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Abstract

To ensure large language models contain up-to-001
date knowledge, they need to be updated regu-002
larly. However, model editing is challenging as003
it might also affect knowledge that is unrelated004
to the new data. State-of-the-art methods iden-005
tify parameters associated with specific knowl-006
edge and then modify them via direct weight007
updates. However, these locate-and-edit meth-008
ods suffer from heavy computational overhead009
and lack theoretical validation. In contrast,010
directly fine-tuning the model on requested011
edits affects the model’s behavior on unre-012
lated knowledge, and significantly damages the013
model’s generation fluency and consistency. To014
address these challenges, we propose SAUL,015
a streamlined model editing method that uses016
sentence concatenation with augmented ran-017
dom facts for generation regularization. Evalu-018
ations on three model editing benchmarks show019
that SAUL is a practical and reliable solution020
for model editing outperforming state-of-the-021
art methods while maintaining generation qual-022
ity and reducing computational overhead.023

1 Introduction024

Large Language Model (LLMs) have been shown025

to implicitly store factual knowledge in their pa-026

rameters (Petroni et al., 2019; Roberts et al., 2020).027

However, since our world is changing, facts can be-028

come obsolete or incorrect. Thus, there is the need029

for model editing, i.e., updating or fixing incor-030

rect knowledge stored in LLMs without disrupting031

their overall functionality, in particular, leaving un-032

related knowledge unchanged and keeping their033

generation quality on a high level.034

The state-of-the-art model editing strategy is035

locate-and-edit (Meng et al., 2022a,b). It first iden-036

tifies the location of knowledge inside the LLMs,037

and then directly modifies the weights it identified.038

While effective in practice, it requires significant039

computational overhead (Meng et al., 2022a,b),040

and relies on an the locality hypothesis of factual041

Figure 1: Comparison between SAUL and prior work
for model editing. Prior work causes generation repeti-
tion, as the fine-tuning loss focuses only on a few target
tokens. In contrast, SAUL regularizes the model’s gen-
eration with sentence concatenation. Consequently, the
model can still generate fluent text after model editing.

knowledge (Hase et al., 2024). In contrast, fine- 042

tuning on requested edits is straightforward and 043

agnostic to model architectures. However, naive 044

fine-tuning has been shown to adversely affect the 045

model’s behavior on unrelated facts and impair the 046

fluency and consistency of the model’s generation 047

(Meng et al., 2022b; Yao et al., 2023; Gangadhar 048

and Stratos, 2024). 049

To overcome these challenges, we propose 050

SAUL, a novel fine-tuning approach that uses 051

sentence concatenation with augmented random 052

facts for generation regularization. Augmenting 053

random facts effectively preserves the model’s 054

knowledge of unrelated facts. In addition, concate- 055

nating the target factual sentence with a random 056

factual sentence prevents the overfitting on the tar- 057

get token(s). This effectively avoids the generation 058

of disfluent sentences – as shown in Figure 1. 059

We evaluate our approach on three model editing 060

benchmarks. The results demonstrate that SAUL 061

not only outperforms existing state-of-the-art meth- 062
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ods in terms of model editing performance but also063

