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Abstract

In many problems, the measured variables (e.g.,
image pixels) are just mathematical functions of
the latent causal variables (e.g., the underlying
concepts or objects). For the purpose of mak-
ing predictions in changing environments or mak-
ing proper changes to the system, it is helpful to
recover the latent causal variables Zi and their
causal relations represented by graph GZ . This
problem has recently been known as causal rep-
resentation learning. This paper is concerned
with a general, completely nonparametric setting
of causal representation learning from multiple
distributions (arising from heterogeneous data
or nonstationary time series), without assuming
hard interventions behind distribution changes.
We aim to develop general solutions in this fun-
damental case; as a by product, this helps see
the unique benefit offered by other assumptions
such as parametric causal models or hard interven-
tions. We show that under the sparsity constraint
on the recovered graph over the latent variables
and suitable sufficient change conditions on the
causal influences, interestingly, one can recover
the moralized graph of the underlying directed
acyclic graph, and the recovered latent variables
and their relations are related to the underlying
causal model in a specific, nontrivial way. In
some cases, most latent variables can even be re-
covered up to component-wise transformations.
Experimental results verify our theoretical claims.

1. Introduction
Causal representation learning holds paramount significance
across numerous fields, offering insights into intricate rela-
tionships within datasets. Most traditional methodologies
(e.g., causal discovery) assume the observation of causal
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variables. This assumption, however reasonable, falls short
in complex scenarios involving indirect measurements, such
as electronic signals, image pixels, and linguistic tokens.
Moreover, there are usually changes on the causal mecha-
nisms in real-world, such as the heterogeneous or nonsta-
tionary data. Identifying the latent causal variables and their
structures together with the change of the causal mechanism
is in pressing need to understand the complicated real-world
causal process. This has been recently known as causal
representation learning (Schölkopf et al., 2021).

It is worth noting that identifying only the latent causal
variables but not the structure among them, is already a
considerable challenge. In the i.i.d. case, different latent
representations can explain the same observations equally
well, while not all of them are consistent with the true causal
process. For instance, nonlinear independent component
analysis (ICA), where a set of observed variables X is rep-
resented as a mixture of independent latent variables Z, i.e,
X = g(Z), is known to be unidentifiable without additional
assumptions (Comon, 1994). While being a strictly easier
task since there are no relations among latent variables, the
identifiability of nonlinear ICA often relies on conditions
on distributional assumptions (non-i.i.d. data) (Hyvärinen &
Morioka, 2016; 2017; Hyvärinen et al., 2019; Khemakhem
et al., 2020a; Sorrenson et al., 2020; Lachapelle et al., 2022;
Hälvä & Hyvärinen, 2020; Hälvä et al., 2021; Yao et al.,
2022) or specific functional constraints (Comon, 1994;
Hyvärinen & Pajunen, 1999; Taleb & Jutten, 1999; Buch-
holz et al., 2022; Zheng et al., 2022; Zheng & Zhang, 2023).

To generalize beyond the independent latent variables
and achieve causal representation learning (recovering
the latent variables and their causal structure), recent
advances either introduce additional experiments in the
forms of interventional or counterfactual data, or place
more restrictive parametric or graphical assumptions on
the latent causal model. For observational data, various
graphical conditions have been proposed together with
parametric assumptions such as linearity (Silva et al., 2006;
Cai et al., 2019; Xie et al., 2020; 2022; Adams et al., 2021;
Huang et al., 2022) and discreteness (Kivva et al., 2021).
For interventional data, single-node interventions have
been considered together with parametric assumptions (e.g.,
linearity) on the mixing function (Varici et al., 2023; Ahuja
et al., 2023; Buchholz et al., 2022) or also on the latent
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causal model (Squires et al., 2023). The nonparametric
settings for both the mixing function and causal model have
been explored by (Brehmer et al., 2022; von Kügelgen et al.,
2023; Jiang & Aragam, 2023) together with additional
assumptions on counterfactual views (Brehmer et al., 2022),
distinct paired interventions (von Kügelgen et al., 2023),
and graphical conditions (Jiang & Aragam, 2023).

Despite the exciting developments in the field, one funda-
mental question pertinent to causal representation learning
from multiple distributions remains unanswered–in the most
general situation, without assuming parametric models on
the data-generating process or the existence of hard interven-
tions in the data, what information of the latent variables and
the latent structure can be recovered? This paper attempts to
provide an answer to it, which, surprisingly, shows that each
latent variable can be recovered up to clearly defined inde-
terminacies. It suggests what we can achieve in the general
case and furthermore, what unique contribution the typical
assumptions that are currently made in causal representation
learning from multiple distributions make towards complete
identifiability of the latent variables (up to component-wise
transformations). This may make it possible to figure out
what minimal assumptions are needed to achieve complete
identifiability, given partial knowledge of the system.

Contributions. Concretely, as our contributions, we
show that under the sparsity constraint on the recovered
graph over the latent variables and suitable sufficient
change conditions on the causal influences, interestingly,
one can recover the moralized graph of the underlying
directed acyclic graph (Theorem 2), and the recovered latent
variables and their relations are related to the underlying
causal model in a specific, nontrivial way (Theorem 3)–each
latent variables is recovered as a function of itself and
its so-called intimate neighbors in the Markov network
implied by the true causal structure over the latent variables.
Depending on the properties of the true causal structure over
latent variables, the set of intimate neighbors might even
be empty, in which case the corresponding latent variables
can be recovered up to component-wise transformations
(Remark 1). Lastly, we show how the recovered moralized
graph relates to the underlying causal graph under new
relaxations of faithfulness assumption (Proposition 2).
Simulation studies verified our theoretical findings.

2. Problem Setting
Let X = (X1, . . . , Xd) be a d-dimensional vector that rep-
resents the observed variables (e.g., image pixels). We
assume that they are generated by n latent causal vari-
ables Z = (Z1, . . . , Zn) via a nonlinear mixing function
g : Rn → Rd (d ≥ n), which is a C2-diffeomorphism onto
its image X ⊆ Rd. Furthermore, the variables Zi’s are as-
sumed to follow a structural equation model (SEM) (Pearl,
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Figure 1: The generating process for each latent causal
variable Zi changes, governed by a latent factor θi. The
observed variables X are generated by X = g(Z) with a
nonlinear mixing function g.

2000). Putting them together, the underlying data generating
process can be written as

X = g(Z)︸ ︷︷ ︸
Nonlinear mixing

, Zi = fi(PA(Zi), ϵi; θi), i = 1, . . . , n︸ ︷︷ ︸
Latent SEM

.

(1)
where PA(Zi) denotes the parents of variable Zi, ϵi’s are
exogenous noise variables that are mutually independent,
and θi denotes the latent (changing) factor (or effective
parameters) associated with each model. Here, the data
generating process of each latent variable Zi may change,
e.g., across domains or over time, governed by the corre-
sponding latent factor θi; it is commonplace to encounter
such changes in causal mechanisms in practice (arising from
heterogeneous data or nonstationary time series). In addi-
tion, interventional data can be seen as a special type of
change, which qualitatively restructure the causal relations.
As their names suggest, we assume that the variables X
are observed, while the latent causal variables Z and latent
factors θ = (θ1, . . . , θn) are unobserved.

Let PX;θ and PZ;θ be the distributions of X and Z, respec-
tively, and their probability density functions be pX(X; θ)
and pZ(Z; θ), respectively.1 To lighten the notation, we
drop the subscript in the density when the context is clear.
The latent SEM in Eq. (1) induces a causal graph GZ
with vertices {Zi}ni=1 and edges Zj → Zi if and only if
Zj ∈ PA(Zi). We assume that GZ is acyclic, i.e., a directed
acyclic graph (DAG). This implies that the distribution of
variables Z satisfy the Markov property w.r.t. DAG GZ
(Pearl, 2000), i.e., p(Z; θ) =

∏n
i=1 p(Zi |PA(Zi); θi). We

provide an example of the data generating process in Eq. (1)
and its corresponding latent DAG GZ in Figure 1. Given
samples of the observed variables X arising from multiple
distributions (or domains), say Θ = {θ(1), . . . , θ(m)}, our
goal is to recover the latent causal variables Z and their
causal relations up to minor indeterminacies.

1With a slight abuse of notation, we use the same capital letters
X and Z to denote the variables and their values when the context
is clear.
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3. Learning Causal Representations from
Multiple Distributions

In this section, we provide theoretical results to show how
one is able to recover the underlying latent causal variables
and their causal relations up to certain indeterminacies from
multiple distributions. Specifically, we show that under
sparsity constraint on the recovered graph over the latent
variables and suitable sufficient change conditions on the
causal influences, the recovered latent variables are related
to the true ones in a specific, nontrivial way. Such results
serve as the foundation of our algorithm in Section 4.

