1093

For the Taste, Rocks and Physical properties 1094

datasets, we could not find any information about 1095

licensing. The Tag Genome dataset was released 1096

under CC BY-NC 3.0. Wikidata is available under 1097

a CC0 license. The Odour dataset was released 1098

under a CC BY 4.0 license. 1099

D Qualitative Analysis 1100

The dataset from Zhang et al. (2023) contains 500 1101

multiple-choice questions, each with 5 alternatives. 1102

To evaluate our models, we first converted each 1103

question to a descriptive phrase (expressing the 1104

same preference as the original question) using 1105

GPT-4o. Figure 3 shows a problem instance from 1106

the resulting dataset. 1107

We first evaluated a number of LLMs on the 1108

original question answering benchmark, using a 1109

zero-shot prompt, achieving 91.4% accuracy with 1110

GPT-4o and 89.4% with Llama3-8B. This shows 1111

that, while many of the instances appear challeng- 1112
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Target Property Examples Negative Properties

long river Nile River, Amazon River, Yangtze River,
Yenisei River, Yellow River, Ob-Irtysh River,
Congo River

short river, polluted river, dry river,
small city

influential artist Pablo Picasso, Leonardo da Vinci, Vincent
van Gogh, Claude Monet, Michelangelo,
Rembrandt, Andy Warhol

unknown artist, amateur artist, un-
popular artist, dry river

loyal dog German Shepherd, Labrador Retriever,
Golden Retriever, Collie, Boxer, Beagle, Bull-
dog

independent dog, aloof dog, aggres-
sive dog, small city

energy efficient appliance LED Light Bulbs, Smart Thermostats, Energy
Star Refrigerators, Dual Flush Toilets, Solar
Panels, High-Efficiency Washers, Electric Ve-
hicles

high-energy consumption appliance,
inefficient lighting, old model refrig-
erators, mild spice

water sport Swimming, Water Polo, Diving, Synchro-
nized Swimming, Rowing, Canoeing, Surfing

land sport, winter sport, individual
sport, dry desert

transparent material Glass, Acrylic, Polycarbonate, Quartz Crys-
tal, Diamond, Clear Resin, Sapphire Crystal

opaque material, metallic material,
porous material, poisonous flower

rail transportation Train, Tram, Monorail, Subway, High-speed
Rail, Funicular, Light Rail

air transport, road transport, water
transport, ancient language

international law Geneva Conventions, United Nations Char-
ter, Hague Convention, UNCLOS, Treaty of
Rome, Kyoto Protocol, Vienna Convention

domestic law, criminal law, civil
law, ballroom dance

domesticated animal Dog, Cat, Horse, Cow, Sheep, Goat, Chicken wild animal, exotic animal, marine
animal, modern software architec-
ture

metaphysics philosophical branch Ontology, Cosmology, Theology, Epistemol-
ogy, Phenomenology, Existentialism, Dual-
ism

logic, ethics, aesthetics, binary
mathematical operation

acidic chemical compound Hydrochloric Acid, Sulfuric Acid, Acetic
Acid, Citric Acid, Nitric Acid, Phosphoric
Acid, Carbonic Acid

basic compound, neutral compound,
alkaline compound, military al-
liance

phonological linguistic phenomenon Assimilation, Elision, Lenition, Vowel Har-
mony, Consonant Mutation, Metathesis, As-
similation

syntactic phenomenon, semantic
phenomenon, morphological fea-
ture, freshwater ecosystem

Table 6: Examples from the fine-tuning dataset that was collected using GPT-4o.
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ing, LLMs are generally capable of identifying the1113

