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ABSTRACT

Recent empirical studies show three phenomena with increasing size of language
models: compute-optimal size scaling, emergent capabilities, and performance
plateauing. We present a simple unified mathematical framework to explain all of
these language model scaling phenomena, building on recent skill-text bipartite
graph frameworks for semantic learning. Modeling the learning of concepts from
texts as an iterative process yields an analogy to iterative decoding of low-density
parity check (LDPC) codes in information theory. Thence, drawing on finite-size
scaling characterizations of LDPC decoding, we derive the compute-optimal size
scaling (Chinchilla rule) for language models. Further, using tools from random
network theory, we provide a simple explanation for both emergence of complex
skills and plateauing of performance as the size of language models scale. We see
multiple plateaus.

1 INTRODUCTION

To optimally use computational resources when training language models, several recent studies have
empirically investigated how model size and dataset size should scale with compute budget (Kaplan
et al., 2020; Hoffmann et al., 2022), finding a certain allometric rule much like in mathematical
biology (Thompson, 1917; Haldane, 1926). As the sizes of language models continue to increase,
large improvements in performance have been observed in certain complex tasks with only a small
improvement in the model’s loss (Wei et al., 2022) (but see Schaeffer et al. (2023)). The larger
language models are therefore said to exhibit emergent capabilities, a term drawn from statistical
mechanics, where small changes in a macroscopic variable of the system (such as temperature)
around a critical value cause an abrupt change—a phase transition or emergent behavior (Baxter,
1982)—in its properties. More recently, there has been prevalent discourse in the AI community that
further increases in language model size lead to plateauing of performance (Byrnes, 2023; Ritter &
Lu, 2024). Although, there have been attempts to explain one or two of these empirical phenomena, a
unified mathematical framework that explains all three of these empirically observed phenomena is
lacking.

Here we take an approach that builds on information and coding theory (McEliece, 2002) that does
so, and also predicts multiple plateaus. In particular, we draw on mathematical ideas around low-
density parity check (LDPC) codes (which achieve Shannon optimality) (Sourlas, 1989; Richardson
& Urbanke, 2008) and random graph theory (Barabási, 2016). Though statistical language modeling
and information theory were introduced in the same paper (Shannon, 1948), modern connections
between the two are still fairly limited, cf. Basu et al. (2023).

To provide simple and insightful explanations of empirical phenomena, several abstract frameworks
have been proposed (Arora & Goyal, 2023; Liao et al., 2024; Michaud et al., 2023), all based on a
skill-text bipartite graph that operates at a semantic level and captures key real-world properties (Yu
et al., 2023a). Arora & Goyal (2023) explain emergent phenomena by assuming a compute-optimal
size scaling rule (Chinchilla allometry rule) (Hoffmann et al., 2022). Liao et al. (2024) also assume
compute-optimal (Chinchilla) size scaling to explain emergence. Michaud et al. (2023) assume
power-law scaling and that each text piece contains only one skill, which may be very different
than real-world scenarios. Moreover, inverse polynomial loss scaling is interpreted as the average
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behavior of emergence at different scales. These existing frameworks explain neither the Chinchilla
rule nor the plateau phenomenon. These three frameworks abstract the gradient dynamics of language
model training (Arora & Goyal, 2023); an alternate mathematical framework considers dynamics to
explain the Chinchilla rule and loss function plateaus but does not consider emergence (Bordelon
et al., 2024).

Our information-theoretic approach is inspired by skill-text bipartite graph frameworks of Arora
& Goyal (2023); Liao et al. (2024); Michaud et al. (2023) and is closest to Liao et al. (2024). We
make a small modification by separating notions of concepts and skills, as in well-established human
cognitive architectures (Newell, 1990) that have simple hierarchies (Laird et al., 1987; Anderson,
1993; Kieras & Meyer, 1997). In our framework, skills are not directly learned from text; rather,
concepts are learned from texts and skills at different levels are learned from concepts (see Section 2
for a detailed description). That is, our framework takes on the notion of skill-quanta from Michaud
et al. (2023), and so the number of concepts a language model can learn is proportional to the model
size (number of model parameters).

The key difference in our work is to have much more detailed and expressive analysis using non-
asymptotic techniques rather than asymptotic ones (Di et al., 2002). Indeed, such finitary analysis is
necessary to even consider size scaling. Recall that Arora & Goyal (2023); Liao et al. (2024) assume
Chinchilla scaling, whereas we derive it without it being built into our framework.

The main contributions of this paper are as follows.

1. We propose a simple unified mathematical framework that considers a language model’s
learning of concepts from texts and composition of skills from concepts.

2. Using this framework and tools from non-asymptotic information theory, we deduce
compute-optimal scaling in language models.

3. With the help of random network theory, we provide a simple explanation for emergent
abilities of language models in complex tasks when their sizes exceed a certain threshold.

4. We show that plateauing of performance with size-scaling is just a consequence of diversity
of skills required for a task. Moreover, plateauing indicates the possibility of multiple
emergences as language models continue to scale further.

Our work takes a step in grounding empirical phenomena observed in size scaling of language models
on a rigorous mathematical footing. Understanding the origin of these phenomena may yield insights
into better architectures, better datasets, and the limitations of large-scale learning systems. Provable
optimality of the Chinchilla rule (as in Proposition 1), however, may indicate that there are no gains
from better scaling of data and compute remaining, cf. Ho et al. (2024, Appendix B). Separately, our
results may help policymakers develop regulatory policy by providing insight into the relationship
between capabilities of concern and controllable resources such as data and compute (Hooker, 2024).

