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Abstract

We develop a theoretical framework for geometric deep learning that incorporates ambigu-
ous data in learning tasks. This framework uncovers deep connections between noncommu-
tative geometry and learning tasks. Namely, it turns out that learning tasks naturally arise
from groupoids, and vice versa. We also find that learning tasks are closely linked to the
geometry of its groupoid ∗-algebras. This point of view allows us to answer the question
of what actually constitutes a classification problem and link unsupervised learning tasks
to random walks on the second groupoid cohomology of its groupoid.

Keywords: Geometric Deep Learning, Noncommutative Geometry, Unsupervised Learn-
ing, Learning Tasks, Classification Problem, Ambiguous Data

1. Introduction

In this paper, we develop a theoretical framework for geometric deep learning that incor-
porates ambiguous data in learning tasks. Thinking of smoothly morphing an image into
another image or speech-to-text problems lets us conclude that real-world applications are
full of ambiguous data. As far as we could survey an approach that incorporates ambiguous
data does not exist yet. For this, we start studying the approaches from different areas
in mathematics that tackle classification problems. Naturally in these contexts, the study
of group actions arises as a model for classification problems. We start with studying ap-
proaches in the algebraic setting (Section 3). As an ex-curs into the application-driven deep
learning approach (Section 4) suggests to us, we continue further to the harmonic analysis
imprinted approaches (Section 5). We find out that in both the algebraic and the harmonic
analysis setting, the representation theory of the regular representation of the group algebra
plays a central role. By these investigations we discover a new class of functions, so-called
expected-to-be-invariant functions (Definition 8) which generalizes the notion of invariant
functions and seems better suited for applications. So far all classification problems were
induced by group action. In particular, we did not deal with ambiguous data yet. In Sec-
tion 6 we find out that we can capture the distribution of the data from the sample space
with respect to the group action via so-called Radon-Nikodym cocycles. After that, we
enter into the groupoid setting. Groupoids allow us to handle ambiguous data. According
to our previous observations in the algebraic and harmonic analysis setting, we focus on
groupoid algebra and its regular representation. For locally compact Hausdorff groupoid
with left Haar system, we introduce its twisted groupoid ∗-algebra following Renault (2006)
in Section 7. After these steps we are finally able to answer the question of what actually
constitutes a classification problem/learning task:
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Definition 13 A classification problem consists of a locally compact, Hausdorff groupoid
G with a left Haar system {λu}u∈G0 , and a normalized continuous T-valued 2-cocycle σ on
G. The space G0 is called sample space, and σ is called labeling.

This new viewpoint allows us to link unsupervised learning to random walks on the second
groupoid cohomology with values in T, the multiplicative group of complex numbers of
modulus 1.

2. Definitions and Notation

At first, we need to introduce a generic definition of a classification problem:

Definition 1 A classification problem C is a tuple (Ω, (Ωl)l∈L) consisting of a set Ω, so-
called sample space, and family (Ωl)l∈L of subsets of Ω such that

a) Ω =
⋃

l∈LΩl,

b)
⋃

l∈L′ Ωl ⊊ Ω for all L′ ⊊ L.

Thereby, a subset Ωl (l ∈ L) is called cluster and the index set L is called the set of classes
of C.

In this note, we will distinguish between two types of classification problems:

Definition 2 We call a classification problem C unambiguous if its clusters are pairwise
disjoint. Otherwise, we call it ambiguous.

Definition 3 A classification problem C is induced by a group action if there is a group G
acting on its sample-space Ω such that the clusters are given by the orbits of the G action.

Remark 4 For a classification problem C = (Ω, (Ωl)l∈L) induced by a group action G : Ω,
there is an one-to-one relation between the index set L and Ω/G (in the set-theoretical
sense).

Lemma 5 A classification problem induced by a group action is an unambiguous classifi-
cation problem, and vice versa.