effectively preserves the fluency and consistency of064

the model’s outputs. This makes our method both065

simple and efficient, providing a viable solution066

for practical and reliable model editing in LLMs.067

2 Related Work068

Model editing is a targeted approach to updating069

the knowledge stored in LLMs. Existing works can070

be categorized as follows: Memory-based methods071

introduce an external memory unit for requested072

edits without parameter update (Mitchell et al.,073

2022; Huang et al., 2023). Meta-learning meth-074

ods employ a hypernetwork to learn the necessary075

model updates (De Cao et al., 2021; Mitchell et al.,076

2021). Locate-and-edit methods identify parame-077

ters associated with specific knowledge and modify078

them through direct parameter updates (Meng et al.,079

2022a,b). Recent work (Gangadhar and Stratos,080

2024) proposes a straightforward fine-tuning-based081

model editing method with data augmentation,082

showing competitive performance, but causing un-083

expected generation failures.084

Our approach extends fine-tuning with random085

fact augmentation for model editing. Addition-086

ally, we utilize the sentence concatenation strategy087

for generation regularization. Consequently, our088

method demonstrates state-of-the-art performance089

while maintaining the model’s generation quality.090

3 Method091

We propose SAUL, a novel model editing method092

that regularizes the model’s generation via sentence093

concatenation with augmented random facts.094

Model Editing Problem Definition LLMs have095

been shown to memorize factual knowledge096

(Petroni et al., 2019; Roberts et al., 2020; Kassner097

et al., 2021). We consider a fact to be a sentence098

xi that describes a subject-relation-object triple099

(si, ri, oi) in natural language. A model fθ should100

recall the object oi given given a natural language101

prompt pri = pr(si, ri) consisting the subject si102

and relation ri. We focus on mass-editing, i.e.,103

editing a set of multiple facts at once. Given the104

set of requested edits E = {(si, ri, oi)}Ni=1, model105

editing aims to alter the model’s behavior for facts106

within the editing scope Xe, which encompasses107

E along with its equivalence neighborhood N(E),108

while leaving its knowledge for out-of-scope ex-109

amples, i.e. (si, ri, oi) /∈ Xe, unchanged.110

Naive Fine-tuning for Model Editing. For a set111

of edits E , fine-tuning-based methods optimize the 112

conditional likelihood of the target object given 113

subject si and relation ri of the fact formulated as 114

a natural language prompt pri: 115

min
θ

∑
(si,ri,oi)∈E

− log pθ(oi|si, ri) 116

117

Random Fact Augmentation. While naive fine- 118

tuning has shown good editing efficacy, it harms 119

generality and locality by not generalizing the edits 120

to paraphrased sentences and altering the model’s 121

predictions on unrelated facts (Meng et al., 2022b). 122

Gangadhar and Stratos (2024) demonstrate that 123

fine-tuning with augmented paraphrases and ran- 124

dom facts significantly improves generality and 125

locality performance. Inspired by this work, we 126

adopt the idea of data augmentation with random 127

facts. We use random true facts from the training 128

split provided by Gangadhar and Stratos (2024).1 129

Generation Regularization. We find that the post- 130

edit model after fine-tuning leads to undesired gen- 131

eration failures, with the model generating repeat- 132

ing target tokens, as illustrated in Figure 1. We hy- 133

pothesize that this occurs because the conditional 134

likelihood-based optimization makes the model fo- 135

cus excessively on the target token(s), thus losing 136

its general generation capability. We propose to 137

concatenate the factual sentence xi ∈ Xe and the 138

random factual sentence ai ∈ A for fine-tuning. 139

Formally, SAUL optimizes: 140

min
θ

∑
(si,ri,oi,ai)∈E∪A

− log pθ(oi, ai | si, ri) 141

The sentence concatenation strategy regularizes the 142

model’s generation, so that it maintains the model’s 143

generation quality and still produces fluent natural 144

sentences after editing. 145

4 Experimental Setup 146

Datasets and Baselines. We evaluate SAUL and 147

related methods on three datasets: CounterFact 148

(Meng et al., 2022a), ZsRE (Levy et al., 2017), and 149

WikiRecent (Cohen et al., 2024).2 We include the 150

following baselines: MEND (Mitchell et al., 2021) 151

- a hypernetwork-based method; ROME (Meng 152

et al., 2022a) and MEMIT (Meng et al., 2022b) - 153

locate-and-edit methods; FT and FT+R+P (Gan- 154

gadhar and Stratos, 2024) - fine-tuning without and 155

1We do not use paraphrase fact augmentation as prelimi-
nary experiments showed a degradation of the model’s gener-
ation quality, which we will analyze in detail in Section 5.