2 GRAPH-BASED FRAMEWORK

Our framework is based on the notion of learning as two levels. First, a set of concepts are learnt
from a set of texts with each text involving one or more concepts. Second, learning concepts enables
the language model to acquire skills, and after encountering a sufficient number of texts with co-
occurring pairs of skills, the model eventually acquires compositional abilities resulting in emergent
phenomena in various complex tasks. The framework naturally leads to information-theoretic analysis
in Section 3.

2.1 TEXTS, CONCEPTS, AND SKILLS

A set of tokens constitute a text (similar to a text piece defined in Arora & Goyal (2023)) from which
a language model can learn a set of concepts. This is modeled as a concept-text bipartite graph similar
to the skill-text bipartite graph in Liao et al. (2024). Note that we consider single epoch training
as described in Hoffmann et al. (2022). The total number of concepts a model can learn depends
on its size (number of model parameters). Here we consider a hierarchy of skills: basic skills in
the first layer and multiple layers of advanced skills. Basic skills are easily acquired from concepts,
whereas acquiring advanced skills additionally requires certain prerequisite (less advanced) skills.
We formalize these semantic learning notions in the sequel. Note that this bipartite graph formulation
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of learning is intimately related to graph-based approaches to data compression (Martinian & Yedidia,
2003) and associative memory (Karbasi et al., 2013). Moreover, although this approach to abstract
modeling has been tied to Transformer-based language modeling architectures (Yu et al., 2023a), it
can describe a variety of quite different learning paradigms (Yu et al., 2023b).

2.2 NOTATION

Let T be a subset of text pieces from a set T, and let R be a subset of concepts from a set R. Let
the model size N (number of parameters) be proportional to the number of concepts R = |R|, i.e.,
N = ςR, for some ς > 0.1 Similarly, let τ be the number of tokens in a text piece t ∈ T with
T = |T |, implying that the dataset size D = τT . For a given compute budget C,2 a language model
of size N can be trained using a dataset of size D so the constraint 6ND ≤ C is satisfied (see
Hoffmann et al. (2022)).

Correspondingly, for a given compute budget, G(C)
1 = (T ∪R, ET R) denotes a concept-text bipartite

graph, where an edge etr ∈ ET R indicates that the language model can learn concept r from text t.
Let the degrees of text pieces (number of skills required to understand a text) be binomially distributed
with a fixed mean degree dt, i.e., PR = Binomial(n, p) = Binomial(R, dt/R). The corresponding
generating function is PR(x) =

∑
i Pix

i, where Pi = Pr(Y = i) and Y ∼ Binomial(R, dt/R). Let
the degree distribution of concepts be LT = Binomial(T, dr/T ), where dr = dtT/R. Note that
dt/R = dr/T =: p. There is an alternate point of view: If we assume that there exists an edge
between a text piece and a concept with probability dt/T , then a typical graph will have text and
concept degree distributions close to PR and LT , respectively. It is generally useful to view degree
distribution from an edge-perspective, which is λT (x) = L′

T (x)/L
′
T (1) and ρR(x) = P ′

R(x)/P
′
R(1)

(Richardson & Urbanke, 2008).

Let G2 = (R ∪ S, ERS) be a skill-concept graph, where S = ∪lS(l) denotes a set of hierarchical
skills, with finite number S(l) of skills in each level l. Each concept is connected to a unique skill
at every level l, i.e., each concept enables learning of one skill at each level, and each skill s(l) is
connected to σl prerequisite skills at level l − 1. Our unified framework is represented by the graph
G(C) = G

(C)
1 ∪G2 as shown in Figure 1.

2.3 LEARNING CONCEPTS FROM TEXT PIECES

Following the approach described in Liao et al. (2024), we assume that a language model learns
concepts from text pieces as an iterative peeling process. For a self-contained explanation, let us
briefly describe the peeling process here. Let R(u)

+ denote the set of concepts learnt, and R(u)
− denote

the set of concepts not learnt in peeling iteration u. Initially, all the concepts are unlearned, i.e.,
R(0)

− = R and R(0)
− = ∅. Next, a language model learns a concept r ∈ R(0)

− if a text piece t ∈ T is
uniquely connected to r yielding R(1)

+ = {r} and R(1)
− = R(0)

− \ {r}. Before the next iteration, the
edge etr and concept node r from the graph are removed. The next iteration starts by finding another
text piece uniquely connected to a concept in R(1)

− , and this peeling process continues until there is
either no more text piece/s connected to a unique concept in R− or all the concepts are learnt, i.e.,
R+ = R.

2.4 ACQUISITION OF SKILLS AND COMPOSITION OF SKILLS

A skill s(l+1) at level l+1 is considered acquired when two conditions hold: 1) all the σl+1 prerequisite
skills at the lower level l are learnt, and 2) at least one concept associated with s(l+1) is learnt. A
pair of concepts (r1, r2) is considered connected (denoted by r1 − r2) if there is a path r1 − t− r2
through at least one text t ∈ T . Then, for a fixed level l, a skill-graph G

(l)
2 = (S(l), ES(l)×S(l)) is

constructed as follows: A pair of skills s1 and s2 in S(l) has a direct link (i.e., es1s2 ∈ ES(l)×S(l))
if there are at least ηl distinct paths s(l)1 − r1 − r2 − s

(l)
2 (with at least ηl distinct pairs of concepts

(r1, r2)), and all the 2σl prerequisite skills required for both skills are acquired. The intuition behind

1Here, a concept is similar to a skill quantum in Michaud et al. (2023).
2Compute budget is measured in number of floating point operations or FLOPs (Hoffmann et al., 2022).
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Figure 1: A unified framework of learning concepts and skills by language models. The lower
subgraph G

(C)
1 is a concept-text bipartite graph akin to a Tanner graph representation of an LDPC

code. The upper subgraph G2 shows concept-skill and skill-to-skill relationships, with multiple levels
of skills denoted by l. Higher l indicates more advanced skills.

this construction is that a pair of skills is connected (and therefore can be composed) if they co-occur
sufficiently many times through distinct pairs of concepts in the training data, and all prerequisite
skills of both skills are already acquired. Further, since more advanced skills are generally hard to
learn, skills at higher levels (larger values of l) need larger values of ηl.