3. Algebraic classifications

For all notions concering basic algebraic geometry and invariant theory we refer to Sha-
farevich and Reid (1994) and Kraft and Wiedemann (1985). For this section, we fix an
algebraically closed field K, and for n ∈ N let An denote the affine variety Kn. All algebraic
varieties in this section will be over K.

Let C = (Ω, (Ωl)l∈L) be a classification problem with an affine variety Ω as sample
space. Further assume that C is induced by an algebraic group G acting regular on Ω.
Then, the clusters are locally closed subsets of the sample space and we have an associated
unambiguous classification problem C̄ = (Ω, (Ω̄l)l∈L̄) where the clusters are induced by the
closure of the orbits. Regarding the classification problem in this setting, it is natural
to consider first the associated regular G-representation K[Ω] = {f : Ω → K | f is regular}
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given by (g.f)(ω) := f(g−1ω), g ∈ G, f ∈ K[Ω], ω ∈ Ω (Kraft and Wiedemann (1985)), then
the invariant ring K[Ω]G := {f ∈ K[Ω] : g.f = f for all g ∈ G} ⊆ K[Ω] and focusing on
the challenge to find (fi)i∈I ⊆ K[Ω] such that K[fi : i ∈ I] = K[Ω]G holds. To understand
the intuition why such a set of generators of the invariant ring is desirable assume that
I = {1, . . . ,m} for some m ∈ N. In such a case, one can consider the regular function
p : Ω → Am, ω 7→ (f1(ω), . . . , fm(ω)). This function detects the clusters of C̄, that is, for all
v, ω ∈ Ω we have: Gω = Gv iff p(ω) = p(v). More than detecting the orbit closures could
not have been expected in order not to violate the continuity requirements!

If we summarize, desirable properties would be, first, that I is finite and, second, that
these functions could be calculated effectively using a ‘simple’ formula or algorithm.

The first desirable property on finite generation does not hold for arbitrary groups.
There is a famous counterexample by Nagata (1959). Adding further assumptions on G,
namely to be linear reductive, releases more methods from representation theory of groups to
apply. In that way, the invariant ring occurs naturally as part of the isotypic decomposition
of the regular G-representation K[Ω] and one can conclude that the invariant ring is finitely
generated:

Theorem 6 (Hilbert (1890), Noether (1915), Hilbert (1933)) The invariant ring
respective to a linear reductive group is finitely generated.

Regarding the second desirable property, we would like to give a sketch of a constructive
proof for finite groups G and char(K) = 0 by following Noether (1915).

Proof We extend the regular G-representation to a representation of the group algebra of
G, denoted by K[G], in EndK (K[Ω]) induced by the K-algebra morphism

H : K[G] → EndK (K[Ω]) , α 7→

f 7→
∑
g∈G

α(g) · (g.f)

 .

We have im(H(α)) = K[Ω]G iff α ∈ K[G]G. The constant function 1 : G → K, h 7→ 1 is
idempotent and spans linear K[G]G = K.1. Since Ω is an affine variety, there is a projection
of K-algebras π : K[X1, . . . , Xn] → K[Ω]. For µ ∈ Nn define Xµ := Xµ1

1 · . . . · Xµn
n , and

|µ| :=
∑

i µi. Then K[Ω]G is generated by the Jµ := H(1)π(Xµ) for all µ ∈ Nn with
|µ| ≤ |G|.

4. Deep learning classifications

Definition 7 Let n ∈ N. For a subset X ⊆ Rn, we define c̄o(X) := {
∑m

i=1 αixi : xi ∈
X, m ∈ N,

∑m
i=1 αi ≤ 1, αi ≥ 0}.