To start with, we estimate a model (ĝ, f̂ , pẐ , Θ̂) that as-
sumes the same data generating process as in Eq. (1) and
matches the true distribution of X in different domains:

pX(X ′; θ(u)) = pX̂(X ′; θ̂(u)), ∀ θ(u) ∈ Θ, X ′ ∈ X (u), (2)

where θ(u) denotes the latent factor in the u-th domain, and
X (u) is the image of function g in the u-th domain. Here,
X and X̂ are generated by the true model (g, f, pZ ,Θ) and
the estimated model (ĝ, f̂ , pẐ , Θ̂), respectively.

A key ingredient of our results is the Markov network that
represents conditional dependencies among random vari-
ables via an undirected graph. LetMZ be the Markov net-
work over variables Z, i.e., with vertices {Zi}ni=1 and edges
{Zi, Zj} ∈ E(MZ) if and only if Zi ⊥̸⊥ Zj | Z[n]\{i,j}.2

Also, we denote by |MZ | the number of undirected edges
in the Markov network. In Section 3.1, apart from showing
how to estimate the underlying latent causal variables up
to certain indeterminacies, we also show that such latent
Markov networkMZ can be recovered up to isomorphism.
To achieve so, we make use of the following property (as-
suming that pZ is twice differentiable):

Zi ⊥⊥ Zj | Z[n]\{i,j} ⇐⇒
∂2 log p(Z; θ)

∂Zi∂Zj
= 0. (3)

Such a connection between pairwise conditional indepen-
dence and cross derivatives of the density function has been
noted by Lin (1997) and utilized in Markov network learn-
ing for observed variables (Zheng et al., 2023). With the
recovered latent Markov network structure, we provide re-
sults in Section 3.2 to show how it relates to the moralized
graph of true latent causal DAG GZ , by exploiting a spe-
cific type of faithfulness assumption that is considerably
weaker than the standard faithfulness assumption used in
the literature of causal discovery (Spirtes et al., 2001).

3.1. Recovering Latent Causal Variables and Latent
Markov Network

We consider a general, completely nonparametric setting of
causal representation learning from multiple distributions.

2We use [n] to denote {1, . . . , n} and Z[n]\{i,j} to denote
{Zi}ni=1 \ {Zi, Zj}.

Specifically, we show how one can recover the latent causal
variables and the Markov network structure among them up
to minor indeterminacies, by leveraging sparsity constraint
and sufficient change conditions on the causal mechanisms.
Notably, in some cases, most latent variables can even be
recovered up to component-wise transformations.

We start with the following result that provides informa-
tion about the derivative of true latent causal variables Z
with respect to the estimated ones Ẑ, according to their
corresponding Markov networksMZ andMẐ . Result of
this form is often used in the proof of nonlinear ICA to
obtain identifiability of component-wise nonlinear transfor-
mations (Hyvärinen & Morioka, 2016; Hyvärinen et al.,
2019). At the same time, our result here is different from
that of nonlinear ICA as it allows for causal relations among
latent variables. This result serves as the backbone of our
further identifiability results in this section.
Proposition 1. Let the observations be sampled from the
data generating process in Eq. (1), andMZ be the Markov
network over Z. Suppose the following assumptions hold:

• A1 (Smooth and positive density): The probability den-
sity function of latent causal variables, i.e., pZ , is twice
continuously differentiable and positive in Rn.

• A2 (Sufficient changes): For each value of Z, there
exist 2n + |MZ | + 1 values of θ, i.e., θ(u) with
u = 0, . . . , 2n+|MZ |, such that the vectors w(Z, u)−
w(z, 0) with u = 1, . . . , 2n+ |MZ | are linearly inde-
pendent, where vector w(Z, u) is defined as follows:3

w(Z, u) =

(
∂ log p(Z; θ(u))

∂Zi

)
i∈[n]

⊕
(
∂2 log p(Z; θ(u))

∂Z2
i

)
i∈[n]

⊕
(
∂2 log p(Z; θ(u))

∂Zi∂Zj

)
{Zi,Zj}∈E(MZ), i<j

.

Suppose that we learn (ĝ, f̂ , pẐ , Θ̂) to achieve Eq. (2). Then,
for every pair of estimated latent variables Ẑk and Ẑl that
are not adjacent in the Markov networkMẐ over Ẑ, we
have the following statements:

(a) For each true latent causal variable Zi, we have

∂Zi

∂Ẑk

∂Zi

∂Ẑl

= 0. (4)

(b) For each pair of true latent causal variables Zi and Zj

that are adjacent in the Markov networkMZ , we have

∂Zi

∂Ẑk

∂Zj

∂Ẑl

= 0. (5)

3We denote by ⊕ the vector concatenation symbol. Also, the
order in the mixed partial derivatives can be interchanged.
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The proof is provided in Appendix B, which leverages the
property of Markov network in Eq. (3). Assumption A2
can be viewed as suitable sufficient change conditions on
the causal influences across different domains. It is worth
noting that the requirement of a sufficient number of do-
mains has been commonly adopted in the literature (e.g.,
see Hyvärinen et al. (2023) for a recent survey), such as
visual disentanglement (Khemakhem et al., 2020b), domain
adaptation (Kong et al., 2022), video analysis (Yao et al.,
2021), and image-to-image translation (Xie et al., 2022).
Also, we do not specify exactly how to learn (ĝ, f̂ , pẐ , Θ̂)
to achieve Eq. (2), and leave the door open for different
approaches to be used, such as normalizing flow and vari-
ational approaches. For example, we adopt a variational
approach in Section 4.

In Theorem 1, Eqs. (4) and (5) hold for every sample of
Z. Intuitively, one may expect that Eq. (4) implies either
∂Zi

∂Ẑk
= 0 for all samples of Z, or ∂Zi

∂Ẑl
= 0 for all samples,

i.e., the zero entries in the Jacobian matrix (of the function
from Ẑ to Z) remain in the same positions across different
samples. If this conclusion holds true, it indicates that the
true latent variable Zi cannot be a function of both estimated
latent variables Ẑk and Ẑl, which is helpful for disentangle-
ment. The same reasoning applies to Eq. (5). In fact, similar
conclusion can often be obtained in the proof of identifiabil-
ity for nonlinear ICA (Hyvärinen et al., 2019), by leveraging
the continuity and invertibility of the Jacobian matrix.

However, this conclusion in general does not hold in our
setting (that allows for causal relations among latent vari-
ables Z) without any constraint on the sparsity of recovered
Markov network, for which counterexamples exist. The
reason is that each of Eqs. (4) and (5) correspond to a pair
of recovered latent variables Ẑ that are not adjacent in the
Markov networkMẐ , and can be viewed as a specific form
of restriction on the Jacobian matrix (of the function from
Ẑ to Z). When the recovered Markov network is relatively
dense, less restrictions are imposed on the Jacobian matrix,
and thus there are possibilities for the aforementioned zero
entries to switch positions across different samples. Inter-
estingly, incorporating sparsity constraint on the recovered
Markov network during estimation can help eliminate these
possibilities, formally described below.

Theorem 1 (Relations among true and recovered latent
causal variables). Let the observations be sampled from the
data generating process in Eq. (1), andMZ be the Markov
network over Z. Suppose that Assumptions A1 and A2 from
Theorem 1 hold. Suppose also that we learn (ĝ, f̂ , pẐ , Θ̂)
to achieve Eq. (2) with the minimal number of edges of
the Markov networkMẐ over Ẑ. Then, for every pair of
estimated latent variables Ẑk and Ẑl that are not adjacent
in the Markov networkMẐ over Ẑ, we have the following
statements:

(a) Each true latent causal variable Zi is a function of at
most one of Ẑk and Ẑl.

(b) For each pair of true latent causal variables Zi and Zj

that are adjacent in the Markov networkMZ over Z,
at most one of them is a function of Ẑk or Ẑl.

The proof can be found in Appendix D. The above result
sheds light on how each pair of the estimated latent variables
Ẑk and Ẑl that are not adjacent in Markov network MẐ

relate to the true latent causal variables Z, thus providing
information for further disentanglement. Furthermore, note
that a trivial solution would be a complete graph over Ẑ
without any constraint on the estimating process. Apart
from providing information for disentanglement, we show
below that incorporating sparsity constraint on the recovered
Markov network also helps avoid this trivial solution and
recover the underlying Markov network up to isomorphism.
The proof is given in Appendix C.
Theorem 2 (Identifiability of latent Markov network). Let
the observations be sampled from the data generating pro-
cess in Eq. (1), andMZ be the Markov network over Z.
Suppose that Assumptions A1 and A2 from Theorem 1 hold.
Suppose also that we learn (ĝ, f̂ , pẐ , Θ̂) to achieve Eq. (2)
with the minimal number of edges of the Markov network
MẐ over Ẑ. Then, the recovered latent Markov network
MẐ is isomorphic to the true latent Markov networkMZ .