correct option. We then tested our Llama3-8B Pro-1114

toSim model (fine-tuned without the taste dataset),1115

as follows. We used the descriptive version of the1116

query as the verbalization of the property. The five1117

options are treated as the verbalization of entities.1118

We then simply predict the option whose embed-1119

ding is closest to the embedding of the query. The1120

accuracy of this approach was 67.6%.1121

Analyzing the results, we noticed that the model1122

generally performs well on commonsense prop-1123

erties. For instance, the following queries were1124

all answered correctly: (i) a quick breakfast for a1125

rushed school morning, (ii) a toddler-friendly fried1126

snack for a birthday party, (iii) diabetes-friendly1127

cookies. However, Tables 7, 8 and 9 illustrate three1128

types of common errors that are made by the model1129

(ProtoSim with Llama3-8B).1130

Table 7 shows examples where the model fo-1131

cuses too much on one particular aspect of the1132

specification. In the first example, the words post-1133

cardio and muscle lead the model to select the pro-1134

tein smoothie option, despite the fact that the de-1135

scription was asking for a snack. Similarly, in the1136

second example, the word antioxidants leads to the1137

model to the vitamin-rich smoothie, ignoring the1138

fact that the query was asking for a salad.1139

In Table 8, it is evident that the model is dis-1140

tracted by the lexical overlap between the query1141

and some of the options. In the first example, the1142

model selects an option that mentions brown rice,1143

which also occurs in the query, despite the fact that1144

the chosen option is not a dessert. Similarly, due to1145

significant lexical overlap with the final option, the1146

model fails to acknowledge the term green in the1147

second example. In the final example, the model1148

chose Low fat crab chowder made with imitation1149

crabmeat and different vegetables over the correct1150

option Lighter clam chowder with bacon and veg-1151

etables, made with milk instead of cream due to the1152

presence of the words low fat and chowder, which1153

also occur in the query.1154

Table 9 illustrates how the model struggles to1155

handle negative requirements, such as without cran-1156

berry sauce, non-greasy or lactose-free. Such neg-1157

ative requirements can be critically important for1158

recommendation systems (Wang et al., 2023), but1159

they are challenging to capture with embeddings.1160
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Table 7: Error analysis of the ProtoSim model. The table shows examples where the model focuses too much on
one particular aspect of the query. The incorrect option chosen by the model is highlighted in red.

Recipe Query ProtoSim response

post-cardio snacks 1.Fruit salad with peaches, blackberries, strawberries and lime
for lean muscle maintenance 2.Strawberry and banana protein smoothie

3.Classic chicken tenders - deep fried boneless chicken strips
4.Fragrant pilaf made from quinoa
5.Stir fried Japanese Shirataki noodles (low calorie noodles)

a salad rich with antioxidants. 1.Potato salad with extra virgin olive oil dressing
2.Vitamin-rich soup made with vegetables
3.Vitamin-rich smoothies made with cranberries, carrot, mango,
strawberries, and cantaloupe
4.Easy chicken legs made with Italian salad dressing
5.Caesar salad dressing recipe made from scratch using raw cashews

Table 8: Error analysis of the ProtoSim model. The table shows examples where the model relies too much on
lexical overlap. The incorrect option chosen by the model is highlighted in red.

Recipe Query ProtoSim response

a dessert made with brown rice 1. Blueberry crisp containing blueberries, brown rice, rice bran, and
walnuts
2. Long-grain white rice dish with onions
3.Jasmine rice cooked with coconut milk
4.Brown rice and mushrooms cooked with vegetable stock, olive oil,
and rice vinegar
5.Dessert treat made with butter, mini marshmallows, and Rice
Krispie cereal

a post-workout green smoothie 1.Garden veggie smoothie containing tomatoes, celery, parsley, and
spinach
2.Green chili made with bell peppers, beef stew meat, and chili
peppers
3.Pineapple smoothie containing buttermilk
4.Frittata containing onions, zucchini, squash, red peppers, broccoli,
and cauliflower
5.Berry post workout smoothie containing fresh raspberries straw-
berries, blueberries, and bananas

a low-fat clam chowder recipe 1.Lighter clam chowder with bacon and vegetables, made with milk
instead of cream
2.Low fat crab chowder made with imitation crabmeat and different
vegetables
3.Creamy linguine noodles with clams and onions
4.Clam chowder made with half-and-half cream
5.Clam chowder made with heavy whipping cream
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Table 9: Error analysis of the ProtoSim model. The table shows examples where the model fails to interpret negative
requirements. The incorrect option chosen by the model is highlighted in red.

Recipe Query ProtoSim response

grandma’s thanksgiving dinner 1. Roast turkey with plum sauce
without cranberry sauce 2. Roast turkey with sweet cranberry sauce

3.Baked chicken drumsticks in tomato sauce
4.Chinese style crispy roast duck with hoisin sauce
5.Classic seasoned roast beef with red pepper flakes

solid, non-greasy food 1.Toast with seasonings
for a severe hangover 2.Pizza margherita - basic pizza with tomato sauce and mozzarella

cheese
3.Hot dogs with hot pepper sauce and green chillies
4.Chickpea and mexican chilli soup
5.Miso based Shijimi clam broth for hangover prevention

a quick, lactose-free 1.Boiled oats made with water
breakfast recipe 2.Oats boiled in milk

3.Microwaved oatmeal in milk
4.Milk boiled oats with cheese and syrup
5.Enchiladas containing breakfast sausage, cheddar cheese, and a
variety of vegetables
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