After mathematical modeling, let C = (Ω, (Ωl)l∈L) denote the related classification prob-
lem with Ω ⊆ Rn compact, and |L| = p < ∞. Deep learning provides a computational
framework allowing us to find a map ν = (ν1, . . . , νp) given by the composition of N pre-
activation and activation functions, a so-called N -layer feedforward neural network that
‘solves C accurately’. Assume the soft-max score function Rp → c̄o(e1, . . . , ep) ⊆ Rp in the

3



Dönmez

(N − 1)-th layer, that is ν : Ω → c̄o(e1, . . . , ep), where e1, . . . , ep denote the canonical linear
basis of Rp. To formulate precisely, what ‘solving C accurately’ means, in fact, Ω must be
a probability space, the clusters measurable, and ν a measurable map!

A resulting ν is accepted by the majority as an accurate solution if E[νm | Ωl] = δmlel
holds for all m, l = 1, . . . , p, where E[. | .] denotes the conditional expectation, and δ.,. the
Kronecker delta. Roughly speaking, when ν solves C accurately we have ν−1

(
ν(ω)

)
≈ Ωl

for almost all ω ∈ Ωl, for each l ∈ L. In particular, νi is almost constant almost everywhere
on Ωl, for each l ∈ L, for all i = 1, . . . , p.

This consideration shows that when talking about classification, the distribution of
data cannot be ignored! In Section 3 the distribution of data was assumed to be uniformly
distributed implicitly which can be seen particularly well in the formula of the operator
1
|G| H(1) used in the proof of Theorem 6.

5. Classifications considering data distribution

For all notions concerning functional analysis we refer to Werner (2006), Köthe (1983). For
the sake of simplicity, let G be a compact group. Let L1(G) denote the space of measurable
functions on G that are integrable with respect to normalized Haar measure, where, as
usual, two such functions are identified if they are equal almost everywhere. The Banach
space L1(G) becomes a Banach algebra when equipped with the convolution product. We
shall require some concepts from the theory of Banach algebras, and refer to Bonsall and
Duncan (2012). If (Ω,F) is a measurable space (where F is a σ-algebra of subsets of Ω) and
Ω is a G-space, then (Ω,F) is a measurable G-space if the map (x, ω) 7→ x ·ω is measurable.
To keep it technically as simple as possible, you can think of F as a Borel σ-algebra induced
by a Fréchet topology.

Let Ω be a measurable G-space and P be a quasi-invariant probability measure on Ω.
For the measurable quotient of (Ω,F) by G, we write π : (Ω,F) → (Ω/G,F/G).

To understand this section as a continuation of the previous sections, here, we assume
that the decomposition of the sample space Ω into clusters is induced by an action of a
compact group G that respects the distribution P of the data.

As pointed out in Section 4, it is natural to consider neural networks as random variables.
Then the ‘almost constant almost everywhere on Ωl for each l ∈ L’ condition translates to
the requirement of minimal variance on the clusters.

When starting with an arbitrary random variable f ∈ L1(Ω,P) the canonical way to
minimize variances of f on the orbits is given by the conditional expectation with respect
to π. The conditional expectation with respect to the σ-algebra generated by π gives rise
to an almost sure unique, idempotent linear operator E[? | Ω/G] : L1(Ω,P) → L1(Ω,P).
By definition, for E[f | Ω/G] variances on the orbits are minimal, in fact, 0. So we find
a linear operator that transforms arbitrary (L1-)random variables to a class of universal
approximators (Rosenblatt (1958)), the source for functions of our interest as pointed out
in Section 3 and Section 4. Unfortunately, the class we end up in this way is given by
the simplest feedforward neural networks with just one hidden layer and Binary step as
activation function (Figure 1).

If µ is a measure on the measurable G-space Ω and g ∈ G, then the translate of µ by
g will be denoted by µg and is defined by µg(E) = µ(g−1 · E) for each measurable set E
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Figure 1: Conditional expectation of f with respect to different group actions G : Ω, G′ : Ω
(Wikimedia-Commons).

contained in Ω. Since P is assumed to be a quasi-invariant probability measure, L1(Ω,P)
is a Banach left L1(G)-module under the action of L1(G) defined via the Banach algebra
morphism

H : L1(G) → B(L1(Ω,P)), α 7→
(
ξ 7→

∫
G
α(g)P (g, ?)ξ(g−1· ?)dg

)
,

where B(L1(Ω,P)) denotes the bounded linear operators on L1(Ω,P) and P (g, ω) = (dPg/dP)(ω)
is the Radon-Nikodym derivative.