2.5 DEFINING EMERGENCE

In the context of neural language models, there are several definitions of skill emergence in the
literature. In most existing frameworks, skills are directly associated with texts. In the skill-text
bipartite graph framework of Arora & Goyal (2023), the fraction of text pieces in error (incorrect
answers to cloze questions) is obtained from the Chinchilla rule, where the error fraction is smaller
for larger model sizes. Emergence is defined in terms of the error rate of the skill-tuple, i.e., the
fraction of edges to error-marked text pieces from k-tuple of skills, as follows: For a fixed target error
threshold, with an increase in model size, emergence is defined as increase in the largest size of the
skill tuple k whose error rate is below the threshold. According to this definition of emergence, there
is no phase transition and conforms to the notion that emergence is slow.

In Liao et al. (2024), emergence is defined as a function of the ratio of number of text pieces to skills:
with increase in the ratio of number of texts to skills, emergence is defined as the increase in the size
(normalized) of the largest connected component corresponding to the learnt skills. This definition
of emergence exhibits a phase transition around a specific value of text-to-skill ratio. However, this
definition of emergence as a function of text-to-skill ratio (not of model size) does not follow the
definition of emergence, for example in Wei et al. (2022): “An ability is emergent if it is not present
in smaller models but is present in larger models.”

A critical view of emergent abilities is given in Schaeffer et al. (2023), arguing that emergence in
performance (e.g. in terms of accuracy) is only a consequence of quantization of another metric
(e.g. token edit distance) which shows gradual improvement with size scaling, and hence is only a
mirage. Although this argument holds, we maintain a more optimistic view. How the performance of
the model is measured is important, but corresponding to a performance metric, there is an abstract
quantity such as the ability to compose multiple skills, which a language model gains when the model
size exceeds a certain threshold to exhibit a true phase transition.
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In our framework, advanced skills (larger l) are acquired from concepts and more basic skills, rather
than directly from text pieces. To describe the composition of skills not seen in training, we begin
by asserting transitivity of skill composition for a fixed skill level l: if the training data contains
enough text pieces with composition of both pairs (s(l)1 , s

(l)
2 ) and (s

(l)
2 , s

(l)
3 ), then a language model

is capable of composing skill s(l)1 and s
(l)
3 . Consequently, a language model successfully performs a

sub-task requiring a composition of a set of skills S(l)
θ ⊆ S(l) if there is a path between every pair

of skills belonging to S(l)
θ in graph G

(l)
2 . As we will see in Section 3.3, the skill graph with nodes

S(l) is an Erdös-Rényi (ER) random graph with edges indicating pairwise composition of skills seen
in training, and the relationship between composition of a set of skills and the presence of giant
connected component.

For small compute budgets, dataset size corresponding to compute-optimal performance is small, in
which case the training data contains composition of only a small number of skill pairs. As compute
budget increases, the size of the training data increases, and therefore the number of composed
skill pairs seen by the language model during training increases. Beyond a certain compute-budget
threshold and due to skill composition transitivity, the ability of the language model to compose most
skill pairs emerges, appearing as a phase transition around this compute-budget threshold. As we will
see in Section 3.3, this phase transition is related to the appearance of a giant connected component
(GCC) in random graphs with increasing edge probability. Our definition of emergence exhibits phase
transition as empirically observed in language models, and our finitary analysis helps in conforming
to the definition of emergence in Wei et al. (2022).

3 EXPLAINING ALL THREE PHENOMENA

Using the framework in Section 2, we aim to explain the compute-optimal (Chinchilla) scaling rule
by applying non-asymptotic information-theoretic tools to the bipartite graph G

(C)
1 and to explain

emergence and plateauing phenomena based on the density of connections in the skill-graphs {G(l)
2 }l.

3.1 COMPUTE-OPTIMAL SCALING RULE

Let R+ ⊆ R denote the set of concepts learnt after the peeling process terminates. Note that the
corresponding number of concepts R+ = |R+| is a random variable. The goal of the language model
is to minimize training loss. We assume that the language model inherently attempts to maximize the
number of concepts learnt from the text pieces under the compute budget constraint C, which yields
the following constrained optimization problem.

maximize
R,T

E
G

(C)
1 ∼(λT ,ρR)

[R+] (1)

s.t. RT ≤ C ′,

where the number of model parameters N = ςR, number of tokens in a text piece is τ , C ′ = C
6 ς τ ,

and (R∗, T ∗) is the maximizer of the objective function in equation 1. It follows directly that the
objective function in equation 1 can be rewritten as:

E
G

(C)
1 ∼(λT ,ρR)

[R+] = R(1− Pr{r /∈ R+|R, T}). (2)