In addition to recovering the underlying Markov network
MZ , we show that the sparsity constraint on the recovered
Markov networkMẐ also allows us to recover the underly-
ing latent causal variables Z up to specific, relatively minor
indeterminacies. In the result, the following variable set,
termed intimate neighbor set, plays an important role:

ΨZi
:= {Zj |Zj , j ̸= i, is adjacent to Zi and

all other neighbors of Zi inMZ}.

For example, according to the Markov network implied
by GZ in Figure 1, ΨZ1

= {Z2}, ΨZ2
= ∅, where ∅

denotes the empty set, ΨZ3
= {Z2, Z4}, ΨZ4

= ∅, and
ΨZ5 = {Z4}. As another example, according to the Markov
network in Figure 2(b), which is implied by the DAG in
Figure 2(a), we have ΨZi

= ∅ for i = 1, 2, 3, 5, 6 and
ΨZ4

= {Z3, Z6}.
Theorem 3 (Identifiability of latent causal variables). Let
the observations be sampled from the data generating pro-
cess in Eq. (1), andMZ be the Markov network over Z. Let
NZi be the set of neighbors of variable Zi inMZ . Suppose
that Assumptions A1 and A2 from Theorem 1 hold. Suppose
also that we learn (ĝ, f̂ , pẐ , Θ̂) to achieve Eq. (2) with the
minimal number of edges of the Markov networkMẐ over
Ẑ. Then, there exists a permutation π of the estimated latent
variables, denoted as Ẑπ, such that each Ẑπ(i) is solely a
function of a subset of the variables in {Zi} ∪ΨZi .
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(a) GZ , the DAG over true latent
variables Zi.
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(b) The corresponding Markov
network MZ .

Figure 2: Illustrative example 2.

The proof is given in Appendix E. Roughly speaking, the
proof leverages Theorems 1 and 2 to reason about the rela-
tionships among the true latent variables and the recovered
ones, which imply that certain entries on the Jacobian matrix
∂Z
∂Ẑ

must be zero. We show that these entries remain zero in
the powers of ∂Z

∂Ẑ
, indicating that the same entries remain

zero in
(
∂Z
∂Ẑ

)−1
(because the inverse

(
∂Z
∂Ẑ

)−1
can be written

as a linear combination of the powers of ∂Z
∂Ẑ

) and thus ∂Ẑ
∂Z ,

from which the identifiability result can be derived.

It is worth noting that in many cases, Theorem 3 already
enables us to recover some of the latent variables up to a
component-wise transformation.
Remark 1. No matter how many neighbors each latent
causal variable Zi has, as long as each of its neighbors is
not adjacent to at least one other neighbor in the Markov
networkMZ , then Zi can be recovered up to a component-
wise transformation.

Even if the above case does not hold, Theorem 3 still shows
how the estimated latent variables relate to the underlying
causal variables in a specific, nontrivial way. Two examples
are provided below.
Example 1. Consider the Markov networkMZ correspond-
ing to the DAG GZ over Z in Figure 1. By Theorem 3 and
suitable permutation of estimated latent variables Ẑ, we
have: (a) Ẑπ(1) is solely a function of a subset of {Z1, Z2},
(b) Ẑπ(2) is solely a function of Z2, (c) Ẑπ(3) is solely a
function of a subset of {Z2, Z3, Z4}, (d) Ẑπ(4) is solely a
function of Z4, and (e) Ẑπ(5) is solely a function of a subset
of {Z4, Z5}. In this example, the latent causal variables Z2

and Z4 can be recovered up to component-wise transforma-
tion, while variables Z1, Z3, and Z5 can be identified up to
mixtures with certain neighbors in the Markov network.
Example 2. One may think that generally speaking, the
more complex GZ , the more indeterminacies we have in the
estimated latent variables (in the sense that each estimated
latent variable receives contributions from more latent vari-
ables). In fact, this may not be the case. For instance, con-
sider the underlying latent causal graph GZ in Figure 2(a),
which involves more variables and more edges and whose
Markov network is shown in Figure 2(b). For every variable
Zi that is not the sink node, it has ΨZi = ∅ and thus can
be recovered up to a component-wise transformation.

Permutation of recovered latent variables. Theorems 2
and 3 involve certain permutation of the estimated latent
variables Ẑ. Such an indeterminacy is common in the liter-
ature of causal discovery and representation learning tasks
involving latent variables. In our case, since the function
v := g−1 ◦ ĝ where Z = v(Ẑ) is invertible, there exists a
permutation of the latent variables such that the correspond-
ing Jacobian matrix Jv has nonzero diagonal entries (see
Lemma 2 in Appendix A.1); such a permutation is what
Theorems 2 and 3 refer to.

Connection with nonlinear ICA. It is worth noting that
nonlinear ICA (with auxiliary variables) may be viewed as
a special case of our result in this section. Specifically, if
the true latent causal DAG GZ is an empty graph, then the
latent causal variables are independent, which reduce to the
nonlinear ICA setting (Hyvärinen et al., 2019).

Furthermore, since traditional nonlinear ICA always has a
valid solution (to produce nonlinear independent compo-
nents) (Hyvärinen et al., 1999), one may wonder whether,
in our setting, it is possible to always find nonlinear compo-
nents as functions of X that are independent in each domain,
as produced by recent methods for nonlinear ICA with aux-
iliary variables (Hyvärinen et al., 2019). As a corollary of
Theorem 2, we show that the answer is no–there do not exist
nonlinear components that are independent across domains
if the true latent causal DAG GZ is not an empty graph. The
proof is provided in Appendix F.

Corollary 1 (Impossibility of finding independent com-
ponents). Let the observations be sampled from the data
generating process in Eq. (1). Suppose that Assumptions A1
and A2 from Theorem 1 hold, and that the true latent causal
DAG GZ is not an empty graph. Suppose also that we learn
(ĝ, f̂ , pẐ , Θ̂) with the components of Ẑ being independent
in each domain. Then, (ĝ, f̂ , pẐ , Θ̂) cannot achieve Eq. (2).

3.2. From Latent Markov Network to Latent Causal
DAG

Now we have identified the Markov network up to an
isomorphism, which characterizes conditional indepen-
dence relations in the distribution. To build the connection
between Markov network or conditional independence
relations and causal structures, prior theory relies on
the Markov and faithfulness assumptions. However, in
real-world scenarios, the faithfulness assumption could be
violated due to various reasons including path cancellations
(Zhang & Spirtes, 2008; Uhler et al., 2013).

Since our goal is to generalize the identifiability theory as
much as possible to fit practical applications, we introduce
two relaxations of the faithfulness assumptions.

Assumption 1 (Single adjacency-faithfulness (SAF)).
Given a DAG GZ and distribution PZ;θ over the variable
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set Z, if two variables Zi and Zj are adjacent in GZ , then
Zi ⊥̸⊥Zj | Z[n]\{i,k}.
Assumption 2 (Single unshielded-collider-faithfulness
(SUCF) (Ng et al., 2021)). Given a latent causal graph
GZ and distribution PZ;θ over the variable set Z, let
Zi → Zj ← Zk be any unshielded collider in GZ , then
Zi ⊥̸⊥Zk | Z[n]\{i,k}.

We propose SAF as a relaxtion of the Adjacency-
faithfulness (Ramsey et al., 2012). The SUCF assumption is
first introduced by Ng et al. (2021), which is strictly weaker
than Orientation-faithfulness (Ramsey et al., 2012). Thus,
both of them are strictly weaker than the faithfulness as-
sumption, since the combination of Adjacency-faithfulness
and Orientation-faithfulness is weaker than the faithfulness
assumption (Zhang & Spirtes, 2008).

Interestingly, not only they are weaker variants of
faithfulness, but we also prove that they are actually
necessary and sufficient conditions, thus the weakest pos-
sible ones, to bridge conditional independence relations and
causal structures. Specifically, we show that the recovered
Markov network (e.g., in Theorem 2) is exactly the moral-
ized graph of the true causal DAG if and only if the proposed
variants of faithfulness hold. The proofs of Lemma 1 and
Proposition 2 are shown in Appendix G.
Lemma 1. Given a latent causal graph GZ and distribution
PZ;θ with its Markov NetworkMZ , under Markov assump-
tion, the undirected graph defined byMZ is a subgraph of
the moralized graph of the true causal DAG G.

Proposition 2 (Moralized graph and Markov network).
Given a causal DAG GZ and distribution PZ;θ with its
Markov NetworkMZ , under Markov assumption, the undi-
rected graph defined byMZ is the moralized graph of the
true causal DAG GZ if and only if the SAF and SUCF as-
sumptions are satisfied.