As you can see, we have for compact groups as for finite groups (in the proof of The-
orem 6) the regular representation of the group algebra of the compact group G. We can
derive this representation even for locally compact groups!

For compact G the idempotent function 1 : G → C, h 7→ 1 belongs to L1(G). Analog,
we end up with the projection H(1). This is an explicit description of the conditional
expectation E[? | Ω/G]!

If we compare the projection in the proof of Theorem 6 with this one we notice that the
formula basically differs in P . This discussion leads to the conclusion that the cocycle P
given by the Radon-Nikodym derivative captures the distribution of the data.

In the non-compact case, say the locally compact case, the constant function 1 is no
more available in the domain of H. But we can evaluate (L1)-random variables u of G with
expected value 1. They give rise to a new class of functions that are closely related to the
original classification problem:

Definition 8 Let G be a locally compact group, and E := {u ∈ L1(G) : E[u] = 1}. The
set of expected-to-be-invariant functions is defined as

⋃
u∈E im (H(u)) ⊆ L1(Ω,P).
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6. Motivation

Our considerations have shown that classification problems induced by group actions are
closely related to their associated regular representations of group algebras! Even the in-
variant ring naturally arises from the representation theory of the regular representation.

Unfortunately, the image of H(1) when defined is not well suited for applications since the
resulting functions are badly realizable in the application as demonstrated in the discussion.

As is all too often the case, the solution lies in the problem itself. Let us recall these
famous examples Figure 2. Or think of smoothly morphing an image into another image.
Thus one concludes that in applications the requirement of a disjoint decomposition of the
sample space into clusters is unrealistic. And if one thinks about it carefully it is also
the reason that the resulting functions E[f | Ω/G] of the conditional expectation operator
are badly realizable in applications. Namely, roughly speaking, the disjoint decomposition
causes the ‘jumps’ in the graph of E[f | Ω/G].

If one has finitely many classes, say |Ω/G| = p ∈ N, one could address this problem by
releasing the conditions that is one look at measurable functions π̃ : Ω → ∂c̄o(e1, . . . , ep)
related to the classification problem and consider the conditional expectation with respect
to π̃. As in the case of π, a disadvantage is that this operator does not respect the topo-
logical/geometric properties of the sample space. These properties of the sample space get
essentially lost.

(a) (b)

Figure 2: (a) 1888 German postcard: A famous ambiguous image, which can be perceived
either as a young girl or an old woman (Anonymous (1888)). (b) An example of
Rubin’s vase: A famous ambiguous image, which can be interpreted either as two
faces or a vase (Rubin (1915), Dilmen).
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6.1. Probability kernel

Let’s assume that the group action is free and have a closer look at the idempotent integral
operator H(1). For f ∈ L1(Ω,P), ω ∈ Ω we can rewrite:

H(1)(f)(ω) =

∫
G
P (g, ω)f(g−1 · ω)dg

=

∫
Ω
k(ω, v)f(v)dP(v),

where k : Ω× Ω → R is defined by

k(ω, v) =

{
P (g, ω) if ∃ g ∈ G : v = g−1ω,
0 else.

The cocycle over the G-action P can be interpreted as kind of probability property, that
is, k(ω, v) can be seen as the probability to decide w is related to a given v respectively
the occurrence of v. Further, H(1) is an idempotent operator, that is H(1)2 = H(1) and P
satisfies the cocycle identities

P (gh, ω) = P (h, g−1 · ω)P (g, ω), (‘local’)

P (e, ω) = 1 (g, h ∈ G, a.e. ω ∈ Ω) (‘normal’).