For a bipartite graph sampled from a degree distribution pair (λT , ρR), one may exactly compute
the number of learned concepts using combinatorial arguments (Di et al., 2002). However, the
exact analysis becomes computationally expensive very quickly with increasing compute budget
C (equivalently R and T ). Moreover, since we are mainly interested in scaling behavior, the exact
analysis may not be very insightful. Fortunately, observing that the peeling process is equivalent to
iterative decoding of LDPC codes when the codeword symbols are corrupted by erasure, allows us
to sidestep this difficulty. The trick is to construct a parent bipartite graph G̃

(C)
1 with (1 − ϵ)R/ϵ

additional concept nodes3 and degree distribution pair λT and ρ̃R, such that the peeling process in

3ϵ ∈ (0, 1) can be chosen arbitrarily, and Pr{r /∈ R+|R, T} is invariant to ϵ. See Appendix A.2 for details.
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Figure 2: IsoFLOP curves: (left) Number of concepts learnt as a function of R for different compute
budgets (FLOPs); (right) Block erasure threshold as a function of the number of concepts R for
different compute budget. In both subfigures, solid black markers indicate the points corresponding
to R∗.

this graph appears as belief propagation decoding of the ϵ fraction of erased codeword symbols (see
Appendix A.2 for details), which yields

Pr{r /∈ R+|R, T} =
Pb,λT ,ρ̃R

ϵ
, (3)

where Pb,λT ,ρ̃R
is the post-decoding bit erasure rate corresponding to G̃

(C)
1 (see Appendix A.2 for

details).

Before providing an expression for Pb,λT ,ρ̃R
some notations are as follows: let f(x, ϵ) = ϵλT (1−

ρ̃R(1 − x)), then the decoding threshold ϵ∗ = inf{ϵ ∈ [0, 1] : x = f(x, ϵ) has a solution in x ∈
(0, 1]}, x∗ be a critical point satisfying x∗ = f(x∗, ϵ∗), ν∗ = ϵ∗ LT (1− ρ̃R(1− x∗)). Substituting
for the post-decoding bit erasure rate Pb,λT ,ρ̃R

, the objective function in equation 1 is given by (see
Appendix A.2 for more details):

E
G

(C)
1 ∼(λT ,ρR)

[R+] ≈ R

(
1− ν∗

ϵ
Q

(√
R

ϵ

(ϵ∗ − ϵ)

α

))
, (4)

where α depends on the degree distribution pair (λT , ρ̃R) (see Appendix A.2 for the closed-form
expression), and Q(·) is the complementary Gaussian cumulative distribution function. In Figure 2,
the objective function in equation 1 is plotted against the number of concepts R for multiple compute
budgets. In the left subfigure, each curve corresponds to a fixed compute budget. Note that smaller
values of R correspond to smaller language model sizes, in which case the dataset size (number of
texts T ) is more than necessary for the model to learn all the skills. Contrarily, for large model sizes,
the smaller dataset size is insufficient to learn the concepts well. There is an optimum model size and
dataset size pair (equivalently R and T ) such that the number of concepts learnt is maximized, as
indicated by a solid black marker for each compute budget C. This figure is analogous to isoFLOP
curves in (Hoffmann et al., 2022, Figure 2), where training loss is plotted against model size for
different compute budgets.

Compute-optimal size scaling of model size and dataset size with increasing compute budget obtained
by numerically solving equation 1 is shown Figure 3(a). The markers in the figure correspond to the
empirically predicted model size and dataset size for compute-optimal performance of the Chinchilla
model reported by Hoffmann et al. (2022) when the compute budget is 5.76× 1023. In the following
proposition, we prove that the Chinchilla rule is optimal.
Proposition 1. Compute-optimal size scaling: Suppose the number of model parameters and the
dataset size scale with compute budget C as N ∝ Cα and D ∝ Cβ for some α > 0 and β > 0. For
compute-optimal performance of a language model, the dataset size (D) and model size (N ) must
scale equally with the increasing compute budget C (or FLOPs), i.e., α = β = 1

2 .

Proof. The approach is to prove that neither T/R = o(1) nor R/T = o(1) maximizes the objective
function in equation 1. This implies that R/T must be a constant, i.e., R and T must scale equally
with compute budget C.
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Denote ϵ∗ be the decoding threshold corresponding to the degree distribution pair (λT , ρ̃R). The upper
bound on the decoding threshold is given by (see (Richardson & Urbanke, 2008, Section 3.14.4))

ϵ∗ ≤
∫
ρ̃R∫
λT

=: ϵ∗ub

(a) If T
R = o(1) (i.e., T

R decays as C → ∞), then

ϵ∗ub − ϵ ≤ ϵ

((
1− e−d/ϵ +

d2

ϵR

)(
1

d
+

T

R

)
− 1

)
C→∞−−−−→ ϵ

(
(1− e−d/ϵ)

d
− 1

)
< 0,

which implies that Pb,λT ,ρ̃R
→ 1. Therefore, number of skills learnt vanishes for large C.