It is worth noting that the connection between conditional
independence relations and causal structures has been de-
veloped by (Loh & Bühlmann, 2014; Ng et al., 2021) in
the linear case by leveraging the properties of the inverse
covariance matrix; our results here focus on the nonparamet-
ric case and thus being able to serve the considered general
settings for identifiability. Also note that the necessary and
sufficient conditions may also be of independent interest for
other causal discovery tasks exploring conditional indepen-
dence relations in the nonparametric case.

Discussion on additional assumptions. We investigated
how the sparsity constraint on the recovered graph over la-
tent variables and sufficient change conditions on causal
influences can be used to recover the latent variables and
causal graph up to certain indeterminacies. Our framework
is connected with previous ones in a spectrum of related
studies (Varici et al., 2023; Ahuja et al., 2023; Buchholz

et al., 2022; Squires et al., 2023; Brehmer et al., 2022; von
Kügelgen et al., 2023; Brehmer et al., 2022; von Kügelgen
et al., 2023; Zheng & Zhang, 2023; Zhang et al., 2023). For
instance, the connection between conditional independence
and cross-derivatives of the log density in both linear and
nonlinear cases means our theorems directly apply to linear
SEMs. Furthermore, our results do not require the mix-
ing function to be sufficiently nonlinear, allowing them to
encompass linear mixing processes as well.

At the same time, we may be able to leverage possible
parametric constraints on the data generating process (or
functions) or specific types of interventions. For instance, if
we know that the changes happen to the linear causal mech-
anisms with Gaussian noises, this constraint can readily
help reduce the search space and improve the identifiability.
Moreover, since we only require the changing distribution,
any type of interventions will be covered since any change
to the conditional distribution is allowed. Given the addi-
tional information illustrated by experimental interventions
(e.g., single-node interventions), alternative identifiability
that might be particularly useful in certain tasks can be es-
tablished. We hope this work can provide a helpful, bigger
picture of causal representation learning in the general set-
ting and further illustrates the necessity and connections of
the different assumptions formulated in this line of works.

4. Change Encoding Network for
Representation Learning

Thanks to the identifiability result, we now present two
different practical implementations to recover the latent
variables and their causal relations from observations from
multiple domains. We build our method on the variational
autoencoder (VAE) framework and can be easily extended
to other models, such as normalizing flows.

We learn a deep latent generative model (decoder)
p(X|Z; θ̂(u)) and a variational approximation (encoder)
q(Z|X,u) of its true posterior p(Z|X; θ(u)) since the true
posterior is usually intractable. To learn the model, we
minimize the lower bound of the log-likelihood as

log p(X; θ̂(u))

= log

∫
p(X|Z; θ̂(u))p(Z; θ̂(u))dZ

= log

∫
q(Z|X,u)

q(Z|X,u)
p(X|Z; θ̂(u))p(Z; θ̂(u))dZ

≥ −KL(q(Z|X,u)||p(Z; θ̂(u))) + Eq[log p(X|Z; θ̂(u))]

= −LELBO

For the posterior q(Z|X,u), we assume that it is a multivari-
ate Gaussian or a Laplacian distribution, where the mean
and variance are generated by the neural network encoder.
As for q(X|Z), we assume that it is a multivariate Gaussian
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and the mean is the output of the decoder and the variance
is a pre-defined value.

In practice, we can parameterize p(X|Z; θ̂(u)) as the de-
coder which takes as input the latent representation Z and
q(Z|X,u) as an encoder which outputs the mean and scale
of the posterior distribution. An essential difference between
VAE (Kingma & Welling, 2013) and iVAE (Khemakhem
et al., 2020a) is that our method allows the components of
Z to be causally dependent and we are able to learn the
components and causal relationships. And the key is the
prior distribution P (Z; θ̂(u)). Now we present two differ-
ent implementations to capture the changes with a properly
defined prior distribution.

4.1. Nonparametric Implementation of the Prior
Distribution

To recover the relationships and latent variables Z, we build
the normalizing flow to mimic the inverse of the latent SEM
Zi = fi(PA(Zi), ϵi) in Eq. (1). We first assume a causal
ordering as Ẑ1, . . . , Ẑn. Then, for each component Ẑi, we
consider the previous components {Ẑ1, . . . , Ẑi−1} as poten-
tial parents of Ẑi and we can select the true parents with the
adjacency matrix Â, where Âi,j denotes that component Ẑj

contributes in the generation of Ẑi. If Âi,j = 0, it means
that Ẑj will not contribute to the generation of Ẑi. Since
θ(u) governs the changes across domains, we use the ob-
served domain index u to discover the changes. Then, we
use the selected parents {Âi,1Ẑ1, . . . , Âi,i−1Ẑi−1} and the
domain label u to generate parameters of normalizing flow
and apply the flow transformation on Ẑi to turn it into ϵ̂i.
Specifically, we have

ϵ̂i, log deti = Flow(Ẑi;NN({Âi,jẐj}i−1
j=1, u)),

where log deti is the log determinant of the conditional flow
transformation on Ẑi and NN represents a neural network.

To compute the prior distribution, we make an assumption
on the noise term ϵ that it follows an independent prior dis-
tribution p(ϵ), such as a standard isotropic Gaussian or a
Laplacian. Then according to the change-of-variable for-
mula, the prior distribution of the dependent latents can be
written as

log p(Ẑ; θ(u)) =

n∑
i=1

(log p(ϵ̂i) + log deti).

Intuitively, to minimize the KL divergence loss between
p(Z; θ̂(u)) and q(Z|X,u), the network has to learn the cor-
rect structure and the underlying latent variables; otherwise,
it can be difficult to transform the dependent latent variables
Ẑ to a factorized prior distribution, e.g., N (0, I).

4.2. Parametric Implementation of the Prior
Distribution

We can make parametric assumption on the latent causal
process and facilitate the learning of true causal structure
and components. Here, we consider the linear SEM and
more complex SEMs can be generalized. Specifically, we
assume that the true generation process of the latent Z is
linear and only consists of scaling and shifting mechanisms:

Z = A(C(u)Z) + S(u)ϵ+B(u),

where A ∈ [0, 1]
n×n is a causal adjacency matrix which can

be permuted to be strictly lower-triangular, C(u) ∈ Rn×n

and S(u) ∈ Rn×1 are underlying domain-specific scaling
matrix and vector for domain u, respectively, B(u) ∈ Rn×1

is the underlying domain-specific shift vector, and ϵ is the
independent noise.

To estimate the latent variables Z, the causal structure
A, and capture the changes across domains, we introduce
the learnable scaling Ĉ ∈ Rn×n, Ŝ ∈ Rn×1and bias pa-
rameters B̂ ∈ Rn×1 and pre-define a causal ordering as
Ẑ1, Ẑ2, . . . , Ẑn. Then we have the matrix form as

ϵ̂ = (Ẑ − B̂(u) − ÂĈ(u)Ẑ)/Ŝ(u).

Note that the determinant of the strictly lower triangular
matrix Ĉ is 0. Given a prior distribution of the noise term
p(ϵ̂), and according to the change-of-variable rule, we then
have the prior distribution for Ẑ in parametric case as

log p(Ẑ; θ̂(u)) =

n∑
i=1

(log p(ϵ̂i)− log |Ŝ(u)
i |).

4.3. Full Objective

After we have properly defined the needed distribu-
tions p(X|Z; θ̂(u)), q(Z|X,u), p(Z; θ̂(u)), we can train our
model to minimize the loss function LELBO. However, with-
out any further constraint, the powerful network may choose
to use the fully connected causal graph during training. In
other words, all lower-triangular elements of the estimated
graph Â is non-zero, which implies that each component
Ẑi is caused by all previous i− 1 components. To exclude
such unwanted solutions and encourage the model to learn
the true causal structure among components of Z, we apply
the ℓ1 regularization on Â, i.e.,

Lsparsity = ∥Â∥1.

It is worth noting that the sparsity regularization term above
is an approximation of the sparsity constraint on the edges
of the estimated Markov network specified in Theorems 2
and 3, since it is not straightforward to impose the latter
constraint in a differentiable end-to-end training process.
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A more sophisticated alternative is to impose sparsity con-
straint on (I− Â)TΩ−1(I− Â) where Ω is a randomly sam-
pled positive diagonal matrix. Note that this corresponds
to the formula of precision matrix whose nonzero entries
represent the moral graph under certain conditions (Loh &
Bühlmann, 2014) and we leave it for future investigation.

Finally, the full training objective is

Lfull = LELBO + Lsparsity.

After the model converges, the output of the encoder Ẑ is our
recovered latents from the observations in multiple domains
and the revealed causal structure is in Â which encapsulates
the causal relationships across the components.