These properties translates to

k(ω, ω) = 1,

k(ω, v) =

∫
Ω
k(ω, z)k(z, v)dP(z)

for almost all ω, v ∈ Ω. In this way, we end up with an integral operator with respect to a
probability kernel that has a density with respect to P.

Thus, the ‘local’ and ‘normal’ properties are essential! Now, let’s tackle the problem of
disjoint clusters without violating the geometry/topology of the sample space. As pointed
out in Section 6 disjoint clusters make not so much sense in application-oriented problems.
In particular, considering a group action as a starting point of a classification problem makes
no sense. We have to switch to the more general notion of a groupoid!

7. Groupoids

For all notions concerning category theory and general topology we refer to MacLane (2012)
and Köthe (1983).

7.1. Definitions and Notation

A group can be understood as a symmetry transformation that relates an object isomor-
phically to itself (the symmetries of an object, for example, the isometries of a polyhedron),
while a groupoid is a collection of symmetry transformations acting between possibly more
than one object (nLab authors (2022)).
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Definition 9 A groupoid G is a small category in which every morphism is invertible. We
denote by G its set of morphisms, G0 its set of objects, s : G → G0, γ 7→ γ−1γ its source
map, and by r : G → G0, γ 7→ γγ−1 its range map.

Example 1 Let Q be an arbitrary quiver (see Definition in Appendix B.1). We double the
quiver Q by adding to each arrow α : x → y in Q an arrow α∗ : y → x and obtain the
doubled quiver Q̄. Requiring that the arrows α, α∗ are inverses of each other in the category
of paths PQ̄ (see Definition in Appendix B.1) for all α ∈ Qa gives rise to a groupoid GQ.

Remark 10 Let G be a groupoid. It induces the subset of composable morphisms G×s,rG ⊆
G × G and functions G ×s,r G → G, (γ, ω) 7→ γω, and G → G, γ 7→ γ−1. These data give rise
to a groupoid as Hahn (1978) defined (definition 1.1). And every groupoid in the sense of
Hahn (1978) (definition 1.1) gives rise to a groupoid as we defined.

Definition 11 A topological groupoid G is a groupoid where the set of morphisms G and
G0 are topological spaces, and all structure maps (source, range, composition, inverse) are
continuous maps. Thereby, G ×s,r G has the induced topology from G × G.

8. Twisted groupoid ∗-algebras

From now on, let G denote a topological groupoid whose topology is Hausdorff and locally
compact. We also assume that the topology of the groupoid is second countable. We now
recall the relevant notion from the cohomology theory for groupoids. For a detailed overview
see Renault (2006) Section I.1.

Definition 12 Let A be a topological abelian group with identity eA. A continuous A-valued
2-cocycle on G is a continuous map σ : G ×s,r G → A that satisfies the 2-cocycle identity:
σ(α, β)σ(αβ, γ) = σ(α, βγ)σ(β, γ) for all (α, β), (β, γ) ∈ G ×s,r G, and is called normalized
if σ(r(γ), γ) = σ(γ, s(γ)) = eA for all σ ∈ G. We write Z2(G, A) for the group of continuous
A-valued 2-cocycles on G.

We write T for the multiplicative group of complex numbers of modulus 1. As you can
suggest a σ ∈ Z2(G,T) will be the counterpart of the cocycle in Section 6. We rediscover
the ‘local’ and ‘normal’ properties in the definition of the normalized continuous T-valued
2-cocycles. For considering data distribution we need compatible measures. Therefore, we
refer to Renault (2006) for the definition of a left Haar system and quasi-invariant measure
in this setting. Bourbaki’s theory of integration on locally compact spaces is used (Bourbaki
(2013), Bourbaki).