2Details of these dataset are provided in Appendix A.1
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Editor Time (/edit)
CounterFact ZsRE WikiRecent

Score Fluency Consistency Score Fluency Score Fluency

Original GPT-J† 0.0s 22.4 622.4 29.4 26.4 599.0 37.4 600.8

MEND† 0.003s 23.1 618.4 31.1 20.0 - - -
ROME† 1.3s 50.3 589.6 3.3 2.6 - 35.0 -
MEMIT† 0.7s 85.8 619.9 40.1 50.7 - 67.3 -

FT† 0.2s 62.4 452.1 4.3 58.8 559.9 67.2 570.0
FT + R + P† 0.9s 86.5 352.0 5.2 62.0 - 68.5 -
FT + R + P* 1.1s 86.6 208.7 4.7 64.2 591.5 70.1 501.3
SAUL 0.4s 87.7 600.7 31.0 63.6 620.7 69.7 560.6

Table 1: Summary of the model editing results on three benchmark datasets. We present the editing score, generation
fluency and consistency, and the required time per edit for each method. SAUL demonstrates strong performance
in all these metrics across datasets, providing a robust and efficient solution for model editing. † and * denote
results taken from prior works and reproduced by us, respectively.4

New Fact Inner Circle railway line can be found in
Melbourne Singapore .

Editor Generation

Original GPT-
J

Inner Circle railway line’s surroundings
include the following suburbs and ar-
eas. . .

FT + P + R Inner Circle railway line’s surround-
ings include Melbourne Melbourne
Melbourne ...

SAUL (Ours) Inner Circle railway line’s surround-
ings include residential areas. Inner
Circle railway line can be found in
Singapore ...

Table 2: Comparison of the model’s generation after
model editing. While FT+P+R fails to edit the knowl-
edge and generates repetitive tokens, SAUL success-
fully incorporates the new fact into its fluent generation.

with data augmentation, respectively.3156

Training Details. We follow the mass-editing set-157

ting as in Meng et al. (2022b); Gangadhar and158

Stratos (2024). For each edit, we augment Nr unre-159

lated true facts provided by Gangadhar and Stratos160

(2024) for sentence concatenation. We fine-tune161

all model layers of GPT-J 6B (Wang and Komat-162

suzaki, 2021) and compare different fine-tuning163

paradigms in Section 5.164

Evaluation Metrics. Model editing performance165

is evaluated by three metrics: (1) Efficacy mea-166

sures if the model predicts the new target oi with a167

greater probability than the original prediction o-
i.168

(2) Generality evaluates if the post-edit model can169

generalize to an equivalent paraphrase of the edit170

3R: random augmentation, P: paraphrase augmentation.
4FT+R+P* in Section 5 refers to the reproduction re-

sults we obtained by fine-tuning all model layers; Prior work
(FT+R+P) use LoRA (Hu et al., 2022) for fine-tuning

sentence. (3) Locality assesses the accuracy on the 171

knowledge out of the edit scope Xe. 172

Besides, we report fluency and consistency fol- 173

lowing prior work (Meng et al., 2022a,b; Gangad- 174

har and Stratos, 2024). For fluency, we calculate 175

the n-gram entropy of the model’s generated text.5 176

For consistency, we compare the generated text 177

with reference texts about subjects sharing the tar- 178

get property. The consistency score is the cosine 179

similarity between their unigram TF-IDF vectors.6 180

We calculate the harmonic mean of efficacy, gen- 181

erality, and locality as the editing score following 182

prior works. We report this editing score, along 183

with fluency and consistency in Section 5. We 184

provide the complete results in Appendix A.3. 185

5 Results and Analysis 186

Overall Results. As shown in Table 1, SAUL con- 187

sistently demonstrates strong performance in terms 188

of editing score, generation quality, and computa- 189

tional efficiency. In particular, it performs better 190

than the state-of-the-art, but complex MEMIT sys- 191

tem on all evaluation datasets. While FT+R+P 192

achieves competitive editing scores, it shows poor 193

generation quality, suggesting that the model’s gen- 194

eration quality has been damaged during editing. 195

In Table 2, we provide a qualitative comparison 196

of the model’s generation after editing. We ob- 197

serve that FT+R+P fails to incorporate the new fact 198

and overfits to the target token, leading to repeti- 199

tive generation of “Melbourne”. However, SAUL 200

maintains the generation quality and successfully 201

integrates the new fact into the generated text. 202

5We provide examples and analysis of the generation flu-
ency in Section 5.