4.4. Simulations

To verify our theory and the proposed implementations, we
run experiments on the simulated data because the ground
truth causal adjacency matrix and the latent variables across
domains are available for simulated data. Consequently, we
consider following common causal structures (i) Y-structure
with 4 variables, Z1 → Z3 ← Z2, Z3 → Z4 and (ii) chain
structure Z1 → Z2 → Z3 → Z4. The noises are modulated
with scaling random sampled from Unif[0.5, 2] and shifts
are sampled from Unif[−2, 2]. The scaling on the Z are also
randomly sampled from Unif[0.5, 2]. In other words, the
changes are modular. After generating Z, we feed the latent
variables into multilayer perceptron (MLP) with orthogonal
weights and LeakyReLU activations for invertibility. Specif-
ically, we sample orthogonal matrix as the weights of the
MLP layers. Since orthogonal matrix and LeakyReLU are
invertible, the MLP function is also invertible.

We present the results in Figures 3 and 4. Each sub-figure
consist of 4×4 panels and penal on i-th row and j-th column
denotes the relationship between the estimated component
Ẑi with the true latent Zj . We can see that under most
cases, our model learns a strong one-to-one correspondence
from the estimated components and the true components.
For instance, the first column in Figure 3 show that Ẑ1 is
strongly correlated with the true components Z1 while it is
nearly independent from the true Z2.

From the estimated Â, we find that our method is able to
recover the true causal structure. For instance, on the Y-
structure with Z1 → Z3 ← Z2 and Z3 → Z4, our estimated
model only keep the components Â1,3, Â2,3, Â3,4 nonzero
with the proposed sparsity regularization. The estimated
causal graph is consistent with the true Y-structure causal
graph. We can also see that the latent causal structure is also
recovered from Figures 4 and 3. We observe that the learned
Ẑ1 is strongly correlated with the true Z2 and is independent
from the true Z1, but correlated with the Ẑ3 and Ẑ4. These
results align well with the true causal graph since Z2 is
independent from Z1 while is the cause of Z3 and Z4.

The experiments support our theoretical result that the com-
ponents and structure are identifiable up to certain indeter-
minacies. As for the results in Figure 3, we observe that our
non-parametric method is still able to recover the true latent
variables with Laplace noise.

5. Related Work
Causal representation learning aims to unearth causal latent
variables and their relations from observed data. Despite
its significance, the identifiability of the hidden generat-
ing process is known to be impossible without additional
constraints, especially with only observational data. In the
linear, non-Gaussian case, Silva et al. (2006) recover the
Markov equivalence class, provided that each observed vari-
able has a unique latent causal parent; Xie et al. (2020);
Cai et al. (2019) estimate the latent variables and their rela-
tions assuming at least twice measured variables as latent
ones, which has been further extended to learn the latent
hierarchical structure (Xie et al., 2022). Moreover, Adams
et al. (2021) provide theoretical results on the graphical
conditions for identification. In the linear, Gaussian case,
Huang et al. (2022) leverage rank deficiency of the observed
sub-covariance matrix to estimate the latent hierarchical
structure, while Dong et al. (2023) further extend the rank
constraint to accommodate flexibly related latent and ob-
served variables. In the discrete case, Kivva et al. (2021)
identify the latent causal graph up to Markov equivalence
by assuming a mixture model where the observed children
sets of any pair of latent variables are different.

Given the challenge of identifiability on purely observational
data, a different line of research leverage experiments by
assuming the accessibility of various types of interventional
data. Based on the single-node perfect intervention, Squires
et al. (2023) leverage single-node interventions for the iden-
tifiability of linear causal model and linear mixing function;
(Varici et al., 2023) incorporate for nonlinear causal model
and linear mixing function; (Varici et al., 2023; Buchholz
et al., 2023; Jiang & Aragam, 2023) provide the identifia-
bility of the nonparametric causal model and linear mixing
function; (Ahuja et al., 2023) further generalize the result to
nonparametric causal model and polynomial mixing func-
tions with additional constraints on the latent support; and
(Brehmer et al., 2022; von Kügelgen et al., 2023; Jiang &
Aragam, 2023) explore the nonparametric settings for both
the causal model and mixing function. In addition to the
single-node perfect interventions, Brehmer et al. (2022) in-
troduced counterfactual pre- and post-intervention views;
von Kügelgen et al. (2023) assume two distinct, paired in-
terventions per node for multivariate causal models; Zhang
et al. (2023) explore soft interventions on polynomial mix-
ing functions; and Jiang & Aragam (2023) places specific
structural restrictions on the latent causal graph.
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Figure 3: Recovered latent variables v.s. the true latent variables with Non-Parametric Approach. (a) Y-structure with
Laplace noise. (b) Y-structure with Gaussian noise. (c) Chain structure with Laplace noise. (d) Chain structure with
Gaussian noise. In each sub-figure, i-th row and j-th column depcits the relationship between the estimated Ẑi and the true
components Zj .

Figure 4: Recovered latent variables v.s. the true latent variables with Linear Parameterization Approach. The X-axis
denotes the components of true latent variables Z and the Y -axis represent the components of estimated latent variables
Ẑ. (a) Y-structure with Laplace noise. (b) Y-structure with Gaussian noise. (c) Chain structure with Laplace noise. (d)
Chain structure with Gaussian noise.

Our study lies in the line of leveraging only observational
data, and provides identifiability results in the general non-
parametric settings on both the latent causal model and mix-
ing function. Unlike prior works with observational data,
we do not have any parametric assumptions or graphical re-
strictions; Compared to those relying on interventional data,
our results naturally benefit from the heterogeneity of obser-
vational data (e.g., multi-domain data, nonstationary time
series) and avoid additional experiments for interventions.

6. Conclusion and Discussions
We establish a set of new identifiability results to reveal
latent causal variables and latent structures in the general
nonparametric settings. Specifically, with sparsity regular-
ization during estimation and sufficient changes in the causal
influences, we demonstrate that the revealed latent variables
and structures are related to the underlying causal model in
a specific, nontrivial way. In contrast to recent works on the
recovery of latent causal variables and structures, our results
rely on purely observational data without graphical or para-
metric constraints. Our results offer insight into unveiling

the latent causal process in one of the most universal set-
tings. Experiments in various settings have been conducted
to validate the theory. As future work, we will explore the
scenario where only a subset of the causal relations change,
which could be a challenge as well as a chance, and show
up to what extent the underlying causal variables can be
recovered with potentially weaker assumptions.
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Supplementary Material

A. Proofs of Useful Lemmas
A.1. Proof of Lemma 2

The following lemma is a rather standard result in linear algebra (Strang, 2006; 2016), which has also been used in existing
works in causal representation learning, such as Lachapelle et al. (2022). We provide the proof here for completeness.

Lemma 2. For any invertible matrix A, there exists a permutation of its columns such that the diagonal entries of the
resulting matrix are nonzero.

Proof. Suppose by contradiction that there exists at least a zero diagonal entry for every column permutation. By Leibniz
formula, we have

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

Ai,σ(i)

)
,

where Sn denotes the set of n-permutations. Since there exists a zero diagonal entry for every permutation, we have

n∏
i=1

Ai,σ(i) = 0, ∀σ ∈ Sn,

which implies det(A) = 0 and that matrix A is not invertible. This is a contradiciton with the assumption that A is
invertible.

A.2. Proof of Lemma 3

Lemma 3. Suppose matrix A ∈ Rn×n contains a zero submatrix of order (i+ 1)× (n− i) for some i ∈ [n− 1]. Then,
matrix A is not invertible.

Proof. By the given condition, there exist n− i columns in matrix A of which i+ 1 rows are zero, i.e., at most n− i− 1
rows are not zero. This implies that the n− i column vectors span a subspace of dimension less than n− i, which thus are
linearly dependent. Therefore, matrix A cannot be invertible.

B. Proof of Proposition 1
Proposition 1. Let the observations be sampled from the data generating process in Eq. (1), andMZ be the Markov
network over Z. Suppose the following assumptions hold:

• A1 (Smooth and positive density): The probability density function of latent causal variables, i.e., pZ , is twice
continuously differentiable and positive in Rn.

• A2 (Sufficient changes): For each value of Z, there exist 2n+|MZ |+1 values of θ, i.e., θ(u) with u = 0, . . . , 2n+|MZ |,
such that the vectors w(Z, u)− w(z, 0) with u = 1, . . . , 2n+ |MZ | are linearly independent, where vector w(Z, u)
is defined as follows:

w(Z, u) =

(
∂ log p(Z; θ(u))

∂Zi

)
i∈[n]

⊕
(
∂2 log p(Z; θ(u))

∂Z2
i

)
i∈[n]

⊕
(
∂2 log p(Z; θ(u))

∂Zi∂Zj

)
{Zi,Zj}∈E(MZ), i<j

.