We add to the prerequisites that G is a locally compact groupoid with left Haar system
{λu}u∈G0 . We revise our generic definition given at the beginning. The following definition
is one of the main achievements of this paper:

Definition 13 A classification problem consists of a locally compact, Hausdorff groupoid
G with a left Haar system {λu}u∈G0, and a normalized continuous T-valued 2-cocycle σ on
G. The space G0 is called sample space, and σ is called labeling.
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Remark 14 Definition 13 covers multi-label classification problems.
If the groupoid G of the classification problem is GQ for a quiver Q and the the map

Q1 ×s,r Q1 → Q0 × Q0, (β, α) 7→ (r(β), d(α)) is one-to-one where Q1 ×s,r Q1 ⊆ Q1 ×
Q1 denotes the subset of composable arrows. In that case, we would have a single-label
classification problem.

Under certain conditions, we can consider a spectroid S of the linearized groupoid KG
for some field K (see Gabriel and Roiter (1992) Section 8). In that case, the number of
labels relating the samples v, ω ∈ G0 to each other is dimRS(v, ω)/R2

S(v, ω), where RS
denotes the radical of S (see Gabriel and Roiter (1992) Section 3).

Let Cc(G) denote the locally convex space of complex-valued continuous functions with
compact support, endowed with the inductive limit topology (Jarchow (2012), Köthe (1983)).

For f, g ∈ Cc(G) define f∗g(α)
∫
f(αβ)g(β−1)σ(αβ, β−1)dλs(α)(β), f∗(α) = f(α−1)σ(α, α−1).

Under these operations, Cc(G) becomes a topological ∗-algebra (Renault (2006)).

Definition 15 This topological ∗-algebra is denoted by Cc(G, σ) and called the σ-twisted
groupoid ∗-algebra of G.

The ∗-algebras induced by cohomologous 2-cocycles induce isomorphic ∗-algebras.
These σ-twisted groupoid ∗-algebras are the equivalent counterparts of the ∗-algebras

raised in the previous settings. As pointed out before, its regular representation plays an
essential role regarding the original classification problem.

8.1. Regular representation - Intuitively

The σ-twisted groupoid ∗-algebra Cc(G, σ) operates on functions on the base G0. Let φ be
a function on G, and u a function on G0. Define

(Opφ)u(x) :=

∫
α:y→x

φ(α)σ(α, α−1)u(y)
(
...
)
.

Intuitively, if we think of the elements of G as ‘arrows’ on the base space G0, then this
integral tells us to look at all the arrows α going into a given point x ∈ G0, evaluate the
function u at the tail of each of those arrows, then move back to x and integrate over all
arrows α with ‘weight’ given by φ and labeling given by σ (Da Silva and Weinstein (1999)).

9. Outlook

The derivation of the Definition 13 suggests that further assumptions on G like ‘linear
reductivity’ are needed. This will release more methods from representation theory to
apply. Simple and indecomposable projective representations will play a central role.

Representation theory of quivers (with relations) can be used in developing and inves-
tigating models for classification problems.

The insight of Definition 13 allows us to link unsupervised learning to random walks
on the second groupoid cohomology with values in the multiplicative group of complex
numbers of modulus 1. Also (model) assumptions in form of Cayley graphs about the
second cohomology group are promising for new learning algorithms.

We assume that in applications G will also be a Lie groupoid. Existing investigations of
Lie groupoids could be used in this context.
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Appendix A. Equivariant functions

This section is an appendix for Section 3. As pointed out in Bronstein et al. (2021),
besides invariant functions also equivariant functions get into the focus of interest. Let
χ : G → Gm := Gl1(K) be a character of G, that is a group homomorphism. Then, we can
define

K[Ω]G,χ := {f ∈ K[Ω] : f(g.ω) = χ(g)f(ω) ∀g ∈ G, ω ∈ Ω},

and K[Ω]Gχ :=
⊕

n≥0K[Ω]G,χn
. By adjusting the sample-space to Ω× A1 and the action of

G to g.(ω, t) := (g.ω, χ(g−1)t), g ∈ G,ω ∈ Ω, t ∈ A1, we can realize K[Ω]Gχ as the invariant

ring of this adjusted action, that is, we have K[Ω× A1]G ≃ K[Ω]Gχ .