(b) Consider R
T = o(1). From the fixed point characterization of decoding threshold of LDPC

codes, we have

f(x, ϵ∗) = ϵ∗λT (1− ρ̃R(1− x)),

= ϵ∗(1− (1− xp)
R
ϵ −1p)T−1, (5)

where p = dt/R. Since R/T = o(1), the number of text pieces T grows strictly faster
than R with respect to compute budget C, implying that the second term in equation 5,
i.e., (1 − (1 − xp)

R
ϵ −1p)T−1 → 0 for large C. Therefore, for a non-trivial solution, i.e.,

x = f(x, ϵ∗) ∈ (0, 1], the decoding threshold ϵ∗ must be very large. As a result, the
post-decoding bit erasure rate Pb,λT ,ρ̃R

vanishes for large C.
Suppose, (R∗

C , T
∗
C) such that R∗

C/T
∗
C = o(1) minimizes equation 1 (subscript C shows

explicitly the dependence on C). Now, consider R̂C = R∗
C(1 + δ) and T̂C = T ∗

C/(1 + δ).
Note that R̂C/T̂C = (1+δ)2R∗

C/T
∗
C = o(1). Therefore, for any δ′ ∈ (0, δ), there exists C0

such that for all C ≥ C0 the bit erasure rate ϵ−1Pb,λT̂C
,ρ̃R̂C

≤ δ′/(1 + δ′). Now consider
the ratio of number of concepts learnt:

R̂C(1− ϵ−1Pb,λT̂C
,ρ̃R̂C

)

R∗
C(1− ϵ−1Pb,λT∗

C
,ρ̃R∗

C
)
≥

R∗
C(1 + δ)

(
1− δ′

1+δ′

)
R∗

C

=
1 + δ

1− δ′
> 1, (6)

where the first inequality is by substitution and using the fact that ϵ−1Pb,λT∗
C
,ρ̃R∗

C
is non-

negative, and the second inequality is because δ′ < δ. Therefore, (R∗
C , T

∗
C) is not a

maximizer, which is a contradiction. Therefore, R/T cannot be o(1).

Since R/T = c Cα−β for some c > 0, α = β must hold, i.e., R/T must asymptotically be a constant.
Noting that RT ∝ C, we obtain α = β = 1

2 . In other words, the model size N and dataset size D
must scale equally with compute budget C.

3.2 SCALING OF EXCESS ENTROPY

The cross-entropy loss is the sum of two terms, namely, entropy of the ground truth distribution and
excess entropy (see Arora & Goyal (2023) for more details). Here, investigate the how a lower bound
of excess entropy scales with compute budget according our framework. Under finitary analysis,
for every compute budget C, there is an associated error rate Pb,λT ,ρ̃R

/ϵ which indicates a fraction
of concepts are not learnt even after the peeling process is complete. Similar to Arora & Goyal
(2023), we assume that cloze questions associated with text pieces connected to unlearnt concepts are
incorrectly answered. Therefore, the training error is equivalent to the probability that a check node
(text piece) is connected to the stopping set (unlearnt concepts) at least twice. Refer to Richardson
& Urbanke (2008) on stopping sets. The training error corresponding to (N,D) given a compute
budget C is (see Appendix B for the calculation):

Pe,train ≥ 1−
(
1− dtPb

R

)R−1

− dtPb

(
1− dtPb

R

)R−1

≈ d2t ϵ
−2P 2

b,λT ,ρ̃R
. (7)
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Figure 3: (a) Model and dataset size pair (N∗, D∗) that maximizes equation 1 as a function of
compute budget C. The curves being parallel in logarithmic scale indicates that model size and
dataset size must scale equally with C. In this subplot, we set ς = 2× 105, τ = 8× 105, and dt = 6.
The markers indicate (N,D) corresponding to the compute-optimal performance predicted by the
Chinchilla rule (Hoffmann et al., 2022) when compute budget is 5.76× 1023 (dashed vertical line);
(b) Scaling of the lower bound of excess entropy in equation 8 compared with empirically observed
scaling according to (Hoffmann et al., 2022) as a function of the model size N∗.

Using Pinsker’s inequality that relates Kullback-Leibler divergence to total variational distance as
DKL(P ||Q) ≥ 1

2 ||P −Q||21, and the equivalence between total variation distance and error rate on
cloze questions (Arora & Goyal, 2023), we obtain the following lower bound on excess entropy:

Excess entropy ≥ 1

2
P 2
e,train ⪆

1

2
d4t ϵ

−4P 4
b,λT ,ρ̃R

. (8)

Empirically observed excess entropy scaling (an upper bound) of transformer-based models and a
lower bound according to our framework in equation 8 are depicted in Figure 3(b). The gap between
them indicates the scope for either tightening theoretical lower bound or devising architectures that
offer better empirical scaling or both.

3.3 EMERGENCE

As the model size increases (along with the compute budget C) there is a sharp increase in performance
(e.g. accuracy) of the language model on certain complex tasks which the model was not trained on.
We aim to provide a simple explanation to this empirical phenomenon using random graph theory.

Let pl denote the probability there is a direct link between any two pairs of skills at level l. For a
fixed (R, T ), pl evaluates as (see Appendix C for the derivation):

pl ≥

(1− g(R, prr, ηl)) γ
2σl

l−1 if ηl ≤
(
R
2

)
prr

1√
8ηl(1−ηl/(R2))

g(R, prr, ηl)γ
2σl

l−1 otherwise, (9)

where g(R, prr, ηl) = exp

(
−
(
R
2

)
DKL

(
ηl

(R2)
||prr

))
, prr is the probability that a pair of concepts

occur in at least one text piece, and γl−1 is the probability that a skill belongs to GCC of G(l)
2 (which

we show next). Recall the definition of emergence from Section 2.5 as the ability of a language model
to compose all pairs of skills within a subset of skills in a given level l required for a specific task. In
this regard, note that the skill graph G

(l)
2 is equivalent to an Erdös-Rényi (ER) random graph with S(l)

nodes and edge probability pl. A pair of skills in level l can be composed if there is a path between
them in G

(l)
2 , and the probability that there is a path between any pair of skills is bounded below by

the probability that both skills are in GCC of G(l)
2 .
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Figure 4: Accuracy of the language model sharply increases after the model size (equivalently C)
exceeds a threshold, which is a consequence of the emergence of a GCC in a skill graph G

(l)
2 . (a)

Step increase in accuracy for a homogeneous task. (b) Skill level distribution q(l) for unimodal
and multimodal heterogeneous tasks. (c) Smooth emergence for unimodal heterogeneous task. (d)
Plateauing phenomena as a consequence of a task requiring diverse skills according to multimodal
distribution. In this subplot, we used the following values for the parameters: number of skill levels
L = 100, S(l) = 103, ηl = exp(7l/L), σl = log2(l) for all l ∈ {1, . . . , L}, q(m) = 1/6 for all
m ∈ {2, . . . , 7}.