Suppose that we learn (ĝ, f̂ , pẐ , Θ̂) to achieve Eq. (2). Then, for every pair of estimated latent variables Ẑk and Ẑl that are
not adjacent in the Markov networkMẐ over Ẑ, we have the following statements:

(a) For each true latent causal variable Zi, we have

∂Zi

∂Ẑk

∂Zi

∂Ẑl

= 0.
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(b) For each pair of true latent causal variables Zi and Zj that are adjacent in the Markov networkMZ , we have

∂Zi

∂Ẑk

∂Zj

∂Ẑl

= 0.

Proof. For a matrix A, denote by volA its volume, which is the product of its singular values. Note that volA =
√
detAAT

when A is of full row rank. In the change-of-variable formula, when the Jacobian is a rectangular matrix, the absolute
determinant of the Jacobian can be replaced with the matrix volume (Ben-Israel, 1999; Gemici et al., 2016).

Since X = g(Z) and X̂ = ĝ(Ẑ), by Eq. (2) and the change-of-variable formula, we have

pX̂ = pX =⇒ pĝ(Ẑ) = pg(Z) =⇒ pg−1◦ĝ(Ẑ) vol Jg−1 = pZ vol Jg−1 =⇒ pv(Ẑ) = pZ ,

where Jg−1 is the Jacobian matrix of g−1 and v := g−1 ◦ ĝ is a composition of diffeomorphisms (and hence also a
diffeomorphism). Let Jv be the Jacobian matrix of v. The change-of-variable formula implies

p(Ẑ; θ̂)|det Jv−1 | = p(Z; θ)

log p(Ẑ; θ̂) = log p(Z; θ) + log |det Jv|. (6)

Suppose Ẑk and Ẑl are conditionally independent given Ẑ[n]\{k,l} i.e., they are not adjacent in the Markov network over Ẑ.
For each θ̂, by Lin (1997), we have

∂2 log p(Ẑ; θ̂)

∂Ẑk∂Ẑl

= 0. (7)

To see what it implies, we find the first-order derivative of Eq. (6):

∂ log p(Ẑ; θ̂)

∂Ẑk

=

n∑
i=1

∂ log p(Z; θ)

∂Zi

∂Zi

∂Ẑk

+
∂ log |det Jv|

∂Ẑk

.

Let

η(θ) := log p(Z; θ), η′i(θ) :=
∂ log p(Z; θ)

∂Zi
, η′′ij(θ) :=

∂2 log p(Z; θ)

∂Zi∂Zj
, h′

i,l :=
∂Zi

∂Ẑl

, and h′′
i,kl :=

∂2Zi

∂Ẑk∂Ẑl

.

We then derive the second-order derivative w.r.t. Ẑk and Ẑl and apply Eq. (7):

0 =

n∑
j=1

n∑
i=1

∂2 log p(Z; θ)

∂Zi∂Zj

∂Zj

∂Ẑl

∂Zi

∂Ẑk

+

n∑
i=1

∂ log p(Z; θ)

∂Zi

∂2Zi

∂Ẑk∂Ẑl

+
∂2 log |det Jv|

∂Ẑk∂Ẑl

.

=

n∑
i=1

∂2 log p(Z; θ)

∂Z2
i

∂Zi

∂Ẑl

∂Zi

∂Ẑk

+

n∑
j=1

∑
i:{Zj ,Zi}∈E(MZ)

∂2 log p(Z; θ)

∂Zi∂Zj

∂Zj

∂Ẑl

∂Zi

∂Ẑk

+

n∑
i=1

∂ log p(Z; θ)

∂Zi

∂2Zi

∂Ẑk∂Ẑl

+
∂2 log |det Jv|

∂Ẑk∂Ẑl

(8)

=

n∑
i=1

η′′ii(θ)h
′
i,lh

′
i,k +

n∑
j=1

∑
i:{Zj ,Zi}∈E(MZ)

η′′ij(θ)h
′
j,lh

′
i,k +

n∑
i=1

η′i(θ)h
′′
i,kl +

∂2 log |det Jv|
∂Ẑk∂Ẑl

. (9)

Recall that E(MZ) denotes the set of edges in the Markov network over Z. In the equation above, we made use of the fact
that if Zi and Zj are not adjacent in the Markov network, then ∂2 log p(Z;θ)

∂Zi∂Zj
= 0 by Lin (1997).

By Assumption A2, consider the 2n+ |MZ |+ 1 values of θ, i.e., θ(u) with u = 0, . . . , 2n+ |MZ |, such that Eq. (9) hold.
Then, we have 2n+ |MZ |+ 1 such equations. Subtracting each equation corresponding to θ(u), u = 1, . . . , 2n+ |MZ |
with the equation corresponding to θ(0) results in 2n+ |MZ | equations:

0 =

n∑
i=1

(η′′ii(θ
(u))−η′′ii(θ

(0)))h′
i,lh

′
i,k+

n∑
j=1

∑
i:{Zj ,Zi}∈E(MZ)

(η′′ij(θ
(u))−η′′ij(θ

(0)))h′
j,lh

′
i,k+

n∑
i=1

(η′i(θ
(u))−η′i(θ

(0)))h′′
i,kl,

(10)
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where u = 1, . . . , 2n+ |MZ |. Since pZ is twice continuously differentiable, we have

η′′ij(θ
(u))− η′′ij(θ

(0)) = η′′ji(θ
(u))− η′′ji(θ

(0)),

and therefore Eq. (10) can be written as

0 =

n∑
i=1

(η′′ii(θ
(u))− η′′ii(θ

(0)))h′
i,lh

′
i,k +

∑
i,j:
i<j,

{Zi,Zj}∈E(MZ)

(η′′ij(θ
(u))− η′′ij(θ

(0)))(h′
j,lh

′
i,k + h′

i,lh
′
j,k)

+

n∑
i=1

(η′i(θ
(u))− η′i(θ

(0)))h′′
i,kl.

Consider the vectors formed by collecting the corresponding coefficients in the equation above where u = 1, . . . , 2n+ |MZ |.
By Assumption A2, these 2n+ |MZ | vectors are linearly independent. Thus, for any i and j such that {Zi, Zj} ∈ E(MZ),
we have the following equations:

h′
i,kh

′
i,l = 0, (11)

h′
i,kh

′
j,l + h′

j,kh
′
i,l = 0, (12)

h′′
i,kl = 0.

It remains to show h′
i,kh

′
j,l = 0. Suppose by contradiction that

h′
i,kh

′
j,l ̸= 0, (13)

which implies h′
i,k ̸= 0. By Eq. (11), we have h′

i,l = 0, which, by plugging into Eq. (12), indicates h′
i,kh

′
j,l = 0. This is a

contradiction with Eq. (13). Thus, we must have h′
i,kh

′
j,l = 0.

C. Proof of Theorem 2
Theorem 2 (Identifiability of latent Markov network). Let the observations be sampled from the data generating process in
Eq. (1), andMZ be the Markov network over Z. Suppose that Assumptions A1 and A2 from Theorem 1 hold. Suppose also
that we learn (ĝ, f̂ , pẐ , Θ̂) to achieve Eq. (2) with the minimal number of edges of the Markov networkMẐ over Ẑ. Then,
the recovered latent Markov networkMẐ is isomorphic to the true latent Markov networkMZ .

Proof. Let v := g−1 ◦ ĝ, i.e., Z = v(Ẑ). Note that v is a composition of diffeomorphisms, and hence also a diffeomorphism.
Consider a specific value of Ẑ, say ẑ. Since v is diffeomorphism, by Lemma 2, there exists a permutation π such that the
diagonal entries of the corresponding Jacobian matrix (whose columns are permuted according to π) evaluated at Ẑ = ẑ are
nonzero, i.e.,

∂Zi

∂Ẑπ(i)

∣∣∣∣
Ẑ=ẑ

̸= 0, i = 1, . . . , n. (14)

Suppose that Zi and Zj are adjacent in the Markov networkMZ over Z, but Ẑπ(i) and Ẑπ(j) are not adjacent in the Markov
networkMẐ over Ẑ. By Proposition 1, we have

∂Zi

∂Ẑπ(i)

∣∣∣∣
Ẑ=ẑ

∂Zj

∂Ẑπ(j)

∣∣∣∣
Ẑ=ẑ

= 0,

which is clearly a contradiction with Eq. (14).

Thus, we have shown by contradiction the following lemma.

Lemma 4. If Zi and Zj are adjacent in the Markov networkMZ over Z, then Ẑπ(i) and Ẑπ(j) are adjacent in the Markov
networkMẐ over Ẑ.