Appendix B. Regular representation of twisted groupoid ∗-algebras -
technically

At first, we need to recall basic notions for algebras, modules, and categories.
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Dönmez

B.1. Algebras, modules

In this section, we will follow closely Section 2 of Gabriel and Roiter (1992). Throughout
this section K denotes a fixed commutative ring.

Definition 16

i) A K-category is category A whose morphism sets, here denoted by Hom(X,Y ) or
A(X,Y ), are endowed with K-module structures such that the composition maps are
K-linear. A K-functor between K-categories A and B is a functor F : A → B whose
defining maps F (X,Y ) : A(X,Y ) → B(FX,FY ) are K-linear for all X,Y ∈ A.

ii) A K-category A is called svelte whose isomorphism classes will form a set.

iii) Let C be an arbitrary category. By KC we denote its linearization, that is the K-
category with same objects as C, and its morphism-spaces KC(X,Y ) are the free K-
modules with bases C(X,Y ).

Remark 17

i) Each K-algebra A gives rise to a svelte K-category which has one object Ω, and satisfies
Hom(Ω,Ω) = A. Each svelte K-category A gives rise to a K-algebra |A| in the obvious
way (unique up to isomorphism of K-algebras). In the sequel, we shall identify svelte
K-categories with associated K-algebras, and vice versa.

ii) A functor E : C → A of categories whose range is a K-category uniquely extends to a
K-functor F : KC → A.

Definition 18 (Gabriel (1972))

i) Let Q be a quiver, that is, a set of vertices connected by arrows as illustrated in
Figure 3. We denote by Qv the set of vertices of Q, by Qa the set of arrows. Thus we
have two maps, d, r : Qa → Qv which map an arrow α onto its domain d(α) and its
range r(α) (d(α) = x, r(α) = z in Figure 3).

ii) A quiver Q gives rise to the category of paths PQ whose set of objects is Qv, whereas
each morphism set PQ(x, y) consists of the paths with origin x and terminus y. The
composition is the juxtaposition of paths. We call the linearization KPQ of PQ the
K-category of paths of Q and simply denote by KQ.

The K-category of paths of Q will play an important role in the sequel.

Definition 19 A (left) module M over a K-category A is a covariant K-functor M : A →
K-Mod, where K-Mod denotes the K-category of K-modules.

Remark 20 If the K-category A is svelte, the modules over A and their morphism again
form a K-category which we denote by A-Mod.

12



On the Ambiguity in Classification

Figure 3: Example of quivers.

Example 2 (Representation of a quiver) A representation of a quiver Q over K con-
sists of K-modules V (x), one for each x ∈ Qv, and K-linear maps V (α) : V (x) → V (y),
one for each arrow (α : x → y) ∈ Qa. The maps x 7→ V (x) and α 7→ V (α) uniquely extend
to a K-functor KQ → K-Mod, which we still denote by V . Thus we identify representation
of Q with left modules over KQ. This identification also allows us to transfer the notion of
morphism from left modules to representations.

Lemma 21 There is an equivalence of K-categories, induced by the K-functor

| . | : KQ-Mod → |KQ|-Mod, V 7→
⊕
x∈Qv

V (x),

where |KQ|-Mod denotes the K-category of (left) modules over the path algebra of Q.

Proof A proof can be found for example in Assem et al. (2006).

B.2. Representation of σ-twisted groupoid algebras

The approach from Appendix B.1 will be transferred: The notion of a covariant functor
in Definition 19 will be replaced by the notion of a ‘twisted functor’. The role of the K-
categories will be taken over by ∗-algebras of groupoids and the base category K-Mod will
be substituted by the category of separable Hilbert spaces with unitary operators. Thus Re-
nault’s Disintegration Theorem (Renault, 2006, Theorem II.1.21) becomes the counterpart
of Lemma 21 in this setting.
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