6We only report the consistency score on the CounterFact
Dataset as this is the only dataset with reference texts.
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Editor
CounterFact ZsRE WikiRecent

Score Fluency Consistency Score Fluency Score Fluency

Original GPT-J 22.4 622.4 29.4 26.4 599.0 37.4 600.8

FT 21st 57.0 584.4 14.9 37.9 566.4 45.7 595.8
FT 3-8th 60.8 553.8 8.7 56.7 549.5 69.2 574.3
FT all 62.4 452.1 4.3 58.8 559.9 67.2 570.0
FT LoRA 55.4 494.4 5.7 57.8 543.9 67.5 546.8

SAUL 3-8th 89.8 595.4 30.1 63.6 615.0 69.4 587.9
SAUL all 87.7 600.7 31.0 63.6 620.7 69.7 560.6

Table 3: We compare fine-tuning on different layers of the language model. Applying SAUL on different layers
achieves notable improvements, demonstrating its effectiveness across various fine-tuning paradigms.

Editor
CounterFact ZsRE WikiRecent

Score Fluency Consistency Score Fluency Score Fluency

Original GPT-J 22.4 622.4 29.4 26.4 599.0 37.4 600.8

FT 62.4 452.1 4.3 58.8 559.9 67.2 570.0
FT + R 85.3 379.0 3.5 58.6 564.2 69.8 454.6
FT + P 70.7 190.9 5.6 63.7 607.2 69.0 541.5
FT + P + R 86.6 208.7 4.7 64.2 591.5 70.1 501.3

SAUL w/ R 87.7 600.7 31.0 63.6 620.7 69.7 560.6
SAUL w/ P 68.7 366.8 8.6 54.4 466.9 69.5 406.4
SAUL w/ P + R 87.5 447.6 18.0 63.5 490.3 70.5 437.8

Table 4: We investigate different data augmentation strategies. Our method,
SAUL with random augmentation, shows the best overall performance across
datasets in terms of editing scores, generation fluency and consistency.

Figure 2: Comparison of naive
fine-tuning, fine-tuning with ran-
dom augmentation, and SAUL.

Ablation Study: Fine-tuning Paradigms. We203

compare naive fine-tuning (no augmentation) and204

SAUL on different layers of GPT-J and using205

LoRA for parameter-efficient fine-tuning. Our se-206

lection of fine-tuning layers is based on conclu-207

sions from previous locate-and-edit works: Meng208

et al. (2022a) find that fine-tuning the 21st layer209

of GPT-J yields the best performance, while Meng210

et al. (2022b) identify layers 3 to 8 as the most211

critical layers for factual recall.212

The experimental results in Table 3 show that213

fine-tuning on layers 3-8 and all layers achieves214

strong editing scores. While SAUL 3-8th shows215

the highest score on CounterFact, SAUL all per-216

forms best on the other two datasets. We suspect217

this is because Meng et al. (2022b) use CounterFact218

for parameter localization, and layers 3-8 might219

not generalize well to other datasets. In contrast,220

our method is dataset-agnostic and consistently221

improves performance across various datasets.222

Ablation Study: Data Augmentation. We study223

different data augmentation strategies for model224

editing.7 We experiment with naïve fine-tuning,225

i.e., no augmentation, along with fine-tuning and226

SAUL with random augmentation (R), paraphrase227

7We follow the data augmentation strategies used in Gan-
gadhar and Stratos (2024).