14
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The lemma above indicates
|MẐ | ≥ |MZ |. (15)

Also, note that the true model (g, f, pZ ,Θ) is one of the solutions that achieves Eq. (2). Since the recovered latent Markov
networkMẐ has the minimal number of edges among the solutions that achieve Eq. (2), we have |MẐ | ≤ |MZ |, which,
with Eq. (15), implies |MẐ | = |MZ |.

By Lemma 4 and |MẐ | = |MZ |, we conclude that Zi and Zj are adjacent in MZ if and only if Ẑπ(i) and Ẑπ(j) are
adjacent inMẐ . That is,MZ andMẐ are isomorphic.

D. Proof of Theorem 1
Theorem 1 (Relations among true and recovered latent causal variables). Let the observations be sampled from the data
generating process in Eq. (1), andMZ be the Markov network over Z. Suppose that Assumptions A1 and A2 from Theorem
1 hold. Suppose also that we learn (ĝ, f̂ , pẐ , Θ̂) to achieve Eq. (2) with the minimal number of edges of the Markov network
MẐ over Ẑ. Then, for every pair of estimated latent variables Ẑk and Ẑl that are not adjacent in the Markov network
MẐ over Ẑ, we have the following statements:

(a) Each true latent causal variable Zi is a function of at most one of Ẑk and Ẑl.

(b) For each pair of true latent causal variables Zi and Zj that are adjacent in the Markov networkMZ over Z, at most
one of them is a function of Ẑk or Ẑl.

Proof. We first prove Statement (a). By Proposition 1, for every value of Z, we have

∂Zi

∂Ẑk

∂Zi

∂Ẑl

= 0.

Therefore, it suffices to prove that if ∂Zi

∂Ẑk
̸= 0 for some value of Ẑ, then ∂Zi

∂Ẑl
= 0 for all values of Ẑ. That is, these nonzero

entries cannot switch positions.

By Theorem 2, there exists a permutation π of the estimated variables, denoted as Ẑπ , such that the Markov networkMẐπ

is identical toMZ . Let Ẑπ(i) and Ẑπ(k) be two estimated latent variables that are not adjacent in the Markov networkMẐπ
.

Now consider variable Zi. Suppose by contradiction that the nonzero entries switch positions, i.e., there exist two values of
Ẑ, say ẑ(1) and ẑ(2), such that

∂Zi

∂Ẑπ(i)

∣∣∣∣
Ẑ=ẑ(1)

̸= 0 (16)

and
∂Zi

∂Ẑπ(k)

∣∣∣∣
Ẑ=ẑ(2)

̸= 0, (17)

Let NZi
be a set containing the indices of the neighbors of Zi inMZ , and NẐπ(i)

be a set containing the indices of the neigh-
bors of Zπ(i) inMẐπ

. Similarly, let SZi be a set containing the indices of the variables that are not adjacent to Zi inMZ ,
and SẐπ(i)

be a set containing the indices of the variables that are not adjacent to of Zπ(i) inMẐπ
. By definition, we have

NZi
∪ SZi

∪ {i} = [n], (18)

which are pairwise disjoint.

SinceMẐπ
andMZ are identical, we have NZi

= NẐπ(i)
and SZi

= SẐπ(i)
. Now define the following function

ϕ(Ẑ) =
∑

j∈NZi
∪{i}

(
∂Zj

∂Ẑπ(i)

)2

−
∑
l∈SZi

∑
j∈NZi

∪{i}

(
∂Zj

∂Ẑπ(l)

)2

.
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Plugging in Ẑ = ẑ(1), for l ∈ SZi
= SẐπ(i)

and j ∈ NZi
∪ {i}, Proposition 1 implies

∂Zi

∂Ẑπ(i)

∣∣∣∣
Ẑ=ẑ(1)

∂Zj

∂Ẑπ(l)

∣∣∣∣
Ẑ=ẑ(1)

= 0,

which, with Eq. (16), indicates
∂Zj

∂Ẑπ(l)

∣∣∣∣
Ẑ=ẑ(1)

= 0.

Substituting the above equation and Eq. (16) into function ϕ, we have

ϕ(Ẑ)|Ẑ=ẑ(1) =
∑

j∈NZi
∪{i}

(
∂Zj

∂Ẑπ(i)

∣∣∣∣
Ẑ=ẑ(1)

)2

≥

(
∂Zi

∂Ẑπ(i)

∣∣∣∣
Ẑ=ẑ(1)

)2

> 0. (19)

Now plug in Ẑ = ẑ(2). For j ∈ NZi ∪ {i}, Proposition 1 implies

∂Zj

∂Ẑπ(i)

∣∣∣∣
Ẑ=ẑ(2)

∂Zi

∂Ẑπ(k)

∣∣∣∣
Ẑ=ẑ(2)

= 0,

which, with Eq. (17), indicates
∂Zj

∂Ẑπ(i)

∣∣∣∣
Ẑ=ẑ(2)

= 0.

Substituting the above equation and Eq. (17) into function ϕ, we have

ϕ(Ẑ)|Ẑ=ẑ(2) = −
∑
l∈SZi

∑
j∈NZi

∪{i}

(
∂Zj

∂Ẑπ(l)

∣∣∣∣
Ẑ=ẑ(2)

)2

≤ −

(
∂Zi

∂Ẑπ(k)

∣∣∣∣
Ẑ=ẑ(2)

)2

< 0. (20)

Since function ϕ is continuous (because all the partial derivatives involved are continuous) and its domain is a connected set,
by applying Intermediate Value Theorem with Eqs. (19) and (20), there exists a value of Ẑ in the domain, say ẑ(3), such that

ϕ(Ẑ)|Ẑ=ẑ(3) = 0,

which, by plugging the definition of function ϕ, implies

∑
j∈NZi

∪{i}

(
∂Zj

∂Ẑπ(i)

∣∣∣∣
Ẑ=ẑ(3)

)2

=
∑
l∈SZi

∑
j∈NZi

∪{i}

(
∂Zj

∂Ẑπ(l)

∣∣∣∣
Ẑ=ẑ(3)

)2

.

Note that if any of the terms in the summation on the left hand side (LHS) is nonzero, then, by Proposition 1, all terms
in the summation on the right hand side (RHS) must be zero; in this case, LHS is nonzero but RHS equals zero, which
is a contradiction. Similarly, if any of the terms in the summation on the RHS is nonzero, then, by Proposition 1, all terms
in the summation on the LHS must be zero; in this case, RHS is nonzero but LHS equals zero, which is a contradiction.
This implies that all terms in the summation on both LHS and RHS must be zero, i.e.,

∂Zj

∂Ẑπ(l)

∣∣∣∣
Ẑ=ẑ(3)

= 0 for j ∈ NZi
∪ {i}, l ∈ SZi

∪ {i}.

Since |SZi
∪ {i}| = n − |NZi

| by Eq. (18), Lemma 3 indicates that the matrix ∂Z
∂Ẑπ

∣∣
Ẑ=ẑ(3) is not invertible. Thus,

the (Jacobian) matrix ∂Z
∂Ẑ

∣∣
Ẑ=ẑ(3) is also not invertible, which is a contradiction because the mapping from Ẑ to Z is a

diffeomorphism (specifically a a composition of diffeomorphisms).

Therefore, we have just proved Statement (a) by contradiction. Similar reasoning can be straightforwardly applied to prove
Statement (b) and is omitted here.
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E. Proof of Theorem 3
We first state the following lemma that is used to prove Theorem 3. The proof is a straightforward consequence of
Cayley–Hamilton theorem and is omitted here.

Lemma 5. Let A be an n× n invertible matrix. Then, it can be expressed as a linear combination of the powers of A, i.e.,

A−1 =

n−1∑
k=0

ckA
k

for some appropriate choice of coefficients c0, c1, . . . , cn−1.

Now consider the Markov networkMZ over variables Z. With a slight abuse of notation, let NZi
be the set of neighbors of

Zi inMZ . The following result relates a matrix to its inverse, given that the matrix satisfies certain property defined byMZ .

Proposition 3. Consider Markov networkMZ over Z. Let NZi
be the set of neighbors of Zi inMZ , and A be an n× n

invertible matrix. For each i ̸= j where Zj is not adjacent to some nodes in {Zi} ∪NZi
, suppose Aij = 0. Then, A−1

ij = 0.

Proof. By Lemma 5, A−1 can be expressed as linear combination of the powers of A. Therefore, it suffices to prove that
each matrix power Ak satisfies the following property: Ak

ij = 0 for each i ̸= j where Zj is not adjacent to some nodes in
{Zi} ∪NZi . We proceed with mathematical induction on k. By definition, the property holds in the base case where k = 1.