Suppose γl is ratio of the size of GCC in G2 to the total number of skills (number of nodes in G
(l)
2 )

at level l, i.e., γl = S
(l)
GCC/S

(l). Note that γl is equivalent to the probability that a skill at level l is in
GCC. From random graph theory (Barabási, 2016), for an ER graph with edge probability pl, the
solution to the following equation yields γl:

γl = 1− exp
(
−plS

(l)γl

)
, (10)

where plS
(l) is the mean degree of the ER skill graph. The solution is

γl = 1 +
1

plS(l)
W0

(
−plS

(l) exp
(
−plS

(l)
))

, (11)

where W0(·) is the upper branch of the Lambert W function. The ratio γl has a phase transition at
pl = 1/S(l). To see this, note that W0(xe

x) = x for x < −1. Therefore, whenever pl < 1/S(l), γl
is identically zero. As pl increases beyond 1/S(l), |W0(·)| starts decreasing and consequently, γl
increases.

For a particular skill level l, γl and pl can be computed recursively using equation 11 and equation 9,
with the following initial conditions: γ0 = 1 and σl = 0 (observe that no prerequisite skill is required
to learn basic skills, i.e., skills at l = 1). Suppose a task requires m skills at level l (a homogeneous
task), the model performs the task successfully only if there is a path between every pair of those
skills in G

(l)
2 . Therefore, a sufficient condition is that all skills required for the task are in GCC. The

accuracy of the task is:

Accuracy = Pr{Composition of m skills in S(l)},
= Pr{There exists a path between every pair among m skills in S(l)},

≥ Pr{All m skills ∈ GCC of G(l)
2 } = γm

l . (12)
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The accuracy curve in Figure 4 shows a step phase transition with increasing model size. This is
a consequence of the homogeneous task requiring skills at only one level. However, empirically
observed accuracy curves exhibit smoother phase transitions (Wei et al., 2022). To demonstrate
a smoother phase transition, consider a complex heterogeneous task that requires diverse skills at
different levels, in particular consisting of subtasks requiring m skills at level l with probability
q(l,m). Task accuracy is:

Accuracy ≥
∑
l,m

q(l,m)γm
l . (13)

The overall accuracy is therefore a weighted average of the emergence curves. To illustrate this using
a numerical example, consider a skill graph G2 with L = 100 levels, let q(m, l) = q(m)q(l) with
q(m) = 1/6 for m ∈ {2, . . . , 7} and consider a binomial distribution, Binomial(L, 1/2), over the
skill levels, i.e., q(l) =

(
L
l

)
( 12 )

L as shown in Figure 4(b). The corresponding accuracy according to
equation 13 is shown in Figure 4(c). In general, a smooth single phase transition can be obtained by a
unimodal distribution over skill levels with a sufficiently large variance.

3.4 PLATEAUING

According to our framework, plateauing in accuracy after encountering an emergent phenomenon
(with scaling) occurs because of the greater diversity of skills (at multiple levels) required by the
heterogeneous task under consideration. In particular, we observe plateauing when the skill levels
required for a task follows a multimodal distribution. To illustrate this, consider a mixture of binomial
distributions over the skill levels, i.e., q(l) =

∑
i wiBinomial(L, πi), with (wi)i ∈ (2/5, 2/5, 1/5)

and (πi)i = (0.2, 0.6, 0.95) is shown in Figure 4(b). The corresponding accuracy according to
equation 13 is shown in Figure 4(d). In general, a multimodal distribution over skill levels results in
emergence at multiple scales and plateaus between them. Our framework yields an interesting trend
associated with the plateauing of performance: plateauing indicates the possibility of one (or more)
upcoming emergent phenomenon (phenomena), which one would encounter with further scaling.

4 CONCLUSION

We presented a simple unified framework to explain all three empirical phenomena observed with
size scaling of language models. Existing frameworks assume a compute-optimal scaling rule and
only then explain emergent phenomena. We use non-asymptotic information theory to explain both
compute-optimal size scaling and emergent abilities of language models. Moreover, we explain the
more recent empirical phenomenon of plateauing of performance using random network theory, and
also predict that plateauing implies the possibility of multiple emergent phenomena with further size
scaling.