augmentation (P), and both augmentations (P+R). 228

As shown in Table 4, fine-tuning with any data 229

augmentation significantly improves the editing 230

score compared to naive fine-tuning, but at the 231

cost of generation quality. In particular, paraphrase 232

augmentation causes a degradation of the model’s 233

generation quality, likely because it introduces un- 234

natural sentence segments.8 As shown in Figure 2, 235

our method, SAUL w/ R, outperforms other meth- 236

ods in terms of generation fluency and consistency, 237

and achieving strong editing scores across datasets. 238

6 Conclusion 239

In this work, we proposed SAUL, a novel fine- 240

tuning method to address the challenges of pre- 241

serving unrelated knowledge in LLMs and main- 242

taining high generation quality during model edit- 243

ing. To achieve this, SAUL regularizes the genera- 244

tion process through sentence concatenation with 245

augmented random facts. Our evaluation on three 246

benchmark datasets demonstrated that SAUL out- 247

performs state-of-the-art methods while maintain- 248

ing generation quality and reducing computational 249

overhead. Consequently, SAUL offers an efficient 250

and practical solution for model editing in LLMs. 251

8Please refer to Appendix A.1 for more details.
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Limitations252

Data Augmentation Strategies. Data augmenta-253

tion is an active research area in natural language254

processing. In this work, we study paraphrase and255

random augmentation to regularize the model’s256

generation. Exploring additional data augmenta-257

tion strategies could further enhance performance,258

and provide new insights for the model editing259

task.260

Multilingual Model Editing Evaluation. Our261

evaluations are limited to monolingual datasets262

due to the absence of well-established multilingual263

datasets. To assess the effectiveness and general-264

izability of SAUL across diverse linguistic con-265

texts, experiments with multilingual datasets are266

essential. This would help determine how well our267

method adapts to languages with various vocabu-268

lary sets and linguistic features.269

Experiments with Different Numbers of Edits.270

In this work, we focus on the mass-editing setting271

following prior works (Meng et al., 2022b; Gangad-272

har and Stratos, 2024). Specifically, the Counter-273

Fact, ZsRE, and WikiRecent datasets used in this274

work provide 10,000, 10,000, and 1,266 requested275

edits, respectively. Investigating the performance276

and stability of SAUL under varying numbers of277

edits could provide valuable information about its278

scalability. This would be an interesting direction279

for future research.280

Ethical Considerations281

One potential ethical issue of this work arises from282

the use of the CounterFact dataset which contains283

incorrect factual knowledge. While this dataset284

is valuable for testing and improving model edit-285

ing methods, it inherently introduces the risk of286

propagating incorrect information if not carefully287

managed. Model editing based on such a dataset288

can inadvertently lead to the generation of incor-289

rect information and hallucinated text.290

References291

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,292
and Mor Geva. 2024. Evaluating the ripple effects of293
knowledge editing in language models. Transactions294
of the Association for Computational Linguistics,295
12:283–298.296

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021.297
Editing factual knowledge in language models. In298
Proceedings of the 2021 Conference on Empirical299
Methods in Natural Language Processing, pages300

6491–6506, Online and Punta Cana, Dominican Re- 301
public. Association for Computational Linguistics. 302

Govind Gangadhar and Karl Stratos. 2024. Model 303
editing by pure fine-tuning. arXiv preprint 304
arXiv:2402.11078. 305

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan- 306
deharioun. 2024. Does localization inform edit- 307
ing? surprising differences in causality-based lo- 308
calization vs. knowledge editing in language mod- 309
els. Advances in Neural Information Processing 310
Systems, 36. 311

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 312
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 313
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 314
large language models. In International Conference 315
on Learning Representations. 316

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, 317
Wenge Rong, and Zhang Xiong. 2023. Transformer- 318
patcher: One mistake worth one neuron. arXiv 319
preprint arXiv:2301.09785. 320

Nora Kassner, Philipp Dufter, and Hinrich Schütze. 321
2021. Multilingual LAMA: Investigating knowl- 322
edge in multilingual pretrained language mod- 323
els. In Proceedings of the 16th Conference 324
of the European Chapter of the Association for 325
Computational Linguistics: Main Volume, pages 326
3250–3258, Online. Association for Computational 327
Linguistics. 328