Now suppose that the property holds for Ak. We prove by contradiction that the property holds for Ak+1. Suppose by
contradiction that Ak+1

ij ̸= 0 for some i ̸= j where Zj is not adjacent to some nodes in {Zi} ∪NZi
. This implies that one

of the following cases holds:

• Case (a): Zj is not adjacent to Zi inMZ .

• Case (b): There exists Zl ∈ NZi \ {Zj} such that Zj and Zl are not adjacent inMZ .

Since Ak+1
ij =

∑n
r=0 A

k
irArj , the assumption Ak+1

ij ̸= 0 implies that there must exist m such that Ak
imAmj ̸= 0, i.e.,

Ak
im ̸= 0 and Amj ̸= 0. Since both Ak and A satisfy the property, this indicates (i) Zm is adjacent to Zi and all nodes in

NZi
\ {Zm}, and (ii) Zj is adjacent to Zm and all nodes in NZm

\ {Zj}. We consider the following cases:

• Case of m = l: By (ii), Zj is adjacent to Zl, which contradicts Case (b) above. Also, we know that Zl is adjacent to Zi

by (i), which indicates that Zi is adjacent to Zj , contradicting Case (a) above.

• Case of m ̸= l: By (i) and (ii), Zm is adjacent to Zi and Zj is adjacent to Zm, implying that Zi and Zj are adjacent,
which is contradictory with Case (a) above. Furthermore, since Zl is a neighbor of Zi, we know that Zm and Zl are
adjacent by (i). Also, by (ii), Zj is adjacent to Zl, which contradicts Case (b) above.

In each of the cases above, there is a contradiction.

We are now ready to prove the following result.

Theorem 3 (Identifiability of latent causal variables). Let the observations be sampled from the data generating process
in Eq. (1), andMZ be the Markov network over Z. Let NZi be the set of neighbors of variable Zi inMZ . Suppose that
Assumptions A1 and A2 from Theorem 1 hold. Suppose also that we learn (ĝ, f̂ , pẐ , Θ̂) to achieve Eq. (2) with the minimal
number of edges of the Markov networkMẐ over Ẑ. Then, there exists a permutation π of the estimated latent variables,
denoted as Ẑπ , such that each Ẑπ(i) is solely a function of a subset of the variables in {Zi} ∪ΨZi .

Proof. We first prove a simpler case: there exists a permutation π of the estimated latent variables, denoted as Ẑπ , such that
Zi is solely a function of Ẑπ(i) and a subset of the variables in {Ẑπ(r) |Zr ∈ ΨZi

}.

By Theorem 2 and its proof, there exists a permutation π of the estimated variables, denoted as Ẑπ, such that the Markov
networkMẐπ

over Ẑπ is identical toMZ , and that

∂Zi

∂Ẑπ(i)

̸= 0, i = 1, . . . , n.
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Clearly, each variable Zi is a function of Ẑπ(i).

We first show that if Zj is not adjacent to Zi inMZ , then Zi cannot be a function of Ẑπ(j). Since Zi and Zj are not adjacent
inMZ , we know that Ẑπ(i) and Ẑπ(j) are not adjacent inMẐπ

. By Theorem 1, Zi is a function of at most one of Ẑπ(i) and
Ẑπ(j), which implies that Zi cannot be a function of Ẑπ(j), because we have shown that Zi is a function of Ẑπ(i).

To refine further, now suppose that Zj is adjacent to Zi, but not adjacent to some Zk ∈ NZi
\ {Zj}. SinceMZ andMẐπ

are identical, Ẑπ(j) is also not adjacent to Ẑπ(k) inMẐπ
. Since Zi and Zk are adjacent inMZ , by Theorem 1, at most one

of them is a function of Ẑπ(j) or Ẑπ(k). This implies that Zi cannot be a function of Ẑπ(j), because we have shown that Zk

is a function of Ẑπ(k).

Therefore, we have just shown that Zi is solely a function of Ẑπ(i) and a subset of the variables in {Ẑπ(r) |Zr ∈ ΨZi}. Now
consider variable Zl ̸∈ {Zi} ∪ΨZi

. Since Zi is not a function of Ẑπ(l), we have(
∂Z

∂Ẑπ

)
il

=
∂Zi

∂Ẑπ(l)

= 0.

By applying Proposition 3 with matrix ∂Z
∂Ẑπ

, we have

(
∂Z

∂Ẑπ

)−1

il

= 0,

which, by Inverse Function Theorem, implies

∂Ẑπ(i)

∂Zl
=

(
∂Ẑπ

∂Z

)
il

=

(
∂Z

∂Ẑπ

)−1

il

= 0.

Since the above equation holds for all values of Z, we conclude that Ẑπ(i) cannot be a function of Zl.

F. Proof of Corollary 1
Corollary 1 (Impossibility of finding independent components). Let the observations be sampled from the data generating
process in Eq. (1). Suppose that Assumptions A1 and A2 from Theorem 1 hold, and that the true latent causal DAG GZ is
not an empty graph. Suppose also that we learn (ĝ, f̂ , pẐ , Θ̂) with the components of Ẑ being independent in each domain.
Then, (ĝ, f̂ , pẐ , Θ̂) cannot achieve Eq. (2).

Proof. Suppose by contradiction that (ĝ, f̂ , pẐ , Θ̂) achieves Eq. (2). By assumption, the components of Ẑ are independent
in each domain, indicating that the Markov networkMẐ is an empty graph. By the same reasoning in the proof of Theorem 2
(specifically Lemma 4), there exists a permutation π such that: if Zi and Zj are adjacent inMZ , then Ẑπ(i) and Ẑπ(j) are
adjacent inMẐ . SinceMẐ is an empty graph, this implies thatMZ is also an empty graph, which is contradictory with
the assumption that GZ is not an empty graph.

G. Proof of Lemma 1 and Proposition 2
Lemma 1. Given a latent causal graph GZ and distribution PZ;θ with its Markov NetworkMZ , under Markov assumption,
the undirected graph defined byMZ is a subgraph of the moralized graph of the true causal DAG G.

Proof. Let Zj and Zk, j ̸= k be two variables that are not adjacent in the moralized graph of GZ . Then it suffices to
show that {Zj , Zk} /∈ E(MZ). Because they are not adjacent in the moralized graph of GZ , they must not be adjacent
in GZ and must not share a common child in GZ . Thus, Zj and Zk are d-separated conditioning on Z[n]\{j,k}, which
implies the conditional independence Zj ⊥⊥ Zk | Z[n]\{j,k} based on the Markov assumption on (GZ , PZ;θ). Then we have
{Zj , Zk} /∈ E(MZ).
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Proposition 2 (Moralized graph and Markov network). Given a causal DAG GZ and distribution PZ;θ with its Markov
NetworkMZ , under Markov assumption, the undirected graph defined byMZ is the moralized graph of the true causal
DAG GZ if and only if the SAF and SUCF assumptions are satisfied.

Proof. We prove both directions as follows.

Sufficient condition. We prove it by contradiction. Suppose that the structure defined byMZ is not equivalent to the
moralized graph of GZ . Then, according to Lemma 1, there exists a pair of variables Zj and Zk, j ̸= k that are adjacent in
the moralized graph but {Zj , Zk} /∈ E(MZ). Thus, we have Zj ⊥⊥ Zk | Z[n]\{j,k}. Then we consider the following two
cases:

• If variables Zj and Zk correspond to a pair of neighbors in GZ , then they are adjacent. Together with the conditional
independence relation Zj ⊥⊥ Zk | Z[n]\{j,k}, this implies that the SAF assumption is violated.

• If variables Zj and Zk correspond to a pair of non-adjacent spouses in GZ . Then they have an unshielded collider,
indicating that the SUCF assumption is violated.

Necessary condition. We prove it by contradiction. Suppose SUCF or SAF is violated, we have the following two cases:

• Suppose SUCF is violated, i.e., there exists an unshielded collider Zj → Zi ← Zk in the DAG GZ such that
Zj ⊥⊥ Zk | Z[n]\{j,k}. This conditional independence relation indicates that {Zj , Zk} /∈ E(MZ). Since Zj and Zk are
spouses, there exists an edge between them in the moralized graph of GZ , but is not contained in the structure defined
byMZ , showing that they are not the same.

• Suppose SAF is violated, i.e., there exists a pair of neighbors Zj and Zk in the DAG GZ such that Zj ⊥⊥ Zk | Z[n]\{j,k}.
This conditional independence relation indicates that {Zj , Zk} /∈ E(MZ). Because Zj and Zk are adjacent in GZ ,
clearly they are also adjacent in the moralized graph of GZ . However, the edge between them is not contained in the
structure defined byMZ , showing that they are not the same.

Thus, when SUCF or SAF is violated, the structure defined byMZ is the moralized graph of the true DAG GZ .
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