There are some open questions and considerations worth exploring. We do not take training time into
account in our framework. Therefore, we do not explain (or attempt to explain) empirical phenomena
such as double descent or grokking (Huang et al., 2024). Perhaps future work can either incorporate
training epochs in our framework or propose a different novel framework to explain them. Even
though the sequential learning of concepts through peeling process gives certain ordering to concepts,
there is no inherent ordering of concepts and we do not consider concept hierarchies (Yu et al.,
2023b;c). One can explore the advantages of doing so. Evidently, the degree distribution of texts is
related to the model’s architecture. Therefore, optimizing the degree distribution enables a language
model to learn more concepts from text pieces. Further, the quality of the training data is related to
text-to-concept edge deletions in sequential concept learning, which can be incorporated into our
framework. Such optimization is a line of future work that has natural analogues in optimization of
communication systems and fault-tolerant computation (Richardson & Urbanke, 2008).
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A SOLVING EQUATION 1: MAXIMIZING CONCEPT LEARNING UNDER
COMPUTE BUDGET CONSTRAINT

A.1 A BRIEF SUMMARY OF BELIEF PROPAGATION DECODING OF LDPC CODES UNDER
ERASURE

Low-density parity check (LDPC) codes are a family of error-correction codes, whose noisy code-
words can be decoded in a computationally efficient manner using belief propagation. Before getting
into deriving the probability that a concept is learnt from text pieces, we provide a very short summary
of belief propagation decoding of LDPC codes when codeword symbols are corrupted by erasure. An
LDPC code can be graphically represented by a Tanner graph, which is a bipartite graph with a set of
variable nodes (codeword symbols) and check nodes (parity checks). Each codeword satisfies all the
parity checks. Given a degree distribution pair (for variable and check nodes), there is a channel noise
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threshold ϵ∗ above which the decoder fails to decode the transmitted codeword. Consider a noisy
version of a transmitted codeword with ϵ < ϵ∗ fraction of the symbols are erased. Belief propagation
decoding starts by finding a check node where all except one symbol are recieved correctly (not
erased). Then the erased symbol is determined as the one satisfying the parity. The next iteration
starts by finding another check node with only one erased codeword symbol. This process continues
until either all the codeword symbols are decoded or the decoder gets stuck with no parity checks
containing only one erased symbol. The latter is declared as a decoding failure.

A.2 COMPUTING Pr{r /∈ R+|R, T}

Learning concepts from texts by the peeling process described in Section 2.3 is identical to belief
propagation decoding of an LDPC code when the channel noise is erasure. To see this, treat
R concepts as erased codeword symbols (subset of variable nodes), and T text pieces as parity
checks. To obtain one-to-one correspondence, we need un-erased symbols (the remaining subset
of variable nodes). Therefore, we choose (arbitrarily) a channel noise parameter ϵ ∈ (0, 1), add
1−ϵ
ϵ R nodes (dummy nodes) to the set of variable nodes, and treat them as un-erased symbols. Next,

add edges between every pair of dummy variable node and a parity check node with probability
p = dt

R . Consequently, the degree distribution of the parity check nodes (text pieces) is modified,
i.e., its degree distribution is binomial with parameters R/ϵ (instead of R) and dt/R, but the degree
distribution of variable nodes remains unchanged. Let us call the resulting parent graph G̃1

4 (see
Figure 5) with the following text and concept degree distributions,

P̃R = Binomial(R/ϵ, p), and (14)

L̃T = LT = Binomial(T, p), (15)

respectively. Here, for a compute budget C, we set T = C
6ςτR .

t

s

Number of learnable concepts = R

Number of variable nodes = 

Dummy variable nodes = 

Dummy variable node Dummy edges

Figure 5: Bipartite graph G̃1.

In belief propagation decoding (peeling) of a codeword affected by erasures, the post-decoding bit
erasure rate depends only on the residual graph consisting only variable nodes corresponding to erased
symbols, parity checks connecting those variable nodes, and edges between them. Therefore, the
post-decoding bit erasure rate is invariant to the choice of ϵ.5 Therefore, we can make the following
equivalence between concept learning and bit erasure rate:

Pr{r /∈ R+|R, T} =
Pb,λT ,ρ̃R

ϵ
, (16)

where Pb,λT ,ρ̃R
is the post-decoding bit erasure rate, and λT (x) =

L′
T (x)

L′
T (1) and ρ̃R(x) =

P̃ ′
R(x)

P̃ ′
R(1)

are variable and check node degree distributions from edge perspective, respectively. To compute

4In this section, we omit superscript (C) in G̃
(C)
1 for brevity.

5Here we choose ϵ = 0.5 (instead of close to 0 or 1) for numerical convenience.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Pb,λT ,ρ̃R
we need the following ingredients: degree distributions λT and ρ̃R, decoding threshold ϵ∗,

and scaling factors ν∗ and α which depend on degree distributions. Degree distribution of text pieces
from the node perspective is

PR(x) =
∑
i

(
R

i

)
pi(1− p)R−ixi, (17)

P̃R(x) =
∑
i

(
R/ϵ

i

)
pi(1− p)(R/ϵ)−ixi, (18)

which gives the following text degree distribution from the edge perspective:

ρ̃R(x) =
P̃ ′
R(x)

P̃ ′
R(1)

=

∑
i i
(
R/ϵ
i

)
pi(1− p)(R/ϵ)−ixi−1∑

i i
(
R/ϵ
i

)
pi(1− p)(R/ϵ)−i

. (19)

Noting that i
(
R/ϵ
i

)
= R

(
R/ϵ−1
i−1

)
we obtain the degree distribution of text pieces from edge perspective:

ρ̃R(x) =

∑(R/ϵ)−1
j=0

R
ϵ p
(
R/ϵ−1

j

)
pi−1(1− p)(R/ϵ)−ixi−1

R
ϵ p

(20)

= (px+ (1− p))
R
ϵ −1. (21)

Similarly, the degree distribution of concepts (remains unchanged for a fixed R, T ) from the edge
perspective is

λT (x) = (px+ (1− p))T−1. (22)

Next the belief propagation decoding threshold ϵ∗ is obtained from its fixed point characterization
(Richardson & Urbanke, 2008, Section 3.12):

ϵ∗ = inf{ϵ ∈ [0, 1] : x = f(x, ϵ) has a solution in x ∈ (0, 1]}, (23)

where f(x, ϵ) = ϵλT (1− ρ̃R(1− x)), and the critical point x∗ satisfies x∗ = f(x∗, ϵ∗).