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke 329
Zettlemoyer. 2017. Zero-shot relation extraction via 330
reading comprehension. In Proceedings of the 21st 331
Conference on Computational Natural Language 332
Learning (CoNLL 2017), pages 333–342, Vancou- 333
ver, Canada. Association for Computational Linguis- 334
tics. 335

Ilya Loshchilov and Frank Hutter. 2017. Decou- 336
pled weight decay regularization. arXiv preprint 337
arXiv:1711.05101. 338

Kevin Meng, David Bau, Alex Andonian, and Yonatan 339
Belinkov. 2022a. Locating and editing factual as- 340
sociations in gpt. Advances in Neural Information 341
Processing Systems, 35:17359–17372. 342

Kevin Meng, Arnab Sen Sharma, Alex J Ando- 343
nian, Yonatan Belinkov, and David Bau. 2022b. 344
Mass-editing memory in a transformer. In The 345
Eleventh International Conference on Learning 346
Representations. 347

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 348
Finn, and Christopher D Manning. 2021. Fast model 349
editing at scale. In International Conference on 350
Learning Representations. 351

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo- 352
pher D Manning, and Chelsea Finn. 2022. Memory- 353
based model editing at scale. In International 354
Conference on Machine Learning, pages 15817– 355
15831. PMLR. 356

5

https://doi.org/10.18653/v1/2021.emnlp-main.522
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034


Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,357
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and358
Alexander Miller. 2019. Language models as359
knowledge bases? In Proceedings of the360
2019 Conference on Empirical Methods in Natural361
Language Processing and the 9th International362
Joint Conference on Natural Language Processing363
(EMNLP-IJCNLP), pages 2463–2473, Hong Kong,364
China. Association for Computational Linguistics.365

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.366
How much knowledge can you pack into the param-367
eters of a language model? In Proceedings of the368
2020 Conference on Empirical Methods in Natural369
Language Processing (EMNLP), pages 5418–5426,370
Online. Association for Computational Linguistics.371

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-372
6B: A 6 Billion Parameter Autoregressive Lan-373
guage Model. https://github.com/kingoflolz/374
mesh-transformer-jax.375

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,376
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu377
Zhang. 2023. Editing large language models: Prob-378
lems, methods, and opportunities. Singapore. Asso-379
ciation for Computational Linguistics.380

6

https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2023.emnlp-main.632
https://aclanthology.org/2023.emnlp-main.632
https://aclanthology.org/2023.emnlp-main.632


A Appendix381

A.1 Dataset Information382

We evaluate SAUL and related methods on three383

datasets: CounterFact, ZsRE, and WikiRecent.384

CounterFact (Meng et al., 2022b) is a dataset that385

includes artificially created counterfacts to test the386

ability of model editing methods to add counter-387

factual information to the language model. ZsRE388

(Levy et al., 2017) is a question-answering dataset389

consisting of 10,000 real-world facts, used to test390

model editing methods for adding correct infor-391

mation. WikiRecent (Cohen et al., 2024) collects392

factual knowledge that has been inserted into Wiki-393

Data after July 2022.394

Specifically, the CounterFact, ZsRE, and395

WikiRecent datasets provide 10,000, 10,000, and396

1,266 requested edits, respectively. For each re-397

quested edit, we augment 20 unrelated true facts398

provided by Gangadhar and Stratos (2024) for sen-399

tence concatenation. For the data augmentation400

ablation study, we add paraphrase samples for aug-401

mentation following Gangadhar and Stratos (2024).402

They augment the paraphrase data by generating403

free texts using the GPT-J model and prepend these404

texts to the original factual sentence for model edit-405

ing. The generated sentence segments are listed406

in Table 5. As discussed in Section 5, paraphrase407

augmentation causes a degradation in the model’s408

generation quality, likely because it introduces un-409

natural sentences such as ”Q: How can I use a. The410

mother tongue of Danielle Darrieux is English".411

Paraphrase prefix

”Q: . "
”Q: . "
”The present invention relates."
”The role of the."
”\n \n-."
”Q: Why is my code not."
”Q: What is the correct way."
”The present invention relates in general to the manufacture."
”The role of the family in the development of."
”\n \n-\n \n1\n."
”A new report from the Center for Immigration Studies."
”Q: How can I use a."
”Q: How to use multiple variables."
”\n \n=\n \n1\n."
”Q: What is the difference in."

Table 5: Examples of the prefix text used for paraphrase
augmentation.

A.2 Implementation Details412

We use the AdamW optimizer (Loshchilov and413

Hutter, 2017) for all experiments.Table 6 provides414

detailed hyperparameter choices for SAUL across 415

datasets. The training was performed on Nvidia 416

A100 GPUs.9 417

CounterFact ZsRE WikiRecent

Epochs 40
Early stop patience 5
Batch size 32
No. augmented facts 20 20 10
Learning rate 5e-5 2e-5 1e-4

Table 6: Hyperparameters used on three model editing
datasets used in this work.

A.3 Additional Experimental Results 418

As introduced in Section 4, model editing perfor- 419

mance is evaluated using efficacy, generality, and 420

locality. In Section 5, we report the harmonic mean 421

of these three metrics in the main paper for brevity. 422

Here in Table 7 to 16, we provide the complete 423

evaluation results, including all these model edit- 424

ing metrics and the generation metrics fluency and 425

consistency. 426

9All experiments ran on a carbon-neutral GPU cluster.
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Editor
CounterFact

Score Efficacy Generality Locality Fluency Consistency

Original GPT-J 22.4 15.2 17.7 83.5 622.4 29.4

MEND 23.1 15.7 18.5 83.0 618.4 31.1
ROME 50.3 50.2 50.4 50.2 589.6 3.3
MEMIT 85.8 98.9 88.6 73.7 619.9 40.1
FT + R + P 86.5 98.8 93.6 72.0 352.0 5.2
FT + R + P* 86.6 98.1 95.1 71.8 208.7 4.7
SAUL 87.7 99.6 92.8 74.8 600.7 31.0

Table 7: Complete evaluation results on CounterFact of SAUL and related methods on three benchmark datasets.

Editor
ZsRE

Score Efficacy Generality Locality Fluency

Original GPT-J 26.4 26.4 25.8 27.0 599.0

MEND 20.0 19.4 18.6 22.4 -
ROME 2.6 21.0 19.6 0.9 -
MEMIT 50.7 96.7 89.7 26.6 -
FT + R + P 62.0 99.9 97.0 35.6 -
FT + R + P* 64.2 97.0 87.2 40.1 591.5
SAUL 63.6 99.9 93.4 37.8 620.7

Table 8: Complete evaluation results on ZsRE of SAUL and related methods on three benchmark datasets.

Editor
WikiRecent

Score Efficacy Generality Locality Fluency

Original GPT-J 37.4 34.4 34.5 45.3 600.8

MEND - - - - -
ROME 35.0 39.8 25.5 46.9 -
MEMIT 67.3 99.2 80.2 45.3 -
FT + R + P 68.5 99.6 84.6 45.8 -
FT + R + P* 70.1 99.6 93.4 45.4 501.3
SAUL 69.7 99.5 89.1 46.0 560.6

Table 9: Complete evaluation results on WikiRecent of SAUL and related methods on three benchmark datasets.

Editor
CounterFact

Score Efficacy Generality Locality Fluency Consistency

Original GPT-J 22.4 15.2 17.7 83.5 622.4 29.4

FT 21st 57.0 84.3 52.0 46.5 584.4 14.9
FT 3-8th 60.8 99.9 82.5 36.8 553.8 8.7
FT all 62.4 99.9 91.2 36.9 452.1 4.3
FT LoRA 55.4 100.0 71.6 33.1 494.4 5.7

SAUL 3-8th 89.8 99.5 92.4 79.7 595.4 30.1
SAUL all 87.7 99.6 92.8 74.6 600.7 31.0

Table 10: Complete evaluation results on CounterFact for the ablation study with various fine-tuning paradigms.
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Table 11: Complete evaluation results on ZsRE for the ablation study with various fine-tuning paradigms.