From finite-length scaling law of error rates in belief propagation decoding (Richardson & Urbanke,
2008, Section 3.23), we have the following (approximate) closed-form expression for post-decoding
bit erasure rate:

Pb,λT ,ρ̃R
≈ ν∗Q

(√
R

ϵ

(ϵ∗ − ϵ)

α

)
, (24)

where ν∗ = ϵ∗ LT (1− ρ̃R(1−x∗)), Q(·) is the complementary standard Gaussian cumulative distri-
bution function, and the scaling parameter α is given by (Richardson & Urbanke, 2008, Section 3.23)

α =

(
ρ(x̄∗)2 − ρ((x̄∗)2) + ρ′(x̄∗)(1− 2x∗ρ(x̄∗))− (x̄∗)2ρ′((x̄∗)2)

L′
T (1)λT (y∗)2ρ′(x̄∗)2

+ (25)

(ϵ∗)2λ(y∗)2 − (ϵ∗)2λT ((y
∗)2)− (y∗)2(ϵ∗)2λ′

T ((y
∗)2)

L′
T (1)λ(y

∗)2

)1/2

, (26)

where x∗ is the unique critical point, x̄∗ = 1− x∗, and y∗ = 1− ρ̃R(1− x∗).

B CALCULATION OF Pe,train

We assume that the training error has contributions from two terms. The first contribution is from
fraction of text pieces connected to unlearnt concepts, and the second term has an inverse relationship
with the model size (equivalently, the number of learnable concepts). Since we do not know the
precise functional form of the latter, we focus on the former, which gives a lower bound on the
training error.

The probability that a text piece is connected to an unlearnt concept is equivalent to finding the
probability that a text piece is connected to the set of unlearnt concepts at least twice (also called the
stopping set in iterative decoding of LDPC codes), i.e.,

ps := Pr
(
|{etr ∈ G

(C)
1 }r∈R− | ≥ 2

)
, for any t ∈ T , (27)
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The training error is bounded below as follows.

Pe,train ≥ ps = Pr
(
|{etr ∈ G

(C)
1 }r∈R− | ≥ 2

)
, for any t ∈ T , (28)

=

R∑
k=2

Pr
(

degree(t) = k, {|{etr ∈ G
(C)
1 }r∈R− | ≤ 1}c

)
, (29)

=

R∑
k=2

(
R

k

)
pk(1− p)R−k

(
1− (1− Pb)

k − kPb(1− Pb)
k−1
)
, (30)

where the edge probability p = dt/R and Pb = ϵ−1Pb,λT ,ρ̃R
. The last equation simplifies to:

Pe,train ≥ 1−
(
1− dtPb

R

)R

− dtPb

(
1− dtPb

R

)R−1

, (31)

which is obtained by computing the expectation of each of the three terms within the summation in
equation 30 and substituting p = dt/R. Further using the approximations (1− x)n ≈ 1− nx and
R− 1 ≈ R for large R, the training error is bounded below as Pe,train ⪆ d2tP

2
b .

C CALCULATION OF pl

Recall that pl is the probability that the composition of a pair of skills in level l is seen at least ηl
times in the training data. For a fixed pair of skills (s1, s2), the probability there is a path between
the pair of skills through some pair of concepts (r1, r2) is

Pr(s1 − r1 − r2 − s2) = Pr(s1 − r1, r1 − r2, r2 − s2),

= Pr(s1 − r1) Pr(r1 − r2) Pr(r2 − s2),

=
1

S(l)

(
1−

(
1− d2t

R2

)T
)

1

S(l)
=: prr,

where the second inequality is due to independence of s1 − r1, r1 − r2 and r2 − s2. Let X be a
random variable indicating the number of distinct paths s1 − r1 − r2 − s2 between s1 and s2. Now,
Pr (composition of(s1, s2) in training data) =: pl is

pl = Pr(X ≥ ηl, all prerequisite skills of s1 and s2 are acquired),
≥ Pr(X ≥ ηl) Pr(all prerequisite skills of s1 and s2 are acquired).

Note that the total number of distinct paths between s1 and s2 equals the total number of concept
pairs (r1, r2) which is

(
R
2

)
, each with probability prr. Therefore, X follows a binomial distribution,

i.e., Binomial
((

R
2

)
, prr

)
. From Chernoff’s bound for binomial distribution, we obtain the following

lower bounds:

Pr(X ≥ ηl) ≥



(
1− exp

(
−
(
R
2

)
DKL

(
ηl

(R2)
||prr

)))
if ηl ≤

(
R
2

)
prr

1√√√√8ηl

(
1− ηl

(R2)

) exp

(
−
(
R
2

)
DKL

(
ηl

(R2)
||prr

))
otherwise. (32)

In deriving the above lower bounds, the following versions of Chernoff’s bounds are used:

F (k;n, p) ≤ exp

(
−nD

(
k

n
|| p
))

, and (33)

F (k;n, p) ≥ 1√
8n k

n

(
1− k

n

) exp(−nD

(
k

n
|| p
))

, (34)

where F (k;n, p) = Pr(Z ≤ k) with Z ∼ Binomial(n, p).

The probability of acquiring prerequisite skills of both skills s1 and s2 is (assuming R ≫ σl),

Pr(all prerequisite skills of s1 and s2 are acquired) ≥ Pr(all σl prerequisites ∈ GCC)2,

= γ2σl

l−1.
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