Editor
ZsRE

Score Efficacy Generality Locality Fluency

Original GPT-J 26.4 26.4 25.8 27.0 599.0

FT 21st 37.9 45.7 43.4 29.2 566.4
FT 3-8th 56.7 98.9 96.5 30.9 549.5
FT all 58.8 99.5 96.3 32.7 559.9
FT LoRA 57.8 96.5 92.4 32.6 543.9

SAUL 3-8th 63.6 99.7 85.1 39.4 615.0
SAUL all 63.6 99.9 93.4 37.8 620.7

Table 12: Complete evaluation results on ZsRE for the ablation study with various fine-tuning paradigms.

Editor
WikiRecent

Score Efficacy Generality Locality Fluency

Original GPT-J 37.4 34.4 34.5 45.3 600.8

FT 21st 45.7 48.8 43.7 45.0 595.8
FT 3-8th 69.2 99.6 87.8 45.5 574.3
FT all 67.2 99.6 79.8 45.3 570.0
FT LoRA 67.5 99.4 81.4 45.3 546.8

SAUL 3-8th 3-8th 69.4 99.5 85.5 46.5 587.9
SAUL 3-8th all 69.7 99.5 89.1 46.0 560.6

Table 13: Complete evaluation results on WikiRecent for the ablation study with various fine-tuning paradigms.

Editor
CounterFact

Score Efficacy Generality Locality Fluency Consistency

Original GPT-J 22.4 15.2 17.7 83.5 622.4 29.4

FT 62.4 99.9 91.2 36.9 452.1 4.3
FT + R 85.3 98.7 87.6 73.5 379.0 3.5
FT + P 70.7 99.9 99.2 44.7 190.9 5.6
FT + P + R 86.6 98.1 95.1 71.8 208.7 4.7
SAUL w/ R 87.7 99.6 92.8 74.6 600.7 31.0
SAUL w/ P 68.7 100.0 97.4 42.7 366.8 8.6
SAUL w/ P + R 87.5 99.8 92.1 74.5 447.6 18.0

Table 14: Complete evaluation results on CounterFact for the ablation study with various data augmentation
strategies.

Editor
ZsRE

Score Efficacy Generality Locality Fluency

Original GPT-J 26.4 26.4 25.8 27.0 599.0

FT 58.8 99.5 96.3 32.7 559.9
FT + R 58.6 99.6 98.5 32.2 564.2
FT + P 63.7 99.8 94.2 37.8 607.2
FT + P + R 64.2 97.0 87.2 40.1 591.5
SAUL w/ R 63.6 99.9 93.4 37.8 620.7
SAUL w/ P 54.4 99.9 96.0 28.8 466.9
SAUL w/ P + R 63.5 99.9 94.9 37.4 490.3

Table 15: Complete evaluation results on ZsRE for the ablation study with various data augmentation strategies.
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Editor
WikiRecent

Score Efficacy Generality Locality Fluency

Original GPT-J 37.4 34.4 34.5 45.3 600.8

FT 67.2 99.6 79.8 45.3 570.0
FT + R 69.9 99.6 92.2 45.4 454.6
FT + P 69.0 99.5 85.4 46.1 541.5
FT + P + R 70.1 99.6 93.4 45.4 501.3
SAUL w/ R 69.7 99.5 89.1 46.0 560.6
SAUL w/ P 69.5 99.5 87.7 46.1 406.4
SAUL w/ P + R 70.5 99.5 86.7 47.7 437.8

Table 16: Complete evaluation results on WikiRecent for the ablation study with various data augmentation
strategies.
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